
Optimally Secure Instant Messaging
with Immediate Decryption and

Backup Solutions

J.A.M. Pijnenburg

Department of Information Security
Royal Holloway, University of London

This dissertation is submitted for the degree of
Doctor of Philosophy

March 2023





I would like to dedicate this thesis to everyone who was not granted the privilege of
schooling.





Declaration

These doctoral studies were conducted under the supervision of Professor Keith Martin.
I hereby declare that except where specific reference is made to the work of others, the

contents of this thesis are original and have not been submitted in whole or in part for
consideration for any other degree or qualification in this, or any other university. This
thesis is the result of my own research, in collaboration with others, whilst enrolled in the
Department of Information Security as a candidate for the degree of Doctor of Philosophy.
This thesis contains fewer than 100,000 words including references and footnotes.

The contents of Chapter 2 and Chapter 3 are joint work with Bertram Poettering
and the content of Chapter 4 is joint work with Gareth Davies. While I designed the
protocol presented in Chapter 3, the implementation in C has been provided by Bertram
Poettering.

J.A.M. Pijnenburg
March 2023





Acknowledgements

I would like to thank my teacher Jo van der Doelen for posing challenging problems beyond
the curriculum to put us in our place every time we got complacent, my supervisor Peter
Borm for introducing me to what research actually is, my supervisor Steven Galbraith for
hosting me and developing my cryptographic skills, and of course my supervisor Tanja
Lange, without whom I would have never embarked on this PhD journey.

I am thankful to my supervisor Kenneth Paterson for his guidance, my supervisor
Bertram Poettering for agreeing to take me under his wing (provided I would never try
to speak German again), my supervisor Keith Martin for seeing me through the end
and my advisor Elizabeth Quaglia for always being warm and kind. I would also like to
thank Gareth Davies, whom it has been a pleasure to work with during the pandemic
when other research interaction dwindled, Martin Albrecht and Benjamin Dowling for
agreeing to examine this thesis and providing helpful comments and remarks to improve
its clarity and quality, and special thanks to Claire Hudson for always being there to
help me navigate the university’s administrative system.

My gratitude to the local Egham residents for being so helpful and accepting me into
their community when I moved here — you know who you all are. I have had a great
time in this leafy town.

Thanks to Marcel Armour for being on this journey together from start to end,
Eamonn Postlethwaite for acting the role of wise old mentor, Alpesh Bhudia, Jodie
Knapp and Liam Medley for being such a welcoming family and excellent housemates.
Thanks to Erin Hales, Lenka Mareková, Simon-Philipp Merz and Joe Rowell for all the
fun trips we went on together, Tabitha Ogilvie for all the times you invited me over for
dinner to chat, and Balázs Mezei for all the late nights in the office together catching
up on the day’s work, eating cheese, discussing the latest developments in the world
and always checking in on me when times were rough, but I will never forgive you for
convincing me that writing up would only take three weeks.

I am grateful to Lisa Wright for providing me unique insight into British culture,
supplying me with Tim Tams and coffee, offering excellent advice and generally being
the most fabulous friend one could hope for. Finally, I want to thank my family. My



wife for providing me the impetus to finish my thesis quickly after I languished through
the pandemic, for her unfaltering support and for being understanding that some weeks
of the PhD life can be very intense and stressful. My sister for never turning down an
opportunity to visit (me in) London. My brother and his wife for always providing a
space for me where I can be myself. My parents for being so supportive from the start,
encouraging us to go to university when they did not have the opportunity themselves,
the invaluable life lessons and spoiling me when I come home for Christmas.

viii



Abstract

This thesis explores security goals in the instant messaging setting and backup solutions
for messages and media, both in the case where the device is still available (but has
limited storage capacity) and the case where the device is no longer accessible (e.g. lost
or stolen). For each topic we provide game based security definitions, constructions and
security proofs.

In Chapter 2 we design a new ratcheting protocol. Ratcheting protocols let parties
securely exchange messages in environments in which state exposure attacks are antici-
pated. While, unavoidably, some promises on confidentiality and authenticity cannot
be upheld once the adversary obtains a copy of a party’s state, ratcheting protocols
aim at confining the impact of state exposures as much as possible. In particular, such
protocols provide forward secrecy (after state exposure, past messages remain secure)
and post-compromise security (after state exposure, participants auto-heal and regain
security).

We carefully revisit the security notions for ratcheting in the Immediate Decryp-
tion (ID) setting, and introduce the progression of physical time, which is new for
academic treatments of ratcheting protocols. This allows for formally requiring that
(undelivered) ciphertexts automatically expire after a configurable amount of time.

In Chapter 3 we put forward a symmetric encryption primitive tailored towards
a specific application: outsourced storage. The setting assumes a memory-bounded
computing device that inflates the amount of volatile or permanent memory available
to it by letting other (untrusted) devices hold encryptions of information that they
return on request. We develop the cryptographic mechanism that should be used to
achieve confidential and authentic data storage in the encrypt-to-self setting, i.e., where
encryptor and decryptor coincide and constitute the only entity holding keys. We
argue that standard authenticated encryption represents only a suboptimal solution for
preserving confidentiality, as much as message authentication codes are suboptimal for
preserving authenticity. The crucial observation is that such schemes instantaneously
give up on all security promises in the moment the key is compromised. In contrast,
data protected with our new primitive remains fully integrity protected and unmalleable.



We investigate in Chapter 4 how users of instant messaging services can acquire
strong encryption keys to back up their messages and media with strong cryptographic
guarantees, without any long-term secret storage. Extending the end-to-end encryption
guarantees from just message communication to also incorporate backups has so far
required either some trust in an instant messaging or outsourced storage provider, or use
of costly third-party encryption tools with unclear security guarantees. Recent works
have proposed solutions for password-protected key material, however all require one or
more servers to generate and/or store per-user information, inevitably invoking a cost to
the users.

We define distributed key acquisition (DKA) as the primitive for the task at hand,
where a user interacts with one or more servers to acquire a strong cryptographic key, and
both user and server store as little as possible. We present a construction framework that
we call PERKS—Password-based Establishment of Random Keys for Storage—providing
efficient, modular and simple protocols that utilize Oblivious Pseudorandom Functions
(OPRFs) in a distributed manner with minimal storage by the user (just the password)
and servers (a single global key for all users).
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Chapter 1

Introduction

Instant messaging allows two (or more) parties to communicate in near real time by
transmitting data via the Internet (or more generally any computer network both parties
are connected to). The IRC protocol was the first to achieve widespread adoption, but
with the rise of smartphones, first BlackBerry Messenger and later WhatsApp became
a dominant player in the market. Most modern instant messaging applications are
not limited to text messaging and offer many features such as images, GIFs, reactions,
stickers, read receipts, file sharing and voice/video calling. We abstract all of this away
and when we write ‘sending a message’ in this thesis, we refer to the data representing
any of the above. Technically, the instant messaging protocol can be peer-to-peer, but
popular applications follow a client-server model, where the instant messaging provider
accepts messages from the sender and subsequently pushes them to the receiver. This
way users do not have to be online simultaneously to be able to exchange messages.

While many applications encrypt data in transit from the sender to the server and
from the server to the receiver, end-to-end encryption is less common. With end-to-
end encryption we mean the data is encrypted with keys only the endpoints (e.g. each
party’s mobile phone) have access to. This prevents the instant messaging provider from
reading the contents of the messages and thus from reporting users to authoritarian
regimes. It should be obvious that this is still extremely relevant today, but examples
include the blocking and deletion of WeChat accounts associated with China’s LGBTQ
movement in July 20211 and data experts predict that in the USA call histories, text
messages and emails will be used to prosecute anyone seeking reproductive care, anyone
assisting them and anyone providing it.2 There are currently many instant messaging

1https://www.bbc.co.uk/news/world-asia-china-57759480
2https://www.eff.org/deeplinks/2022/05/what-companies-can-do-now-protect-digital-rights-post-

roe-world
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Introduction

applications available that provide end-to-end encryption including but not limited to
Signal, Whatsapp and iMessage. Telegram is another popular application promising
encrypted messaging, but by default chats are only encrypted to their server, rather than
end-to-end. While there is an option to enable end-to-end encryption for individual chats,
there is no such possibility for group chats. Moreover, it relies on unstudied assumptions
and has been susceptible to attacks [2].

Users usually download an instant messaging application when they acquire a new
phone and then use it for a long time, i.e. many months. Because of this nature, and the
fact that mobile phones are easily lost, stolen or confiscated, the resilience of messaging
protocols against state exposure is considered crucial. In such an attack, the adversary
obtains a copy of the user’s state. Now the goal of secure instant messaging is to minimize
the effect of such an exposure. In the trivial case where the same key is used for every
message, such an attack will be devastating: the adversary will be able to decrypt every
message ever sent in the past and every message that will be sent in the future. It
is intuitive that for optimal security we will want to use a unique encryption key for
every message. The challenge arises how to update our user state in a way such that an
adversary cannot use it to acquire past encryption keys nor to obtain future encryption
keys.

We remark that end-to-end encryption only focuses on protecting the contents of
the message and that there still is a vast trove of metadata available. This includes
for example the timing, length and frequency of the messages, location data and the
message recipient(s). Knowing that a person just messaged someone can already be very
revealing, for example contacting a newspaper may raise questions in itself, without the
content being known. It also allows analysts to build a social web of who is talking to
whom and to identify a person’s friends.

1.1 Organization

This thesis explores three interesting problems in the instant messaging setting. We first
focus on the core problem of how to securely exchange messages. Ratcheting protocols
play a crucial part here to achieve optimally secure instant messaging. Hence, we provide
an informal high level introduction to the concept of ratcheting in Sec. 1.4, expanding
on the abstract. For a more formal and detailed treatment we refer the reader to
Chapter 2. The second problem we turn our attention to is outsourced storage. After all,
it makes little sense to focus on optimal security for the exchange of messages if users
subsequently upload the plaintext to the cloud to backup their chats. While standard

2



1.2 Contents

cryptographic tools can be used to encrypt your data, we investigate the setting where
the encryptor and decryptor are the same party. In Chapter 3 we design a surprisingly
efficient provably secure construction that remains fully integrity protected even when
the key is compromised. Unsurprisingly, a user may want to access their backup if they
lose access to their device (and the key stored on it). Anecdotally, this even appears
to be the most common usage pattern. However, now we have encrypted our backup,
we need a way to recover the (decryption) key. Thus, the focus of Chapter 4 is how to
generate (random) keys such that they can be recovered without trusting a third party
key escrow server nor requiring the user to save a backup of their key.

Further, in this introduction, we define the notation that will be used throughout this
thesis, some of which may be non-standard. Subsequently we define the syntax of several
standard cryptographic primitives, which will be employed throughout the remainder of
this thesis and will be assumed to be well understood.

1.2 Contents

This thesis contains adaptations of the following four publications.

1. Jeroen Pijnenburg and Bertram Poettering. “Encrypt-to-Self: Securely Outsourcing
Storage”. In: ESORICS 2020, Part I. ed. by Liqun Chen et al. Vol. 12308. LNCS.
Springer, Heidelberg, Sept. 2020, pp. 635–654. doi: 10.1007/978-3-030-58951-6_31.

2. Jeroen Pijnenburg and Bertram Poettering. “Efficiency Improvements for Encrypt-
to-Self”. In: CYSARM@CCS. ACM, Nov. 2020, pp. 13–23. doi: 10.1145/3411505.
3418438.

3. Gareth T. Davies and Jeroen Pijnenburg. “PERKS: Persistent and Distributed Key
Acquisition for Secure Storage from Passwords”. In: SAC 2022. LNCS. Springer,
Heidelberg, Aug. 2022, To Appear.

4. Jeroen Pijnenburg and Bertram Poettering. “On Secure Ratcheting with Immediate
Decryption”. In: ASIACRYPT 2022, Part III. ed. by Shweta Agrawal and Dongdai
Lin. Vol. 13793. Lecture Notes in Computer Science. Springer, Dec. 2022, pp. 89–
118. doi: 10.1007/978-3-031-22969-5_4.

The following publication was also written during my studies at Royal Holloway,
University of London.

3

https://doi.org/10.1007/978-3-030-58951-6_31
https://doi.org/10.1145/3411505.3418438
https://doi.org/10.1145/3411505.3418438
https://doi.org/10.1007/978-3-031-22969-5_4


Introduction

5. Jeroen Pijnenburg and Bertram Poettering. “Key Assignment Schemes with
Authenticated Encryption, revisited”. In: IACR Trans. Symm. Cryptol. 2020.2
(2020), pp. 40–67. issn: 2519-173X. doi: 10.13154/tosc.v2020.i2.40-67.

My research was supported by the EPSRC and the UK government as part of the
Centre for Doctoral Training in Cyber Security at Royal Holloway, University of London
(EP/P009301/1).

1.3 Notation

For the Boolean constants True and False we write T and F, respectively. We let
N = {0,1, . . .} and N+ = {1,2, . . .}. For a,b ∈ N, we define ∆(a,b) := |b−a|. If a < b, we
use notations [a .. b] = {a, . . . , b}, [b] = [0 .. b], Ja .. bK = [a .. (b−1)], and JbK = [0 .. (b−1)]
(where J0K is the empty set). We further write J∞K for the set of natural numbers
N = {0, . . .}.

We specify scheme algorithms and security games in pseudocode. In such code we
write ‘var ← exp’ for evaluating expression exp and assigning the result to variable var .
Here, expression exp may comprise the invocation of algorithms.3 If var is a set variable
and exp evaluates to a set, we write var ∪← exp shorthand for var ← var ∪ exp and
var ∩← exp shorthand for var ← var ∩ exp. If S is a finite set, var ←$ S stands for
picking an element of S uniformly at random and assigning the result to variable var .
Associative arrays implement the ‘dictionary’ data structure: Once the instruction
A[·]← exp initialized all items of array A to the default value exp, with A[idx ]← exp and
var ← A[idx ] individual items indexed by expression idx can be updated or extracted. A
vector variable can be appended to another with the concatenation operator ++, and we
will write var ++← exp shorthand for var ← var ++ exp. Note that even if both variables
hold strings, concatenation does not mean string concatenation, i.e.: "a" ++ "b" ̸= "ab".
For a vector variable var we denote with size(var) the number of defined elements, i.e.
elements that are not ⊥, which may be less than the length of var .

An alphabet Σ is any finite set of symbols or characters. We denote with Σn the
set of strings of length n and with Σ≤n the strings of length up to (and including) n.
In the practical parts of this thesis we assume that |Σ|= 256, i.e., that all strings are
byte strings. We denote string concatenation with q. If var is a string variable and exp
evaluates to a string, we write var q← exp shorthand for var ← var q exp. Further, if exp
evaluates to a string, we write var q var ′←n exp to denote splitting exp such that we

3Non-deterministic algorithms are always executed with uniform coins.
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assign the first n characters from exp to var and assign the remainder to var ′. When we
do not need the remainder, we write var ←n exp shorthand for var q dummy←n exp and
discard dummy.

For a stateful algorithm alg we write y← alg⟨st⟩(x) shorthand for (st,y)← alg(st,x)
to denote an invocation that updates the state st. Note x or y may be empty, that is,
the algorithm takes no input or produces no output (besides the state). Additionally,
we do not exclude the possibility the state may remain unchanged. We specify the
syntax of an algorithm alg that takes as input x ∈ X and outputs y ∈ Y by writing
X → alg→ Y. For a stateful algorithm with st ∈ S we will write X → alg⟨S⟩ → Y
shorthand for S ×X → alg→S×Y .

Security games are parameterized by an adversary, and consist of a main game body
plus zero or more oracle specifications. The adversary can query all oracles specified by
the game, in any order and any number of times. The execution of a game G starts
with the main game body and terminates when a ‘Stop with exp’ instruction is reached.
The value of expression exp is taken as the outcome of the game and will be 0 or 1. We
write P[G(A)] for the probability that an execution of G with adversary A results in 1.4

When we write a ‘realistic adversary’, we mean any algorithm that runs in probabilistic
polynomial time.

We define macros for specific combinations of game-ending instructions: We write
‘Win’ for ‘Stop with 1’ and ‘Lose’ for ‘Stop with 0’, and further for a condition C we
write ‘Require C’ for ‘If ¬C: Lose’, ‘Penalize C’ for ‘If C: Lose’, ‘Reward C’ for ‘If C:
Win’, and ‘Promise C’ for ‘If ¬C: Win’. These macros emphasize the specific semantics
of game termination conditions. For instance, a game may terminate with ‘Reward cond’
in cases where the adversary arranged for a situation—indicated by cond resolving to
True—that should be awarded a win (e.g., the crafting of a forgery in an authenticity
game).

Some of our games have Expose and/or Tick oracles. The former models a state
exposure of the indicated participant, i.e., a full copy of their program state is given to
the adversary. The latter models the progression of physical time: On each invocation,
one time unit passed and a new time unit has begun. In our models, invoking this oracle
requires indicating the user whose clock shall be progressed by one tick. This allows for
expressing not perfectly synchronized clocks and transmission delays: If the clocks of
Alice and Bob are initially synchronized, then Alice sends a message, then Bob’s clock
ticks three times, and then he receives the message, then the network delay was three
time units.

4The probability is taken over the random coins of G and A.
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We finally draw attention to an important detail of our algorithm and game notation:
algorithms are allowed to abort. Here, by abort we mean the case where an algorithm does
not generate output according to its syntax specification, but outputs some error indicator
instead.5 For example, an AE decryption algorithm that rejects an unauthentic ciphertext
or a randomized signature algorithm that does not have sufficiently many random bits to
its disposal. In this thesis, for generality we assume that any scheme algorithm may abort.
However, rather than explicitly encoding this in syntactical constraints which would
heavily clutter the notation, we assume that if an algorithm invokes another algorithm
as a subroutine, and the latter aborts, then the former also immediately aborts. We
assume the same for game oracles: if an invoked scheme algorithm aborts, then the oracle
immediately aborts as well. The oracle outputs a special symbol, specifically ⊥, as a
result of the oracle query to inform the adversary that execution has been aborted. We
believe that our way to handle errors implicitly rather than explicitly contributes to
obtaining definitions with clean and clear semantics.

1.4 Ratcheting

Ratcheting protocols serve as core components in most modern instant messaging apps,
with billions of users per day. A ratcheting protocol assumes a shared initial secret and
allows two parties, Alice and Bob, to exchange encrypted messages by producing a new,
distinct key for each message. The goal of a ratcheting protocol is to minimize the impact
of state exposures on confidentiality and authenticity. In essence, each party derives a
new key with every message such that past keys cannot be computed from current ones,
i.e. the key ‘ratchets’ forward. Additionally, each party mixes in fresh randomness such
that future keys cannot be computed from current keys. The details of each construction
depend on the security targeted and many security models have been proposed in the
literature [48, 98, 32, 56, 66, 86, 65].

Most instances, including Signal [77], guarantee immediate decryption (ID): Receivers
recover and deliver the messages wrapped in ciphertexts immediately when they become
available, even if ciphertexts arrive out-of-order and preceding ciphertexts are still missing.
This ensures the continuation of sessions in unreliable communication networks, ultimately
contributing to a satisfactory user experience. While most academic treatments consider
ratcheting without ID, recent work by Alwen et al. [5] proposes the first ID-aware security
model for ratcheting and a provably secure construction. Unfortunately, as we note, in
their protocol a receiver state exposure allows for the decryption of all prior undelivered

5Other works in the field represent ‘abort’ with ‘output ⊥’.
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ciphertexts. As a consequence, from an adversary’s point of view, intentionally preventing
the delivery of (a fraction of) the ciphertexts of a conversation, and exposing the receiver
(days) later, allows for correctly decrypting all suppressed ciphertexts. The same attack
works against Signal. The case of undelivered messages is a very realistic threat as
governments in Belarus, Burma, China, Egypt, Ethiopia, India, Iran, Iraq, Libya, Russia,
Syria and Venezuela have shown their hand to block traffic for specific applications or
even orchestrate a complete shutdown6 and subsequently arrested activists and protestors,
confiscating their devices. We remark it is of course far more important that the sender
deletes the plaintext messages on their phone in such situations, before worrying about
undelivered ciphertexts.

We argue that the level of (forward-)security realized by the protocol of Alwen et
al., and mandated by their security model, is considerably lower than both intuitively
expected and technically possible. We carefully revisit the security notions for ratcheting
in the ID setting and provide a provably secure construction. One component of our
model, that is new for academic treatments of ratcheting protocols, is that it reflects
the progression of physical time. This allows for formally requiring that (undelivered)
ciphertexts automatically expire after a configurable amount of time.

1.5 Preliminaries

Our constructions will employ several standard cryptographic primitives. Among oth-
ers, we require a one-time IND-CPA secure symmetric encryption scheme, a strongly
unforgeable signature scheme and an IND-CCA secure KEM. We provide the syntax and
security definitions of these primitives here.

1.5.1 Symmetric Encryption

Syntax of symmetric encryption. A symmetric encryption scheme for a message
space M consists of a key space K, a ciphertext space C, and algorithms enc,dec with
APIs

K×M→ enc→C K×C → dec→M .

We say that algorithm dec accepts if it terminates normally (outputting a message);
otherwise, if it aborts, we say it rejects. For correctness we require that for all k ∈ K
and m ∈ M, for all c ∈ [enc(k,m)] we have dec(k,c) = m. We assume a one-time

6https://www.wired.co.uk/article/internet-shutdowns
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Game CONFb(A)
G00 k←$ K
G01 Invoke A
G02 Lose
Oracle Decide(b′)
D00 Stop with b′

Oracle Challenge(m0,m1)
C00 Require k ̸=⊥
C01 Require m0 ≡m1

C02 c← enc(k,mb)
C03 k←⊥
C04 Return c

Fig. 1.1 Games CONF0,CONF1 for one-time IND-CPA secure encryption schemes.
Equivalence relation ≡ on M is defined such that m0 ≡m1 :⇔ |m0|= |m1|.

Game AUTH(A)
G00 SM←∅
G01 (sk,vk)← gen
G02 Invoke A(vk)
G03 Lose

Oracle Sign(m)
S00 σ← sign(sk,m)
S01 SM ∪←{(m,σ)}
S02 Return σ

Oracle Vfy(m,σ)
V00 vfy(vk,m,σ)
V01 If (m,σ) /∈ SM:
V02 Reward

Fig. 1.2 Game AUTH for signature schemes, defining strong unforgeability.

IND-CPA secure encryption scheme. We define the confidentiality notion of one-time
indistinguishability under chosen-plaintext attacks via the game in Fig. 1.1. The advantage
of adversary A is defined as Advconf(A) := |P[CONF1(A)]−P[CONF0(A)]|.

1.5.2 Signatures

We briefly recall the syntax of signature schemes and for reference we produce the
standard security notion of strong unforgeability (SUF).

Syntax. A signature scheme for a message space M consists of a signing key space SK,
a verification key space VK, a signature space Σ, and algorithms gen,sign,vfy with APIs

gen→SK×VK SK×M→ sign→ Σ VK×M×Σ→ vfy .

We say that algorithm vfy accepts if it terminates normally; otherwise, if it aborts, we
say it rejects. We expect of a correct signature scheme that for all (sk,vk) ∈ [gen] and
m ∈M and σ ∈ [sign(sk,m)] we have that vfy(vk,m,σ) accepts.

Strong Unforgeability. We define the authenticity notion of strong unforgeability
via the game in Fig. 1.2. The advantage of adversary A is defined as Advauth(A) :=
P[AUTH(A)].
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1.5.3 Key Encapsulation Mechanisms

We briefly recall the syntax of KEMs and for reference we reproduce the standard security
notion of confidentiality against active attacks (IND-CCA),

Syntax. A key encapsulation mechanism scheme for a key space K consists of a secret
key space SK, a public key space PK, a ciphertext space C, and algorithms gen,enc,dec
with APIs

gen→SK×PK PK→ enc→K×C SK×C → dec→K .

We say that algorithm dec accepts if it terminates normally (outputting a key); otherwise,
if it aborts, we say it rejects. We expect of a correct KEM that for all (sk,pk) ∈ [gen]
and (k,c) ∈ [enc(pk)] and k′ ∈ [dec(sk, c)] we have that k′ = k.

Security of KEM. We define the confidentiality notion of indistinguishability under
chosen-ciphertext attacks via the game in Fig. 1.3. The advantage of adversary A is
defined as Advconf(A) := |P[CONF1(A)]−P[CONF0(A)]|.

Game CONFb(A)
G00 SC←∅
G01 K[·]← ·
G02 (sk,pk)← gen
G03 Invoke A(pk)
G04 Lose
Oracle Decide(b′)
D00 Stop with b′

Oracle Challenge
C00 (k0, c)← enc(pk)
C01 k1←$ K
C02 Promise c /∈ SC
C03 SC ∪←{c}
C04 K[c]← k
C05 Return (kb, c)

Oracle Dec(c)
D10 k← dec(sk, c)
D11 If c ∈ SC:
D12 Promise k = K[c]
D13 k←⋄
D14 Return k

Fig. 1.3 Games CONF0,CONF1 for KEMs, defining indistinguishability under active
attacks. Note that the game also defines functionality [C02,D12].

1.5.4 Secret Sharing Schemes

We now define a secret sharing scheme SSS, that allows an entity to share some secret
value k (belonging to some finite set S1) among n parties, such that any t of the shares
enable reconstruction of k, while any set of t−1 shares reveals nothing about k. The
exposition here is adapted from Boneh and Shoup [27].

A secret sharing scheme SSS = (SecShare,SecCombine) over a finite set S1 consists
of two algorithms. Sharing algorithm SecShare(k,t,n) is probabilistic, taking as input
k ∈ S1 for 0≤ t≤ n and returning shares α⃗ = {α1, . . . ,αn} ∈ Sn

2 . Reconstruction algorithm
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SecCombine(α⃗′) is deterministic, taking as input α⃗′ = {α′
1, . . . ,α′

t} ∈ St
2 and returning the

reconstructed secret k. Correctness demands that for every secret k ∈ S1, every set of
n shares α⃗ output by SecShare(k,t,n), and every subset {α′

1, . . . ,α′
t}= α⃗′ ⊆ α⃗ of size t,

then SecCombine(α⃗′) = k.

Definition 1.5.1 (SSS Security). A secret sharing scheme (SecShare,SecCombine)
over S1 is secure if for every k,k ′ ∈ S1, and every subset α⃗′ ∈ St−1

2 , the distribution
SecShare(k,t,n)[α⃗′] is identical to the distribution SecShare(k ′,t,n)[α⃗′].

The most well known secret sharing scheme is due to Shamir [92] using polynomial
interpolation and is suitable for our purposes. The scheme makes use of the fact that a
polynomial of degree t−1 over a field F is completely determined by t of its points. A
Shamir secret sharing scheme is a secret sharing scheme over S1 = Fq with prime power
q > n and shares are elements of S2 = F2

q . SecShare(k,t,n) is defined as follows:

1. Choose a1, . . . ,at−1←$ Fq and define the polynomial

f(x) := at−1xt−1 +at−2xt−2 + . . .+a1x+k ∈ Fq[x].

2. Choose n non-zero points x1, . . . ,xn ∈ Fq and define αi = (xi,f(xi)) ∈ F2
q .

3. Output α⃗ = {α1, . . . ,αn}.

SecCombine(α) interpolates the polynomial f from the input of t points that completely
determine it and outputs k = f(0). A simple method to interpolate the polynomial is
called Lagrange interpolation. We refer to [27] for a detailed specification of Lagrange
interpolation and a security proof of Shamir’s secret sharing scheme. In this thesis we
choose S1 such that it matches our key space K, for example S1 = F2256 if we have a
256-bit key space.
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Chapter 2

Optimally Secure Ratcheting with
Immediate Decryption

We consider a communication model between two parties, Alice and Bob, as it occurs in
real-world instant messaging (e.g., in smartphone-based apps like Signal). A key principle
in this context is that the parties are only very loosely synchronized. For instance, a
“ping-pong” alteration of the sender role is not assumed but parties can send concurrently,
i.e., whenever they want to. Further, specifically in phone-based instant messaging, a
generally unpredictable network delay has to be tolerated: While some messages are
received split seconds after they are sent, it may happen that other messages are delivered
only with a considerable delay.1 We refer to this type of communication (with no enforced
structure and arbitrary network delays) as asynchronous. We say that asynchronous
communication has in-order delivery if messages always arrive at the receiver in the
order they were sent (what Alice sends first is received by Bob before what she sends
later); otherwise, if in-order delivery cannot be guaranteed by the network, we say that
the communication has out-of-order delivery.

2.1 Introduction

The central cryptographic goals in instant messaging are that the confidentiality and
integrity of messages are maintained. As communication sessions are routinely long-lived
(e.g., go on for months), and as mobile phones are so easily lost, stolen, confiscated, etc.,
the resilience of solutions against state exposure attacks has been accepted as pivotal.
In such an attack, the adversary obtains a full copy of the attacked user’s program

1E.g., delays of hours can occur if a phone is switched off over night or during a long-distance flight.
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state.2 We say that a protocol provides forward secrecy if after a state exposure the
already exchanged messages remain secure (in particular confidential), and we say that
it provides post-compromise security if after a state exposure the attacked participant
heals automatically and regains full security if the adversary remains passive.

Past research efforts succeeded with proposing various security models and construc-
tions for the (in-order) asynchronous communication setting with state exposures [48,
98, 32, 56, 66, 86, 65]. The rule of thumb “the stronger the model the more costly the
solution” applies also to the ratcheting domain, and the indicated works can be seen as
positioned at different points in the security-vs-cost space. For instance, the security
models of [56, 86] are the strongest (for excluding no attacks beyond the trivial ones) but
seem to necessitate HIBE-like building blocks [12], while [32, 48, 66] work with a relaxed
healing requirement (either parties do not recover completely or recovery is delayed) that
can be satisfied with DH-inspired constructions.

