Geochemistry of the Phlegraean Fields (Italy) proximal sources for major Mediterranean tephras: implications for the dispersal of Plinian and co-ignimbritic components of explosive eruptions

Emma L. Tomlinson, Ilenia Arienzo, Lucia Civetta, Sabine Wulf, Victoria C. Smith, Mark Hardiman, Christine S. Lane, Antonio Carandente, Giovanni Orsi, Mauro Rosi, Wolfgang Müller, Martin A. Menzies

Research output: Contribution to journalArticlepeer-review

191 Downloads (Pure)


Volcanic activity at Phlegraean Fields, Italy, produced several major marker tephras over a 50 ka period. The caldera forming eruptions of the Campanian Ignimbrite (CI) and Neapolitan Yellow Tuff (NYT) are of particular importance for
tephrostratigraphy in Europe. Other key eruptions from this source include the Pomici Principali (PP) and the Tufi Biancastri eruptions. We combine analyses of fresh glasses from proximal locations (i.e., juvenile clasts in proximal flow and fall deposits) with data for key tephra layers from Lago Grande di Monticchio, 120 km to the east. The micron-beam major (EMPA) and trace (LA-ICP-MS) element glass dataset allows us to: (a) distinguish between tephra units produced from the Phlegraean Fields before and during the CI eruption (CI-series), and before and during the NYT and PP eruptions (NYT-series/PP); (b)
discriminate between the CI and the geochemically similar Pre-CI pyroclastic deposits; (c) separate the NYT from Pre-NYT tephra units, although both major and trace elements do show significant overlap. The complex compositional overlap between Pre-NYT tephras may present a problem for tephra correlations in the 14–39 ka time window and may have resulted in incorrect proximal–distal and distal–distal correlations. The diagnostic chemical criteria detailed herein permits more accurate matching of distal tephras with their proximal equivalents and hence will improve chronostratigraphy of distal settings and give insight into tephra dispersal. We show that the dispersal of PP tephra was more limited than previously thought. The surge/fall (Lower Member) and subsequent pyroclastic density current (Upper Member) phases of the NYT eruption can be recognised in distal settings. Both the NYT Lower and Upper Members are found in distal localities to the east of the Phlegraean Fields, however the Lower Member is found in the absence of the Upper Member in locations to the far north of Phlegraean Fields. Chemical compositions of the Plinian and ignimbrite phases of the CI eruption overlap extensively, but can be distinguished on a plot of Zr–Th.
Original languageEnglish
Pages (from-to)102-128
Number of pages26
JournalGeochimica et Cosmochimica Acta
Early online date26 Jun 2012
Publication statusPublished - 15 Sept 2012

Cite this