
Multi-Message Private Information Retrieval using
Product-Matrix Minimum Storage Regenerating Codes

Chatdanai Dorkson and Siaw-Lynn Ng
Department of Mathematics, Royal Holloway, University of London

Abstract

Multi-message PIR scheme allows a user
to download multiple messages from the
database without revealing the identity of
desired messages. Obviously, the user can
repeatly use a single-message PIR scheme,
but we wish for a more efficient way. In
this work, we design a multi-message PIR
using a product-matrix MSR codes from
[1] achieving cPoP equals p+2

p when p is
the number of desired records. The use
of regenerating codes beneficially reduces
repair cost when a node failure occurs in
the system. This work is the generalisation
of our result on the single-message PIR [2].

Regenerating Codes

An (n, k, r, α, β,B) regenerating code stores
B symbols among n nodes. Each node stores
α symbols satisfying:
•The B symbols can be recovered from any
k nodes

• If one node fails, we can connect to some set
of r remaining nodes where k ≤ r < n, and
gets β symbols from each of these r nodes
to regenerate α symbols in the failed node.

Regenerating codes optimally trade repair
bandwidth (rβ) with the amount of data
stored per node (α). One interesting extremal
point on the optimal trade-off curve is called
the minimum storage regeneration (MSR)
which minimises α first and then minimise rβ.

Contact Information

Chatdanai.Dorkson.2016@rhul.ac.uk

References

[1] K. Rashmi, N. Shah, P. Kumar
Optimal Exact-Regenerating Codes for
Distributed Storage at the MSR and
MBR Points via a Product-Matrix
Construction.
IEEE Trans. Inf. Theory 2011,
pp.5227–5239.

[2] C. Dorkson and S. Ng
Private Information Retrieval using
Product-Matrix Minimum Storage
Regenerating Codes.
http://arxiv.org/abs/1805.07190.
(Manuscript submitted for publication.)

System Model

•A database X consists of m records, each of length ` over Fq, denoted by X1, X2, . . . , Xm.
•Each record is encoded and distributed across n non-communicating nodes using the same product-matrix MSR code.
•A user who wants to download the record Xf1, Xf2, . . . , Xfp submits a d×mα query matrix Qi over GF (q) to node i
•Node i responds with an answer Ai = QiSi where Si the column vector consisting of all symbols stored in node i.
•A scheme is perfect information-theoretic if for i ∈ [n], Qi gives no information about which records are being
retrieved, and Ai ensures that the user can recover the desired records Xf1, . . . , Xfp with no errors.

An Example of Our Scheme

In our construction, we use the product-matrix MSR code from [1] with n = (p + 2)(k − 2), over the finite field Fq.
The parameters of the MSR code are

(n, k, r, α, β,B) = ((p + 2)(k − 2), k, 2k − 2, k − 1, 1, k(k − 1)).
Assume ` = k(k − 1) in this construction. We give an example to motivate our scheme.

Example: Suppose that we have 3 records over the finite field F13, each with size 6, so we can use an (8, 3, 4, 2, 1, 6)
product-matrix MSR code over F13 to encode each record. We writeX i = {xi1, xi2, xi3, xi4, xi5, xi6}. Choose the encoding
matrix Ψ8 to be the Vandermonde matrix, and the message matrixMi for the record i, i ∈ {1, 2, 3} as described in [1]:

Ψ8 =



1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8
1 4 9 3 12 10 10 12
1 8 1 12 8 8 5 5



T

, Mi =



xi1 xi2
xi2 xi3
xi4 xi5
xi5 xi6



.