While the works discussed above exclusively consider communication with in-order
delivery, popular instant-messaging solutions like Signal are specifically designed to
tolerate out-of-order delivery [77, Sec. 2.6] in order to best deal with the needs of users
who want to effectively communicate despite temporary network outages, radio dead
spots, etc. Given this means that the protocols cannot rely on ciphertexts arriving in
the order they were sent, let alone that they arrive at all, the immediate decryption
(ID) property of such protocols demands that independently of the order in which
ciphertexts are received, and independently of the ciphertexts that might still be missing,
any ciphertext shall be decryptable for immediate display in the moment it arrives.3 The
ID property received academic attention only recently, in an article by Alwen, Coretti,
and Dodis (ACD) [5]. As the authors point out, while virtually all practical secure
messaging solutions do support ID, most rigorous treatments do not. The work of ACD
aims at closing this gap, and we revisit and refine their results.

We provide more details about the work of ACD and explain how we improve upon
it. Their main focus is on the Double Ratchet (DR) primitive which is one of the core
components of the Signal protocol [77, 40]. DR was specifically developed to allow for
simultaneously achieving forward and post-compromise security in ID-supporting instant
messaging. ACD contribute a formal security model for this primitive and detail how
instant messaging can be constructed from it. This approach, however, does not formally

2Program states could leak because of malware executed on the user’s phone, by analysing backup
images of a phone’s memory that are stored insufficiently encrypted in the cloud, by analysing memory
residues on swap drives, etc. Less technical conditions include that users are legally or illegally coerced
to reveal their states.

3In the user interface, placeholders could indicate messages that are still missing.
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guarantee that their solution is also secure in an intuitive sense: A user would expect
their sent messages to be secure. We identified an attack that should not be successful
against a secure ID-supporting instant messaging protocol, yet if applied against the
ACD protocol (or Signal) it leads to the full decryption of arbitrarily selected ciphertexts.

Our attack is fairly simple and succeeds as follows:4 Assume Alice encrypts, possibly
spread over a timespan of months, a sequence of messages m1, . . . ,mL and sends the
resulting ciphertexts c1, . . . , cL to Bob. An adversary who is interested in learning the
target message m1, arranges that all ciphertexts with exception of c1 arrive at their
destination. By the ID property, Bob decrypts the ciphertexts c2, . . . , cL delivered to
him and recovers the messages m2, . . . ,mL. Further, expecting that the missing c1 is
eventually delivered, he remains in the position to eventually decrypt c1. But if Bob
can decrypt c1, the adversary, after obtaining Bob’s key material via a state exposure,
can decrypt c1 as well, revealing the target message m1. Note that the attack is not
restricted to targeting specifically the first ciphertext; it would similarly work against
any other ciphertext, or against a selection of ciphertexts, and the adversary would in
all cases fully recover the target messages from just one state exposure. That is, for an
adversary who wants to learn specific messages of a conversation secured with Signal or
the protocol of ACD, it suffices to suppress the delivery of the corresponding ciphertexts
and arrange for a state exposure at some later time.

2.1.1 Contributions

Main Conceptual Contribution. Our attack seems to indicate that the immediate
decryption (ID) and forward secrecy (FS) goals, by their very nature, are mutually exclu-
sive, meaning that one can have the one or the other, but not both. Our interpretation
is less black and white and involves refining both the ID and the FS notions. While
we accept that the out-of-order delivery and ID features are necessary to adequately
deal with unreliable networks, we argue that it makes sense to also put a cap on the
acceptable amount of transmission delay. For concreteness, let threshold δ specify a
maximum delay that messages travelling on the network may experience (including when
transmissions are less reliable). Then ciphertexts that are sent at a time t1 and arrive
at a time t2 should be deemed useful and decryptable only if ∆(t1, t2)≤ δ, while they
should be considered expired and thus disposable if ∆(t1, t2) > δ. Once a threshold δ

on the delay is fixed, the ID notion can be weakened to require the correct decryption
of ciphertexts only if the latter are at most δ old, and the FS notion can be weakened

4See Sec. 2.3.4 for a formal treatment.
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to protect past messages under state exposure only if they are older than δ (or already
have been decrypted). As we show, once the two notions have been weakened in this
sense, they fit together without contradicting each other. That is, we promote the idea
of integrating a notion of progressing physical time into the ID and FS definitions so that
their seemingly inherent rivalry is resolved and one can have a trade-off between both
properties, parameterized by δ.

Our models and constructions see δ as a configurable parameter. The value to pick
depends on the needs of the participants. For instance, if Alice and Bob are political
activists operating under an oppressive regime, choosing δ < 15 mins might be useful;
more relaxed users might want to choose δ = 1 week. Note that for δ =∞ our definitions
‘degrade’ to the no-expiration setting.

Main Technical Contributions. We start with a compact description of our three
main technical contributions. We expand on the topics subsequently.

In a nutshell, the contributions of this chapter are: (1) We introduce the concept of
evolving physical time to formal treatments of secure messaging. This allows us to express
requirements on the automatic expiration of ciphertexts after a definable amount of time.
(2) We propose new security models for secure messaging with immediate decryption (ID).
As our approach is to have the security definitions disregard the unavoidable trivial
attacks but nothing else, our models are particularly strong. By incorporating the
progressing of physical time into our notions, our FS and ID definitions are not in conflict
with each other. (3) We contribute a proof-of-concept protocol that provably satisfies
our security notions. Efficiency-wise our protocol might be less convincing than the ACD
protocol and Signal, but it is definitely more secure.

(1) Modelling physical time. Among the many possible approaches to formalizing
evolving physical time, the likely most simple option is sufficient for our purposes. In our
treatments we assume that participants have access to a local clock device that notifies
them periodically through events referred to as ticks about the elapse of a configurable
amount of time.5 The clocks of all participants are expected to be configured to the same
ticking frequency (e.g., one tick every one minute), but otherwise our synchronization
demands are very moderate: The only aspect relevant for us is that when Alice sends
a ciphertext at a time t1 (according to her clock) and Bob receives the ciphertext
at a time t2 (according to his clock), then we expect that the difference ∆(t1, t2) be
meaningful to declare ciphertexts fresh or expired. More precisely, we deem ciphertexts
with ∆(t1, t2) ≤ δ, for a configurable threshold δ, fresh and thus acceptable, while we

5Modern computing environments provide such a service right away. For instance, in Linux, via the
setitimer system call or the alarm standard library function.
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consider all other ciphertexts expired and thus discardable. Note here that threshold δ

specifies both a maximum on the tolerated network delay and on a possibly emerging
clock drift between the sender’s and the receiver’s clock. The right choice of threshold δ

is an implementation detail which controls the robustness-security trade-off.6 See above
for a discussion on how to choose δ. We acknowledge that the assumption of loosely
synchronized clocks in an adversarial setting is contentious. However, desynchronized
clocks would only harm availability: Alice and Bob cannot communicate any further.
This is similar to the adversary cutting the wire between them and we remark that no
protocol can realistically defend against this as the adversary is assumed to control the
network.

(2) Security models. We develop security models for secure messaging with out-of-
order delivery and immediate decryption (ID). We claim two improvements over the only
prior model in this setting (ACD, [5]): (a) We incorporate physical time into all correctness
and security notions. For instance, when formulating the correctness requirements, in
contrast to ACD we do not require the correct decryption of expired ciphertexts, and our
confidentiality definitions deem state exposure based message recovery attacks successful
if the targeted ciphertext is expired. (b) We strengthen the ACD model to the maximum
level of attainable security. Recall that ACD was designed for analysing Double Ratchet
based constructions which were proven to achieve only limited security already in the
in-order delivery setting [56, 86].7 In contrast to ACD, our models are designed to exclude
the unavoidable ‘trivial’ attacks but nothing else, thus guaranteeing optimal security. (In
Sec. 2.3.2 and Sec. 2.3.3 we review examples of such trivial attacks. We also list attacks
that are included in our model but excluded by the ACD model.)

(3) Our construction. We propose a proof-of-concept construction that provably
satisfies our security definitions. Its cryptographic core is formed by two specialized
types of key encapsulation mechanism (KEM): a KeKEM and a KuKEM. In a nutshell,
our KeKEM (key-evolving KEM) primitive is a type of KEM where public and secret
keys can be linearly updated ‘to the next epoch’, almost like in forward-secure PKE. In

6One might wonder about the resilience of computer clocks against desynchronization attacks where
the adversary aims at desynchronizing participants. We note that instant messaging apps are typically
run on mobile devices that have access to multiple independent clock sources (e.g., a local clock, NTP,
GSM, and GNSS) that can be compared and relied upon when consistent. Only the strongest adversaries
can arrange for a common deviation of all these clock sources simultaneously and even in this case our
solutions degrade gracefully: The security of our solutions degrade to that of prior proposals only if the
clocks of all time sources are stopped completely.

7In a nutshell, DR provides optimal security only if used for ping-pong structured communication [56,
86]. In contrast, the constructions of [56, 86] provide security for any (in-order) communication pattern,
though require stronger primitives than DR.
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contrast, our KuKEM (key-updatable KEM) primitive allows for updating keys based on
provided auxiliary input strings. In both cases, key updates provide forward secrecy, i.e.,
‘the updates cannot be undone’. Building further on more standard building blocks like
one-time signatures and symmetric authenticated encryption, the keys established by the
two KEM types are combined together to finally yield a secure instant messaging protocol.
In addition to the cryptographic core, a considerable share of our protocol specification
is concerned with data management because the KeKEM and KuKEM primitives require
that senders and receivers perform their updates in a strictly synchronized fashion. If
ciphertexts arrive out of order, careful bookkeeping is required to let the receiver update
in the right order and at the right time.

It is instructive to observe how and where we employ the two types of KEM: Key
updates of the KeKEM are closely linked to evolving physical time, while key updates of
the KuKEM are related to processing outgoing and incoming ciphertexts. We note that
similar KEM variants have been proposed and used in prior work on instant messaging [56,
86, 12], so in this thesis we claim novelty for neither the concepts nor the constructions.

When compared to the constructions of ACD and Signal, our construction is admit-
tedly less efficient, primarily because (a) we employ the KuKEM and KeKEM primitives
that seem to require a considerable computational overhead, and (b) the ciphertexts
of our protocol are larger. Concerning (a), we note that prior work like [56, 86] that
achieves optimal security for the much easier in-order instant messaging case uses the
same primitives, and that recent results [12] indicate that their use is actually unavoidable.
We conclude from this that the computational overhead that the primitives bring with
them seems to represent the due price to pay for the extra security. A similar statement
can be made concerning (b): If an instant messaging conversation is such that the sender
role strictly alternates between Alice and Bob, then the ciphertext overhead of our
protocol, when compared to Signal, is just a couple of bytes per message. If the sender
role does not strictly alternate, the ciphertext size grows linearly (with a not too large
factor) in the number of messages that the sender still has to confirm to have arrived.
Recalling that the non-alternating case is precisely the one where Signal fails to provide
optimal security, the ciphertext overhead seems to be fair given the extra security that is
achieved.

2.1.2 Related Work

We start with providing a more detailed comparison of our results with those of the prior
work mentioned above. We first remark that our results generalize the findings of [56,
86]: If in our models the physical time is ‘frozen’, messages are always delivered, and
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messages are delivered in-order, they express exactly the same security guarantees as [56,
86]. It is clear that as soon as time starts ticking our model is stronger: We allow state
exposures once ciphertexts ‘expire’, while this concept does not exist in [56, 86]. For
out-of-order delivery the picture immediately becomes more complicated. Note that when
messages are delivered in-order, optimal security demands that user states immediately
‘cryptographically diverge’8 when receiving an unauthentic ciphertext, but for out-of-
order delivery the situation becomes more nuanced. Consider the scenario where Alice
sends a message and is then state-exposed. Using the obtained state information, the
adversary could now trivially and perfectly impersonate Alice towards Bob for the second
message. That is, if Bob receives the second ciphertext first, there is no way for him to
tell whether it is authentic or not, i.e., to distinguish whether Alice sent or the adversary
injected it. If the ciphertext was indeed sent by Alice, correctness would require that
Bob remains able to decrypt the first ciphertext. Thus, the latter also has to hold if the
ciphertext is unauthentic. Hence, in contrast to the setting with in-order delivery, in the
out-of-order setting there are inherent limits to how much the states of Alice and Bob
can ‘cryptographically diverge’ once unauthentic ciphertexts are processed.

Multiple weaker security definitions for secure messaging have been proposed [5, 32,
48, 66]. We provide a brief overview about what makes their security notions suboptimal.
In [32, 48] the adversary is forbidden to impersonate a user when a secure key is being
established. Hence, in this case the authors do not require recovery from a state exposure
(which enables an impersonation attack). In [5, 66] the construction can take longer than
strictly necessary to recover from state exposures. This is encoded in the security games
by artificially labelling certain win conditions as trivial. Moreover, in both works the user
states are not required to immediately ‘cryptographically diverge’ for future ciphertexts
when accepting an unauthentic ciphertext. We note that an important difference between
our KuKEM and Healable key-updating Public key encryption (HkuPke) introduced
in [66] is that HkuPke key updates are based on secret update information, while our
KuKEM is updated with adversarially controlled associated data.

The security definitions of [5, 56, 66] assume a slightly different understanding of
what it means to expose a participant. Our understanding is that exposures reveal the
current protocol state of a participant to the adversary, while their approach is rather
that exposures reveal the randomness used for the next sending operation. The two
views seem ultimately incomparable, and likely one can find arguments for both sides.
One argument that supports our approach is that modern computing environments have

8Meaning: the protocol states, and the key material they encode, become desynchronized beyond
recoverability.
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RNGs that constantly refresh their state based on unpredictable events (e.g., the RDRAND
instruction of Intel CPUs or the urandom device in Linux) so that if one of the situations
listed in Footnote 2 leads to a state exposure then it still can be assumed that the
randomness used for the next sending operation is indeed safe. A third view considers
state exposures to leak a party’s state except for signing keys [4], which seems unrealistic.

Our work is not the first to consider a notion of physical time in a cryptographic
treatment. See [90] for modelling approaches using linear counters, or [74, 76] for
encrypting data ‘to the future’, or [46] for an article that recognizes that many security
features depend on a device knowing the current time and thus proposes an authenticated
version of the Network Time Protocol (NTP).

Recent work in the group messaging setting [6] similarly designs their protocol in
a modular way and captures security in game based definitions. A main component,
continuous group key agreement (CGKA) was first defined in [7] and the analysis of [8]
shows, even in the passive case, no known CGKA protocol achieves optimal security
without using HIBE.

2.1.3 Organization

This article considers the security and constructions of what we refer to as key-updatable
bidirectional out-of-order messaging protocols, abbreviated KuBOOM. In Sec. 2.2 we
define the security model. In Sec. 2.4 we introduce non-interactive components that
we employ in our construction. This includes the mentioned KuKEM and KeKEM
primitives. In Sec. 2.5 we finally give our construction.

2.2 Security of KuBOOM Protocols

We formalize KuBOOM protocols. The API consists of five algorithms, where algorithms
init, send, and recv (for state initialization, message sending, and message receiving,
respectively) are akin to prior work and implement instance initialization, message
sending, and message receiving, respectively.9 Our notion of secure messaging depends
on evolving physical time; we correspondingly introduce a new algorithm tick that is
assumed to be periodically executed by the participants (e.g., once every 10 seconds)
and has no visible function beyond updating their internal state, e.g., by incrementing
an internal tick counter. Independently of physical time, a notion of logical time is

9More precisely, our recv algorithm has a dedicated output for reporting to the invoking user which
of the priorly sent own messages have been received by the peer; this output does not exist in prior work.
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suggested by the sequence in which messages are considered by a sender. We represent
both physical and logical time with integer counters: each invocation of tick increments
the ‘physical counter’, and each invocation of send increments the ‘logical counter’. The
(unique) logical time counter associated with a send invocation is referred to as its
sending index. The consideration of physical and/or logical time allows for associating
ciphertexts with creation time stamps. We require that the timestamp information of
when a ciphertext is created is embedded, in some form, in the ciphertext. To recover
it, we introduce the decoding function ts which, for any ciphertext, indicates both the
physical time (with a granularity defined by the tick invocation frequency) and the logical
time (i.e., sending index) of the corresponding send invocation.10 Recovering these values
from ciphertexts allows for formulating concepts connected to ciphertext expiration when
we define the security notions of KuBOOM.

We proceed with defining the syntax, the semantics (execution environment and
correctness), and the security notions associated with KuBOOM protocols.

Syntax. A KuBOOM scheme for a message spaceM and an associated-data space AD
consists of a state space S, a ciphertext space C, algorithms init,send,recv,tick, and a
decoding function ts. The initialisation algorithm init produces (initial) states stA ∈ S
and stB ∈ S. The sending algorithm send takes a state st ∈ S, an associated-data
string ad ∈ AD, and a message m ∈M, and produces an (updated) state st ′ ∈ S and a
ciphertext c ∈ C. The receiving algorithm recv takes a state st ∈ S, an associated-data
string ad ∈ AD, and a ciphertext c ∈ C, and produces an (updated) state st ′ ∈ S, an
acknowledgement set A ⊆ N, and a message m ∈M. (To Bob, the understanding of
output A is that when c was generated by Alice, then Alice had received Bob’s ciphertexts
with sending index a for all a ∈ A, and vice versa.) The time progression algorithm
tick takes a state st ∈ S and produces an (updated) state st ′ ∈ S. The timestamp
decoder ts is a function that takes a ciphertext c ∈ C and recovers a logical timestamp
(sending index) lt ∈ N and a physical timestamp pt ∈ N. Thus, if P(N) denotes the
powerset of N, the KuBOOM API is as follows:

init→S×S S → tick→S C → ts→ N×N

AD×M→ send⟨S⟩ → C AD×C → recv⟨S⟩ → P(N)×M
10To simplify notation, we model ts as a public function. We believe this is a reasonable choice as

adversaries know the recoverable time information anyway. It is straight-forward to adapt our notions
to instead support a private ts function (that would take the protocol state as an additional input).
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Semantics. We give game based definitions of correctness and security. Recall that
the form of secure messaging that we consider supports the out-of-order processing of
ciphertexts. This property, of course, has to be reflected in all games, rendering them
more complex than those of prior works that deal with easier settings. To manage this
complexity, we carefully developed our games such that they share, among each other,
as many code lines and game variables as possible. In particular, the games can be
seen as derived by individualizing a common basic game body in order to express
specific aspects of functionality or security. This individualization is done by inserting
an appropriate small set of additional code lines.11 (For instance, the game defining
authenticity adds lines of code that identify and flag forgery events.) In the following we
explain first the BASIC game and then its refinements FUNC, AUTH, and CONF.12

Game BASIC. We first take a quick glance over the BASIC game of Fig. 2.1, deferring
the discussion of details to the upcoming paragraphs. The game body [G00–G18] initializes
some variables [G00–G13], invokes the init algorithm to initialize states for two users A
and B [G17], and invokes the adversary [G18]. The adversary has access to four oracles,
each of which takes an input u∈ {A,B} to specify the targeted user. The Tick oracle gives
access to the tick algorithm [T00], the Send oracle gives access to the send algorithm
[S00,S07], and the Recv oracle, besides internally recovering the logical and physical
sending timestamps of an incoming ciphertext [R00], gives access to the recv algorithm
[R01,R29]. Finally, the Expose oracle reveals the current protocol state of a user to the
adversary [E06]. The game variables and remaining code lines are related to monitoring
the actions of the adversary, allowing for identifying specific game states and tracking
the transitions between them. In particular we identified the user-specific states in-sync
and authoritative, the ciphertext properties sync-preserving, sync-damaging, certifying,
and vouching, and the transitions losing sync, poisoning, and healing, as relevant in the
KuBOOM setting. We explain these concepts one by one.

We say that protocol actors are synchronized if their views on the communication is
consistent. A little more precisely, a participant Alice is in-sync with her peer Bob if all
ciphertexts that Alice received are identical with ciphertexts that Bob priorly sent. The
complete definition, formalized as part of the BASIC game as discussed below, further
requires that the employed associated-data inputs are matching, and that the processing
of ciphertexts of an out-of-sync peer also renders the receiver out-of-sync. If Alice is

11Removing or modifying existing lines will not be necessary. That said, restricting the options to
only add new lines might lead to also introducing a small number of redundancies that could allow for
simplifications.

12The BASIC game itself is not used to model any kind of functionality or security. It merely describes
the execution environment.
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Game BASIC(A)
G00 For u ∈ {A,B}:
G01 ltu← 0
G02 ptu← 0
G03 isu← T
G04 SCu←∅
G05 CERTu←∅
G06 VFu[·]← J∞K
G07 AUu← J∞K
G13 poisonedu← F
G17 (stA,stB)← init
G18 Invoke A

Oracle Tick(u)
T00 tick⟨stu⟩
T01 ptu← ptu +1
Oracle Send(u,ad,m)
S00 c← send⟨stu⟩(ad,m)
S02 If isu:
S03 SCu

∪←{(ad, c)}
S06 ltu← ltu +1
S07 Return c

Oracle Expose(u)
E01 If isu:
E02 VFuJltuK ∩← JltuK
E03 AUu

∩← JltuK
E06 Return stu

Oracle Recv(u,ad, c)
R00 (lt,pt)← ts(c)
R01 (A,m)← recv⟨stu⟩(ad, c)
R06 If (ad, c) ∈ SCū:
R07 If isu:
R08 CERTu

∪← [lt]
R09 AUū

∪← VFū[lt]
R17 If (ad, c) /∈ SCū:
R18 If isu:
R19 If lt /∈ AUū:
R20 poisonedu← T
R23 isu← F
R29 Return (A,m)

Fig. 2.1 Game BASIC. We refer the reader to Footnote 16 for the interpretation of
VFuJltuK in line [E02]. We write ū for the element such that {u, ū}= {A,B}.

in-sync with Bob, we refer to ciphertexts that Alice can receive without losing sync as
sync-preserving; the ciphertexts that would render her out-of-sync are referred to as
sync-damaging.13 See Fig. 2.4 in Sec. 2.3.1 for an example.

As we consider communication algorithms that are stateful, any ciphertext created
by a participant may depend on, and may implicitly reflect, the full prior communication
history of that participant. That is, if from a sequence of sent ciphertexts only a subset
of ciphertexts arrive, then from what did arrive the receiver should be able to extract
information linked to what was sent before but is still missing. In particular, any
ciphertext that is received in-sync should allow for identifying which earlier-sent though
later-delivered ciphertexts are authentic. We correspondingly say that in-sync received
ciphertexts certify the ciphertexts sent earlier by the same sender. See Fig. 2.5 in
Sec. 2.3.1 for an example.

Ciphertexts can also make promises about the future: Every received ciphertext may
carry (cryptographic) information that is used to authenticate later ciphertexts (of the
same sender, up to their next exposure). Here we say that ciphertexts (cryptographically)
vouch for the ones sent later by the same participant. See Fig. 2.6 in Sec. 2.3.1 for an
example.

13The in-sync notion first surfaced in [18] in the context of unidirectional channels. It was extended
in [78] to handle bidirectional communication and associated-data strings. Our definitions are based
on [78], but adapted to tolerate the out-of-order delivery of ciphertexts.
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We finally discuss attack classes that are enabled by exposing the states of users:
Once a participant’s state becomes known by exposure, it is trivial to impersonate the
user, simply by invoking the scheme algorithms with the captured state. We refer to
states of a participant as authoritative if their actions can not be trivially emulated by
the adversary in this way. If an impersonation happens right after an exposure, as the
adversary can perfectly and permanently emulate all actions of the impersonated party,
in addition to all authenticity and confidentiality guarantees being lost, there is also no
option to recover into a safe state. We refer to the transition into such a setting, more
precisely to the action of exploiting the state exposure of one participant by delivering an
impersonating ciphertext to the other participant, as poisoning the latter. See Fig. 2.7
in Sec. 2.3.1 for an example. A second option of the adversary after exposing a state is
to remain passive (in particular, not to poison the partner). In this case the healing
property of ratcheting-based secure messaging protocols shall automatically fully restore
safe operations. See Fig. 2.8 in Sec. 2.3.1 for an example.

Coming back to the BASIC game of Fig. 2.1, we describe how the above concepts are
reflected in the game variables and code lines. We start with the game body [G00–G18].
If u ∈ {A,B} refers to one of the two participants, integer ltu (‘logical time’) reflects
the logical time (i.e., next sending index) of u; integer ptu (‘physical time’) reflects the
physical time of u; Boolean flag isu (‘in-sync’) indicates whether u is in-sync with their
peer ū; set SCu (‘sent ciphertexts’) records the associated-data–ciphertext pairs sent by u;
set CERTu (‘certified’) indicates which of the peer ū’s sending indices have been certified
by receiving an in-sync ciphertext from them; for each sending index lt, set VFu[lt]
(‘vouches for’) indicates for which sending indices of u the ciphertext with index lt can
vouch for; set AUu indicates for which sending indices participant u is authoritative;
flag poisonedu indicates whether u was poisoned.

We next explain how these variables are updated throughout the game. The cases
of ltu [G01,S06] and ptu [G02,T01] are clear. Flag isu is initialized to T [G03], and cleared
[R23] in the moment that u receives a ciphertext that the peer ū either didn’t send, or
did send but after becoming out-of-sync [R17] (in conjunction with [S02,S03], see next
sentence).14 Set SCu is initialized empty [G04] and populated [S03] for each sending
operation in which u is in-sync [S02].15 Set CERTu is initialized empty [G05] and, when a
sync-preserving ciphertext is received [R06,R07], populated with all indices prior to, and
including, the current one [R08]. All entries of array-of-sets VFu are initialized to ‘all-

14The mechanism of considering participants out-of-sync once they process (unmodified) ciphertexts
from out-of-sync peers is taken from [78], see Footnote 13.

15Note that the sending index of any ciphertext is uniquely recoverable (with function ts), implying
that each execution of [S03] adds a new element to the set (collisions cannot occur).
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indices’ [G06], expressing that, by default, each sending index cryptographically vouches
for its entire future (and past). This changes when u’s state is exposed, as impersonating u

then becomes trivial, and the game reflects this by updating all VFu entries related to
the time preceding the exposure so that the corresponding ciphertexts do not vouch for
ciphertexts that are created after the exposure happened [E02].16 Set AUu is initialized to
‘all-indices’ [G07], and indices are removed from it by exposing u’s state, and added back
to it by letting u heal; more precisely, while exposing u’s state removes all indices starting
with the current one (marking the entire future as non-authoritative) [E03], receiving
a sync-preserving ciphertext from peer ū [R06,R07] adds the vouched-for entries back
[R09] (re-establishing authoritativeness up to the next exposure). Finally, flag poisonedu

is initialized clear [G13], and set [R20] when a sync-damaging ciphertext is received (i.e.,
one that was not sent by peer ū [R17] and is the first one making u lose sync [R18]) that
was trivially injected after an exposure of peer ū’s state (technically: was crafted for a
non-authoritative index [R19]).

This completes the description of the BASIC game. We refine it in the following to
obtain three more games, but the basic working mechanisms of the oracles and variables
remain the same.

Game FUNC. We specify the expected functionality (a.k.a. correctness) of a Ku-
BOOM protocol by formulating requirements on how it shall react to receiving valid and
invalid ciphertexts. Concretely, in Fig. 2.2 we specify the corresponding FUNC game as
an extension of the BASIC game from Fig. 2.1. In the figure, the code lines marked with
neither ◦ nor • are taken verbatim from the BASIC game, and the lines marked with ◦
are the ones to be added to obtain the FUNC game. (Ignore the lines marked with • for
now.) The FUNC game tests for a total of seven conditions, letting the adversary ‘win’
if any one of them is not fulfilled. Five of the conditions are checked for all operations
(in-sync and out-of-sync): The conditions are (1) that the ts decoding function correctly
indicates the logical and physical creation time of ciphertexts [S01]; (2) that no sending
index is received twice (single delivery of ciphertexts) [G10,R02,R25] (set RIu records
‘received indices’); (3) that expired ciphertexts are not delivered (the reported sender’s
physical time pt is compared with the receiver’s physical time ptu, tolerating a lag of
up to δ time units) [R03]; (4) that physical timestamps increase as logical timestamps
do [G11,R04,R26] (set RTu records ‘received timestamps’);17 and (5) that the reported
acknowledgement set A never shrinks and never lists never-sent indices [G12,R05,R27]

16 Line [E02] should be read as ‘For all 0≤ i < ltu: VFu[i]← VFu[i]∩ JltuK’ and expresses that all
entries of VFu[·] that correspond with prior sending indices are trimmed so that they cover no indices
that succeed the current one (including).

17A relation R⊆ N×N is monotone [R04] if for all (x,y),(x′,y′) ∈R we have x≤ x′⇒ y ≤ y′.
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(set RAu records ‘received acknowledgements’). Two additional conditions are checked
for certified ciphertexts (this includes all in-sync ciphertexts, as they certify themselves
[R06,R07,R08]): The conditions are (6) that the recv algorithm accurately reports the
acknowledgement set A [R13] (recall that set RIu holds the received indices [G10,R25],
allowing to associate this set with each (in-sync) sending operation [G08,S04], so that
set SRū[lt] [S04,R13] indicates the indices that participant ū received from u before ū

used sending index lt in their sending operation); and (7) that encrypted messages are
correctly recovered via decryption [G09,S05,R14] (array SMu records ‘sent messages’). We
say that a KuBOOM protocol is functional if the probability P[FUNC(A)] is negligibly
small for all realistic adversaries A.

