Abstract
We are motivated by the following question: which nominal languages admit an active learning algorithm? This question was left open in previous work, and is particularly challenging for languages recognised by nondeterministic automata. To answer it, we develop the theory of residual nominal automata, a subclass of nondeterministic nominal automata. We prove that this class has canonical representatives, which can always be constructed via a finite number of observations. This property enables active learning algorithms, and makes up for the fact that residuality – a semantic property – is undecidable for nominal automata. Our construction for canonical residual automata is based on a machine-independent characterisation of residual languages, for which we develop new results in nominal lattice theory. Studying residuality in the context of nominal languages is a step towards a better understanding of learnability of automata with some sort of nondeterminism.
Original language | English |
---|---|
Title of host publication | LIPCs |
Place of Publication | Germany |
Publisher | Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing |
Pages | 44:1-44:21 |
Number of pages | 21 |
Volume | 2017 |
ISBN (Electronic) | 978-3-95977-160-3 |
DOIs | |
Publication status | Published - 26 Aug 2020 |
Event | 31st International Conference on Concurrency Theory - Duration: 1 Sept 2020 → 4 Sept 2020 |
Conference
Conference | 31st International Conference on Concurrency Theory |
---|---|
Abbreviated title | CONCUR |
Period | 1/09/20 → 4/09/20 |