Hence, each node stores
node 1 node 2 node 3 node 4 node 5 node 6 node 7 node 8

x11 + x12 + x14 + x15 x11 + 2x12 + 4x14 + 8x15 x11 + 3x12 + 9x14 + x15 x11 + 4x12 + 3x14 + 12x15 x11 + 5x12 + 12x14 + 8x15 x11 + 6x12 + 10x14 + 8x15 x11 + 7x12 + 10x14 + 5x15 x11 + 8x12 + 12x14 + 5x15
x12 + x13 + x15 + x16 x12 + 2x13 + 4x15 + 8x16 x12 + 3x13 + 9x15 + x16 x12 + 4x13 + 3x15 + 12x16 x12 + 5x13 + 12x15 + 8x16 x12 + 6x13 + 10x15 + 8x16 x12 + 7x13 + 10x15 + 5x16 x12 + 8x13 + 12x15 + 5x16
x21 + x22 + x24 + x25 x21 + 2x22 + 4x24 + 8x25 x21 + 3x22 + 9x24 + x25 x21 + 4x22 + 3x24 + 12x25 x21 + 5x22 + 12x24 + 8x25 x21 + 6x22 + 10x24 + 8x25 x21 + 7x22 + 10x24 + 5x25 x21 + 8x22 + 12x24 + 5x25
x22 + x23 + x25 + x26 x22 + 2x23 + 4x25 + 8x26 x22 + 3x23 + 9x25 + x26 x22 + 4x23 + 3x25 + 12x26 x22 + 5x23 + 12x25 + 8x26 x22 + 6x23 + 10x25 + 8x26 x22 + 7x23 + 10x25 + 5x26 x22 + 8x23 + 12x25 + 5x26
x31 + x32 + x34 + x35 x31 + 2x32 + 4x34 + 8x35 x31 + 3x32 + 9x34 + x35 x31 + 4x32 + 3x34 + 12x35 x31 + 5x32 + 12x34 + 8x35 x31 + 6x32 + 10x34 + 8x35 x31 + 7x32 + 10x34 + 5x35 x31 + 8x32 + 12x34 + 5x35
x32 + x33 + x35 + x36 x32 + 2x33 + 4x35 + 8x36 x32 + 3x33 + 9x35 + x36 x32 + 4x33 + 3x35 + 12x36 x32 + 5x33 + 12x35 + 8x36 x32 + 6x33 + 10x35 + 8x36 x32 + 7x33 + 10x35 + 5x36 x32 + 8x33 + 12x35 + 5x36

Let Y a
ij denote the jth symbol stored in node i of the record a.

In the retrieval step, suppose the user wants to download X1 and X2. The query Qi is a (3 × 6) matrix which we can
interpret as 3 subqueries submitted to node i for each i ∈ [8]. To form the query matrices, the user generates a (3× 6)
random matrix U = [uij] whose elements are chosen uniformly at a random from F13. Let

V1 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0


, V2 =



0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0


, V3 =



0 1 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0


, V4 =



0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0


, V5 =



0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


, V6 =



0 0 0 1 0 0
0 0 0 0 0 0
0 0 1 0 0 0


.

For node i ∈ [6], the query matrix is Qi = U +Vi and Q7 = Q8 = U . Then each node computes and returns the length-3
vector Ai = QiSi where Si is a length-6 vector of symbols stored in node i. Write Ai = (ri1, ri2, ri3)T . Let

w1 = (x11, x12, x21, x22, x31, x32)T , w2 = (x12, x13, x22, x23, x32, x33)T ,
w3 = (x14, x15, x24, x25, x34, x35)T , w4 = (x15, x16, x25, x26, x35, x36)T .

Consider first subquery 1, we obtain

Y 1
11 + I1 + I2 + I3 + I4 = r11 (1)
I1 + 2I2 + 4I3 + 8I4 = r21 (2)

Y 1
32 + I1 + 3I2 + 9I3 + I4 = r31 (3)

Y 2
43 + I1 + 4I2 + 3I3 + 12I4 = r41 (4)

I1 + 5I2 + 12I3 + 8I4 = r51 (5)
Y 2

64 + I1 + 6I2 + 10I3 + 8I4 = r61 (6)
I1 + 7I2 + 10I3 + 5I4 = r71 (7)
I1 + 8I2 + 12I3 + 5I4 = r81 (8)

where Il = u1wl, l = 1, 2, 3, 4, and u1 is the first row of U . The user can solve for I1, I2, I3, I4 from (2), (5), (7), (8) as
they form the equation with (4×4) submatrix of Ψ8 which is invertible. Therefore, the user gets Y 1

11, Y
1

32 for record 1 and
Y 2

43, Y
2

64 for record 2. Similarly, from subquery 2, the user obtains Y 1
12, Y

1
21 for record 1 and Y 2

44, Y
2

53 for record 2. Lastly,
from subquery 3, the user obtains Y 1

22, Y
1

31 for record 1 and Y 2
54, Y

2
63 for record 2. Hence, the user has all the symbols of

X1 which are stored in the node 1, 2, 3 and all the symbols of X2 which are stored in the node 4, 5, 6. From the property
of regenerating codes, the user can reconstruct X1 and X2 as desired.

node 1 node 2 node 3 node 4 node 5 node 6 node 7 node 8
1 2 3
2 3 1

1 2 3
2 3 1

Table 1: Retrieval pattern for a (8,3,4,2,1,6) MSR code

Chatdanai.Dorkson.2016@rhul.ac.uk