Game AUTH. Our authenticity notion focuses on the protection of the integrity of
ciphertexts (INT-CTXT). In Fig. 2.2 we specify the corresponding AUTH game as an
extension of the BASIC game from Fig. 2.1. In the figure, the code lines marked with
neither ◦ nor • are taken verbatim from the BASIC game, and the lines marked with •
are the ones to be added to obtain the AUTH game. (This time, ignore the lines marked
with ◦.) A KuBOOM scheme provides AUTH security if any adversarial manipulation
(or injection) of ciphertexts is detected and rejected. Taking into account that associated-
data strings need to be protected in the same vein, as a first approximation the notion
could be formalized by adding the instruction ‘Reward isu∧ (ad, c) /∈ SCū’ to the Recv
oracle.18 Note however that delivering a forged ciphertext to a participant u is trivial
if the state of their peer ū is exposed, and thus a small refinement is due. Recalling
that set AUū lists the sending indices for which participant ū is authoritative, i.e., their
actions not trivially emulatable, we reward the adversary only if the forgery is made
for an index contained in this set [R17,R18,R21]. Recall further that in-sync delivered
ciphertexts certify prior ciphertexts by the same sender, even if the latter ciphertexts are
delivered out-of-sync. In the game we thus reward the adversary also if it forges on a
certified index [R17,R22]. We say that a KuBOOM protocol provides authenticity if the
probability P[AUTH(A)] is negligibly small for all realistic adversaries A. We refer the
reader to Sec. 2.3.2 for a formalization of the trivial attack excluded by the AUTH game,
and an overview of similar but non-trivial attacks that are allowed.

Games CONF0,CONF1. Our confidentiality notion is formulated in the style of
left-or-right indistinguishability under active attacks (IND-CCA). In Fig. 2.3 we specify
corresponding CONF0 and CONF1 games. The games are derived from the BASIC game
by adding the lines marked with • plus two new oracles: The left-or-right Chal oracle

18The instruction should be read as ‘Reward the adversary if it makes an in-sync participant accept an
associated-data–ciphertext pair for which at least one of associated-data and ciphertext is not authentic’.
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Game FUNC(A) //with ◦
Game AUTH(A) //with •
G00 For u ∈ {A,B}:
G01 ltu← 0
G02 ptu← 0
G03 isu← T
G04 SCu←∅
G05 CERTu←∅
G06 VFu[·]← J∞K
G07 AUu← J∞K
G08◦ SRu[·]←⊥
G09◦ SMu[·]←⊥
G10◦ RIu←∅
G11◦ RTu←∅
G12◦ RAu←∅
G17 (stA,stB)← init
G18 Invoke A
G19 Lose
Oracle Tick(u)
T00 tick⟨stu⟩
T01 ptu← ptu +1
Oracle Send(u,ad,m)
S00 c← send⟨stu⟩(ad,m)
S01◦ Promise ts(c) = (ltu,ptu)
S02 If isu:
S03 SCu

∪←{(ad, c)}
S04◦ SRu[ltu]← RIu

S05◦ SMu[ltu]←m
S06 ltu← ltu +1
S07 Return c

Oracle Recv(u,ad, c)
R00 (lt,pt)← ts(c)
R01 (A,m)← recv⟨stu⟩(ad, c)
R02◦ Promise lt /∈ RIu

R03◦ Promise ∆(pt,ptu)≤ δ
R04◦ Promise RTu∪{(lt,pt)} monotone
R05◦ Promise RAu ⊆ A⊆ JltuK
R06 If (ad, c) ∈ SCū:
R07 If isu:
R08 CERTu

∪← [lt]
R09 AUū

∪← VFū[lt]
R12◦ If lt ∈ CERTu:
R13◦ Promise A = RAu∪SRū[lt]
R14◦ Promise m = SMū[lt]
R17 If (ad, c) /∈ SCū:
R18• If isu:
R21• Reward lt ∈ AUū

R22• Reward lt ∈ CERTu

R23 isu← F
R25◦ RIu

∪←{lt}
R26◦ RTu

∪←{(lt,pt)}
R27◦ RAu← A
R29 Return (A,m)
Oracle Expose(u)
E01 If isu:
E02 VFuJltuK ∩← JltuK
E03 AUu

∩← JltuK
E06 Return stu

Fig. 2.2 Games FUNC and AUTH. The FUNC game includes the lines marked with ◦
but not the ones marked with •. The AUTH game includes the lines marked with • but
not the ones marked with ◦.

[C00–C08], which behaves similar to the Send oracle but processes one of two possible
input messages [C03] depending on bit b that encodes which game CONFb is played, and
the Decide oracle [D00] that lets the adversary control the return value of the game. (A
successful adversary manages to correlate this return value with bit b.)

Three new game variables keep track of the actions of the adversary: Variable lxu

(‘last exposure’, [G14,E04]) indicates the index of the last exposure of user u. Set CHu

(‘challenge’) represents the set of sending indices for which a challenge query has been
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posed for u that peer ū still should be able to validly decrypt. Indices are added to this
set in the Chal oracle [G15,C06], and they are removed from it as a reaction to three
events. (1) The corresponding ciphertext becomes invalid because the receiver already
processed a ciphertext (the same or a different one) with the same index [R28] (see
the corresponding guarantee in the FUNC game [G10,R02,R25]). (2) It becomes invalid
because it expired based on physical time: To capture the latter condition we denote
with

ITC(u) := {lt : ∃ad, c,pt s.t. (ad, c) ∈ SCū∧ ts(c) = (lt,pt)∧∆(pt,ptu)≤ δ}

(‘in-time ciphertexts’) for participant u the set of sending indices of ciphertexts produced
by peer ū for which the difference between generation time pt and the physical time ptu of
the receiver is less than δ. With the progression of physical time the game removes those
indices from set CHū that are not an element of ITC(u) [T02]. (See the corresponding
guarantee in the FUNC game [R03].) (3) Receiving an out-of-sync ciphertext renders
u’s state incompatible to decrypt future challenge queries. Hence all future indices are
removed from the challenge set [R24]. Observe this corresponds with [C06]: indices are
only added to CHu for an in-sync peer. Finally, flag xpu (‘exposed’) indicates whether
the state of u has to be considered known to the adversary after a state exposure. This
flag is initially cleared [G16], set when u’s state is exposed [E05], and reset if u heals by
letting peer ū receive an in-sync ciphertext created after the last exposure [R10,R11].

We next explain how the new variables help identifying four different trivial attack
conditions. The first two conditions consider cases where posing a Chal query needs
to be prevented because the receiver state is known due to impersonation or exposure:
(1) if participant ū’s state was exposed and ū is impersonated to u, i.e., u is poisoned, all
future encryptions by u for ū are trivially decryptable, simply because the adversary can
emulate all actions of ū [C01]; (2) encryptions by an in-sync sender u for a state-exposed
receiver ū are trivially decryptable (recall that flag xpū traces the latter condition)
[C02]. The next condition considers cases where posing an Expose query needs to be
prevented because an already made Chal query would become trivial to break: (3) if
participant ū generated (challenge) ciphertext c for u, and the latter should still be
able to validly decrypt c, then exposing u makes c trivially decryptable [E00]. The last
condition is unrelated to exposures: (4) if participant u in-sync decrypts a ciphertext, by
correctness the resulting message is identical to the encrypted message, and thus has
to be suppressed by the Recv oracle by overwriting it [R15,R16]. (Note how line R16
corresponds with line R14 of FUNC.) This concludes the description of games CONFb.
We say that a KuBOOM protocol provides confidentiality if the difference of probabilities
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|P[CONF1(A)]−P[CONF0(A)]| is negligibly small for all realistic adversaries A. We
refer the reader to Sec. 2.3.3 for a formalization of the trivial attacks excluded by the
CONF game, and similar but non-trivial attacks that are allowed.

Game CONFb(A)
G00 For u ∈ {A,B}:
G01 ltu← 0
G02 ptu← 0
G03 isu← T
G04 SCu←∅
G06 VFu[·]← J∞K
G07 AUu← J∞K
G13 poisonedu← F
G14 • lxu← 0
G15 • CHu←∅
G16 • xpu← F
G17 (stA,stB)← init
G18 Invoke A
G19 Lose
Oracle Send(u,ad,m)
S00 c←send⟨stu⟩(ad,m)
S02 If isu:
S03 SCu

∪←{(ad, c)}
S06 ltu← ltu +1
S07 Return c

Oracle Chal(u,ad,m0,m1)
C00 Require m0 ≡m1

C01 Penalize poisonedu

C02 If isu: Penalize xpū

C03 c← send⟨stu⟩(ad,mb)
C04 If isu:
C05 SCu

∪←{(ad, c)}
C06 If isū: CHu

∪←{ltu}
C07 ltu← ltu +1
C08 Return c

Oracle Expose(u)
E00• Require CHū = ∅
E01 If isu:
E02 VFuJltuK ∩← JltuK
E03 AUu

∩← JltuK
E04• lxu← ltu

E05• xpu← T
E06 Return stu

Oracle Decide(b′)
D00 Stop with b′

Oracle Recv(u,ad, c)
R00 (lt,pt)← ts(c)
R01 (A,m)←recv⟨stu⟩(ad, c)
R06 If (ad, c) ∈ SCū:
R07 If isu:
R09 AUū

∪← VFū[lt]
R10• If lt ≥ lx ū:
R11• xpū← F
R15• If lt ∈ CHū:
R16• m←⋄
R17 If (ad, c) /∈ SCū:
R18 If isu:
R19 If lt /∈ AUū:
R20 poisonedu← T
R23 isu← F
R24• CHū

∩← JltK
R28• CHū← CHū \{lt}
R29 Return (A,m)
Oracle Tick(u)
T00 tick⟨stu⟩
T01 ptu← ptu +1
T02• CHū

∩← ITC(u)

Fig. 2.3 Games CONF0,CONF1. Equivalence relation ≡ onM [C00] is defined such that
m0 ≡m1 :⇔ |m0|= |m1|. See text for the definition of function ITC [T02].
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2.3 Games, Attacks and Examples

This section should be considered reference material to help to achieve a deeper un-
derstanding of Sec. 2.2. It includes examples for game executions and provides attack
descriptions highlighting the subtleties of the security games defined in the previous
section. It will not introduce new material and the reader may wish to skip ahead to
Sec. 2.4.

2.3.1 Examples for BASIC game execution

c′1: sync-preserving for Alice

c′3: sync-preserving for Alice

c′2: sync-preserving for Alice

c1: sync-preserving for Bob

c′4: sync-damaging to Alice

c2: sync-damaging to Bob

BobAliceAdversary

c′1

c′2

c′3

c1

c′4

c2

Fig. 2.4 Example of sync preserving and sync damaging ciphertexts. Time progresses
from top to bottom in the diagram. The log reflects the events when receiving the
specified ciphertext. Note c′

4 is injected by the adversary.
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c′2: CERTA = {1, 2}

c′1: CERTA = {1, 2}

c′3: CERTA = {1, 2}

c2: CERTB = ∅

c1: CERTB = ∅

BobAliceAdversary

c′1

c′2

c1

c′3

c2

Fig. 2.5 Example of certifying ciphertexts. Time progresses from top to bottom in the
diagram. The log reflects the relevant part of the game state when receiving the specified
ciphertext. Observe that receiving c′

1 does not alter CERTA because index 1 was already
certified by c′

2, and c′
3 does not alter CERTA because it is injected by the adversary.
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Expose Bob

VFB[1] = N

VFB[2] = N

Expose Bob

VFB[1] = {1, 2}
VFB[2] = {1, 2}

VFB[3] = N

BobAliceAdversary

c′1

c′2

c′3

Fig. 2.6 Example of vouching ciphertexts. Time progresses from top to bottom in the
diagram. Initially, each ciphertext c′

1, c′
2 vouches for its entire future (and past). This

changes when the exposure of Bob happens after sending c′
2. Now c′

1 only vouches for its
future up to the next exposure, i.e. only for c′

1 and c′
2. It should be clear that before any

ciphertext is delivered the adversary can trivially forge any ciphertext. However, as soon
as Alice receives c′

1, which vouches for c′
2, forging c′

2 is no longer a trivial task. Similarly,
when Alice receives c′

3, which vouches for the entire future (and past), no forgeries would
be trivial anymore (until the next exposure). The log reflects what a ciphertext vouches
for and how this changes upon exposure.
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c′1: AUB = N

Expose Bob: AUB = {1, 2, 3}

c′2: AUB = {1, 2, 3}

c′3: AUB = {1, 2, 3}

c′4: poisonedA = T

BobAliceAdversary

c′1

c′2

c′3

c′4

Fig. 2.7 Example of a poisoning ciphertext. Time progresses from top to bottom in the
diagram. The log reflects the relevant part of the game state when receiving the specified
ciphertext. Note c′

4 is injected by the adversary. This poisons Alice because at this point
Alice is still in-sync and Bob is not authoritative for sending index 4.
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c′1: AUB = N

Expose Bob: AUB = {1, 2, 3}

c′2: AUB = {1, 2, 3}

c′3: AUB = {1, 2, 3}

c′4: AUB = N

BobAliceAdversary

c′1

c′2

c′3

c′4

Fig. 2.8 Example of authoritative ciphertexts. Time progresses from top to bottom in
the diagram. The log reflects the relevant part of the game state when receiving the
specified ciphertext.
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2.3.2 Attack Catalogue for Authenticity

The authenticity game AUTH in Fig. 2.2 excludes one trivial attack and it is exactly as
one would intuitively expect:

1. Expose Alice and use her state to forge a message to Bob.
stA← Expose(A); c∗← send⟨stA⟩(m); m∗← Recv(B, c∗).

The adversary is not rewarded for this trivial attack by [E03,R21].
The line numbers referenced in this subsection will refer to the lines in the AUTH game.
For clarity we omit associated data as it is not relevant to the discussion. We now provide
an overview of some attacks that are excluded in other work, but are not trivial and
hence the AUTH game allows them. We remark that ACD [5] excludes all the attacks
listed below.

I. Expose Alice and forge on the first message after the second is delivered.
stA← Expose(A); c∗

1← send⟨stA⟩(m1); c1← Send(A,m1); c2← Send(A,m2);
m2← Recv(B, c2); m∗

1← Recv(B, c∗
1).

The adversary is rewarded for this trivial attack by [R09,R21].

II. Expose Alice and forge on the second message after the first is delivered.
stA←Expose(A); c1← Send(A,m1); ← send⟨stA⟩(m1); c∗

2← send⟨stA⟩(m2); m1←
Recv(B, c1); m∗

2← Recv(B, c∗
2).

The adversary is rewarded for this trivial attack by [R09,R21].

III. Forge on an old message after bringing Bob out-of-sync with a trivial attack.
stA← Expose(A); c∗

1← send⟨stA⟩(m1); c1← Send(A,m1); c2← Send(A,m2); m2←
Recv(B, c2); stA ← Expose(A); c∗

3 ← send⟨stA⟩(m3); m∗
3 ← Recv(B, c∗

3); m∗
1 ←

Recv(B, c∗
1).

The adversary is rewarded for this trivial attack by [R08,R22]. Note that the
adversary wins the AUTH game by injecting a message to an out-of-sync Bob,
which contrasts to the first attack where Bob was in-sync.

IV. Let an out-of-sync Bob send a message to Alice.
stA← Expose(A); c∗

1← send⟨stA⟩(m1); m∗
1← Recv(B, c∗

1); c′
1← Send(B,m′

1); m′
1←

Recv(A, c′
1);

The adversary is rewarded for this trivial attack by [S02,R21].
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V. Expose an out-of-sync Bob to forge a message to Alice.
stA ← Expose(A); c∗

1 ← send⟨stA⟩(m1); m∗
1 ← Recv(B, c∗

1); stB ← Expose(B); c′
1 ←

send⟨B⟩(m′
1); m′

1← Recv(A, c′
1);

The adversary is rewarded for this trivial attack by [E01,R21].

2.3.3 Attack Catalogue for Confidentiality

We provide an overview of trivial attacks that are prevented by the confidentiality game
CONF in Fig. 2.3. The line numbers referenced in this subsection will refer to the lines
in the CONF game. We also demonstrate some attacks that look similar, but that are
not trivial and hence the CONF game allows them. For clarity we omit associated data
as it is not relevant to the discussion.

1. Let Alice send a challenge, expose Bob and decrypt the challenge ciphertext.
c∗← Chal(A,m0,m1); stB← Expose(B); m∗← recv⟨stB⟩(c∗); Decide(m∗ = m0 ? 0 :
1).

This trivial attack is prevented by [C06,E00].

The following attacks look similar, but they are not trivial. The CONF game thus
shall not exclude them. The attacks explain why line C06 in Fig. 2.3 is condi-
tioned on both isu and isū. For the following attacks we use notation $/n in the
Recv oracle to indicate a random ciphertext for index n. (Thus note in particular
confidentiality can be maintained processing random ciphertexts, independent of
authenticity.)

I. First bring Bob out-of-sync for an index that is earlier than Alice’s index,
then expose him.
← Send(A,m); ← Send(A,m); ← Recv(B,$/0); c∗ ← Chal(A,m0,m1);

stB← Expose(B); m∗← recv⟨stB⟩(c∗); Decide(m∗ = m0 ? 0 : 1).

II. First bring Bob out-of-sync for an index that is later than Alice’s index, then
expose him.
←Recv(B,$/5); c∗←Chal(A,m0,m1); stB←Expose(B); m∗← recv⟨stB⟩(c∗);

Decide(m∗ = m0 ? 0 : 1).
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III. First bring Alice out-of-sync (without poisoning her, see below), then let her
send a challenge.
←Recv(A,$/0); c∗←Chal(A,m0,m1); stB←Expose(B); m∗← recv⟨stB⟩(c∗);

Decide(m∗ = m0 ? 0 : 1).

IV. It is also not a trivial attack if Bob’s clock ticks δ +1 times before the exposure.
The game allows this attack via [T02].
c∗ ← Chal(A,m0,m1); Tick(B); . . .; Tick(B); stB ← Expose(B); m∗ ←
recv⟨stB⟩(c∗); Decide(m∗ = m0 ? 0 : 1).

2. Expose Alice, poison Bob, let Bob send a challenge:
stA← Expose(A); c← send⟨stA⟩(m); m′← Recv(B, c); c∗← Chal(B,m0,m1); m∗←
recv⟨stA⟩(c∗); Decide(m∗ = m0 ? 0 : 1).

This is prevented by [C01,R20].

3. Expose Bob, let Alice send a challenge:
stB← Expose(B); c∗← Chal(A,m0,m1); m∗← recv⟨stB⟩(c∗); Decide(m∗ = m0 ? 0 :
1).

This is prevented by [C02,E05].

V. The attack is not trivial if Bob sends a message after the exposure that is
delivered to Alice before the challenge:
stB ← Expose(B); c ← Send(B,m); m ← Recv(A, c); c∗ ← Chal(A,m0,m1);
m∗← recv⟨stB⟩(c∗); Decide(m∗ = m0 ? 0 : 1).

This is allowed by [E04,E05,R10,R11].

VI. Observe that the attack is also not trivial if Bob was rendered out-of-sync
before the exposure:
stA ← Expose(A); c1 ← send⟨stA⟩(m1); c2 ← send⟨stA⟩(m2); m2 ←
Recv(B, c2); stB ← Expose(B); c∗ ← Chal(A,m0,m1); m∗ ← recv⟨stB⟩(c∗);
Decide(m∗ = m0 ? 0 : 1).
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This is allowed by [E01].

4. Let Alice send a challenge, let Bob receive it:
c∗← Chal(A,m0,m1); m∗← Recv(B, c∗); Decide(m∗ = m0 ? 0 : 1).

This is prevented by [R16]. To see why this is not conditioned isu we expand to
the following trivial attack:
Let Alice send a challenge, expose Alice to trivially forge a ciphertext and let Bob
receive it to go out-of-sync before receiving the challenge ciphertext:
c∗ ← Chal(A,m0,m1); stA ← Expose(A); c2 ← send⟨stA⟩(m); m2 ← Recv(B, c2);
m∗← Recv(B, c∗); Decide(m∗ = m0 ? 0 : 1).

VII. However, the following variation where the sending index of the challenge and
the forgery is swapped, is not a trivial attack:
stA← Expose(A); c1← Send(A,m); c∗← Chal(A,m0,m1); c′

1← send⟨stA⟩(m′);
m′← Recv(B, c′

1); m∗← Recv(B, c∗); Decide(m∗ = m0 ? 0 : 1).

The game will reveal the message m∗ by [R15,R24].

5. Similarly to the previous item, there is a trivial attack when the final step is to
expose an out-of-sync Bob instead of letting Bob receive the challenge ciphertext:
c∗ ← Chal(A,m0,m1); stA ← Expose(A); c2 ← send⟨stA⟩(m); m2 ← Recv(B, c2);
stB← Expose(B); m∗← recv⟨stB⟩(c∗); Decide(m∗ = m0 ? 0 : 1).

This is prevented by [E00,R24].

VIII. Again, it is not a trivial attack when the sending index of the forgery and
challenge is swapped:
stA← Expose(A); c1← Send(A,m); c∗← Chal(A,m0,m1); c′

1← send⟨stA⟩(m′);
m′←Recv(B, c′

1); stB← Expose(B); m∗← recv⟨stB⟩(c∗); Decide(m∗ = m0 ? 0 :
1).

This is allowed by [E00,R24].
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2.3.4 Attack on Forward Secrecy of ACD [5]

It is straightforward to see the protocol of ACD does not satisfy our notion of for-
ward secrecy. Consider an adversary that challenges Alice, obtaining a ciphertext
c← Chal(A,ad,m0,m1), but never delivers the ciphertext to Bob. Now, if time passes,
by repeated Tick invocations, the adversary is allowed to Expose(B) and obtain Bob’s
user state. The ACD protocol has no concept of time and the state will still be able to
decrypt the ciphertext.

Irrespective of physical time, further observe that the ACD protocol allows forgeries
for ‘logical’ old ciphertext. Consider both parties’ states public, that is the adversary
exposes them (before and after) each sending invocation. Now the adversary remains
passive and makes the following oracle queries: c1← Send(A,ad,m), c2← Send(A,ad,m)
and Recv(B,ad, c2). Our authenticity notion demands the adversary is unable to create
a forgery for the first ciphertext. However, in the ACD protocol ciphertexts do not ‘pin’
earlier ciphertexts and the adversary is able to forge the first ciphertext for any arbitrary
message.

2.4 Non-interactive Primitives

In Sec. 2.2 we defined the syntax and security of KuBOOM and we will provide a
secure construction in Sec. 2.5. The current section is dedicated to presenting a set
of cryptographic building blocks, in the spirit of public key encryption (PKE) and
signature schemes (SS), that will play crucial roles in our construction. Recall that a
defining property of a KuBOOM protocol is that it provides maximum resilience against
(continued) state exposure attacks, i.e. preventing all but trivial attacks. If a construction
would rely on regular PKE or SS schemes as building blocks, the secret keys of the latter
would leak on state exposure, which in most cases would inevitably clear the way for
an attack on confidentiality or authenticity. It is thus a common engineering principle
in the secure messaging domain to employ variants of PKE and SS that are stateful
(instead of statically keyed) and process their internal keying material after each use to
an updated ‘refreshed’ version that limits the options of a state exposing adversary to
harm only future operations (while past operations remain protected).19 In fact, some of
the building blocks that we propose here additionally fold an auxiliary external input into
their state when updating the latter. We refer to this auxiliary input as the associated

19While the PKE and SS variants that we consider in the current section specifically provide ‘forward
secrecy’, we do not require them to offer ‘post-compromise security’ as well, i.e., we don’t expect them
to auto-heal.
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data (of the update), and the assumption is that sender and receiver (i.e., signer and
verifier, or encryptor and decryptor) update their states with consistent such inputs
(independently of each other).20

We note that while the specifics of our building blocks might be different from those
of prior work, it can be generally considered well-understood how to construct such
primitives. For instance, a forward-secure SS [19], which is a primitive close to one of
ours, can be built by coupling each signing operation with the generation of a fresh
signature key pair, the public component of which is signed and thus authenticated along
with the message; after the signing operation is complete, the original signing key is
disposed of and replaced by the freshly generated one. Adding the support of auxiliary
associated-data strings into such a scheme is trivial (just authenticate the string along
with the message) and is less a cryptographic challenge than an exercise of maintaining
the right data structures in the sender/receiver state. Similarly, forward-secure PKE [36],
which is a primitive close to one of ours as well, is routinely built from hierarchical
identity-based encryption (HIBE) by associating key validity epochs with the nodes of a
binary tree. Variants of forward-secure PKE that support key updates that depend on
auxiliary associated-data strings have been proposed in prior work as well [56, 86], using
design approaches that can be seen as minor variations of the original tree-based idea
from [36].

For our KuBOOM construction in Sec. 2.5 we require three independent forward-
secure public key primitives which we refer to as updatable signature scheme, key-updatable
KEM, and key-evolving KEM, respectively. We specify their syntax and the expected
behaviour below, formalize the security definitions and propose concrete constructions.
We note, however, that our security definitions and constructions can be seen as following
immediately from the syntax and expected functionality: While the security definitions
give the adversary the option to expose the state of any participant any number of
times, and formalize the best-possible security that is feasible under such a regime (i.e.,
maximum resilience against state exposure attacks), the constructions, which all follow
the approaches of [19, 36, 56, 86] discussed above, are engineered to re-generate fresh
key material whenever an opportunity for this arises. We show that these strategies (to
formalize security and to develop a construction) match well together: Our constructions

20Unlike regular signature schemes where for each signer there can be many independent verifiers, and
unlike regular public key encryption where for each decryptor there can be many encryptors, for the
primitives we consider in the current section a strict one-to-one correspondence between sender and
receiver is assumed. For instance, in the PKE setting, if sender Alice updates her (public) key with
associated-data string ABC while receiver Bob updates his (secret) key with associated-data string XYZ,
then the ciphertexts that Alice generates cannot be decrypted by Bob.
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are secure in our models (and thus, in a sense, optimal). In the remaining part of this
section, we analyse the three mentioned building blocks.

2.4.1 Updatable Signature Schemes (USS)

An updatable signature scheme (USS) assumes two parties, a signer and a (single) verifier,
and lets the former generate signatures on messages that the latter can then check
for authenticity. Like a regular signature scheme (Sec. 1.5.2), a USS has algorithms
gen,sign,vfy, where sign creates a signature on a given message and vfy verifies that a
given signature is valid for a given message. The particularity of USS is that signing
and verification keys can be updated with external information, and that signatures
only verify correctly if these updates are performed consistently. Crucially, both parties
maintain states which can be updated by feeding them with arbitrary input strings that
we refer to as associated data. More precisely, signing and verification keys are replaced by
signing and verification states, and update algorithms updss,updvs are added (for ‘update
signing state’ and ‘update verification state’, respectively) that take an associated-data
string and fold it cryptographically into the respective state. Multiple such update
operations can be performed in succession, both for the signing keys and verification
keys. If the states of the signer and the verifier are updated inconsistently, i.e., with
different (sequences of) associated-data strings, signatures created by the signer shall not
be deemed valid by the verifier. Below we first specify the syntax and functionality of
USS. We then propose a strong authenticity notion that demands that a maximum level
of unforgeability is provided in a setting where the adversary can reveal the states of
both parties.

We remark a similar primitive is considered in [56], but their construction and
security requirement is different. They use a forward secure or evolving signature scheme
(introduced in [19]), meaning it can only update with an empty ad string, as building block.
The construction in [56] is effectively a certification chain: it signs the associated-data
and then ‘evolves’ the signing key. The resulting signature is a sequence of the produced
signatures that have to be sequentially checked by the verifier. However, as [19] correctly
point out, if one is willing to accept certification chains the solution is straightforward:
At each update, the signer generates a new key pair and signs the associated-data and
the new verification key with the old signing key, which is subsequently deleted. Thus
we do not require the evolving signature primitive, instead we use (one-time) signatures.
Finally, [56] requires unique updatable signatures for their messaging construction, but
we note that we do not need this property.
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Example 1
X00 (ss,vs)← gen
X01 For ad ← "A" to "Z":
X02 updss⟨ss⟩(ad)
X03 σ← sign⟨ss⟩("MSG")
X04 For ad ← "A" to "Z":
X05 updvs⟨vs⟩(ad)
X06 vfy(vs,"MSG",σ) ✓

Example 2
X10 (ss,vs)← gen
X11 updss⟨ss⟩("A")
X12 updss⟨ss⟩("B")
X13 σ← sign⟨ss⟩("MSG")
X14 updvs⟨vs⟩("B")
X15 updvs⟨vs⟩("A")
X16 vfy(vs,"MSG",σ) ✗

Example 3
X20 (ss,vs)← gen
X21 updss⟨ss⟩("A")
X22 σ← sign⟨ss⟩("MSG")
X23 updvs⟨vs⟩("A")
X24 updvs⟨vs⟩("A")
X25 vfy(vs,"MSG",σ) ✗

Fig. 2.9 Examples of USS use.

Syntax. A key-updatable signature scheme for a message space M and an associated-
data space AD consists of a signing state space SS, a verification state space VS, a
signature space Σ, and algorithms gen,sign,vfy,updss,updvs with APIs

gen→SS×VS M→ sign⟨SS⟩ → Σ VS ×M×Σ→ vfy

and
AD→ updss⟨SS⟩ AD→ updvs⟨VS⟩ .

Note that the vfy algorithm does not have an explicit output. We say that algorithm vfy
accepts if it terminates normally; otherwise, if it aborts (with an error code), we say it
rejects. We expect of a correct USS that for all (ss,vs) ∈ [gen], if ss and vs are updated
by invoking updss⟨ss⟩(·) and updvs⟨vs⟩(·) with the same sequence ad1, . . . ,ad l ∈ AD of
associated data, then for all m ∈M and σ ∈ [sign⟨ss⟩(m)] we have that vfy(vs,m,σ)
accepts.

USS Examples. In Fig. 2.9 we illustrate the expected behaviour of a USS with three
examples. When the three blocks of code are executed, we expect the vfy invocation of
[X06] to accept, and those of [X16,X25] to reject.

