Abstract
Biomarkers are increasingly used in a wide range of areas such as sports and clinical diagnostics, biometric applications, forensic analysis and population screening. Testing for such biomarkers requires substantial resources and has traditionally involved centralised laboratory testing. From cancer diagnosis to COVID testing, there is an increasing demand for protein based assays that are portable, easy to use and ideally multiplexed, so that more than one biomarker can be tested at the same time, thus increasing the throughput and reducing time of the analysis and potentially the costs. Events in recent years, not least the ongoing investigations into claims of widespread state-sponsored doping schemes in sport and the COVID-19 pandemic of 2020 highlight the ever-growing requirement and importance of such tests across multiple frontiers.
The project evaluated the feasibility of new antipeptide affinity reagents and suitable technologies for application to multiplexed affinity assays geared towards quantitatively analysing a range of analytes.
In the first part of this project, key protein biomarkers available from blood serum and covering a range of conditions including cancer, inflammation, and various behavioural traits were chosen from the literature. Peptide antigens for the development of antipeptide polyclonal antibodies for each protein were selected following in silico proteolysis and ranking of the peptides using an algorithm devised as part of this research. A microarray format was used to achieve spatial multiplexing and increase throughput of the assays. The arrays were evaluated experimentally and were tested for their usability for studying up/down regulation of the target biomarkers in human sera samples.
Another protein assay format tested for compatibility with affinity peptidomics approach was a gold nanoparticle based lateral flow test. An affinity-based lateral flow test device was built and used for the detection of the benzodiazepine Valium. Here spectral multiplexing of detection was considered. The principle was tested using quantum dot nanoparticles instead of traditionally used gold nanoparticles. The spectral deconvolution was achieved for mixtures containing up to six differently sized quantum dots.
In the final part of this project, a search for novel peptide affinity reagents against insulin growth-like factor 1 (IGF-1) was conducted using phage display. Four peptides were identified after screening a phage display library, and the binding of these peptides to IGF-1 was compared to that of traditional antibody.
The project evaluated the feasibility of new antipeptide affinity reagents and suitable technologies for application to multiplexed affinity assays geared towards quantitatively analysing a range of analytes.
In the first part of this project, key protein biomarkers available from blood serum and covering a range of conditions including cancer, inflammation, and various behavioural traits were chosen from the literature. Peptide antigens for the development of antipeptide polyclonal antibodies for each protein were selected following in silico proteolysis and ranking of the peptides using an algorithm devised as part of this research. A microarray format was used to achieve spatial multiplexing and increase throughput of the assays. The arrays were evaluated experimentally and were tested for their usability for studying up/down regulation of the target biomarkers in human sera samples.
Another protein assay format tested for compatibility with affinity peptidomics approach was a gold nanoparticle based lateral flow test. An affinity-based lateral flow test device was built and used for the detection of the benzodiazepine Valium. Here spectral multiplexing of detection was considered. The principle was tested using quantum dot nanoparticles instead of traditionally used gold nanoparticles. The spectral deconvolution was achieved for mixtures containing up to six differently sized quantum dots.
In the final part of this project, a search for novel peptide affinity reagents against insulin growth-like factor 1 (IGF-1) was conducted using phage display. Four peptides were identified after screening a phage display library, and the binding of these peptides to IGF-1 was compared to that of traditional antibody.
Original language | English |
---|---|
Qualification | Ph.D. |
Awarding Institution |
|
Supervisors/Advisors |
|
Thesis sponsors | |
Award date | 1 Aug 2021 |
Publication status | Published - 2021 |