TY - JOUR
T1 - Drivers of genetic differentiation in a generalist insect-pollinated herb across spatial scales
AU - Antonio Jesús Muñoz-Pajares
AU - Garcia Perez, Cristina
AU - Mohamed Abdelaziz
AU - Jordi Boch
AU - Francisco Perfectti
AU - Jose Maria Gómez
PY - 2017/3
Y1 - 2017/3
N2 - The isolation-by-distance model (IBD) predicts that genetic differentiation among populations increases with geographic distance. Yet, empirical studies show that a variety of ecological, topographic and historical factors may override the effect of geographic distance on genetic variation. This may particularly apply to species with narrow but highly heterogeneous distribution ranges, such as those occurring along elevational gradients. Using nine SSR markers, we study the genetic differentiation of the montane pollination-generalist herb, Erysimum mediohispanicum. Because the effects of any given factor may depend on the geographic scale considered, we investigate the contribution of different environmental and historical factors at three different spatial scales. We evaluate five competing models that put forward the role of geographic distance, local environmental factors [biotic interactions (IBEb) and climatic variables (IBEa)], landscape resistance (IBR) and phylogeographic patterns (IBP), respectively. We find significant IBD regardless of the spatial scale and the genetic distance estimator considered. However, IBEa and IBP also play a prominent role in shaping genetic differentiation patterns at the larger spatial scales, and IBR is significant at the fine spatial scale. Overall, our results highlight the importance of combining different estimators, statistical approaches and spatial scales to disentangle the relative importance of the various ecological factors contributing to the shaping of genetic divergence patterns in natural populations.
AB - The isolation-by-distance model (IBD) predicts that genetic differentiation among populations increases with geographic distance. Yet, empirical studies show that a variety of ecological, topographic and historical factors may override the effect of geographic distance on genetic variation. This may particularly apply to species with narrow but highly heterogeneous distribution ranges, such as those occurring along elevational gradients. Using nine SSR markers, we study the genetic differentiation of the montane pollination-generalist herb, Erysimum mediohispanicum. Because the effects of any given factor may depend on the geographic scale considered, we investigate the contribution of different environmental and historical factors at three different spatial scales. We evaluate five competing models that put forward the role of geographic distance, local environmental factors [biotic interactions (IBEb) and climatic variables (IBEa)], landscape resistance (IBR) and phylogeographic patterns (IBP), respectively. We find significant IBD regardless of the spatial scale and the genetic distance estimator considered. However, IBEa and IBP also play a prominent role in shaping genetic differentiation patterns at the larger spatial scales, and IBR is significant at the fine spatial scale. Overall, our results highlight the importance of combining different estimators, statistical approaches and spatial scales to disentangle the relative importance of the various ecological factors contributing to the shaping of genetic divergence patterns in natural populations.
U2 - 10.1111/mec.13971
DO - 10.1111/mec.13971
M3 - Article
SN - 0962-1083
VL - 26
SP - 1576
EP - 1585
JO - Molecular Ecology
JF - Molecular Ecology
IS - 6
ER -