Unforgeability under State Exposure. We require of a USS that it provides
strong unforgeability, with the strongest possible model for state corruption. This is
formalized via Game AUTH in Fig. 2.10, where oracles Updss, Updvs, Sign, Vfy give
access to the corresponding scheme algorithms, and oracles ExposeS, ExposeV reveal
user states. Variables ADS ,ADV (‘Associated Data’, [G00]) store the associated-data
strings that the signer and the verifier, respectively, provided so far [U01,U11]. Set SM
records information associated with the signing queries: The signer’s update strings so
far, the signed message, and the generated signature [G01,S01,S02]. Set XP indicates for
which update strings the signer has been exposed, i.e., shares the ability to generate valid
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Game AUTH(A)
G00 ADS ,ADV ← ()
G01 SM←∅
G02 XP←∅
G03 (ss,vs)← gen
G04 Invoke A
G05 Lose
Oracle Updss(ad)
U00 updss⟨ss⟩(ad)
U01 ADS

++← ad
Oracle Sign(m)
S00 σ← sign⟨ss⟩(m)
S01 cid := (ADS ,m,σ)
S02 SM ∪←{cid}
S03 Return σ

Oracle ExposeS
E00 FES := {AD : ADS ≼ AD}
E01 XP ∪← FES

E02 Return ss
Oracle Updvs(ad)
U10 updvs⟨vs⟩(ad)
U11 ADV

++← ad
Oracle Vfy(m,σ)
V00 vfy(vs,m,σ)
V01 cid := (ADV ,m,σ)
V02 If cid /∈ SM:
V03 Reward ADV /∈ XP
Oracle ExposeV
E10 Return vs

Fig. 2.10 Game AUTH for USS.

signatures with the adversary: Initially this set is empty [G02], but when the signer’s state
is exposed, all update strings which have ADS as prefix are added to the set [E00,E01].
The game encodes one winning condition: The adversary is rewarded for presenting a
signature that is not a replay if they had not exposed the signer’s state for the verifier’s
update string [V02,V03]. A scheme under consideration provides unforgeability if the
advantage Advauth(A) := P[AUTH(A)] is negligibly small for all realistic adversaries A.

Construction. We provide a USS construction from (regular) signatures. The idea is
that each update operation of the signer is implemented by (1) creating a fresh signature
key pair, (2) certifying the new verification key together with the associated-data input
with the old signing key, (3) securely overwriting the old signing key with the new signing
key. Notably, as our application of USS in Sec. 2.5 requires only a single signature
to be issued per signer instance, it suffices to instantiate the signature scheme with a
(potentially more efficient or secure) one-time signature scheme.

Hence, in Fig. 2.11 we construct a USS, using a one-time signature scheme (OTS.gen,OTS.sign,OTS.vfy)
as a building block. The notation in [s02] means that the signing key embedded in state ss
shall be securely deleted (by overwriting it with some value ⊥ /∈ SK). Further note that,
after the first signing query, any subsequent queries will fail by line [s00].

We remark, even instantiated with one-time signatures, our construction will provide
unforgeability as defined via Game AUTH in Fig. 2.10. To see this, observe the sign
algorithm is stateful and can delete its signing key after the first signature. If an adversary
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Proc gen
g00 (sk,vk)←OTS.gen
g01 AS ← ()
g02 AV ← ()
g03 ss := (sk,AS)
g04 vs := (vk,AV )
g05 Return (ss,vs)
Proc updss⟨ss⟩(ad)
u00 Require sk ̸=⊥
u01 (sk ′,vk ′)←OTS.gen
u02 σ′←OTS.sign(sk,U++ vk ′ ++ad)
u03 sk← sk ′

u04 AS
++← (vk ′,σ′)

Proc updvs⟨vs⟩(ad)
u10 AV

++← ad

Proc sign⟨ss⟩(m)
s00 Require sk ̸=⊥
s01 σ′←OTS.sign(sk,S++m)
s02 sk←⊥
s03 σ← AS ++σ′

s04 Return σ

Proc vfy(vs,m,σ)
v00 A++σ′← σ
v01 vk∗← vk; A∗← AV

v02 Require |A|= |A∗|
v03 While A ̸= ()∧A∗ ̸= ():
v04 (vk ′,σ′)++A← A
v05 ad ++A∗← A∗

v06 OTS.vfy(vk∗,U++ vk ′ ++ad,σ′)
v07 vk∗← vk ′

v08 OTS.vfy(vk∗,S++m)

Fig. 2.11 USS construction. In [u02,s01,v06,v08] we use the symbols U,S to domain-
separate updating and signing steps. ‘Require C’ is short for ‘If ¬C: Abort’.

tries to query the Sign oracle in the AUTH game a second time, the sign algorithm will
abort and not produce any output.

We note that our construction can be seen as a twist of the very similar construction
described in [19]: instead of only signing the new verification key, we sign the verification
key together with the associated-data string. Indeed, this construction has also been
identified in recent work [66] and the security argument for our construction follows
exactly in the footsteps of the arguments made in this work.

2.4.2 Key-updatable KEMs (KuKEM)

A key-updatable key encapsulation mechanism (KuKEM) is a stateful KEM variant with
algorithms gen,enc,dec and the update properties of USS: both the encapsulator and the
decapsulator can update their public/secret state material with algorithms updps,updss
(for ‘update public state’ and ‘update secret state’, respectively) that take an associated-
data string on input. The decapsulator, if updated in-sync with the encapsulator, can
successfully decapsulate ciphertexts. As above, our security model formalizes IND-CCA-
like security in a model supporting exposing the state of both parties, with the explicit
requirement that state exposures do not harm the confidentiality of keys encapsulated
for past epochs, nor the confidentiality of keys encapsulated with diverged states.
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Game FUNC(A)
G00 ADS ,ADR← ()
G01 SC←∅
G02 K[·]← ·
G03 (ss,ps)← gen
G04 Invoke A
G05 Lose

Oracle Enc
E00 (k,c)← enc(ps)
E01 cid := (ADS , c)
E02 Promise cid /∈ SC
E03 SC ∪←{cid}
E04 K[cid]← k
E05 Return (k,c)
Oracle Updps(ad)
U00 updps⟨ps⟩(ad)
U01 ADS

++← ad

Oracle Dec(c)
D00 k← dec(ss, c)
D01 cid := (ADR, c)
D02 If cid ∈ SC:
D03 Promise k = K[cid]
D04 k←⋄
D05 Return k

Oracle Updss(ad)
U10 updss⟨ss⟩(ad)
U11 ADR

++← ad

Fig. 2.12 Game FUNC for KuKEM.

Syntax. A key-updatable key encapsulation mechanism for a key space K and an
associated-data spaceAD, consists of a secret state space SS, a public state space PS, a ci-
phertext space C, KEM algorithms gen,enc,dec and state update algorithms updps,updss
with APIs

gen→SS×PS PS → enc→K×C SS ×C → dec→K

AD→ updps⟨PS⟩ AD→ updss⟨SS⟩ .

We specify the expected functionality of a KuKEM in the FUNC game depicted in
Fig. 2.12, where oracles Enc,Dec,Updps,Updss give access to the corresponding scheme
algorithms. Epochs in the game are identified by an associated-data string AD [U01,U11],
similar to the modelling for USS. Set SC records information associated with the encap-
sulation queries: the epoch and the generated ciphertext [G01,E01,E03] and the adversary
is rewarded if ciphertexts are not unique within their epoch [E02]. Array K stores the
key generated by the encapsulation algorithm [E04] and the adversary is rewarded if
the decapsulation algorithm outputs a different key [D03]. We say that a KuKEM is
functional if the probability P[FUNC(A)] is negligibly small for all realistic adversaries
A.

Security of kuKEM. We require forward secure indistinguishability of the KuKEM
scheme, which we formalize in models supporting user corruptions via the real-or-random
style games defined in Fig. 2.13, where oracles Challenge, Dec, Updps, Updss give access
to the corresponding scheme algorithms (with oracle Challenge giving left-or-right access
to algorithm enc), oracles ExposeS, ExposeR reveal user states, and oracle Decide serves
the adversary for delivering a guess on challenge bit b. Intuitively, the CONF games
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Game CONFb(A)
G00 ADS ,ADR← ()
G01 SC←∅
G02 CH←∅
G03 XP←∅
G04 (ss,ps)← gen
G05 Invoke A
G06 Lose
Oracle Decide(b′)
D00 Stop with b′

Oracle Challenge
C00 Require ADS /∈ XP
C01 (k0, c)← enc(ps)
C02 k1←$ K
C03 cid := (ADS , c)
C04 SC ∪←{cid}
C05 CH ∪←{ADS}
C06 Return (kb, c)
Oracle Updps(ad)
U00 updps⟨ps⟩(ad)
U01 ADS

++← ad
Oracle ExposeS
E00 Return ps

Oracle Dec(c)
D10 k← dec(ss, c)
D11 cid := (ADR, c)
D12 If cid ∈ SC:
D13 k←⋄
D14 Return k

Oracle Updss(ad)
U10 updss⟨ss⟩(ad)
U11 ADR

++← ad
Oracle ExposeR
E10 FE := {AD : ADR ≼ AD}
E11 Require CH∩FE = ∅
E12 XP ∪← FE
E13 Return ss

Fig. 2.13 Games CONF0,CONF1 for KuKEM.

require that using a secret state for decapsulation only produces the correct key if all
secret state updates were consistent with the public state updates.

Set XP indicates for which epochs the receiver has been exposed: Initially this set is
empty [G03], but when the receiver is exposed, all future epochs (‘FE’) are added to the
set [E12]. The set FE (‘future epochs’)21: is the set of all associated-data strings AD which
have the decapsulator’s update string ADR as prefix [E10]. Set CH tracks for which epochs
the adversary has issued a challenge. Initially this set is empty [G02], but an epoch is added
to the set in a Challenge query [C05]. The adversary is not allowed to challenge an exposed
epoch [C00] and similarly not allowed to expose an active or future challenged epoch
[E11]. The advantage of A is defined as AdvCONF(A) = |P[CONF1(A)]−P[CONF0(A)]|.
We say the scheme provides indistinguishability if the advantage AdvCONF(A) that can
be obtained is negligible for all realistic adversaries A.

Construction of KuKEM. As we already alluded to earlier, a KuKEM can be built
generically from hierarchical identity-based encryption (HIBE, [52]). We further note
Lewko and Waters [73] provide an ‘unbounded’ HIBE in the sense that a maximum
hierarchy depth does not have to be fixed during setup. In essence each hierarchy level
is an instance of the Boneh-Boyen IBE scheme [24] with added randomness to employ
a secret-sharing approach of the master secret key. These instances all share the same
public parameters. We do not claim novelty of our KuKEM construction from HIBE
and note that similar constructions can already be found in the literature [56, 86].

21Technically speaking FE also includes the currently active epoch.
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Proc gen
g00 (sk,pk)← Hgen
g01 ss := sk
g02 ADS ← ()
g03 ps := (pk,ADS)
g04 Return (ss,ps)

Proc enc(ps)
e00 (k,c)← Henc(pk,ADS)
e01 Return (k,c)
Proc updps⟨ps⟩(ad)
u00 ADS

++← ad

Proc dec(ss, c)
d00 k← Hdec(sk, c)
d01 Return k

Proc updss⟨ss⟩(ad)
u10 sk← Hdelegate(sk,ad)

Fig. 2.14 KuKEM construction. Building block is a HIBE-KEM
(Hgen,Henc,Hdec,Hdelegate).

We will sketch the general idea of the construction and refer the reader to Fig. 2.14
for a detailed description. Essentially, a KuKEM is a descending chain in the hierarchy,
where the current level can be used for encapsulation and decapsulation. In more detail,
the gen procedure runs the Hgen procedure to generate a secret and public key pair
(sk,pk). The string ADS is initialized empty. The private and public information is
stored in the respective states. The encapsulation procedure enc encapsulates to the
identity ADS . The updps procedure updates the public state with associated data ad by
embedding ad into ADS . To update the secret state, updss delegates the current secret
key sk to identity ad below it in the hierarchy. The decapsulation procedure dec uses
the secret key stored in the secret state to decapsulate the ciphertext.

We remark we do not need the full capabilities of an HIBE scheme that can arbitrarily
branch off: we only require one descending chain. A more direct construction of a
KuKEM is currently still an open problem.

2.4.3 Key-evolving KEMs (KeKEM)

A key-evolving key encapsulation mechanism (KeKEM) consists of algorithms gen,enc,dec
like a regular KEM, but, as above, public and secret keys are replaced by public and
secret states, respectively, that can be updated. More precisely, the encapsulator’s and
decapsulator’s states can be updated ‘to the next epoch’ by invoking the evolveps (for
‘evolve public state’) algorithm and the evolvess (for ‘evolve secret state’) algorithm,
respectively. Note, however, that if a secret state is updated the decryptability of
ciphertexts generated for older epochs is not automatically lost; rather, ciphertexts
associated to multiple epochs remain decryptable until epochs are explicitly declared
redundant by invoking the expire algorithm.22 A somewhat related primitive was
considered in [36]. Our security model formalizes IND-CCA-like security in a model

22The expire algorithm expires always the oldest currently supported epoch. That is, active epochs of
KeKEMs always span a continuous interval.
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supporting exposing the state of both parties, with the explicit requirement that state
exposures do not harm the confidentiality of keys encapsulated for expired epochs. Note
that our formalization of KeKEMs does not support updating states with respect to an
associated-data input.

Syntax. A key-evolving key encapsulation mechanism for a key space K consists of a
secret state space SS, a public state space PS, a ciphertext space C, KEM algorithms
gen,enc,dec and state update algorithms evolveps,evolvess,expire with APIs

N→ gen→SS×PS PS → enc→K×C SS ×N×C → dec→K

and
evolveps⟨PS⟩ evolvess⟨SS⟩ expire⟨SS⟩ .

In the KeKEM setting it makes sense to number the epochs. Note that the dec
algorithm expects, besides the secret state and the ciphertext, an explicit indication of
the epoch number for which the ciphertext was created. For simplicity, one would like
to provide an absolute time to the dec algorithm, e.g. unix time, rather than the time
offset relative to the generation time. For this reason, the gen algorithm takes in an
epoch number which can be used to specify the generation time and thus the first epoch
need not necessarily start at zero. Then the state can internally compute the relative
offset on decapsulation. As the full definition is quite involved, we first illustrate the
functionality of a correct KeKEM using an example: If we invoke (ss,ps)← gen(5) to
generate a state pair (and associating the number 5 with the first state), then invoking
2-times evolveps⟨ps⟩ followed by (k,c)← enc(ps), and then 4-times evolvess⟨ss⟩, then
invoking dec(ss,7, c) will return k until expire⟨ss⟩ has been invoked for the third time
(expiring epochs 5, 6, and finally 7).

We specify the expected functionality of a KeKEM in the FUNC game depicted
in Fig. 2.15, where oracles Enc, Dec, Evolvess, Evolveps and Expire give access to the
corresponding scheme algorithms. Set AE (‘Active Epochs’, [G02]) stores the span
of epochs that the receiver has opened up [E22] but not yet expired [X02]. Observe
that AE = {ftR, . . . ,ptR}. Set SC records information associated with the encapsulation
queries: the epoch and the generated ciphertext [G03,E01,E03] and the adversary is
rewarded if ciphertexts are not unique within their epoch [E02]. Array K stores the
key generated by the encapsulation algorithm [E04] and the adversary is rewarded if
the decapsulation algorithm outputs a different key [D04]. Note that the decapsulation
algorithm is also expected to abort on an epoch that is not active [D01]. We say that
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Game FUNC(pt,A)
G00 ptS ← pt
G01 ftR,ptR← pt
G02 AE←{pt}
G03 SC←∅
G04 K[·]← ·
G05 (ss,ps)← gen(pt)
G06 Invoke A
G07 Lose
Oracle Evolveps
E10 evolveps⟨ps⟩
E11 ptS ← ptS +1

Oracle Enc
E00 (k,c)← enc(ps)
E01 cid := (ptS , c)
E02 Promise cid /∈ SC
E03 SC ∪←{cid}
E04 K[cid]← k
E05 Return (k,c)
Oracle Expire
X00 expire⟨ss⟩
X01 Promise ftR ∈ AE
X02 AE← AE\{ftR}
X03 ftR← ftR +1

Oracle Dec(pt, c)
D00 k← dec(ss,pt, c)
D01 Promise pt ∈ AE
D02 cid := (pt, c)
D03 If cid ∈ SC:
D04 Promise k = K[cid]
D05 k←⋄
D06 Return k

Oracle Evolvess
E20 evolvess⟨ss⟩
E21 ptR← ptR +1
E22 AE ∪←{ptR}

Fig. 2.15 Game FUNC for KeKEM.

a KeKEM is functional if the advantage AdvFUNC(A) := maxpt∈NP[FUNC(pt,A)] is
negligibly small for all realistic adversaries A.

Security of KeKEM. We require of KeKEM schemes that they provide IND-CCA
like confidentiality, with the strongest possible model for state corruption (incorporating
forward secrecy). This is formalized via Games CONF0,CONF1 in Fig. 2.16, where
oracles Challenge,Dec,Evolveps,Evolvess,Expire give access to the corresponding scheme
algorithms (with oracle Challenge giving left-or-right access to algorithm enc), oracles
ExposeS, ExposeR reveal user states, and oracle Decide serves the adversary for delivering
a guess on challenge bit b.

We define AdvCONF(A) := maxpt∈N|P[CONF1(pt,A)]−P[CONF0(pt,A)]| as the ad-
vantage of an adversary A in the CONF game. We say the scheme provides confidentiality
if the advantage AdvCONF(A) that can be obtained by any realistic adversary A is
negligible. Intuitively, the CONF games require that using a secret state for decapsulation
only produces the correct key if the epoch had not yet been expired. Set XP indicates
for which epochs the receiver has been exposed: Initially this set is empty [G05], but
when the receiver is exposed, all active and future epochs (‘AFE’) are added to the set
[E31,E33]. Set CH tracks for which epochs the adversary has issued a challenge. Initially
this set is empty [G04], but an epoch is added to the set in a Challenge query [C05]. The
adversary is not allowed to challenge an exposed epoch [C00] and similarly not allowed
to expose an active or future challenged epoch [E32].

Construction. In Fig. 2.17 we provide a construction from a forward-secure KEM
[36]. Note that the construction is straightforward with array SSR storing multiple secret
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Game CONFb(pt,A)
G00 ptS ← pt
G01 ftR,ptR← pt
G02 AE←{pt}
G03 SC←∅
G04 CH←∅
G05 XP←∅
G06 (ss,ps)← gen(pt)
G07 Invoke A
G08 Lose
Oracle ExposeS
E10 Return ps
Oracle Decide(b′)
D00 Stop with b′

Oracle Challenge
C00 Require ptS /∈ XP
C01 (k0, c)← enc(ps)
C02 k1←$ K
C03 cid := (ptS , c)
C04 SC ∪←{cid}
C05 CH ∪←{ptS}
C06 Return (kb, c)
Oracle Evolveps
E00 evolveps⟨ps⟩
E01 ptS ← ptS +1
Oracle Expire
X00 expire⟨ss⟩
X01 AE← AE\{ftR}
X02 ftR← ftR +1

Oracle Dec(pt, c)
D10 k← dec(ss,pt, c)
D11 cid := (pt, c)
D12 If cid ∈ SC:
D13 k←⋄
D14 Return k

Oracle Evolvess
E20 evolvess⟨ss⟩
E21 ptR← ptR +1
E22 AE ∪←{ptR}

Oracle ExposeR
E30 FE := JptR +1 ..∞K
E31 AFE := AE∪FE
E32 Require CH∩AFE = ∅
E33 XP ∪← AFE
E34 Return ss

Fig. 2.16 Games CONF0,CONF1 for KeKEM.

states: one for each active epoch. Thus, while the secret state evolves to decapsulate for
a new active, an old copy can be used to decapsulate for earlier epochs.
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Proc gen(pt)
g00 (ss′,pk)← FSgen
g01 SSR[·]←⊥
g02 SSR[pt]← ss′

g03 ftR,ptR← pt
g04 ss := (SSR, ftR,ptR)
g05 ptS ← pt
g06 ps := (pk,ptS)
g07 Return (ss,ps)
Proc enc(ps)
e00 (k,c)← FSenc(pk,ptS)
e01 Return (k,c)
Proc evolveps⟨ps⟩
e10 ptS ← ptS +1

Proc dec(ss,pt, c)
d00 Require SSR[pt] ̸=⊥
d01 k← FSdec(SSR[pt],pt, c)
d02 Return k

Proc evolvess⟨ss⟩
e20 Require SSR[ptR] ̸=⊥
e21 ss′← SSR[ptR]
e22 FSupd⟨ss′⟩(ptR)
e23 ptR← ptR +1
e24 SSR[ptR]← ss′

Proc expire⟨ss⟩
x00 Require SSR[ftR] ̸=⊥
x01 SSR[ftR]←⊥
x02 ftR← ftR +1

Fig. 2.17 KeKEM construction. We use a forward-secure KEM
(FSgen,FSenc,FSdec,FSupd) as a building block [36].
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2.5 Interactive Primitives and KuBOOM

This section presents our Key-updatable Bidirectional Out-of-Order Messaging protocol,
KuBOOM, in three steps. In Sec. 2.5.1 we first present a KuBOOM-Signature Scheme,
which uses the USS introduced in Sec. 2.4.1 as building block. This scheme will be used
by our final KuBOOM construction in a black box manner by calling its sign and vfy
procedures on each message to add an authenticity layer. Next, we present a KuBOOM-
KEM in Sec. 2.5.2. Our final KuBOOM construction will query the KuBOOM-KEM
in a black box manner by calling its enc and dec procedures to obtain encryption keys
for each message. The KuBOOM-KEM uses the KuKEM and KeKEM introduced in
Sec. 2.4.2 and Sec. 2.4.3 as building blocks to ensure the KuBOOM scheme can achieve
confidentiality with its keys. Hence, the KuBOOM construction will additionally invoke
its upd procedure to reflect the passing of time and the expire procedure to indicate we
no longer wish to be able to obtain ‘old’ decryption keys.

Despite the strong building blocks defined in Sec. 2.4, our KuBOOM protocols remain
complex and involved. These difficulties stem from the data structures required to manage
out-of-order delivery of ciphertexts. These data structures obscure the cryptographically
novel core of our construction and render it difficult to interpret. Therefore, we have
separated the authenticity tool and the confidentiality tool and present them in their own
right. Note that this modularization implies certain data structures will be duplicated
across each tool, but an implementation could consolidate them.

2.5.1 KuBOOM-Signature Scheme

In Sec. 2.5.3 we will use a Key-updatable Bidirectional Out-of-Order Messaging Signature
Scheme, in short KuBOOM-Signature Scheme, to achieve authenticity for our KuBOOM
construction. In this section we describe the inner workings of this cryptographic tool.

Syntax. A KuBOOM-Signature Scheme for a message space M consists of a state
space S, a signature space Σ, and algorithms init, sign, vfy and the timestamp decoder
ts that recovers the logical time.

init→S×S Σ→ ts→ N M→ sign⟨S⟩ → Σ M×Σ→ vfy⟨S⟩ .

Construction. We provide a construction for a KuBOOM-Signature Scheme in
Fig. 2.18. The construction consists of four procedures: init, sign, vfy and ts. The init
procedure initializes the states for two users A and B. The sign procedure is stateful and
will output a signature σ for any message m, updating its state in the process. The
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vfy procedure is also stateful and will verify any pair (m,σ) ∈M×Σ. If σ is a correct
signature on m, the state will update and vfy will return control to the caller. If the
signature does not correctly verify, the vfy procedure will abort. The ts procedure returns
the logical time.

On a very high level, sign generates fresh USS signing and verification states every
iteration to recover from (potential) state exposures and signs the hash of its sent
transcript, and vfy updates its signing state with the messages that have been received,
so states will diverge if the adversary injects a message, while managing out of order
delivery. We will now describe the variables and code lines in more detail.

Proc init
i00 For u ∈ {A,B}:
i01 ltu← 0; lt∗

u← 0
i02 Su[·]←⊥; Vu[·]←⊥
i03 (ssu,vs∗

u)← USS.gen
i04 Pu←∅
i05 ASu[·]←⊥
i06 ASu[ltu]←H()
i07 avu←H()
i08 stu := (. . .)
i09 Return (stA,stB)
Proc sign⟨stu⟩(m)
s00 (ss,vs)← USS.gen
s01 h←H(m++ ltu ++Pu ++ vs ++SuJltuK)
s02 σ← USS.sign⟨ssu⟩(h)
s03 ASu[ltu +1]←H(ASu[ltu]++h++σ)
s04 Su[ltu]← (h,Pu,vs,σ)
s05 σ

++← ltu ++Pu ++ vs ++SuJltuK
s06 ltu← ltu +1
s07 (ssu,Pu)← (ss,∅)
s08 Return σ

Proc ts(σ)
t00 Parse σ ++ lt ++P++ vs ++SJltK← σ
t01 Return lt

Proc vfy⟨stu⟩(m,σ)
v00 Parse σ ++ lt ++P++ vs ++SJltK← σ
v01 h←H(m++ lt ++P++ vs ++SJltK)
v02 While lt∗

u ≤ lt:
v03 If lt∗

u = lt:
v04 (P′,vs′)← (P,vs)
v05 (h′,σ′)← (h,σ)
v06 Else:
v07 (h′,P′,vs′,σ′)← S[lt∗

u]
v08 vs∗← vs∗

ū

v09 For i ∈ P′:
v10 USS.updvs⟨vs∗⟩(ASu[i])
v11 Require USS.vfy(vs∗,h′,σ′)
v12 vs∗

ū← vs′

v13 avu←H(avu ++h′ ++σ′)
v14 Vu[lt∗

u]← (h′,σ′)
v15 USS.updss⟨ssu⟩(avu)
v16 lt∗

u← lt∗
u +1

v17 Pu
∪←{lt∗

u}
v18 If lt∗

u > lt:
v19 Require Vu[lt] ̸= ⋄
v20 Require Vu[lt] = (h,σ)
v21 Vu[lt]←⋄

Fig. 2.18 KuBOOM-Signature Scheme construction. We use an updatable signature
scheme (USS) as building block. Function H is assumed to be a collision-resistant hash
function. The vfy procedure aborts if parsing fails.

For each user u ∈ {A,B} we initialize the signing index ltu and the verifying index lt∗
u

[i01], and the arrays Su and Vu, which will store information about signed and verified
messages, respectively [i02]. We generate pairs of USS signing and verification states [i03]

51



and initialize the set Pu of messages processed by the current signing state to be empty
[i04]. We initialize the accumulated signed transcript ASu [i05], set the first index [i06]
and initialize the accumulated verified transcript avu [i07]. Finally, we store everything
in the users’ states [i08].

The sign procedure first generates new USS signing and verification states [s00]. Next,
it computes the hash of the message m, the signing index ltu, the set of processed
messages Pu, the verification state vs and the array Su [s01]. It signs the hash using
its old signing state [s02]. It accumulates the new hash and signature in ASu [s03] and
stores the hash, processed set, verification state and signature in Su [s04]. The signing
index, processed set, verification state and array Su are appended to the signature [s05].
It increments the signing index ltu [s06] and stores the new signing state along with an
empty processed set [s07], before returning the signature [s08].

The vfy procedure parses the additional information embedded in the signature [v00]
and recomputes the hash [v01]. If the verifying index lt∗

u is less or equal than lt, the
verifier will iteratively check signatures until it catches up [v02–v17]. To be concrete,
if lt∗

u = lt it will use the current value for the hash and signature [v05] or if lt∗
u < lt it

will obtain these values from S[lt∗
u] [v07]. It will update a copy of its verification state

for all indices the signer has processed since generating its signing state [v08–v10] and
verify the signature [v11]. Note it uses the transcript for its signed messages to update
its verification state, which should match the transcript for the verified messages the
signer has used to update its signing state. If signature verification passes, it will replace
the verification state [v12]. Note that if USS.vfy failed the verification state remains
unchanged, as if [v09–v10] were never executed. Next, it accumulates the hash and
signature in its verified transcript avu [v13], stores the hash and signature in Vu[lt∗

u] for
later comparison [v14] and it will update its signing state ssu with avu [v15]. It increments
the index lt∗

u [v16] and add lt∗
u to Pu to indicate it has processed this message into its

signing state [v17]. If the verifying index lt∗
u was strictly greater than lt, the verifier will

check if an entry exists for this index [v19] and compare whether it is equal to the value
of the hash and signature [v20]. At last, the verifier will remove the entry in Vu for index
lt to prevent double delivery [v21].

Note for simplicity we omit code lines to ‘clean up’ variables that are no longer needed.
These lines are not required for security, but would help for efficiency. For example, if a
party learns its peer has processed signature i, it will no longer have to include the first i

entries of Su in its next signature.
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2.5.2 KuBOOM-KEM

In Sec. 2.5.3 we will use a Key-updatable Bidirectional Out-of-Order Messaging KEM, in
short KuBOOM-KEM, to help achieve confidentiality for our KuBOOM construction. In
this section we describe the inner workings of this cryptographic tool.

Syntax. A KuBOOM-KEM for a key space K consists of a state space S, a ciphertext
space C, and algorithms init, upd, expire, enc, dec and the timestamp decoder ts that
recovers the logical and physical time.

init→S×S upd⟨S⟩ expire⟨S⟩ C → ts→ N×N

AD→ enc⟨S⟩ →K×C AD×C → dec⟨S⟩ →K .

Construction. Internally our KuBOOM-KEM construction will invoke the KuKEM
primitive introduced in Sec. 2.4.2, the KeKEM primitive introduced in Sec. 2.4.3, and a
secure KEM combiner K such that if at least one of the input keys is indistinguishable
from a uniformly random string of equal length, then so is the output key. In this thesis
we will consider K a random oracle. An implementation could use the CCA secure
combiner presented in [53].

