First Results from the DEAP-3600 Dark Matter Search with Argon at SNOLAB. / -A. Amaudruz, P.; Boorman, Gary; Butcher, Alistair; Fatemighomi, Nasim; Grace, Emily; Hall, A; La Zia, Franco; Monroe, Jocelyn; Seeburn, Navin; Taylor, Jo; Walding, Joseph; DEAP-3600 Collaboration.

In: Physical Review Letters, Vol. 121, No. 7, 071801, 17.08.2018, p. 1-6.

Research output: Contribution to journalLetter




This Letter reports the first results of a direct dark matter search with the DEAP-3600 single-phase liquid argon (LAr) detector. The experiment was performed 2 km underground at SNOLAB (Sudbury, Canada) utilizing a large target mass, with the LAr target contained in a spherical acrylic vessel of 3600 kg capacity. The LAr is viewed by an array of PMTs, which would register scintillation light produced by rare nuclear recoil signals induced by dark matter particle scattering. An analysis of 4.44 live days (fiducial exposure of 9.87 ton day) of data taken during the initial filling phase demonstrates the best electronic recoil rejection using pulse-shape discrimination in argon, with leakage < 1.2x10^-7 (90 C.L.) between 15 and 31keVee. No candidate signal events are observed, which results in the leading limit on weakly interacting massive particle (WIMP)-nucleon spin-independent cross section on argon, < 1.2x10^-44cm^2 for a 100GeV/c^2 WIMP mass (90% C.L.).
Original languageEnglish
Article number071801
Pages (from-to)1-6
Number of pages6
JournalPhysical Review Letters
Issue number7
Publication statusPublished - 17 Aug 2018
This open access research output is licenced under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

ID: 31069644