TY - JOUR
T1 - Intercontinental long-distance seed dispersal across the Mediterranean Basin explains population genetic structure of a bird-dispersed shrub
AU - Martínez-López, Vicente
AU - Garcia Perez, Cristina
AU - Zapata, Víctor
AU - Robledano, Francisco
AU - De la Rúa, Pilar
PY - 2020/4
Y1 - 2020/4
N2 - Long-distance dispersal (LDD) is a pivotal process for plants determining their range of distribution and promoting gene flow among distant populations. Most fleshy-fruited species rely on frugivorous vertebrates to disperse their seeds across the landscape. While LDD events are difficult to record, a few ecological studies have shown that birds move a sizeable number of ingested seeds across geographic barriers, such as sea straits. The foraging movements of migrant frugivores across distant populations, including those separated by geographic barriers, creates a constant flow of propagules that in turn shapes the spatial distributions of the genetic variation in populations. Here, we have analysed the genetic diversity and structure of 74 populations of Pistacia lentiscus, a fleshy-fruited shrub widely distributed in the Mediterranean Basin, to elucidate whether the Mediterranean Sea acts as a geographic barrier or alternatively whether migratory frugivorous birds promote gene flow among populations located on both sides of the sea. Our results show reduced genetic distances among populations, including intercontinental populations, and they show a significant genetic structure across an eastern-western axis. These findings are consistent with known bird migratory routes that connect the European and African continents following a north-southwards direction during the fruiting season of many fleshy-fruited plants. Further, approximate Bayesian analysis failed to explain the observed patterns as a result of historical population migrations at the end of Last Glacial Maximum. Therefore, anthropic and/or climatic changes that would disrupt the migratory routes of frugivorous birds might have genetic consequences for the plant species they feed upon.
AB - Long-distance dispersal (LDD) is a pivotal process for plants determining their range of distribution and promoting gene flow among distant populations. Most fleshy-fruited species rely on frugivorous vertebrates to disperse their seeds across the landscape. While LDD events are difficult to record, a few ecological studies have shown that birds move a sizeable number of ingested seeds across geographic barriers, such as sea straits. The foraging movements of migrant frugivores across distant populations, including those separated by geographic barriers, creates a constant flow of propagules that in turn shapes the spatial distributions of the genetic variation in populations. Here, we have analysed the genetic diversity and structure of 74 populations of Pistacia lentiscus, a fleshy-fruited shrub widely distributed in the Mediterranean Basin, to elucidate whether the Mediterranean Sea acts as a geographic barrier or alternatively whether migratory frugivorous birds promote gene flow among populations located on both sides of the sea. Our results show reduced genetic distances among populations, including intercontinental populations, and they show a significant genetic structure across an eastern-western axis. These findings are consistent with known bird migratory routes that connect the European and African continents following a north-southwards direction during the fruiting season of many fleshy-fruited plants. Further, approximate Bayesian analysis failed to explain the observed patterns as a result of historical population migrations at the end of Last Glacial Maximum. Therefore, anthropic and/or climatic changes that would disrupt the migratory routes of frugivorous birds might have genetic consequences for the plant species they feed upon.
U2 - 10.1111/mec.15413
DO - 10.1111/mec.15413
M3 - Article
SN - 0962-1083
VL - 29
SP - 1408
EP - 1420
JO - Molecular Ecology
JF - Molecular Ecology
IS - 8
ER -