We noted both our KuKEM and KeKEM building block can be built generically
from hierarchical identity-based encryption (HIBE, [52]). This strong component, while
inefficient, should come as no surprise as it has already been proposed by [56] and [86] in
the much simpler setting where every message is always delivered, and always in order.
Moreover, recent work [12] shows that if an exposure additionally reveals the random coins
used for the next send operation, the use of KuKEM is required to achieve confidentiality.
They hypothesize the same implication holds without revealing the random coins and
provide a strong intuition, but a formal proof remains an open problem.

We remark that both our KuKEM and KeKEM can be built from a single HIBE
instance if one immediately delegates the master secret key to a ‘KuKEM identity’ and
to a ‘KeKEM identity’. We avoid doing so for two reasons. First of all, these primitives
correspond to two perpendicular security goals. It is conceptually easier to grasp if we
do not intertwine them. Secondly, KeKEM can be built from a forward-secure KEM,
which is a simpler primitive than the HIBE-KEM used for KuKEM. Thus it may also be
more efficient to separate them.

We provide a construction for a KuBOOM-KEM in Fig. 2.19. The construction
consists of six procedures: init, enc, dec, expire, upd and ts. A correct decryption
procedure dec is determined by the encryption procedure: it mirrors the operations in
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enc. As deriving the dec procedure is a rather vacuous technical exercise we defer it
to focus on the more interesting cryptographic procedures first. For completeness we
describe the dec procedure at the end of this section. Note the ts procedure simply
parses the timestamps embedded in each ciphertext and returns the logical and physical
(creation) time of a ciphertext.

The construction is quite technical but the general idea is to generate a new KuKEM
and a new KeKEM instance with every enc invocation for post-compromise security. We
update the KeKEM for forward secrecy in physical time, and the KuKEM for forward
secrecy in logical time. The enc procedure will output a key dependent on the output
of the KuKEM encapsulation procedure, the KeKEM encapsulation procedure and the
associated data input.

We remark the physical time updates must be a separate primitive as simply updating
the KuKEM would render the users out-of-sync. For example, consider the scenario
where Alice sends a message, updating her KuKEM. Now physical time advances and
both Alice and Bob would update their KuKEM. Finally, Bob receives Alice’s message
and updates his KuKEM. Clearly the updates have occurred in a different order, hence
functionality will fail.

We note our security notion implies ciphertexts must contain information about
prior ciphertexts. To see that ciphertexts cannot be independent, consider an adversary
that exposes Alice and creates two ciphertexts. The adversary will deliver the second
ciphertext to Bob, rendering Bob out-of-sync. Now the adversary can challenge Alice,
making her send her first ciphertext, and since Bob is out-of-sync, expose Bob. If
Bob were able to decrypt any ciphertext with logical index 1, the adversary could now
decrypt Alice’s challenge ciphertext and win the confidentiality game. Hence, the second
ciphertext must ‘pin’ the first.

We achieve this with the KEM/DEM encryption paradigm. The enc procedure will
embed past KuKEM ciphertexts in the current ciphertext. When receiving a ciphertext,
the dec procedure will decapsulate all embedded KuKEM ciphertexts, store the DEM keys
and destroy its capability to decapsulate again. Reconsidering our example above, Bob
is now only able to decrypt the first ciphertext if it was encrypted with the same DEM
key he obtained from the second ciphertext, and Bob has no capability to decapsulate
another KuKEM ciphertext. The probability that Alice and the adversary had generated
the same KuKEM ciphertext for the first ciphertext is negligible.

We now discuss the procedures in more detail, starting with init. For each user the
init procedure initializes a sending index ltu, a receiving index lt∗

u, the first physical
time that is still recoverable ftu and the current physical time ptu [i01–i02]. It initializes
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the array AS for the accumulated sent transcript and AR for the accumulated received
transcript [i03–i06]. The accumulated transcripts will be used to update the KuKEM
states, ensuring the user states diverge when users go out-of-sync. Because ciphertexts
may be delivered out-of-order, or not at all, each user will be maintaining several instances
of each primitive, ready to decapsulate ciphertexts for any of them. However, it will
always encapsulate to the latest one. Hence we initialize storage for multiple secret states,
but only one public state, and we store the first KeKEM and KuKEM instance [i07–i10].
Finally, we initialize the array KC to store KuKEM ciphertexts [i11] and the array DK
to store DEM keys [i12], as described in the general construction overview.

The enc procedure encapsulates keys for both the KeKEM and the KuKEM [e00–e01],
and stores the KuKEM ciphertext in KC, along with its receiver index lt∗

u, indicating
which public states were used for encapsulation [e02]. Next, it generates a new instance
for both the KeKEM and the KuKEM [e03–e04]. It will immediately update the secret
state for the KuKEM with the received transcript [e05], as the adversary is allowed
unrestricted expose queries if we are out-of-sync. The enc procedure combines the KEM
ciphertexts into one ciphertext, adds the freshly generated public states, and includes
the indices and the sending transcript such that the receiver can correctly update its
state [e06–e07]. Subsequently, it uses the KEM-combiner K to produce a key, using the
associated data and ciphertext as context [e09]. Finally, it increments the sending index
ltu [e10], accumulates the associated data and ciphertext into its transcript [e11] and
updates its public KuKEM state with it [e12].

The upd procedure is quite straightforward: it simply updates the public state and
evolves the secret states for all its KeKEM instances as physical time advances. Similarly,
the expire procedure will update all secret states.

Note that for simplicity we have omitted code lines to ‘clean up’ variables that are no
longer needed. These lines are not required for security, but would help for efficiency.
For example when a user has either received or expired all messages encapsulated for its
i-th KeKEM and KuKEM instance (it knows an upper bound for messages encapsulated
to its i-th instance when receiving a message encapsulated to instance j > i) , it can
drop instance i, as later keys will always be encapsulated to later instances. As another
example we remark that, after receiving an acknowledgement from the other user they
have received message i, a user would no longer have to embed all their KuKEM
ciphertexts for indices less than or equal to i in their current ciphertext.

Here we provide a detailed description of the dec procedure. As indicated, it is mainly
a technical exercise to handle the out-of-order delivery correctly.
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The dec procedure stores a copy of the associated data and the ciphertext [d00] to be
used as context for the combiner later in the procedure [d25] and to accumulate into its
received transcript [d22]. It will parse all the information the sender has embedded in the
ciphertext [d01–d02], and obtain the sender’s latest received index to identify to which
KeKEM and KuKEM instances the keys were encapsulated [d03]. Next, it requires the
sending user is responding to a sending index the receiving user has actually reached and
a physical time that has not yet expired [d04–d05]. If the sending index lt is greater than
what has been received so far [d06], this means the embedded public states are the latest.
Hence we will overwrite our public states [d07,d10] and update them from creation time
to the current time [d09,d12]. The receiver will iteratively catch up from the last received
index to the current index [d13–d22]. First, it will decapsulate the KuKEM ciphertext
and store the DEM key [d14,d15]. Next, the receiver index is updated [d16]. For each
KuKEM, it will update the secret state [d22], obtaining the required update information
either from AS [d18] or compute the accumulated received transcript itself for the current
index [d20]. Now the receiver is up to date, we decapsulate the KeKEM ciphertext to
obtain k0 and retrieve k1 from DK [d23–d24]. The KEM-combiner K is used to combine
k0, k1 and adc into one key [d25]. Finally, we need to clear the DEM key from memory,
such that an adversary cannot decrypt old ciphertexts after an exposure [d26].
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Proc init
i00 For u ∈ {A,B}:
i01 ltu← 0; lt∗

u← 0
i02 ftu← 0; ptu← 0
i03 ASu[·]←⊥
i04 ARu[·]←⊥
i05 ASu[ltu]←H()
i06 ARu[lt∗

u]←H()
i07 Eu[·]←⊥
i08 Uu[·]←⊥
i09 (Eu[ltu], ε∗

ū)← ke.gen(ptu)
i10 (Uu[ltu],υ∗

ū)← ku.gen
i11 KCu[·]←⊥
i12 DKu[·]←⊥
i13 stu := (. . .)
i14 Return (stA,stB)
Proc enc⟨stu⟩(ad)
e00 (k0, c0)← ke.enc(ε∗

u)
e01 (k1, c1)← ku.enc(υ∗

u)
e02 KCu[ltu]← (lt∗

u, c1)
e03 (Eu[ltu], ε)← ke.gen(ptu)
e04 (Uu[ltu],υ)← ku.gen
e05 ku.updss⟨Uu[ltu]⟩(ARu[lt∗

u])
e06 c← ltu ++ptu ++ ε++υ
e07 c

++← c0 ++KCu[∗]++ASu[∗]
e08 adc← ad ++ c
e09 k←K(k0,k1;adc)
e10 ltu← ltu +1
e11 ASu[ltu]←H(ASu[ltu−1]++adc)
e12 ku.updps⟨υ∗

u⟩(AS[ltu])
e13 Return (k,c)
Proc upd⟨stu⟩
u00 ptu← ptu +1
u01 ke.evolveps⟨ϵ∗

u⟩
u02 For i ∈ [lt]u:
u03 ke.evolvess⟨Eu[i]⟩

Proc ts(c)
t00 Parse lt ++pt ++ . . .← c
t01 Return (lt,pt)
Proc dec⟨stu⟩(ad, c)
d00 adc← ad ++ c
d01 Parse lt ++pt ++ ε++υ ++ c← c
d02 Parse c0 ++KC[∗]++AS[∗]← c
d03 (lt∗, . . .)←KC[lt]
d04 Require lt∗ ≤ ltu

d05 Require ftu ≤ pt
d06 If lt∗

u < lt:
d07 ε∗

u← ε′

d08 For t ∈ Jpt .. ptuK:
d09 ke.evolveps⟨ε∗

u⟩
d10 υ∗

u← υ′

d11 For i← lt∗ to ltu:
d12 ku.updps⟨υ′⟩(ASu[i])
d13 While lt∗

u ≤ lt:
d14 (lt∗, c∗)←KC[lt∗

u]
d15 DK[lt∗

u] = ku.dec(Uu[lt∗], c∗)
d16 lt∗

u← lt∗
u +1

d17 If lt∗
u ≤ lt:

d18 ARu[lt∗
u]← AS[lt∗

u]
d19 Else:
d20 ARu[lt∗

u]←H(ARu[lt∗
u−1]++adc)

d21 For i ∈ [ltu]:
d22 ku.updss⟨Uu[i]⟩(ARu[lt∗

u])
d23 k0← ke.dec(Eu[lt∗],pt, c′

0)
d24 k1←DK[lt]
d25 k←K(k0,k1;adc)
d26 DK[lt]←⊥
d27 Return k

Proc expire⟨stu⟩
x00 ftu← ftu +1
x01 For i ∈ [ltu]:
x02 ke.expire⟨Eu[i]⟩

Fig. 2.19 KuBOOM-KEM construction. Building blocks are a KeKEM, whose algorithms
are prefixed with ‘ke.’, a KuKEM, whose algorithms are prefixed with ‘ku.’ and a KEM
combiner K.
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2.5.3 KuBOOM Construction

We first introduce a functional protocol and discuss it in detail before delving into the
full KuBOOM construction that achieves authenticity and confidentiality. The functional
protocol consists of all the unmarked code lines in Fig. 2.20. The protocol has four
procedures: the initialization procedure init, which initializes the users’ initial states; the
sending procedure send, which takes a state, associated data and a message, updates
the state and outputs a ciphertext; the receiving procedure recv, which takes a state,
associated data and a ciphertext, updates the state and outputs a message; and the time
progression algorithm tick, which updates the state.

For each user u, the init procedure initializes the logical time ltu and lt∗
u [i03], the

physical time ptu [i04], the set of received indices RIu [i04], the set of received timestamps
RTu [i05], the set of received acknowledgements RAu [i05], and the arrays of hashed
sent ciphertexts HSu and hashed received ciphertexts HRu [i06]. The tick procedure
increments the user’s physical time ptu [u00].

The send procedure takes associated data ad and message m as input. It creates
context ctx which includes the user’s current time (ltu,ptu), the hashes of previously sent
ciphertexts HSu[∗] and the set of received indices RIu [s00]. The context ctx together
with the message m will form the ciphertext c [s07]. Finally, it stores the hash H(ad ++ c)
of the associated data and the ciphertext [s10], increments the logical time ltu [s11] and
returns the ciphertext [s12].

The recv procedure first hashes the ciphertext [r00] and subsequently parses it to
obtain the message m [r02] and the context variables lt, pt, HS[∗] and R [r05]. Now,
recall that ‘Require C’ is short for ‘If ¬C: Abort’. Thus the recv procedure performs four
sanity checks to guarantee functionality. (1) A ciphertext has not yet been received for
this logical time lt [r08]. (2) The ciphertext is fresh, that is the ∆ difference between its
physical creation time pt and the user’s time ptu is ‘small’ [r09]. (3) Time is monotonic: a
message that is newer in logical time must be newer in physical time [r10]. (4) Only sent
messages can be acknowledged [r11]: Bob cannot acknowledge having received a message
that Alice never sent. Next, recv handles the out-of-order delivery. While u’s receiving
index lt∗

u is smaller or equal than lt, it will iteratively update its array HRu with the
received hashes that it obtains from HS[∗] or the current ciphertext itself [r12–r15]. If
u’s receiving index is greater than lt, it will require the hash h of the current ciphertext
is equal to the stored value for that index HRu[lt] [r16]. Finally, it will update its set
of received indices RIu [r17], its set of received timestamps RTu [r18], its set of received
acknowledgements RAu [r19], and return (RAu,m) [r22].

58



Proc init
i00◦ (stBS

A ,stBS
B )← BS.init

i01• (stBK
A ,stBK

B )← BK.init
i02 For u ∈ {A,B}:
i03 ltu← 0; lt∗

u← 0
i04 ptu← 0; RIu←∅
i05 RTu←∅; RAu←∅
i06 HSu[·]←⊥; HRu[·]←⊥
i07 stu := (. . .)
i08 Return (stA,stB)
Proc send⟨stu⟩(ad,m)
s00 ctx← ltu ++ptu ++HSu[∗]++RIu

s01◦ (sk,vk)←OTS.gen
s02◦ σ1← BS.sign⟨stBS

u ⟩(vk)
s03◦ ctx ++← vk ++σ1
s04• (k,c′)← BK.enc⟨stBK

u ⟩(vk)
s05• ctx ++← c′

s06• m← E.enc(k,m)
s07 c← ctx ++m
s08◦ σ2←OTS.sign(sk,ad ++ c)
s09◦ c

++← σ2
s10 HSu[ltu]←H(ad ++ c)
s11 ltu← ltu +1
s12 Return c

Proc ts(c)
t00 Parse ltu ++ptu ++ . . .← c
t01 Return (ltu,ptu)

Proc tick⟨stu⟩
u00 ptu← ptu +1
u01• BK.upd⟨stBK

u ⟩
u02• If ∆(0,ptu) > δ: BK.expire⟨stBK

u ⟩

Proc recv⟨stu⟩(ad, c)
r00 h←H(ad ++ c)
r01◦ c++σ2← c
r02 Parse ctx ++m← c
r03• Parse ctx ++ c′← ctx
r04◦ Parse ctx ++ vk ++σ1← ctx
r05 Parse lt ++pt ++HS[∗]++R← ctx
r06◦ BS.vfy⟨stBS

u ⟩(vk,σ1)
r07◦ OTS.vfy(vk,ad ++ c,σ2)
r08 Require lt /∈ RIu

r09 Require ∆(pt,ptu)≤ δ
r10 Require RTu∪{(lt,pt)} monotone
r11 Require R⊆ JltuK
r12 While lt∗

u ≤ lt:
r13 If lt∗

u < lt: HRu[lt∗
u]← HS[lt∗

u]
r14 Else: HRu[lt∗

u]← h
r15 lt∗

u← lt∗
u +1

r16 If lt∗
u > lt: Require HRu[lt] = h

r17 RIu
∪←{lt}

r18 RTu
∪←{(lt,pt)}

r19 RAu
∪←R

r20• k← BK.dec⟨stBK
u ⟩(vk, c′)

r21• m← E.dec(k,m)
r22 Return (RAu,m)

Fig. 2.20 The functional construction consists of the unmarked lines. The authentic
construction adds the lines marked with ◦. The KuBOOM construction consists of
all lines. BS is the KuBOOM-Signature Scheme construction in Fig. 2.18, BK is the
KuBOOM-KEM construction in Fig. 2.19, OTS is a (one-time) signature scheme as
defined in Sec. 1.5.2, and E is a symmetric encryption scheme as defined in Sec. 1.5.1.

We extend the functional protocol to an authentication protocol by including the
lines marked with ◦. The init procedure now initializes a KuBOOM-Signature Scheme
BS [i00]. The send procedure generates a fresh one-time signature key pair (sk,vk) [s01],
and calls BS.sign to obtain a signature σ1 on the verification key vk [s02]. We add vk
and σ1 to the context ctx [s03]. We use the signing key sk to sign the associated data ad
and ciphertext c [s08], and append the signature σ2 to c [s09]. The recv procedure will
parse the newly added signatures and verification key [r01,r04]. It will first verify the
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signature on the verification key vk by calling BS.vfy [r06]. Then it uses vk to verify the
signature on the associated data and ciphertext [r07].

It may appear peculiar not to sign the ciphertext directly with the KuBOOM-Signature
Scheme signature. However, this design decision is made to simplify the confidentiality
construction. If we sign the ciphertext directly, the adversary could expose the user to
obtain its signing key and generate a new signature for the ciphertext. Indeed, this would
not break authenticity as the forgery is trivial. Nonetheless, if the adversary submits the
ciphertext to the Recv oracle with a different signature, the oracle will decrypt and return
the (challenge) message. Now, because the one-time signature key pair is generated during
the send procedure, it cannot be exposed. Thus, if the adversary succeeds in creating a
valid but different signature, this would break the strong unforgeability property.

This brings us to the lines marked with •. Including these lines provides confidentiality,
resulting in our KuBOOM protocol. The init procedure now also initializes a KuBOOM-
KEM BK [i01]. The send procedure provides the KuBOOM-KEM with the verification
key as context when requesting (k,c′) [s04], appends c′ to the context [s05], and uses k to
encrypt the message [s06].

The adversary could have exposed the sender’s state and created a (trivial) forgery by
generating its own one-time signature pair. The Recv oracle would accept the ciphertext
and attempt to decrypt it. Therefore, it is critical for confidentiality that the key
derivation is dependent on the verification key [s04]. The recv procedure parses the newly
added c′ [r03] and inputs it, along with vk, to BK.dec to retrieve k [r20]. Subsequently,
recv uses k to decrypt m [r21].

The tick procedure now calls BK.upd [u01] because its state must advance over time,
even when no messages are exchanged, to achieve forward secrecy in physical time. Once
time has advanced δ times it will start calling BK.expire [u02] to indicate we no longer
desire to be able to decrypt ‘old’ messages. Neither of these procedures require the
physical time as input because they advance linearly over time, with the expire procedure
lagging behind the update procedure. This completes the description of our KuBOOM
protocol in Fig. 2.20.

Our construction provides authenticity (Thm 2.6.1) and confidentiality (Thm 2.6.4).
We formalize the theorems and provide the security proofs in Section 2.6.

2.6 Security Proofs

In this section we formalize theorems and prove the security of our constructions. We want
to utilize our modular approach and prove the authenticity of our KuBOOM construction
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via the authenticity of the KuBOOM-Signature Scheme. However, we have not yet
formally defined an authenticity game for the latter. This game is almost equivalent to
the authenticity game AUTH presented in Sec. 2.2 but adapted for message/signature
pairs instead of associated data/ciphertext pairs and without a Tick oracle. We provide
the authenticity game in Fig. 2.21 for completeness.

Game AUTH(A)
G00 For u ∈ {A,B}:
G01 ltu← 0
G02 isu← T
G03 SCu←∅
G04 CERTu←∅
G05 VFu[·]← J∞K
G06 AUu← J∞K
G07 (stA,stB)← init
G08 Invoke A
G09 Lose

Oracle Sign(u,m)
S00 σ← sign⟨stu⟩(m)
S01 If isu:
S02 SCu

∪←{(m,σ)}
S03 ltu← ltu +1
S04 Return σ

Oracle Expose(u)
E00 If isu:
E01 VFuJltuK ∩← JltuK
E02 AUu

∩← JltuK
E03 Return stu

Oracle Vfy(u,m,σ)
V00 lt← ts(σ)
V01 vfy⟨stu⟩(m,σ)
V02 If (m,σ) ∈ SCū:
V03 If isu:
V04 CERTu

∪← [lt]
V05 AUū

∪← VFū[lt]
V06 If (m,σ) /∈ SCū:
V07 If isu:
V08 Reward lt ∈ AUū

V09 Reward lt ∈ CERTu

V10 isu← F

Fig. 2.21 KuBOOM AUTH game.

Similarly, we need to specify a confidentiality notion for the KuBOOM-KEM in order
to make rigorous statements about it. We provide the confidentiality game in Fig. 2.22.
This game is almost equivalent to the confidentiality game presented in Sec. 2.2 but
adapted for indistinguishability of keys instead of messages. Moreover, the Tick oracle
has been split in an Upd and Expire oracle, granting the adversary more control. Most
notably however, is the added line ‘Require isu’ in the Challenge oracle. Since poisoned
implies out-of-sync, the line ‘Penalize poisonedu’ has become obsolete in the Challenge
oracle in Fig. 2.22. Hence, this line, and all the lines and variables used for tracking the
poisoned flag, have been removed from the game.

2.6.1 KuBOOM achieves Authenticity

We prove our KuBOOM construction provides authenticity by reducing the problem
to the security of a regular signature scheme (Sec. 1.5.2) and the security of a USS
(Sec. 2.4.1). In order to do so, in Lemma 2.6.2 we first reduce the security of our
KuBOOM construction to the security of regular signatures and the security of our
KuBOOM-Signature Scheme introduced in Sec. 2.5.1. Subsequently, we reduce the
security of KuBOOM-Signature Scheme to the security of USS in Lemma 2.6.3.
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Game CONFb(A)
G00 For u ∈ {A,B}:
G01 ltu← 0
G02 ptu← 0
G03 isu← T
G04 SCu←∅
G05 lxu← 0
G06 CHu←∅
G07 xpu← F
G08 (stA,stB)← init
G09 Invoke A
G10 Lose
Oracle Expose(u)
E00 Require CHū = ∅
E01 If isu:
E02 lxu← ltu

E03 xpu← T
E04 Return stu

Oracle Upd(u)
U00 upd⟨stu⟩
U01 ptu← ptu +1
Oracle Expire(u)
T00 expire⟨stu⟩
T01 CHū

∩← ITC(u)
Oracle Challenge(u,ad)
C00 Require isu

C01 Penalize xpū

C02 (k0, c)← enc⟨stu⟩(ad)
C03 k1←$ K
C04 SCu

∪←{(ad, c)}
C05 If isū: CHu

∪←{ltu}
C06 ltu← ltu +1
C07 Return (kb, c)
Oracle Decide(b′)
D00 Stop with b′

Oracle Enc(u,ad)
S00 (k,c)← enc⟨stu⟩(ad)
S01 If isu:
S02 SCu

∪←{(ad, c)}
S03 ltu← ltu +1
S04 Return (k,c)
Oracle Dec(u,ad, c)
R00 (lt,pt)← ts(c)
R01 k← dec⟨stu⟩(ad, c)
R02 If (ad, c) ∈ SCū:
R03 If isu:
R04 If lt ≥ lx ū:
R05 xpū← F
R06 If lt ∈ CHū:
R07 k←⋄
R08 If (ad, c) /∈ SCū:
R09 isu← F
R10 CHū

∩← JltK
R11 CHū← CHū \{lt}
R12 Return k

Fig. 2.22 KuBOOM CONF game.

Theorem 2.6.1. Let π be the KuBOOM construction in Fig. 2.20, let AUTH be the
authenticity game in Fig. 2.2 that calls π’s procedures in its oracles, let H be a perfectly
collision resistant hash function, and let A be an adversary that makes at most qs Send
queries. Then there exists an adversary A′ of comparable efficiency such that

AdvAUTH
π (A)≤ qs ·

(
AdvSUF

OTS(A′)+AdvAUTH
USS (A′)

)
.

Proof. The result immediately follows by applying Lemma 2.6.2 and Lemma 2.6.3.

Lemma 2.6.2. Let π be the KuBOOM construction in Fig. 2.20 and let AUTH be the
corresponding authenticity game in Fig. 2.2 that calls π’s procedures in its oracles. Let BS
be the KuBOOM-Signature Scheme construction in Fig. 2.18 and let KuBOOM -AUTH
be the corresponding authenticity game in Fig. 2.21. Let A be an adversary that makes
at most qs Send queries. Then there exists an adversary A′ of comparable efficiency such
that

AdvAUTH
π (A)≤ qs ·AdvSUF

OTS(A′)+AdvKuBOOM -AUTH
BS (A′).
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Proof. A′ will simulate the AUTH game to A by running π and replacing π’s calls to
the KuBOOM-Signature Scheme with queries to A′’s KuBOOM -AUTH game. For A’s
Tick oracle queries, A′ simply advances physical time. For each Send oracle query, A′

will initiate a SUF game for one-time signatures [s01] and obtain a verification key vk. A′

will pose a Sign(vk) query in the KuBOOM -AUTH game to obtain a signature σ1 on
vk [s02]. Finally, A′ will pose a Sign(ad ++ c) query in its SUF game to obtain a signature
σ2 on ad ++ c [s08]. This allows A′ to answer any Send oracle query. Notice how the
Expose oracles in both games are equal, so any query can simply be forwarded by A′.
We remark A′ does not need to know the signing keys generated by the SUF games as
they are not stored in the state: They are generated, immediately used and discarded in
a single send operation.

For each Recv oracle query, A′ will first call Vfy(vk ′,σ′
1) in the KuBOOM -AUTH

game [r06] and subsequently Vfy(ad ′ ++ c′,σ′
2) in the corresponding SUF game [r07]. If

(ad ′, c′) is a forgery and vk = vk ′, the oracle call will award a win in the corresponding
SUF game for the one-time signature. Otherwise, if vk ̸= vk ′, A either wins the AUTH
game or renders the user out-of-sync (e.g. with a trivial forgery after exposure). Now
observe A′ has submitted vk ′ as message in its Vfy query in the in its KuBOOM -AUTH
game. Hence, A′ will also win the KuBOOM -AUTH game or render the user out-
of-sync, maintaining equivalent game variables as the AUTH game. We can conclude
AdvAUTH

π (A)≤ qs ·AdvSUF
OTS(A′)+AdvKuBOOM -AUTH

BS (A′).

Lemma 2.6.3. Let BS be the KuBOOM-Signature Scheme in Fig. 2.18, let
KuBOOM -AUTHBS be the authenticity game in Fig. 2.21 that calls BS’s procedures in
its oracles and let A be an adversary that makes at most qs Sign queries. Then there
exists an adversary A′ of comparable efficiency such that

AdvKuBOOM -AUTH
BS (A)≤ qs ·AdvAUTH

USS (A′).

Proof. For simplicity let the function H in BS be the identity function. An implementation
could use a collision resistant hash function for efficiency reasons. A′ will simulate the
KuBOOM -AUTH game to A and we will show that if A wins, then A′ will win in one
of its USS-AUTH games. Let A′ run BS but instead of calling the gen algorithm, A′ will
initiate a new USS-AUTH for each invocation. Moreover, instead of calling the updss,
updvs, sign and vfy algorithms, A′ will query the Updss, Updvs, Sign and Vfy oracles,
respectively, in the corresponding USS-AUTH game.

In particular, for each Sign oracle query by A, A′ starts a new USS game to generate
a key pair. A′ is free to query ExposeV to obtain the verification key and to execute
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line [s02], A′ can query the Sign oracle in its USS game. We remark BS only signs once
with each key [s02,s07]. To answer a Vfy query, A′ simply queries its Updvs (line [v10]),
Vfy (line [v11]) and Updss (line [v15]) oracles in each game, as they are available without
restrictions. Finally, A′ will always be able to answer Expose queries as there are no
restrictions on its ExposeS and ExposeV oracles in the USS games. It is clear the
simulation always succeeds.

There are two reward conditions in KuBOOM -AUTH: A must deliver either a
certified or an authoritative message/signature pair. We will first consider the reward
condition for certified message/signature pairs and show that A cannot trigger it. The
game starts without any certified message/signature pairs [G04]. A pair (m,σ) can only
become certified for user u if a sync-preserving pair (mc,σc) [V02] has been delivered,
while u was in-sync [S01], with a higher index [V04]. Because of [S01–S02], this means
ū was also in-sync at the time of sending. We can conclude A has not interfered
with (mc,σc). BS will parse σc [v00] and obtain an array ScJltcK with entries for all
indices lt < ltc. For each lt, BS will parse S[lt] [v07], and store (h,σ) [v14], where
h = H(m ++ lt ++ P ++ vk ++ SJltK) [s01]. Now, if u receives a certified pair (m′,σ′) it will
parse it [v00] and compute h′ = H(m′ ++ lt ′ ++P′ ++ vk ′ ++S′Jlt ′K) [v01]. Then BS requires
(h,σ) = (h′,σ′) [v20], so clearly A cannot forge a certified message/signature pair as the
entries (h,σ) are legitimate.

