Odd-frequency superconducting states with different types of Meissner response : Problem of coexistence. / Fominov, Yakov V.; Tanaka, Yukio; Asano, Yasuhiro; Eschrig, Matthias.

In: Physical Review B, Vol. 91, 144514, 30.04.2015, p. 1-14.

Research output: Contribution to journalArticle

Published

Documents

  • Submitted Manuscript

    Submitted manuscript, 316 KB, PDF document

  • PhysRevB.91.144514

    Final published version, 246 KB, PDF document

Links

Abstract

We consider physical properties of a superconductor with a recently proposed type of odd-frequency pairing that exhibits diamagnetic Meissner response ("odd-dia state"). Such a state was suggested in order to address stability issues arising in an odd-frequency superconducting state with paramagnetic Meissner response ("odd-para state"). Assuming the existence of an odd-dia state (due to a proper retarded interaction), we study its coexistence with an odd-para state. The latter is known to be generated as an induced superconducting component in, e.g., singlet superconductor/ferromagnet proximity structures or triplet superconductor/normal metal systems. Calculating the superfluid density of the mixed odd-para/odd-dia state and the Josephson current between the odd-para and odd-dia states, we find that the expressions for the currents in both cases have non-vanishing imaginary contributions and are therefore unphysical. We show that a realization of the odd-dia state implies the absence of a Hamiltonian description of the system, and suggest that there exists no physically realizable perturbation that could give rise to the spontaneous symmetry breaking necessary for an actual realization of the odd-dia superconducting state.
Original languageEnglish
Article number144514
Pages (from-to)1-14
Number of pages14
JournalPhysical Review B
Volume91
DOIs
Publication statusPublished - 30 Apr 2015
This open access research output is licenced under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

ID: 24309689