Next, let us consider the reward condition for an authoritative message/signature
pair. It remains to be shown that if A triggers this reward condition, then A′ will win
in one of its USS games. W.l.o.g. let us assume A submits a forgery to user u on index
i that triggers the reward condition. This means u was still in-sync [V07]. Thus the
verification key vki, which u used to verify the forgery, was generated by A′. That is, A′

is playing a USS game for this verification key. It is clear that if A′ has not made an
ExposeS query in the corresponding USS game, A′ can submit the same forgery to its
Vfy oracle and win in its game. Hence, let us assume A′ has made an ExposeS query.
Because BS generates a new key pair each sign invocation and overwrites the old secret
key [s07], A′ would only make this ExposeS query if A exposes ū at sending index i. If
isū this implies i /∈ VFū[lt] for all lt < i and i /∈ AUū [E00–E02]. Thus the only way to
add i back to AUū is to deliver a message/signature pair with index lt ≥ i [V05]. If A
delivers a message/signature pair with index i, A cannot forge on i because BS prevents
double delivery [v19,v21]. If A delivers a pair (m,σ) with an index greater than i, we have
(m,σ) ∈ SCū, otherwise u will lose sync [V06,V10] and we know u must still be in-sync
when the forgery happens [V07]. We can conclude index i becomes certified [V02–V04]
and we have already shown A cannot forge on a certified message/signature pair.
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Therefore, let us consider the final case where ū is not in-sync when the exposure
happens. This implies ū has accepted a pair (m,σ) /∈ SCu [V06,V10]. Because u is in-sync,
this means (m,σ) was not sent by u [S01–S02]. Let (mt,σt) be the pair with index ltt

that transitions ū, i.e. renders ū out-of-sync, and let lt∗
ū be the receiving index of ū. Now,

ū will parse it [v00] and compute ht = H(mt ++ ltt ++ Pt ++ vkt ++ StJlttK) [v01]. We have
shown A cannot forge on certified message/signature pairs, so lt∗

ū ≤ ltt. In particular
this means BS computes avū←H(avū ++ht ++σt) [v13], A′ will query Updss(avū) in the
corresponding USS game [v15] and BS includes ltt + 1 in the set Pū to indicate it has
processed ltt [v16–v17]. Let ltf be ū’s sending index when going out-of-sync. We know ū

is not in-sync, so the next message/signature pair delivered to u with index greater than
or equal to ltf will render u out-of-sync [V06,V10]. Moreover, we know i≥ ltf , because
the USS game corresponding to index i was subject to an ExposeS query when ū was no
in-sync. Therefore this next message/signature pair delivered to u must have index i

[V07]. We conclude A has not made an Expose(ū) query for index ltf while ū was still
in-sync, otherwise we have i /∈ AUū [E01–E03] with no possibility of recovery.

This implies A′ did not make an ExposeS query in the corresponding USS game
before the Updss(avū) query. Thus any string in XP contains avū [E01]. When u receives
the message/signature pair with index i it will iteratively update its receiving index
[v02–v17]. A′ will query the Updvs oracle with ASu[j] for j ∈ P and we have ar ū ̸= ASu[j]
for all j, because we know avū ̸= ASu[ltt] (and it clearly cannot match any other index
as the index is part of the variable). We conclude the verifier’s updates do not contain
avū. Hence ADV /∈ XP, so A′ would be rewarded for the forgery [V02–V03] in the USS
game when querying the Vfy oracle. This completes the proof.

2.6.2 KuBOOM achieves Confidentiality

We prove our KuBOOM construction provides confidentiality by reducing the problem to
the security of the KeKEM (Sec. 2.4.3) and the KuKEM (Sec. 2.4.2). In order to do so,
in Lemma 2.6.5 we first reduce the confidentiality of our KuBOOM construction to the
confidentiality of the symmetric encryption scheme E, the confidentiality of our KuBOOM-
KEM introduced in Sec. 2.5.2 and the authenticity of our KuBOOM construction. In
Lemma 2.6.6 we reduce the advantage of an adversary against our KuBOOM-KEM
in the multi-challenge confidentiality game to the advantage of an adversary in the
single-challenge confidentiality game. Subsequently, we reduce the confidentiality of the
KuBOOM-KEM in the single-challenge setting to the confidentiality of both the KeKEM
and the KuKEM in Lemma 2.6.7.

65



Theorem 2.6.4. Let π be the KuBOOM construction in Fig. 2.20, let CONF be the
confidentiality game in Fig. 2.3 that calls π’s procedures in its oracles and let A be an
adversary that makes at most qc Chal queries and ϵ the probability that the adversary
successfully computes a pre-image of the random oracle. Then there exists an adversary
A′ of comparable efficiency such that

AdvCONF
π (A)≤qc ·

(
2 ·AdvCONF

keKEM(A′)+2 ·AdvCONF
kuKEM(A′)+AdvCONF

E (A′)
)

+AdvAUTH
π (A′)+ ϵ.

Proof. The result immediately follows by successively applying Lemma 2.6.5, Lemma 2.6.6
and Lemma 2.6.7.

Lemma 2.6.5. Let π be the KuBOOM construction in Fig. 2.20, let CONFb be the
confidentiality game in Fig. 2.3 that calls π’s procedures in its oracles. Let BK be the
KuBOOM-KEM construction in Fig. 2.19 and let KuBOOM -CONFb be the corresponding
confidentiality game in Fig. 2.22. Let A be an adversary that makes at most qc Chal
queries. Then there exists an adversary A′ of comparable efficiency such that

AdvCONF
π (A)≤ qc ·AdvCONF

E (A′)+AdvAUTH
π (A′)+AdvKuBOOM -CONF

BK (A′).

Proof. Note the KuBOOM -CONFb and the CONFb game trace exactly the same vari-
ables. The only difference is if A wishes to challenge an out-of-sync user that is not
poisoned. In this case, we have that isu and poisonedu are both False. Note this exactly
triggers the win condition in AUTH, as the game either rewards or sets poisoned to True
when isu becomes False. Thus, we can assume A only challenges an in-sync user.
A′ will simulate the CONFb game to A by running π and replacing π’s calls to the

KuBOOM−KEM with queries to A′’s KuBOOM -CONFb game. Because both games
trace the same variables A′ can simply forward all Expose, Recv, Decide queries. For any
Tick queries, A′ will query both Upd and Expire. If A makes a Send query, A′ will replace
the enc call in the send procedure [s04] with a query to its Enc oracle. However, for A’s
Chal queries, A′ will replace the enc call in the send procedure [s04] with a query to its
Challenge oracle. If A were to distinguish between A′’s simulation and the real protocol,
then A′ would have the same distinguishing advantage in the KuBOOM -CONF game.
Thus let us then consider the simulation variant where A′ always use a random key. Now,
for A’s Chal queries, A′ will initiate a standard symmetric encryption CPA game (which
samples a random key) and query its encryption oracle to obtain the required ciphertext
[s06]. If A is able to distinguish the messages based on the challenge ciphertext, A′ can
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make the same guess in the corresponding CONF game for the symmetric encryption
scheme.

Lemma 2.6.6. Let BK be the KuBOOM-KEM construction in Fig. 2.19, let
KuBOOM -CONFb be the corresponding confidentiality game in Fig. 2.22 that calls
BK’s procedures in its oracles and let KuBOOM -CONFb-1 be the confidentiality game
that is almost identical, but only allows one Challenge query. Let A be an adversary that
makes at most qc Challenge queries. Then there exists an adversary A′ of comparable
efficiency such that

AdvKuBOOM -CONF
BK (A)≤ qc ·AdvKuBOOM -CONF-1

BK (A′).

Proof. Let Hi denote the hybrid of the KuBOOM -CONFb game where the first i

Challenge queries output the real key and the remaining challenge queries output a
random key. Clearly, H0 = KuBOOM -CONF1 and Hqc = KuBOOM -CONF0. We
define Advhyb

i−1,i(A) := |P[Hi−1(A)]− P[Hi(A)]|. By the triangle inequality we have
AdvKuBOOM -CONF

BK (A)≤∑qc
i=1 Advhyb

i−1,i(A). So there exists a j such that 0 < j ≤ qc and
AdvKuBOOM -CONF

BK (A)≤ qc ·Advhyb
j−1,j(A). It remains to be shown that we can use an

adversary A that can distinguish between Hj−1 and Hj to win the KuBOOM -CONFb-1
game.
A′ will initialize the KuBOOM -CONFb-1 and run A. Any query by A to the Expose,

Enc, Dec, Upd or Expire, A′ can simply forward to its own oracles but will keep track of
the game variables. When A makes a Challenge(u,ad) query, A′ will first check if it is a
valid challenge. If the requirements are not met, A′ can abort as A would lose the game
anyway. Otherwise A′ will proceed as follows, where t counts the number of Challenge
queries. If t < j, A′ makes the corresponding Enc(u,ad) query, if isū will add ltu to CHu

and return (k,c) to A. If t = j, A′ will forward the query to the Challenge oracle in its
own game. If t > j, A′ makes the corresponding Enc(u,ad) query, if isū will add ltu to
CHu, replace k←$ K and return (k,c) to A.

Now observe A′ simulates Hj−1 to A if A′ is playing the KuBOOM -CONF1-1
game and Hj if A′ is playing KuBOOM -CONF0-1. Thus, when A makes its guess,
A′ can make the corresponding guess in its own game. We conclude Advhyb

j−1,j(A) ≤
AdvKuBOOM -CONF-1

BK (A).

Lemma 2.6.7. Let BK be the KuBOOM-KEM construction in Fig. 2.19, let
KuBOOM -CONFb be the corresponding confidentiality game in Fig. 2.22 that calls
BK’s procedures in its oracles but only allows one challenge query. Let A be an adversary.
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Then there exists an adversary A′ of comparable efficiency such that

AdvKuBOOM -CONF-1
BK (A)≤ 2 ·

(
AdvCONF

keKEM(A′)+AdvCONF
kuKEM(A′)

)
.

Proof. To prove the result we will show we can use an adversary that has a distinguishing
advantage in the KuBOOM -CONFb game has at least half that advantage in the
keKEM-CONFb or the kuKEM-CONFb game. Let A′ simulate the KuBOOM -CONF
game by running BK. However, instead of calling the gen algorithms, it will initialize
KeKEM and KuKEM confidentiality games. Moreover, A′ will replace any call to these
primitives’ algorithms with queries to the corresponding oracles in its confidentiality
games. That is enc, dec, evolveps, evolvess and expire for the KeKEM primitive and enc,
dec, updps and updss for the KuKEM primitive.

To answer A’s Challenge(u,ad) query, A′ will check if isu and abort otherwise as A
would lose the KuBOOM -CONF game [C00]. This implies the latest public states u

received were indeed generated by A′.
Let us first consider the case isū = T. A′ will guess uniformly at random whether

A will let the challenge ciphertext expire or deliver it first. Then A′ can query the
Challenge oracle in the corresponding KeKEM or KuKEM game, depending on its guess,
and run the enc procedure for the other primitive to execute the lines [e00,e01] in BK.
Because BK always uses the latest received public states [d07,d10] for encapsulation,
we can conclude from [R04,R05,E02,E03] that flag xpū reflects whether the secret states
corresponding to the current public states used for encapsulation have been exposed. If
xpū, then A′ can abort as A would lose anyway [C01]. Thus, we can conclude A′ has
not had to query its Expose oracles in the current games and the Challenge query will
succeed.

Next, let us consider the case isū = F. Now, A′ will always query the Challenge
oracle in its KuKEM game. If an Expose query was made before ū went out-of-sync,
analogously to above, the flag xpū will be set and A′ can abort the Challenge query.
Hence, assume only Expose queries were made after ū went out-of-sync. We know A′

updated the KuKEM states when running the dec procedure [d22], updating ADR in
its KuKEM game. By [E10,E12] in the KuKEM CONF game, we know all exposed
strings are prefixed with ADR. We can conclude ADS /∈ XP and the Challenge query
will succeed [C00].

Now, let us discuss how to answer Expose queries. It is clear if there has been no
Challenge query that A′ can make the required ExposeR in its games to answer A’s
Expose queries. So, let us assume A has made a Challenge query. We first remark if
ū was out-of-sync at the moment of the Challenge query, A′ will have challenged the
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KuKEM game and since ADS /∈ FER, A′ is free to query ExposeR in the KuKEM game
[E11]. Clearly, in this scenario A′ can also make an ExposeR query in the KeKEM
game, so let us assume ū was in-sync and the challenge ciphertext has been added to the
challenge set CHu [C05]. By requirement [E00], A will not make an Expose query until
either the challenge ciphertext expired or the challenge ciphertext is delivered / goes
out-of-sync. Suppose A calls the Tick oracle to expire the challenge ciphertext. Now, A′

will have called the Expire oracle in the KeKEM game [x02], which allows A′ to make
Expose queries again [X01] in the KeKEM game and if A′ guessed correctly it did not
make a Challenge query in the KuKEM game, so it is free to call the Expose oracle.

Now suppose, A′ clears challenge set CH by delivering a ciphertext. By [R10,R11]
this means A has delivered the challenge ciphertext or an out-of-sync ciphertext with
index less or equal than the challenge ciphertext. In the either case, the KuKEM will
update [d22] and A′ can query ExposeR again because ADS /∈ FER [E10].

Finally, A′ will call K to compute the combined key [e09]. For simplicity we will
assume K to be a random oracle. We remark if (ad, c) ∈ SC, A′ can simply answer
Dec(ū,ad, c) queries for challenge ciphertexts with k←⋄ by [R06] and otherwise we can
sample a k←$ K because random oracle K takes the full (ad, c) as context [d25], as long
as we maintain consistency for repetitive Dec queries. Because K is a random oracle, if
A can distinguish which KuBOOM -CONFb game it is playing, it must have learnt the
challenged key as it is input to K. (Note that if A guesses the key, A′ will have at least
the same success probability guessing the key in its own game.) Therefore, A′ will have
the same advantage in either its KeKEM or its KuKEM game. We remark if A′ guesses
correctly, the simulation always succeeds. A’s view is independent of A′’s guess, so the
probability of a correct guess is at least 1

2 .

2.7 Conclusion and Reflection

After ACD [5] observed that research on secure messaging protocols routinely only
considers settings with a guaranteed in-order delivery of messages, while most real-world
protocols like Signal are actually designed for out-of-order delivery, we reassess the model
and construction of ACD and argue that the intuitive notion of forward secrecy is not
provided. We identify that the reason for this is the lack of modelling of physical time,
which is required to express that ciphertexts may time out and expire. We hence develop
new security models for the out-of-order delivery setting with immediate decryption. Our
model incorporates the concept of physical clocks and implements a maximally strong
corruption model. We finally design a proof-of-concept protocol that provably satisfies it.
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We would like to stress that our security model for secure messaging cannot be reduced
to merely the addition of physical time and the deletion of keys and discuss comparisons
with the Signal protocol and variants thereof. Our model should be considered in
conjunction with the other security guarantees, which explains why it is not sufficient
to simply tweak the Signal protocol to “forget old keys”. In fact, regardless of Bob’s
expiration policy a clock-augmented Signal, falls prey to the following attack: Expose
Alice’s state, let her encrypt/send a challenge message, use the obtained state to decrypt
the ciphertext. While that seems an unfair attack on Signal’s use of symmetric encryption,
the point is that in the PKE-strengthened Signal variant discussed in ACD19, the situation
immediately becomes less clear: Keys cannot be deleted without destroying the capability
of further communication as each party only holds one private key for subsequent
messages.

Observe however that our model only excludes trivial attacks, as listed in Sec. 2.3. In
particular, the adversary is allowed to freely expose Bob without consequences in our
model when Bob is out-of-sync. To be concrete, consider the following attack which
shows that a PKE-strengthened Signal is insecure in our model, even if keys would be
deleted. The adversary exposes Alice’s state and uses it to simulate the consecutive
encryption of two messages. The adversary obtains two ciphertexts, discards the first
one and delivers the second one to Bob. Then the adversary exposes Bob’s state and,
finally, lets Alice encrypt the challenge message that it wants to break. (This would be
the first message she processes, i.e., it is for sending index 0.) In the Signal protocol,
the adversary could readily recover the challenge message by invoking the decryption
algorithm with the state priorly revealed from Bob. However, intuitively, and according
to our models and as ensured by our construction, the challenge message should remain
confidential. Note that “forgetting old keys” wouldn’t resolve anything here as from
Bob’s view, nothing is “old”: time has not ticked.

In Sec. 2.3 we provided an attack catalogue that lists over ten non-trivial attacks,
similar to the one described above, that the Signal protocol falls prey to. This clearly
shows the Signal protocol is insecure in our models and justifies the more expensive
primitives used. In our work we have defined what optimal security is in the immediate
decryption setting and provided a proof of concept to demonstrate it can be achieved.
We do believe that protocols less efficient but more secure than Signal have their merit
and it is up to the user to make this security / efficiency trade-off.

We refer to our models as ‘optimally secure’ because they exclude only trivial attacks
(in a very fair communication and corruption model; of course our models limit the
adversary to specific actions through oracles, but the latter is trivially true for any
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security model). However, we remark there has been discussion in the field of the term
‘optimal’ in the case of state reveal queries over randomness reveal queries. We chose
state reveal (SR) over randomness reveal (RR) for a number of reasons. First, state reveal
attacks are very much of a concern to practitioners. Second, if a construction shall be
proven secure in a model with randomness reveal, then necessarily all its building blocks
need to be RR-secure as well. For instance, if a construction uses a generic signature
scheme as a building block (simplest example: Signed-DH), then the latter has to be
RR-unforgeable (Existential unforgeability in a model with signer randomness reveal).
The fewest practical signature schemes are formally analysed in such a model, and
many Fiat-Shamir based schemes (including DSA, ECDSA) are non-candidates, as for
them revealing the signing randomness is equivalent with leaking the key. Deterministic
signature schemes could be used, but they are more rare and inherently less secure
(considerable tightness losses [10]). As another example, if a construction is based on a
PKE primitive, then the latter has to be RR-confidential (e.g., CCA with encryptor RR
resilience); such primitives have been proposed under the umbrella of selective opening
security [16], but corresponding constructions are computationally expensive. Effectively,
a choice of randomness reveal over state reveal would rule out many otherwise secure
constructions for no reason that we believe warrants it. Observing that, in absolute
numbers, mobile devices are overwhelmingly idle and that exposures due to physical
events are unlikely to happen during instant messaging operations, we believe randomness
reveal additional value is limited: The adversary can already reveal the state of Alice
before and after an operation.

We note that optimally secure protocols are in general more costly than weaker
versions. Our solution, in contrast to Signal, seems to require HIBE which is admittedly
one of the more expensive primitives. For future work it would be interesting to have a
prototype implementation to benchmark how much one is ‘paying’ for this additional
security compared to the Signal protocol. However, if a practitioner desires to avoid
using HIBE at all cost (for efficiency, and accepting the implied security loss), it is
straightforward to replace our KuKEM building block with a more efficient KEM+Hash
construction that does not achieve optimal security. For reference we provide the details
of such a construction in Fig. 2.23. If our messaging protocol is instantiated with this
alternative building block, rather than with our (HIBE-based) KuKEM, the protocol
would still be more secure than Signal: It would fall prey to some of the attacks listed in
Sec. 2.3, but for example not to the trivial attack listed in item 4 of the confidentiality
attack catalogue (as Signal would do).
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Proc gen
g00 (sk,pk)←Kgen
g01 ADR← ()
g02 ss := (sk,ADR)
g03 ADS ← ()
g04 ps := (pk,ADS)
g05 Return (ss,ps)

Proc enc(ps)
e00 (k′, c)←Kenc(pk)
e01 k←K(k′,ADS)
e02 Return (k,c)
Proc updps⟨ps⟩(ad)
u00 ADS

++← ad

Proc dec(ss, c)
d00 k′←Kdec(sk, c)
d01 k←K(k′,ADR)
d02 Return k

Proc updss⟨ss⟩(ad)
u10 ADR

++← ad

Fig. 2.23 Insecure KuKEM construction. Building block is a KEM (Kgen,Kenc,Kdec)
and key derivation function K.

A further contentious point is the assumption of loosely synchronized clocks in an
adversarial setting. Desynchronized clocks would harm availability: By desynchronizing
Alice and Bob, the adversary can achieve that they cannot communicate any further.
However, this is similar to the adversary cutting the wire between them. No protocol

—in no model— can realistically defend against this. As highlighted in Footnote 6, with
today’s infrastructure users will not desynchronize by considerable amounts by accident.
We intentionally don’t prescribe a specific expiration duration δ, as different users will
have different needs/preferences. Highly exposed users might choose δ = 5 mins; other
users might configure δ = 1 month. Our solutions are flexible and work with any δ.

While we don’t know about the reader’s personal phones, the author can report that
we did not notice a desynchronization of our phones from ‘real time’ by more than one
minute, ever having taken place in the past ten years. To us, it is virtually unimaginable
to believe that a noticeable share of users runs around with considerably wrongly-set
mobile phone clocks. Again, as desynchronization at most harms availability, even picking
δ = 15 mins seems to be an extremely robust choice in practice. For practicality users
may wish to select a much larger δ than 15 mins though. If the phone is offline, for
example on a flight, then it will still expire the keys after the specified period δ for
security. Once the phone comes back online and receives new messages, the messages
whose keys have expired cannot be decrypted. Of course the application’s user interface
can still display to the user that an old undecipherable message was received, so the user
will be aware they missed parts of the conversation.

Finally, we remark that the ciphertext size of our proposed construction grows linearly
in the number of unacknowledged messages. Since ciphertexts are acknowledged with
each message, the ciphertext size only grows linearly in the number of messages sent
since the last received message, it is not linear in the number of sent messages. Recall the
discussion in Sec. 2.5.2 shows it is indeed necessary that ciphertexts contain information
about prior undelivered ciphertexts to achieve our security notion, so a constant size
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ciphertext construction is impossible in our security model. However, we consider this a
feature. Effectively, it automatically implements graceful rate limiting if someone keeps
spamming you and you ignore them, by slowly increasing their workload every message.
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Chapter 3

Encrypt-to-self: Securely
Outsourcing Storage

We explore techniques that enable a computing device to securely outsource the storage of
data. The setting assumes a memory-bounded computing device that inflates the amount
of volatile or permanent memory available to it by letting other (untrusted) devices hold
encryptions of information that they return on request. In this chapter we develop the
cryptographic mechanism that should be used to achieve confidential and authentic data
storage in the encrypt-to-self setting, i.e., where encryptor and decryptor coincide and
constitute the only entity holding keys. We argue that standard authenticated encryption
represents only a suboptimal solution for preserving confidentiality, as much as message
authentication codes are suboptimal for preserving authenticity. The crucial observation
is that such schemes instantaneously give up on all security promises in the moment
the key is compromised. In contrast, data protected with our new primitive remains
fully integrity protected and unmalleable. In the course of this chapter we develop a
formal model for encrypt-to-self systems, show that it solves the outsourced storage
problem, propose surprisingly efficient provably secure constructions, and report on our
implementations.

3.1 Introduction

We start with motivating this area of research by describing four application scenarios
where outsourcing storage might prove crucial.

Web Server. Web servers typically hold a multitude of data for each of the client
connections they manage, ranging from user preferences to technical information like
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database credentials. If the amount of data per session is considerable, busy servers
sooner or later run out of memory. One admissible solution to this is to let the server
encrypt the session data to itself and to let the client store the ciphertext, with the
agreement that the client reproduce the ciphertext in each subsequent request (e.g., via
a cookie) so that the session data can be recovered when required. While it is difficult to
make general statements about the setup of a web server back-end, it is fair to say that
the processing of HTTP requests routinely also includes extracting a session identifier
from the HTTP header and fetching basic session-related information (e.g., the user’s
password, the date and time of the last login, the number of failed login attempts, but
also other kinds of data not related to security) from a possibly remote SQL database. To
avoid the inherent bottleneck induced by the transmission and processing of the database
query, such data can be cached on the web server, the limits of this depending only on the
amount of available working memory (RAM). For some types of web applications and a
large number of web sessions served simultaneously, these memory-imposed limits might
represent a serious restriction to efficiency. This chapter scouts techniques that allow the
web server to securely outsource the storage of session information to the (untrusted)
web clients. Note that we will introduce a one-time primitive, meaning each key may be
used for at most one encryption. However, a web server could derive a fresh key for each
encryption from its master key and session identifiers.

Hardware Security Module. An HSM is a computing device that performs crypto-
graphic and other security-related operations on behalf of the owning user. While such
devices are internally built from off-the-shelf CPUs and memory chips, a key concept of
HSMs is that they are specially encapsulated to protect them against physical attacks,
including various kinds of side channel analysis. One consequence of this tamper-proof
shielding is that the memory capacity of an HSM can never be physically extended—
unlike it would be the case for desktop computers—so that the amount of available
working memory might constitute a relevant obstacle when the HSM is deployed in
applications with requirements that increase over time (e.g., due to a growing user base).
This chapter scouts techniques that allow the HSM to securely outsource the storage of
any kind of valuable information to the (untrusted) embedding host system.

Smartcard. A smartcard, most prominently recognized in the form of a payment card
or a mobile phone security token, is effectively a tiny computing device. While fairly
potent configurations exist (with 32-bit CPUs and a couple of 100KBs of memory), as
the costs associated with producing a smartcard scales roughly linearly with the amount
of implemented physical memory, in order to be cost effective, mass-produced cards tend
to come with only a small amount of memory. This chapter scouts techniques that allow
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smartcards to securely outsource the storage of valuable information to the infrastructure
they connect to, e.g., a banking or mobile phone backbone, or a smartphone.

Trusted Platform Module. A TPM is a discrete security chip that is embedded
into virtually all laptops and desktop PCs produced in the past decade. A TPM supports
its host system by offering trusted cryptographic services and is typically relied upon by
boot loaders and operating systems. TPMs are located conceptually between HSMs and
smartcards, and as much as these they benefit from a secure option to outsource storage.

3.1.1 Contributions

Outsourced Storage based on Symmetric Cryptography

If a computing device has access to some kind of external storage facility (a memory chip
wired to it, a connected hard drive, cloud storage, etc.), then, intuitively, it can virtually
extend the amount of memory available to it by outsourcing storage, i.e., by serializing
data objects and communicating them to the storage facility which will reproduce them
on request. In this chapter we focus on the case where neither the external storage facility
nor the connection to it is considered trustworthy. More concretely, we assume that all
infrastructure outside of the computing device itself is under control of an adversary
that aims at reading or changing the data that is to be externally stored.1 As a first
approximation one might conclude that standard tools from the domain of symmetric
encryption are sufficient to achieve security in this setting. Consider for instance the
following approach based on authenticated encryption (AE, [87]): The computing device
samples a fresh symmetric key; whenever it wants to store internal data on the outsourced
storage, it encrypts and authenticates the data by invoking the AE encryption algorithm
with its key and hands the resulting ciphertext over to the storage facility; to retrieve
the data, it requests a copy of the ciphertext, and decrypts and verifies it. While this
simple solution requires further tweaking to thwart replay attacks,2 as long as the AE
key remains private it can be used to protect confidentiality and integrity as expected.

1Certainly, the storage device can always decide to “fail” by not returning any data previously stored
into it, leading to an attack on the availability of the computing device. We hence consider environments
where this is either not a problem or where such an attack cannot be prevented anyway (independently
of the storage technique). Note that this assumption holds for our four motivating scenarios.

2One option to strengthen the scheme against replay is to implement the AE primitive nonce-based [88],
and using a strictly increasing nonce for encrypting and decrypting.
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Our Contribution: Secure Outsourced Storage with Key Leakage

While we confirm that standard cryptographic methods will securely solve the storage
outsourcing problem if the used key material remains private, we argue that satisfactory
solutions should go a step further by providing as much security as possible even if
the latter assumption (that keys remain private) is not met. Indeed, different attacks
against practical systems that lead to partial or full memory leakage continue to regularly
emerge (including different types of side channel analysis against embedded systems,3

cold-boot attacks against memory chips,4 Meltdown/Spectre-like attacks against modern
CPUs,5,6 etc.), and it is commonly understood that the corruption model considered
for cryptographic primitives should always be as strong as possible and affordable. For
two-party symmetric encryption (e.g., AE) this strongest model necessarily excludes any
type of user corruption7 as the keys of both parties are identical: Once any party is
corrupted, any past or future ciphertext can be decrypted and ciphertexts can be forged
for any message, i.e., no form of confidentiality or authenticity remains. We point out,
however, that for outsourced storage a stronger corruption model is both feasible and
preferable. Clearly, like in the AE case, if the adversary obtains a copy of the used key
material then all confidentiality guarantees are lost (the adversary can decrypt what the
device can decrypt, that is, everything), but a similar reasoning with respect to integrity
protection cannot be made. To see this, consider the encrypt-then-hash (EtH) solution
where the computing device encrypts the outsourced data as described above, but in
addition to having the ciphertext stored externally it internally registers a hash of it
(computed with, say, SHA256). When the device decides to recover externally stored
data, it requests a copy of the ciphertext, recomputes its hash value, and decrypts only
if the hash value is consistent with the internally registered value. Note that even if the
device is corrupted and its keys became public, all successfully decrypted ciphertexts are
necessarily authentic.

The example just given shows that while no solution for secure storage outsourcing
can do much about protecting data confidentiality against key leakage attacks, solutions
can fully protect the integrity of the stored data in any case. Naive AE-based schemes
do not provide this type of security, and the contribution of our work is to fill this gap
and to explore corresponding constructions. Precisely, we provide the following: (1) We
identify the new encrypt-to-self (ETS) primitive as the right cryptographic tool to solve

3https://en.wikipedia.org/wiki/Side-channel_attack
4https://en.wikipedia.org/wiki/Cold_boot_attack
5https://en.wikipedia.org/wiki/Meltdown_(security_vulnerability)
6https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)
7We use the terms ‘key leakage’, ‘user corruption’, and ‘state corruption’ synonymously.
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the outsourced storage problem and formalize its syntax and security properties. (2) We
formalize notions more directly related to the outsourced storage problem and provably
confirm that secure solutions based on ETS are indeed immediate. (3) We design provably
secure constructions of ETS from established cryptographic primitives.8 (4) We develop
open-source implementations of our constructions that are optimized with respect to
security and efficiency.

3.1.2 Related Work

While we are not aware of any former systematic treatment of the encrypt-to-self (ETS)
primitive, a number of similar primitives or ad hoc constructions partially overlap with
our results. We discuss these in the following, but emphasize that none of them provides
general solutions to the ETS problem.

Memory Encryption in Modern CPUs. Recent desktop and server CPUs offer
dedicated infrastructure for memory encryption,9 with the main applications in cloud
computing and Trusted Execution Environments (TEEs). Prominent TEE examples
include Intel SGX10 and ARM TrustZone11 in which every memory access of the processes
that are executed within a TEE (aka ‘enclave’) is conducted through a memory encryption
engine (MEE). This effectively implements outsourced data storage, but with quite
different access rules and patterns than in the ETS case. While we consider the (stateless)
encryption of a message to a ciphertext and then a decryption of a ciphertext back to a
message, MEEs are stateful systems that consider the protected physical memory area a
single ciphertext that is constantly locally modified with each write operation [54].

Password Managers. A password manager can be seen as a database that stores
security credentials in an encrypted form and requires e.g., a master password to be
unlocked. Also this can be seen as an ETS instance, but the cryptographic design
of password managers has a different focus than general outsourced storage. More
concretely, the central challenge solved by good password managers is the password-
based key derivation,12 which typically involves invoking a time-expensive derivation
function like PBKDF2 [67] or a memory-hard derivation function like ARGON2 [23].
Password-based key derivation is not considered in our treatment of the ETS primitive

8The above encrypt-then-hash (EtH) solution is secure in our models but requires two passes over
the data. Our solutions are more efficient, getting along with just one pass.

9https://software.intel.com/en-us/blogs/2017/12/22/intel-releases-new-technology-specification-for-memory-encryption
10https://software.intel.com/en-us/sgx/details
11https://genode.org/documentation/articles/trustzone
12https://1password.com/files/1Password-White-Paper.pdf
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(we instead assume uniform keys). We refer the reader to Chapter 4 for our proposed
methods to obtain uniform keys from passwords.

Encryptment. A symmetric encryption option that recently emerged as a proposal
to protect messages in instant messaging is Encryptment [45]. Its features go beyond
regular authenticated encryption in that the tags contained in ciphertexts act as (crypto-
graphically strongly binding) commitments to the encoded messages. This committing
feature was deemed helpful for the public resolution of cyber harassment cases by allowing
affected parties to appeal to a judging authority by opening their ciphertexts by releasing
their keys. On first sight this has nothing to do with our ETS setting (in which only
one party holds a key, this key would never be deliberately shared, and a necessity of
provably releasing message contents to anybody else is not considered). Interestingly,
however, our constructions of ETS are very similar to those of [45]. The intuitive reason
for this is that the ETS setting requires that ciphertexts remain unforgeable under key
leakage, which somewhat aligns with the committing property of encryptment that is
required to survive disclosing keys to a judge. Ultimately, however, the applications and
thus security models of ETS and encryptment differ, and our constructions are actually
more efficient than those in [45].13

3.1.3 Technical Approach.

In addition to formalizing the security of the encrypt-to-self (ETS) primitive, in the course
of this chapter we also propose efficient provably-secure constructions from standardized
building blocks. As discussed above, the authenticity promises of ETS shall withstand
adversaries that have knowledge of the key material. In this setting one cannot hope
that standard secret-key authentication building blocks like MACs or universal hash
functions will be of help, as generically they lose all security when the key is leaked.
We instead employ, as they manifest unkeyed authentication primitives, cryptographic
hash functions like SHA256. A first candidate construction, already hinted at above,
would be the encrypt-then-hash (EtH) approach where the message is first encrypted
(using any secret key scheme, e.g., AES-CTR) and the ciphertext is then hashed. Our
constructions are more efficient than this by exploiting the structure of Merkle–Damgård
(MD) hash functions and dual-use leveraging on the properties of their inner building
block: the compression function (CF). Intuitively, for authentication we build on the
collision resistance of the CF, and for confidentiality we build on a PRF-like property of

13This is the case for at least two reasons: (1) The ETS primitive does not need to be committing to
the key, which is the case for encryptment. (2) Our message padding is more sophisticated than that
of [45] and does not require the processing of a length field.
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the CF. More precisely, our message schedule for the CF is such that each invocation
provides both confidentiality and integrity for the processed block. This effectively halves
the computational costs in comparison to the EtH approach.

Since this chapter focuses on efficiency improvements over the naive EtH solution, we
believe the analysis is not complete without also implementing the construction under
consideration. This is because only implementing a scheme will enforce making conscious
decisions about all its details and building blocks, and these decisions may crucially affect
the obtained security and efficiency. We thus realized three ready-to-use instances of the
ETS primitive, based on the CFs of the top performing hash functions SHA256, SHA512,
and BLAKE2. In fact, observations from implementing the schemes led to considerable
feedback to the theoretical design which was updated correspondingly. One example
for this is connected to memory alignment: Computations on modern CPUs experience
noticeable efficiency penalties if memory accesses are not aligned to specific boundaries.
Our constructions reflect this at two different levels: at the register level and at the cache
level (64 bit alignment for register-oriented operations, and 256 bit alignment for bulk
memory transfers14).

3.2 Preliminaries

3.2.1 Memory Alignment

For n a power of 2, we say an address of computer memory is n-byte aligned if it is a
multiple of n bytes. We further say that a piece of data is n-byte aligned if the address
of its first byte is n-byte aligned. A modern CPU accesses a single (aligned) word in
memory at a time. Therefore, the CPU performs reads and writes to memory most
efficiently when the data is aligned. For example, on a 64-bit machine, 8 bytes of data
can be read or written with a single memory access if the first byte lies on an 8-byte
boundary. However, if the data does not lie within one word in memory, the processor
would need to access two memory words, which is considerably less efficient. Our scheme
algorithms are designed such that when they need to move around data, they exclusively
do this for aligned addresses. In practice, the preferred alignment value depends on the
hardware used, so for generality in this thesis we refer to it abstractly as the memory
alignment value mav. (A typical value would be mav = 8.)

14The value 256 stems from the size of the cache lines of 1st level cache.
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3.2.2 Tweaking the Compression Functions of Hash Functions

The main NIST hash functions of the SHA2 family (FIPS 180-4, [80]) accomplish their
task of hashing a message into a short string by strictly following the Merkle–Damgård
framework: All inputs to their core building block —the compression function— are
either directly taken from the message or from the chaining state. It has been recog-
nized, however, that options to further contextualize or domain-separate the inputs of
compression functions can be of advantage. Indeed, compression functions that are
designed according to the alternative, more recent HAIFA framework [22] have a number
of additional inputs, for instance an explicit salt input, that allow for weaving some extra
bits of context information into the bulk hash operations. A concrete example for this
is the compression function of the popular BLAKE2 hash function ([9, 89], a HAIFA
design), which takes as an additional input a Boolean finalization flag that is to be set
specifically when processing the very last (padded) block of a hash computation. The
idea behind making the last invocation “special” is that this effectively thwarts length
extension attacks: While conducting extension attacks against the SHA2 hash functions,
where the compression functions do not natively support any such marking mechanism,
is quite immediate,15 similar attacks against BLAKE2 are impossible [39]. We note that,
generally speaking, an ad hoc way of augmenting the input of a compression function by
an additional small number of bits is to XOR predefined constants into the hashing state
(e.g., before or while the compression function is executed), with the choice of constants
depending on the added bits. For instance, if the finalization flag is set, the BLAKE2
compression function will flip all bits of one of its inputs, but beyond that operate as
normal.

While textbook SHA2 does not support contextualizing compression function in-
vocations via additional inputs, we observe that NIST, in order to solve an emerging
domain-separation problem in the definition of their FIPS 180-4 standard, employed
ad hoc modifications of some SHA2 functions that can be seen as (implicitly) retrofitting
a one-bit additional input into the compression function. Concretely, the SHA512/t

functions [80], that intuitively represent plain SHA512 truncated to 0 < t < 512 bits, are
carefully designed such that for any t1 ̸= t2 the functions SHA512/t1 and SHA512/t2

are independent of each other.16 The separation of the individual SHA512/t versions
works as follows [80, Sec. 5.3.6]: First compute the SHA512 hash value of the string
"SHA512/xxx" (where placeholder xxx is replaced by the decimal encoding of t), then

15For instance, an adversary who does not know a value x but instead the values H(x) and y, can
compute H(x q y) by just continuing the iterative MD computation from chain value H(x) on. Note this
does not require inverting the compression function.

16In particular, for instance, SHA512/128("a") is not a prefix of SHA512/192("a").
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XOR the byte value 0xa5 (binary: 0b10100101) into every byte of the resulting chain
state, then continue with regular SHA512 steps from that state on, truncating the final
hash value to t bits. While the XORing step is ad hoc, it arguably represents a fairly
robust domain separation method for SHA2.

Our constructions of the encrypt-to-self primitive rely on compression functions
that are tweaked with a single bit, that is, that support one bit as an additional input.
When we implement this based on SHA2 compression functions, we employ precisely the
mechanism scouted by NIST: When the additional tweak bit is set, we XOR constant 0xa5
into all state bytes and continue operation as normal. Our BLAKE2 based construction,
on the other hand, uses the already existing finalization bit.

3.3 Foundations of Encrypt-to-Self

The overall goal of this chapter is to provide a secure solution for outsourced storage.
We identified the novel encrypt-to-self (ETS) primitive, which provides one-time secure
encryption with authenticity guarantees that hold beyond key compromise, as the right
tool to construct outsourced storage.17 In this section we first formalize and study ETS,
then formalize outsourced storage, and finally show how the former immediately implies
the latter. This allows us to leave the outsourced storage topic aside in the remaining
part of the chapter and lets us instead fully focus on constructing and implementing
ETS.

3.3.1 Syntax and Security of ETS

ETS consists of an encryption and a decryption algorithm, where the former translates a
message to a binding tag and a ciphertext, and the latter recovers the message from the
tag-ciphertext pair. For versatility the two operations further support the processing of
an associated-data input [87] which has to be identical for a successful decryption.

The task of the binding tag is to prevent forgery attacks: A user that holds an
authentic copy of the binding tag will never accept any ciphertext they did not generate
themselves, even if all their secrets become public. Note that while standard authenticated
encryption (AE) does not provide this type of authentication, the encrypt-then-hash
construction suggested in Sec. 3.1 does. In Sec. 3.4 we provide a considerably more
efficient construction that uses a hash function’s compression function as its core building
block. Here, we define the generic syntax of ETS and formalize its security requirements.

17While ETS is novel, note that prior work explored the quite similar Encryptment primitive [45].
Encryptment is stronger than ETS, and less efficient to construct.
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Game FUNC(ad,m,A)
00 k←$ K
01 (bt, c)← enc(k,ad,m)
02 Invoke A(k,ad,m,bt, c)
03 Lose
Oracle Dec(ad ′, c′)
04 m′← dec(k,bt,ad′, c′)
05 If (ad ′, c′) = (ad, c):
06 Promise m′ = m
07 m′←⊥
08 Return m′

Game INT(ad,m,A)
09 k←$ K
10 (bt, c)← enc(k,ad,m)
11 Invoke A(k,ad,m,bt, c)
12 Lose
Oracle Dec(ad ′, c′)
13 m′← dec(k,bt,ad ′, c′)
14 Reward (ad ′, c′) ̸= (ad, c)
15 m′←⊥
16 Return m′

Game INDb(ad,m0,m1,A)
17 k←$ K
18 Require m0 ≡m1

19 (bt, c)← enc(k,ad,mb)
20 b′←A(ad,m0,m1,bt, c)
21 Stop with b′

Oracle Dec(ad ′, c′)
22 m′← dec(k,bt,ad′, c′)
23 If (ad ′, c′) = (ad, c):
24 m′←⊥
25 Return m′

Fig. 3.1 Games for ETS. For the values ad ′, c′ provided by the adversary we require that
ad ′ ∈ AD, c′ ∈ C. Assuming ⊥ /∈M, we encode suppressed messages with ⊥. For the
meaning of instructions Stop with, Lose, Promise, Reward, and Require see Sec. 1.3.

Definition 3.3.1. Let AD be an associated data space and let M be a message space.
An encrypt-to-self (ETS) scheme for AD and M consists of algorithms enc,dec, a key
space K, a binding-tag space Bt, and a ciphertext space C. The encryption algorithm enc
takes a key k ∈K, associated data ad ∈AD and a message m ∈M, and returns a binding
tag bt ∈ Bt and a ciphertext c ∈ C. The decryption algorithm dec takes a key k ∈ K,
a binding tag bt ∈ Bt, associated data ad ∈ AD and a ciphertext c ∈ C, and returns a
message m ∈M. A shortcut notation for this API is

K×AD×M→ enc→Bt×C K×Bt×AD×C → dec→M .

Correctness and Security. We require of an ETS scheme that if a message m is
processed to a tag-ciphertext pair with associated data ad, and a message m′ is recovered
from this pair using the same associated data ad, then the messages m,m′ shall be
identical. This is formalized via the FUNC game in Fig. 3.1. In particular, observe
that if the adversary queries Dec(ad, c) (for the authentic ad and c that it receives in
line 02) and the dec procedure produces output m′, the game promises that m′ = m

(lines 05,06). Recall from Sec. 1.3 that this means the game stops with output 1 if m′ ≠ m.
Intuitively, the scheme is functional if we can rely on m′ = m, that is, if the maximum
advantage Advfunc(A) := maxad∈AD,m∈MP[FUNC(ad,m,A)] that can be attained by
realistic adversaries A is negligible. The scheme is perfectly functional if Advfunc(A) = 0
for all A. We remark that the universal quantification over all pairs (ad,m) makes our
advantage definition particularly robust.
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Our security notions demand that the integrity of ciphertexts be protected (INT-
CTXT), and that encryptions be indistinguishable in the presence of chosen-ciphertext
attacks (IND-CCA). The notions are formalized via the INT and IND0, IND1 games in
Fig. 3.1, where the latter two depend on some equivalence relation≡⊆M×M on the mes-
sage space.18 For consistency, in lines 07,15,24 we suppress the message in all games if the
adversary queries Dec(ad, c). This is crucial in the INDb games, as otherwise the adversary
would trivially learn which message was encrypted, but does not harm in the other games
as the adversary already knows m. Recall from Sec. 1.3 that all algorithms can abort, and
if they do, then the oracles immediately abort. This property is crucial in the INT game
where the dec algorithm must abort for unauthentic input such that the oracle immedi-
ately aborts. Otherwise, the game will reward the adversary, that is the game stops with 1
(line 14). We say that a scheme provides integrity if the maximum advantage Advint(A) :=
maxad∈AD,m∈MP[INT(ad,m,A)] that can be attained by realistic adversaries A is neg-
ligible, and that it provides indistinguishability if the same holds for the advantage
Advind(A) := maxad∈AD,m0,m1∈M|P[IND1(ad,m0,m1,A)]−P[IND0(ad,m0,m1,A)]|.

3.3.2 Sufficiency of ETS for Outsourced Storage

We define the syntax of an outsourced storage scheme. We model such a scheme as a set
of stateful algorithms, where algorithm write is invoked to store data and algorithm read
is invoked to retrieve it. We indicate the statefulness of the algorithms by appending the
term ⟨st⟩ to their names, where st is the state variable.

Definition 3.3.2. Let M be a message space. A storage outsourcing scheme for M
consists of algorithms gen,write,read, a state space ST , and a ciphertext space C. The
state generation algorithm gen takes no input and outputs an (initial) state st ∈ ST . The
storage algorithm write takes a state st ∈ ST and a message m ∈M, and outputs an
(updated) state st ∈ ST and a ciphertext c ∈ C. The retrieval algorithm read takes a state
st ∈ ST and a ciphertext c ∈ C, and outputs an updated state st ∈ ST and a message
m ∈M. A shortcut notation for this API is

gen→ST M→ write⟨ST ⟩ → C C → read⟨ST ⟩ →M .

18We use relation ≡ (in line 18 of INDb) to deal with certain restrictions that practical ETS schemes
may feature. Concretely, our construction does not take effort to hide the length of encrypted messages,
implying that indistinguishability is necessarily limited to same-length messages. In our formalization
such a technical restriction can be expressed by defining ≡ such that m0 ≡m1⇔ |m0|= |m1|.
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Correctness and Security. We require of a storage outsourcing scheme that if a
message m is processed to a ciphertext, and subsequently a message m′ is recovered
from this ciphertext, then the messages m,m′ shall be identical. This is formalized
via the FUNC game in Fig. 3.2. Observe boolean flag is (‘in-sync’) tracks whether the
attack is active or passive. Initially is = T, i.e., the attack is passive; however, once the
adversary requests the reading of a ciphertext that is not the last created one, the game
sets is← F to flag the attack as active (line 11). For passive attacks the game promises
that any m returned by the read procedure is the last one that was processed by the
write procedure (line 13). Intuitively, the scheme is functional if the maximum advantage
Advfunc(A) := P[FUNC(A)] that can be attained by realistic adversaries A is negligible.
The scheme is perfectly functional if Advfunc(A) = 0 for all A.

Our security notions demand that the integrity of ciphertexts be protected (INT-
CTXT), and that encryptions be indistinguishable in the presence of chosen-ciphertext
attacks (IND-CCA). The notions are formalized via the INT and IND0, IND1 games
in Fig. 3.2, where the latter two depend on some equivalence relation ≡⊆M×M on
the message space (see also Footnote 18). Recall from Sec. 1.3 that all algorithms can
abort, and if they do, the oracles immediately abort. This property is crucial in the
INT game where the read algorithm must abort for unauthentic input such that the
adversary is not rewarded in the subsequent line in the Read oracle. For consistency we
suppress the message in the Read oracle for passive attacks in all games if the adversary
queries Dec(ad, c). This is crucial in the INDb games, as otherwise the adversary would
trivially learn which message was encrypted, but does not harm in the other games as the
adversary already knows m for passive attacks. Furthermore, we remark the adversary
is only allowed to query the Corrupt oracle if M contains at most 1 message, i.e., the
ChWrite oracle was queried for m0 = m1. Otherwise, the adversary would be able to
run the read procedure and trivially learn m. We say that a scheme provides integrity
if the maximum advantage Advint(A) := P[INT(A)] that can be attained by realistic
adversaries A is negligible, and that it provides indistinguishability if the same holds for
the advantage Advind(A) := |P[IND1(A)]−P[IND0(A)]|.

Construction from ETS. Constructing secure outsourced storage from ETS is
immediate: The write procedure samples a uniformly random key and runs the enc
procedure of ETS to obtain a binding tag and ciphertext. It stores the binding tag (and
key) in the state and returns the ciphertext. The read procedure gets the key and binding
tag from the state, runs the dec procedure of ETS and returns the message. The details
of this construction are in Fig. 3.3. The security argument is obvious.
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Game FUNC(A)
00 C,M←∅
01 is← T
02 st← gen
03 Invoke A
04 Lose
Oracle Write(m)
05 c← write⟨st⟩(m)
06 If is:
07 C←{c}
08 M←{m}
09 Return c

Oracle Read(c)
10 m← read⟨st⟩(c)
11 If c /∈ C: is← F
12 If is:
13 Promise m ∈M
14 m←⊥
15 Return m

Game INT(A)
16 C←∅
17 is← T
18 st← gen
19 Invoke A
20 Lose
Oracle Write(m)
21 c← write⟨st⟩(m)
22 If is: C←{c}
23 Return c

Oracle Read(c)
24 m← read⟨st⟩(c)
25 If c /∈ C: is← F
26 Promise is
27 If is: m←⊥
28 Return m

Oracle Corrupt
29 Return st

Game INDb(A)
30 C,M←∅
31 is← T
32 st← gen
33 b′←A
34 Stop with b′

Oracle ChWrite(m0,m1)
35 Require m0 ≡m1

36 c← write⟨st⟩(mb)
37 If is:
38 C←{c}
39 M←{m0,m1}
40 Return c

Oracle Read(c)
41 m← read⟨st⟩(c)
42 If c /∈ C: is← F
43 If is: m←⊥
44 Return m

Oracle Corrupt
45 Require |M| ≤ 1
46 Return st

Fig. 3.2 Games for outsourced storage. For all values m,m0,m1, c provided by the
adversary we require that m,m0,m1 ∈M and c ∈ C. Assuming ⊥ /∈M, we encode
suppressed messages with ⊥. Boolean flag is (‘in-sync’) tracks whether the attack is
active or passive. For the meaning of instructions Stop with, Lose, Promise, and Require
see Sec. 1.3.

3.4 Construction of Encrypt-to-Self

We mentioned in Sec. 3.1 that a generic construction of ETS can be realized by combining
standard symmetric encryption with a cryptographic hash function: one encrypts the
message and computes the binding tag as the hash of the ciphertext. Here we provide a
more efficient construction that builds on the compression function of a Merkle–Damgård
hash function. To be more precise, our construction uses a tweakable compression
function with tweak space T = {0,1}, i.e., the domain of the compression function is
extended by one bit (see Sec. 3.2.2). We provide a general definition below.

Definition 3.4.1. For Σ an alphabet, c,d ∈ N+ with c ≤ d, and a tweak space T , we
define a tweakable compression function to be a function F : Σd×T ×Σc→ Σc that takes
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Proc gen
00 S←∅
01 st := S
02 Return st

Proc write⟨st⟩(m)
03 k←$ K
04 (bt, c)← enc(k,ϵ,m)
05 S←{(k,bt)}
06 Return c

Proc read⟨st⟩(c)
07 Require S ̸= ∅
08 {(k,bt)}← S
09 m← dec(k,bt, ϵ, c)
10 Return m

Fig. 3.3 Construction for outsourced storage from ETS. If in line 07 the condition is not
met, the read algorithm aborts with some error indicator. Recall from Sec. 1.3 that the
read algorithm also aborts if the dec invocation in line 09 aborts.

as input a block B ∈ Σd from the data domain, a tweak t ∈ T from the tweak space, and a
string C ∈ Σc from the chain domain, and outputs a string C ′ ∈ Σc in the chain domain.

We will write Ft(B,C) as shorthand notation for F (B,t,C). For practical tweakable
compression functions the memory alignment value mav (see Sec. 3.2.1) will divide both c

and d. When constructing an ETS scheme from F , because the compression function only
takes fixed-size input, we need to map the (ad,m) input to a series of block–tweak pairs
(B,t). We will refer to this mapping as the input encoding. We take a modular approach
by fixing the encoding independently of the encryption engine, and detail the former in
Sec. 3.4.1 and the latter in Sec. 3.4.2. Together they form an efficient construction of
ETS.

We first convey a rough overview of our ETS construction. In Fig. 3.4 we consider
an example with block size d double the chaining value size c. We assume that key k is
padded to size d. The first block B1 only contains associated data and we XOR B1 with
the key k before we feed it into the compression function. From the second block, we
start processing message data. We fill the first half of the block with associated data ad3

and the second half with message data m1, and XOR with the key. We observe that in
most uses cases of EtS it should be expected that the associated data string is shorter
than the message input. Because we will pad with null bytes, in terms of Fig. 3.4 this
means that the ad-input of most compression function invocations will be constant and
no XORing is necessary once the associated data is fully processed as the first component
of the concatenation remains invariant and can be precomputed. We XOR m1 with the
current chaining value C1, to generate a partial ciphertext ct1. The same happens in the
third block and we append ct2 to the ciphertext. If there is associated data left after
processing all message data we can load the entire block with associated data, which
occurs in the fourth block. Note, we no longer need to XOR the key into the block after
we have processed all message data, because at this point the input to the compression
function will already be independent of the message m. After processing all blocks,
we XOR an offset ω ∈ {ω0,ω1} with the chaining value, where ω0,ω1 are two distinct
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(B1, B2, B3, B4) = ad1 q ad2 ad3 q m1 ad4 q m2 ad5 q ad6

Ft1

k

C0 = IV
Ft2

k

C1

m1

ct1

Ft3

k

C2

m2

ct2

Ft4
C3 C4

ω

C∗

Fig. 3.4 Example for enc(k,ad,m) where d = 2c and ad = ad1 q . . . q ad6 and m = m1 q m2
with |ad| = 6c and |m| = 2c. For clarity we have made the blocks Bi, as they are
output by the encoding function, explicit. Inspiration for this figure is drawn from
https://www.iacr.org/authors/tikz/.

constants. The binding tag will be (a truncation of) the last chaining value C∗.19 Note
that the task of the encoding is not only to partition ad and m into blocks B1,B2, . . . as
described, but also to derive tweak values t1, t2, . . . and the choice of the final offset ω in
such a way that the overall encoding is injective.

3.4.1 Message Block Encoding

We turn to the technical component of our ETS construction that encodes the (ad,m)
input into a series of output pairs (B,t) and the final offset value ω. For authenticity
we require that the encoding is injective. For efficiency we require that the encoding
is online (i.e., the input is read only once, left-to-right, and with small state), that the
number of output pairs is as small as possible, and that the encoding preserves memory
alignment (see Sec. 3.2.1). Syntactically, for the outputs we require that all B ∈ Σd, all
t ∈ T , and ω ∈ Ω, where quantities c,d are those of the employed compression function,
T = {0,1}, and Ω⊆ Σc is any two-element set. (Note that |T |= 2 allows us to use the
tweaking approach from Sec. 3.2.2; further, in our implementations we use Ω = {ω0,ω1}
where ω0 = 0x00c and ω1 = 0xa5c.) Overall, the task we are facing is the following:

Task. Assume |Σ|= 256 and AD =M= Σ∗ and T = {0,1} and |Ω|= 2. For c,d ∈ N+,
c < d, find an injective encoding function encode: AD×M→ (Σd×T )∗×Ω that takes
as input two finite strings and outputs a finite sequence of pairs (B,t) ∈ Σd×T and an
offset ω ∈ Ω.

19It will be crucial to fix ω0,ω1 such that they are distinct also after truncation.
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A detailed specification of our encoding (and decoding) function can be found in
Fig. 3.6, but we present it here in text. Our construction does not use the decoding
function, but we provide it anyway to show that the encoding function is indeed injective.
Roughly, we encode as follows. We fill the first block with associated data and for any
subsequent block we load the associated data in the first part of the block and the
message in the second part of the block. When we have processed all the message data,
we load the full block with ad again. Clearly, we need to pad ad if it runs out before
we have processed all message data. We do this by appending a special termination
symbol ⋄ ∈ Σ to ad and then appending null bytes as needed. Similarly, we need to pad
the message if the message length is not a multiple of c. Naturally, one might want to
pad the message to a multiple of c. However, this is suboptimal: Consider the scenario
where there are d−c+1 bytes remaining to be processed of associated data and 1 byte of
message data. In principle, message and associated data would fit into a single block, but
this would not be the case any longer if the message is padded to size c. On the other
hand, for efficiency reasons we do not want to misalign all our remaining associated data.
If we do not pad at all, when we process the next d bytes of associated data, we can
only fit d−1 bytes in the block and have to put 1 byte into the next block. Therefore,
we pad m up to a multiple of the memory alignment value mav. To be precise, we pad
message with null bytes until reaching a multiple of mav. We replace the final (null)
byte with the message length |m|; this will uniquely determine where m stops and the
padding begins. This restricts us to c≤ 256 bytes such that |m| always can be encoded
into a single byte. As far as we are aware, any current practical compression function
satisfies this requirement.

In Fig. 3.5, for the artificially small case with c = 1 and d = 2 we provide four examples
of what the blocks would look like for different inputs. The top row shows the encoding
of 8 bytes of associated data and an empty message. The second row shows the encoding
of empty associated data and 3 bytes of message data. The third row shows the encoding
of 6 bytes of associated data and 2 bytes of message data. The final row shows the
encoding of 3 bytes of associated data and 3 bytes of message data.

We have two ambiguities remaining. (1) How to tell whether ad was padded or
not? Consider the first row in Fig. 3.5. What distinguishes the case ad = ad1 q . . . q ad7

from ad = ad1 q . . . q ad7 q ad8 with ad8 = ⋄? A similar question applies to the message.
(2) How to tell whether a block contains message data or not? Compare e.g., the first
row with the third row. This is where the tweaks come into play.

First of all, we tweak the first block if and only if the message is empty. This fully
separates the authentication-only case from the case where we have message input.
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(B1, B2, B3, B4) = ad1 q ad2 ad3 q ad4 ad5 q ad6 ad7 q ad8

(B1, B2, B3, B4) = � q 0x00 0x00 q m1 0x00 q m2 0x00 q m3

(B1, B2, B3, B4) = ad1 q ad2 ad3 q m1 ad4 q m2 ad5 q ad6

(B1, B2, B3, B4) = ad1 q ad2 ad3 q m1 � q m2 0x00 q m3

Fig. 3.5 Example encodings for the case c = 1 and d = 2.

Next, if the message is non-empty, we use the tweaks to indicate when we switch
from processing message data to ad-only: we tweak when we have consumed all of m,
but still have ad left. Note the first block never processes message data, so the earliest
block this may tweak is the second block and hence this rule does not interfere with the
first rule. Furthermore, observe this rule never tweaks the final block, as by definition of
being the final block, we do not have any associated data left to process.

Next, we need to distinguish between the cases whether m is padded or not. In fact,
as the empty message was already taken care of, we need to do this only if m is at least
one byte in size. As in this case the final block does not coincide with the first block, we
can exploit that its tweak is still unused; we correspondingly tweak the final block if and
only if m is padded. Obviously, this does not interfere with the previous rules.

Finally, we need to decide whether ad was padded or not. We do not want to enforce
a policy of ‘always pad’, as this could result in an extra block and hence an extra
compression function invocation. Instead, we use our offset output. We set the offset ω

to ω1 if ad was padded; otherwise we set it to ω0.
This completes our description of the encoding function. The decoding function

is a technical exercise carefully unwinding the steps taken in the encoding function,
which we perform in Fig. 3.6. We obtain that for all m ∈ M,ad ∈ AD we have
decode(encode(ad,m)) = (ad,m). It immediately follows that our encoding function
is injective. For readability we have implemented the core functionality of the encoding
in a coroutine called nxt, rather than a subroutine. Instead of generating the entire
sequence of (B,t) pairs and returning the result, it will ‘Yield’ one pair and suspend its
execution. The next time it is called (e.g., the next step in a for loop), it will resume
execution from where it called ‘Yield’, instead of at the beginning of the function, with all
of its state intact. The encode procedure is a simple wrapper that runs the nxt procedure
and collects its output, but our authenticated encryption engine described in Sec. 3.4.2
will call the nxt procedure directly.
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Proc encode(ad,m)
00 S[·]← ·; i← 0
01 For (B,t) ∈ nxt(ad,m):
02 If B ̸= ϵ:
03 i← i+1
04 S[i]← (B,t)
05 Else: ω← t
06 Return (S,ω)
Proc decode(S,ω)
07 ad ← ϵ; m← ϵ
08 n← |S|; j← |S|
09 If n = 0:
10 Return (ad,m)
11 For i← 1 to n:
12 (Bi, ti)← S[i]
13 For i← 1 to n−1:
14 If ti = 1: j← i
15 ad q←B1
16 For i← 2 to j− tn:
17 Bi q B′

i←c Bi

18 ad q←Bi

19 m
q←B′

i

20 If n > 1∧ tn = 1:
21 Bj q l←d−1 Bj

22 p←−l mod mav
23 a← d− l−p
24 ad q Bj ←a Bj

25 m←j Bj

26 For i← j +1 to n:
27 ad q←Bi

28 If ω = ω1:
29 Split ad q ⋄ q 0∗← ad
30 Return (ad,m)

Proc nxt(ad,m)
31 ad_padded← F
32 m_padded← [m = ϵ]
33 m_final← [m = ϵ]
34 ω← ω0; n← 0
35 While ad ̸= ϵ∨m ̸= ϵ:
36 n← n+1
37 (Bn, tn)← (ϵ,0)
38 If n = 1:
39 d′← d
40 else:
41 j←−|m| mod mav
42 d′← d−|m|− j
43 If |ad|< d′:
44 If not ad_padded:
45 ω← ω1
46 ad q←⋄
47 ad_padded← T
48 j← d′−|ad|
49 ad q← 0j

50 Bn q ad ←d′ ad
51 If n > 1∧m ̸= ϵ:
52 If |m|< c:
53 m_padded← 1
54 j←−|m| mod mav
55 m←m q 0j−1 q |m|
56 l←min(c, |m|)
57 m′ q m←l m
58 Bn

q←m′

59 If m = ϵ:
60 If ad = ϵ:
61 tn←m_padded
62 Else:
63 tn←m_final
64 m_final← 0
65 Yield (Bn, tn)
66 Yield (ϵ,ω)

Proc enc(k,ad,m)
67 ct← ϵ; C← IV; i← 0
68 For (B,t) ∈ nxt(ad,m):
69 If B ̸= ϵ:
70 i← i+1
71 If i = 1∨m ̸= ϵ:
72 B←B⊕k
73 If i > 1∧m ̸= ϵ:
74 j←min(c, |m|)
75 m′ q m←j m
76 C ′←j C
77 ct q←m′⊕C ′

78 C← Ft(B,C)
79 bt←taglen C⊕ t
80 Return (bt,ct)
Proc dec(k,bt,ad,ct)
81 m← ϵ; C← IV; i← 0
82 For (B,t) ∈ nxt(ad,ct):
83 If B ̸= ϵ:
84 i← i+1
85 If i = 1∨ ct ̸= ϵ:
86 B←B⊕k
87 If i > 1∧ ct ̸= ϵ:
88 If |ct| ≥ c:
89 ct ′ q ct←c ct
90 m

q← ct ′⊕C
91 B

⊕← 0d−c q C
92 Else:
93 C ′←|ct| C

94 m
q← ct⊕C ′

95 j←−|m| mod mav
96 a← d−|m|− j

97 B
⊕← 0a q C ′ q 0j

98 C← Ft(B,C)
99 bt ′←taglen C⊕ t

100 If bt ′ ̸= bt: Abort
101 Return m

Fig. 3.6 ETS construction: encoder, decoder, encryptor, and decryptor. (Procedure nxt is
a coroutine for encode, enc, and dec, see text.) Using global constants mav, c, d, taglen,
and IV.
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3.4.2 Encryption Engine

We now turn our focus to the encryption engine. We assume that the associated data
and message are present in encoded format, i.e., as a sequence of pairs (B,t), where
B ∈ Σd is a block and t ∈ {0,1} is a tweak, and additionally an offset ω ∈ {ω0,ω1}. To
be precise, we will use the nxt procedure that generates the next (B,t) pair on the fly.

We specify the encryption and decryption algorithms in Fig. 3.6 and assume they
are provided with a key of length d. As illustrated in Fig. 3.4, the main idea is to XOR
the key with all blocks that are involved with message processing. For the skeleton of
the construction, we initialize the chaining value C to IV and loop through the sequence
of pairs (B,t) output by the encoding function, each iteration updating the chaining
value C← Ft(B,C). We now describe each iteration of the enc procedure in more detail,
where numbers in brackets refer to line numbers in Fig. 3.6. If the block is empty [69],
we are in the final iteration and do not do anything. Otherwise, we check if we are in
the first iteration or if we have message data left [71]. In this case we XOR the key into
the block [72]. This ensures we start with an unknown input block and that subsequent
inputs are statistically independent of the message block. If we only have ad remaining
we can use the block directly as input to the compression function. If we have message
data left we will encrypt it starting from the second block [73]. To encrypt, we take
a chunk of the message, XOR it with the chaining value of equal size and append the
result to the ciphertext [74–77]. We only start encrypting from the second iteration as
the first chaining value is public. Finally, we call the compression function Ft to update
our chaining value [78]. Once we have finished the loop, the last pair (B,t) equals (ϵ,ω)
by definition. So we XOR the offset ω with the chaining value C and truncate the result
to obtain the binding tag [79]. We return the binding tag along with the ciphertext.

The dec procedure is similar to the enc procedure but needs to be slightly adapted.
Informally, the nxt procedure now outputs a block B = (ad q ct) [82] instead of B = (ad qm)
[68]. Hence, we XOR with the chaining variable [91,97] such that the block becomes
B = (ad q m) and the compression function call takes equal input compared to the enc
procedure. The case distinction handles the slightly different positioning of ciphertext in
the blocks. Finally, there obviously is a check if the computed binding tag is equal to the
stored binding tag [100].

3.5 Security Proofs

In order to prove security, we need further assumptions on our compression function than
the standard assumption of preimage resistance and collision resistance. For example,
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we need F to be difference unpredictable. Roughly, this notion says it is hard to find
a pair (x,y) such that F (x) = F (y)⊕ z for a given difference z. Moreover, we truncate
the binding tag, so actually it should be hard to find a tuple such that this equation
holds for the first |bt| bits. We note collision resistance of F does not imply collision
resistance of a truncated version of F [21]. However, such assumptions could be justified
when one considers the compression function as a random function. Hence, instead of
several ad hoc assumptions, we prove our construction secure directly in the random
oracle model.

As described in Sec. 3.2.2 we tweak the SHA2 compression function by modifying the
chaining value depending on the tweak. Let F be the tweakable compression function
in Fig. 3.6, We write F ′ for the SHA2 compression function that will take as input the
block and the (modified) chaining value. Let H : Σd×Σc → Σc be a random oracle.
In the security analysis of the SHA2 construction, we will substitute H for F ′ in our
construction.

We remark the BLAKE2b compression function is a tweakable compression function
and it can be substituted directly for a random oracle with an extended input space.
That is, a random oracle H̄ : Σd×{0,1}×Σc→ Σc. Hence, in the security analysis of
the BLAKE2b construction, we will substitute H̄ for F in our construction.

We remark that we cannot treat our tweaked SHA2 compression function F in this
way as it would be distinguishable from random oracle H̄. To see this, observe that
querying F on the unmodified chaining variable with tweak t = 1 yields the same result
as querying F on the modified chaining variable with t = 0. In the random oracle H̄

these two queries are completely independent.
In the random oracle model, our ETS construction from Fig. 3.6 with a non-tweakable

/ tweakable compression function provides integrity (Thm 3.5.1 / Thm 3.5.3) and
indistinguishability (Thm 3.5.2 / Thm 3.5.4), assuming sufficiently large tag and key
lengths. We detail the full theorem statements and security proofs below. We will
first discuss the non-tweakable compression function instantiation and subsequently the
tweakable compression function instantiation.

3.5.1 Non-Tweakable Compression Function

Let H : Σd×Σc→ Σc be a random oracle. Recall we consider an instantiation with a
standard (non-tweakable) compression function F ′ transformed as described in Sec. 3.2.2
into a tweakable compression function F . We replace F ′, used internally by F , with
random oracle H.
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Theorem 3.5.1. Let π be the construction given in Fig. 3.6, H a random oracle replacing
the compression function, A an adversary, Advint

π (A) the advantage that A has against
π in the integrity game of Fig. 3.1 and q the number of random oracle queries (either
directly or indirectly via Dec). We have,

Advint
π (A)≤ q2 ·2−c + q ·2−|bt|.

Proof. For all ad ∈ AD,m ∈M we will show that

P[INT(ad,m,A)]≤ q2 ·2−c + q ·2−|bt|.

Let ad ∈ AD be associated data and let m ∈M be a message. The game INT(ad,m,A)
samples a uniformly random key k ∈ K and computes (bt, c) = enc(k,ad,m). A wins
the INT game if it provides a pair (ad ′, c′) ̸= (ad, c) such that dec(k,bt,ad′, c′) succeeds,
which only happens if bt ′ = bt. Recall the encoding function outputs a sequence S of
(B,t) pairs and an offset ω. Because the encoding function is injective we must have
S′ ̸= S or ω′ ≠ ω. Let us first assume S′ = S. Let Cn denote the final chaining variable.
Because the sequences are equal, we will arrive at C ′

n = Cn. We must have ω′ ̸= ω, but
clearly Cn⊕ω0 is not equal to Cn⊕ω1 (even after truncation), that is, bt ′ ̸= bt. We have
a contradiction and conclude S′ ̸= S.

For the case S′ ̸= S, let us now assume the subcase ω′ ̸= ω. The first |bt| bits of C ′
n′

must equal the first |bt| bits of Cn⊕ω⊕ω′, i.e., A must find a partial preimage. Because
H is a random oracle, A would succeed with probability at most q ·2−|bt|, where q is the
number of queries. In the other subcase we have ω′ = ω. Then the first |bt| bits of C ′

n′

must equal the first |bt| bits of Cn, i.e., the first |bt| bits of H(B′
n′ , Ĉ ′

n′−1) must equal
the first |bt| bits of H(Bn, Ĉn−1), where Ĉ ′

n′−1, Ĉn−1 are the chaining values C ′
n′−1,Cn−1

after applying tweaks t′
n′ , tn, respectively. If the inputs are not equal, A has found a

partial second preimage. Since H is a random oracle, A would succeed with probability
at most q · 2−|bt|, where q is the number of oracle queries. However, if the inputs are
equal we know Ĉ ′

n′−1 = Ĉn−1. Let us write Ĉ ′
n′−1 = C ′

n′−1⊕ τ ′ and Ĉn−1 = Cn−1⊕ τ .
We obtain C ′

n′−1 = Cn−1⊕ τ ⊕ τ ′. Thus, either A has found a collision or C ′
n′−1 = Cn−1.

We can repeat the argument to reason about C ′
n−2,Cn−2, etc. By a standard birthday

argument we can bound the probability of a collision by q2 ·2−c.
If we eventually conclude C ′

n′−δ = Cn−δ = IV, we know one of the sequences is longer,
i.e., n′−δ > 0 or n−δ > 0. Otherwise the sequences would be equal, which is excluded by
the injectivity of the encoding function. In the case n− δ > 0, there has been a collision
in the hash function, we have already bounded this probability above. Thus, let us
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assume n′− δ > 0. We have H(Bn′−δ, Ĉn′−δ−1) = IV. Thus A has found a preimage of
IV. Because H is a random oracle, A would succeed with probability at most q ·2−c.

Theorem 3.5.2. Let π be the construction given in Fig. 3.6, H a random oracle replacing
the compression function, A an adversary, Advind

π (A) the advantage that A has against
π in the indistinguishability games of Fig. 3.1 and q the number of random oracle queries
(either directly or indirectly via Dec). We have,

Advind
π (A)≤ q2 ·2−c + q ·2−|k| +Advint

π (A).

Proof. Other than the challenge pair (ad, c), we can assume the decryption oracle rejects
all queries by A. Otherwise A would immediately win the integrity game and the theorem
holds. Encryption is done by XORing the message with the chaining variable. As long
as the chaining variable never repeats, each input to H is a fresh query that has not
been seen before. Then H will provide fresh, uniformly random output, as it is a random
oracle. By a standard birthday argument we can bound the probability of a collision by
q2 ·2−c. Now let us assume there is no collision. Each chaining variable that is used to
encrypt is output of a query to H that XORed the key k with the input. Additionally
each block that has message data as input is also XORed with the key k. Thus if A does
not know k it cannot query H to obtain the chaining variable. The key is only used with
input to the compression function, and since H is a random oracle, A can only learn by
guessing the input and checking the random oracle output. However, this has a success
probability of at most q ·2−|k|.

3.5.2 Tweakable Compression Function

Let H̄ : Σd×{0,1}×Σc→ Σc be a random oracle. We now consider an instantiation
with a tweakable compression function F . We replace F with random oracle H̄.

Theorem 3.5.3. Let π be the construction given in Fig. 3.6, H̄ a random oracle replacing
the tweakable compression function, A an adversary, Advint

π (A) the advantage that A
has against π in the integrity game of Fig. 3.1 and q the number of random oracle queries
(either directly or indirectly via Dec). We have,

Advint
π (A)≤ q2 ·2−c + q ·2−|bt|.

Proof. For all ad ∈ AD,m ∈M we will show that

P[INT(ad,m,A)]≤ q2 ·2−c + q ·2−|bt|.
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Let ad ∈ AD be associated data and let m ∈M be a message. The game INT(ad,m,A)
samples a uniformly random key k ∈ K and computes (bt, c) = enc(k,ad,m). A wins
the INT game if it provides a pair (ad ′, c′) ̸= (ad, c) such that dec(k,bt,ad′, c′) succeeds,
which only happens if bt ′ = bt. Recall the encoding function outputs a sequence S of
(B,t) pairs and an offset ω. Because the encoding function is injective we must have
S′ ̸= S or ω′ ≠ ω. Let us first assume S′ = S. Let Cn denote the final chaining variable.
Because the sequences are equal, we will arrive at C ′

n = Cn. We must have ω′ ̸= ω, but
clearly Cn⊕ω0 is not equal to Cn⊕ω1 (even after truncation), that is, bt ′ ̸= bt. We have
a contradiction and conclude S′ ̸= S.

For the case S′ ̸= S, let us now assume the subcase ω′ ̸= ω. The first |bt| bits of C ′
n′

must equal the first |bt| bits of Cn⊕ω⊕ω′, i.e., A must find a partial preimage. Because
H̄ is a random oracle, A would succeed with probability at most q · 2−|bt|, where q is
the number of queries. In the other subcase we have ω′ = ω. Then the first |bt| bits of
C ′

n′ must equal the first |bt| bits of Cn, i.e., the first |bt| bits of H̄(B′
n′ , tn′ ,C ′

n′−1) must
equal the first |bt| bits of H̄(Bn, tn,Cn−1). If the inputs are not equal, A has found a
partial second preimage. Since H̄ is a random oracle, A would succeed with probability
at most q ·2−|bt|, where q is the number of oracle queries. However, if the inputs are equal
we know C ′

n′−1 = Cn−1. Thus, either A has found a collision or C ′
n′−1 = Cn−1. We can

repeat the argument to reason about C ′
n−2,Cn−2, etc. By a standard birthday argument

we can bound the probability of a collision by q2 ·2−c.
If we eventually conclude C ′

n′−δ = Cn−δ = IV, we know one of the sequences is longer,
i.e., n′−δ > 0 or n−δ > 0. Otherwise the sequences would be equal, which is excluded by
the injectivity of the encoding function. In the case n−δ > 0, there has been a collision in
the hash function, we have already bounded this probability above. Thus, let us assume
n′− δ > 0. We have H̄(Bn′−δ, tn′−δ,Cn′−δ−1) = IV. Thus A has found a preimage of IV.
Because H̄ is a random oracle, A would succeed with probability at most q ·2−c.

Theorem 3.5.4. Let π be the construction given in Fig. 3.6, H̄ a random oracle replacing
the tweakable compression function, A an adversary, Advind

π (A) the advantage that A
has against π in the indistinguishability games of Fig. 3.1 and q the number of random
oracle queries (either directly or indirectly via Dec). We have,

Advind
π (A)≤ q2 ·2−c + q ·2−|k| +Advint

π (A).

Proof. Other than the challenge pair (ad, c), we can assume the decryption oracle rejects
all queries by A. Otherwise A would immediately win the integrity game and the
proposition holds. Encryption is done by XORing the message with the chaining variable.
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As long as the chaining variable never repeats, each input to H̄ is a fresh query that
has not been seen before. Then H̄ will provide fresh, uniformly random output, as it
is a random oracle. By a standard birthday argument we can bound the probability of
a collision by q2 ·2−c. Now let us assume there is no collision. Each chaining variable
that is used to encrypt is output of a query to H̄ that XORed the key k with the input.
Additionally each block that has message data as input is also XORed with the key k.
Thus if A does not know k it cannot query H̄ to obtain the chaining variable. The key
is only used with input to the compression function, and since H̄ is a random oracle, A
can only learn by guessing the input and checking the random oracle output. However,
this has a success probability of at most q ·2−|k|.

3.6 Implementation of Encrypt-to-Self

We implemented three versions of the EtS primitive. We developed optimized C code
for the padding scheme and encryption engine from Fig. 3.6, based on the compression
functions of common hash functions. Specifically, our EtS implementations are based on
the compression functions of SHA256, SHA512, and BLAKE2 [80, 89]. We chose these
functions as all three of them are ARX designs (Add–Rotate–Xor) which makes them
particularly efficient in software implementations. While SHA256 and SHA512 are more
widely standardized and used than BLAKE2, only the latter is a HAIFA construction
and tweakable without ad-hoc modifications. Note that due to the used internal register
size of 32 bits, SHA256 is most competitive on 32-bit CPUs; in contrast, SHA512 and
BLAKE2 use 64-bit registers and thus perform best on 64-bit CPUs.

We implemented all components of EtS in plain C, including the compression functions,
the encoding schemes, and the EtS framework. In addition we implemented a range of
self-tests and provide test vectors. We note that while in particular the compression
functions would be good candidates for being re-implemented in assembly for further
efficiency improvements, we believe that, as all three compression functions are ARX
designs, the penalty of not hand-optimizing is not too drastic.

We released the source code of our implementation as open source software. The
terms of use are those granted by the Apache license20. The code is available at
https://github.com/cryptobertram/encrypt-to-self.

We conducted timing measurements for our implementations. We measured on two
devices: on a roughly ten year old CPU (Q4’11) that identifies itself as Intel Core
i3-2350M CPU @ 2.30GHz, and on a more recent CPU (Q1’17) of the type Intel Core

20https://www.apache.org/licenses/LICENSE-2.0
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i5-7300U CPU @ 2.60GHz. The results are shown in Table 3.1. The timings were taken
for various message lengths, with a 16 byte associated data input in all cases. Note
that the BLAKE2 based version clearly outperforms the others for all tested message
lengths. Further, SHA512 is generally faster than SHA256 (except for messages that are
so short that one SHA256 compression function invocation is sufficient to fully encrypt
the message). On the i5-7300U we compare these results versus the naive approach of
encrypt-then-hash. For the naive approach we directly call the OpenSSL API to encrypt
(AES256 in CBC mode) the message and to hash (SHA256) the ciphertext, ignoring
the associated data input for simplicity. We observe that our BLAKE2 based version
remains the fastest by a significant margin. While we concede that for large messages
the naive approach becomes faster than our SHA256 implementation, we highlight that
we are comparing our prototype versus a well established library.

Table 3.1 Timings (in microseconds) of EtS implementation

compression message time on time on
function length i3-2350M i5-7300U
SHA256 16 1.578 0.684
SHA512 16 2.101 0.881
BLAKE2 16 0.766 0.366
Naive 16 1.337
SHA256 48 2.354 1.014
SHA512 48 2.186 0.882
BLAKE2 48 0.767 0.372
Naive 48 1.549
SHA256 256 6.894 2.987
SHA512 256 5.054 2.139
BLAKE2 256 1.805 0.858
Naive 256 2.197
SHA256 1024 25.590 10.860
SHA512 1024 17.380 7.213
BLAKE2 1024 6.040 2.846
Naive 1024 4.714
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Chapter 4

PERKS: Persistent and Distributed
Key Acquisition for Secure Storage
from Passwords

Passwords are ubiquitous as authentication tokens and yet constructing schemes based on
passwords is notoriously difficult to get right. Users regularly re-use and/or forget their
passwords, application servers store passwords incorrectly, and more and more physical
and technical tools are needed to prevent attacks and misuse. We consider the general
problem of converting a human-memorable password into a single cryptographic secret,
with minimal storage and communication requirements.

4.1 Introduction

As a motivating case study, consider instant messaging (IM) applications: it is at present
not clear what keying material should be used to encrypt messages and files that are
stored on the user’s device, and/or backed up to an external backup service or cloud
storage provider (CSP)1. It is not clear what security properties are obtainable in the
scenario where a user defends against potential loss of their device by backing up messages,
never mind in each of the many other possible variations of the message storage scenario
(long-term on-device encryption, temporary backup for ‘device changeover’, backup for
immediate local deletion). Our solutions are targeted at this main scenario—where a
user acquires a new phone and wants to recover their backed-up data using only their

1In commercial settings there may exist on-premise file/backup storage, but in our more general case
the entity storing the ciphertexts is regarded as external.
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password—but with applications to the others2. In this setting a user may interact with
their IM service, a CSP that stores messages and media, and potentially other services
that contribute to keying material: the user would prefer not to (fully) trust all of these
services (or their device) and additionally would like to draw entropy from each of these
services in deriving a(n initial) key for data encryption. We refer to all of these n entities,
potentially including the IM and outsourced storage providers, as key-contributing servers.
Our key tool is an oblivious PRF (OPRF): a user, holding a secret input x, engages in a
protocol with a server, holding a key sk, where at the end of the protocol the user learns
F(sk,x) for some keyed pseudorandom function F and the server learns nothing.

A number of primitives exist in the literature that attempt to solve this problem
and provide secure and distributed key generation, however all require the storage of
user-specific information with the key servers. This is infeasible at the multi-billion-user
scale required for modern IM applications, and would most likely result in this feature
becoming a costly paid service. In particular, securely storing this per-user key material
would often be done using a hardware security module (HSM), introducing significant
key management challenges and financial costs. Further, many schemes require the user
to generate the high-entropy secret in the first place and then securely distribute it,
imposing a trust requirement on the client device and its randomness generation. We
summarize these related primitives in Sec. 4.1.2.

Problem Statement

There are at present (at least) three major stumbling blocks for deployment of encrypted
backup systems for IM services:

• Storage Cost. Using existing techniques for OPRF-based password hardening
would invoke per-user data to be stored at each of the key-contributing servers.
For this reason it is necessary to minimize the storage burden for every entity in
the system.

• Key Longevity. For the system to function, it is essential that over a long period
of time the key acquisition interaction is ‘long lived’, in the sense that the key
production operation must be deterministic and any secret values given as input to
the operation (by user or server) must not change.

2We do not explicitly consider the scenario where the user has two devices in their possession and
wishes to locally transfer messages and/or media from one device to another without the help of
outsourced storage, as our approach would be overkill.
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• Trust Distribution. In the IM setting it is by now industry standard to expect
end-to-end-encryption (E2EE) of messages, ensuring that the storage server cannot
decrypt sent content. With this in mind, it would appear risky to rely on the IM
provider to act as a single key-contributing server, or to use only the IM server
and cloud storage provider. It is thus desirable to introduce additional parties to
the picture, and distribute the trust such that the user has fine-grained control of
what they are able to do if they learn/believe that one or more of these parties has
become compromised.

In our work we aim to overcome all of these challenges simultaneously, supplementing
our proposals with rigorous security analyses.

The concept of key longevity is at odds with modern approaches to forward secrecy
that involve (regular) key rotation, and so any operation that does support key rotation
must also enable the user to update their ciphertexts when this rotation occurs, which is
a considerable technical challenge. In Sec. 4.7 we describe how key rotation can be done
securely and efficiently within our framework.

4.1.1 Contributions

We design a novel formal framework for outsourced (and on-device) storage that allows
a user to generate and store a cryptographic key with the aid of n key-contributing
servers, with the constraints discussed already. We call the required primitive distributed
key acquisition (DKA) and describe its syntax and security properties. We introduce
a functionality game and two key indistinguishability games for DKA. We explain how
a DKA scheme can be used in conjunction with encryption and key rotation to neatly
solve the IM backup problem.

We provide two concrete constructions for DKA using OPRFs in a framework that
we call PERKS (Password-based Establishment of Random Keys for Storage): the n out
of n setting for when the user expects the key-contributing servers to be available for
the lifetime of the system, and a threshold t out of n scheme based on secret sharing
that tolerates n− t servers being unavailable or compromised. Even in the event that
n− t +1 (or more, even all n) servers are corrupted by the same entity, all is not lost:
this adversary must still perform an offline attack to recover the key. Our constructions
are extremely simple but the analysis is certainly not: we introduce appropriate security
properties for user and server privacy in our setting, and prove that our schemes—
when instantiated using a variety of existing OPRFs with different features—meet the
corresponding properties.
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4.1.2 Related Work

The existing primitive that is most closely related to our setting is (t,n) password-
protected secret sharing (PPSS): a user that is already in possession of some secret
value distributes it among n servers such that reconstruction is possible using only the
password and interaction with t + 1 honest servers. Bagherzandi et al. [11] gave the
first formal treatment and a scheme where the user needs to store/trust one or more
public keys. Later schemes gave security in the presence of related passwords via the
UC framework [34], and in the setting where servers learn nothing in the reconstruction
phase [33] (by sending out an encryption of a randomized quotient of the password and
not the password itself).

Jarecki, Kiayias and Krawczyk [58] gave threshold PPSS (and threshold PAKE) with
optimal round complexity, but with the same setup assumptions as the prior papers.
In [59] the same authors and Xu gained improved efficiency compared to previous work,
and in essence these savings come from foregoing some heavy duty tools required to
achieve the UC verifiability property of the OPRF. The same authors then presented
TOPPSS [60] using a Threshold OPRF, where the secret sharing is performed on the
level of the OPRF key, so derivation of the single OPRF output for a given input is an
interactive protocol with t+1 of the n servers. Abdalla et al. [1] defined robust PPSS,
where a robust secret sharing scheme is used to detect cheating servers, also foregoing
the need for a verifiable OPRF.

Password-Hardened Encryption (PHE) was introduced by Lai et al. [70] and uses an
oblivious external party for key derivation to protect against offline brute-force attacks on
a ciphertext encrypted under just the password. Recognizing the single point of failure,
threshold PHE was introduced in [31]. The scheme requires a trusted third party to
distribute all secret keys during initialization.

Other primitives exist that use a distributed OPRF service (i.e. the server stores, for
each user, a sharing of an OPRF secret key) to derive a cryptographic secret, including
Baum et al. [15] who use the OPRF to get a signature key pair for distributed single
sign-on, and Das et al. [41] who use a similar trick to obtain a signature key pair, then
per-file encryption keys are created by computing a so-called extended POPRF for a
second private input, namely a randomized hash of the file.

4.1.3 WhatsApp Encrypted Backup Rollout

In September 2021, WhatsApp announced [97] that they would soon begin beta testing
of an encrypted chat and media backup service that uses HSMs and the envelope part of
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the OPAQUE protocol [63] in a manner that is conceptually similar to a (1,1)-PPSS. In
this subsection we discuss their system based on the details in the WhatsApp whitepaper
and NCC Group’s technical report [79] and explain the differences with our work.

OPAQUE is an asymmetric password-authenticated key exchange protocol that is a
compiler of three components: an oblivious PRF to turn the user’s password x into a
strong secret value y, an ‘envelope’ mechanism whereby the user encrypts their AKE
key material under y using symmetric encryption, and an AKE protocol. WhatsApp’s
approach uses the OPRF and a modified version of the envelope mechanism, but since
no key exchange needs to occur the AKE component is dropped completely. In the
WhatsApp system, at the point of registration (first ever backup), a client device generates
a random 256-bit key k and then stores this as an encrypted record (envelope) in a
‘HSM-based Backup Key Vault’ so that it can later retrieve this key using only their
password (PIN or passphrase): the HSM acts as the OPRF server and derives a per-user
secret key skuid from a single master secret and uid when called. The envelope in the
WhatsApp system is PK.Encpk.HSM(SK.Ency(k)), a public-key encryption of an encryption
of k under the OPRF output value y. Later on when a user comes online to retrieve the
contents of their envelope it is not apparent if this is sent encrypted under some user
public key, and it would appear that this PKE scheme is not for protecting the channel,
but rather so that the envelopes can be stored outside of the HSM. These envelopes are
stored in an integrity-protected manner using a Merkle tree. No security analysis of the
system has been provided for the WhatsApp approach, and the only analysis available is
the report by NCC Group [79] that does not discuss any formal security requirements
for the system.

Intuitively, the WhatsApp approach relies on the tamper-resistant properties of the
HSM to make sure that the OPRF key sk is not leaked to any party. If this key is
leaked, then an offline adversary can attempt to recover the file encryption key that is
contained within the registration envelope. Our approach avoids assuming a HSM on the
server side, and instead distributes the trust among a number of servers. An adversary
in possession of a stolen client device needs to guess the correct password while avoiding
WhatsApp’s rate-limiting mechanisms, and thus performing this type of online attack is
similar in our system.

Further, the WhatsApp system requires that the client device generates the user
file encryption key k using ‘a built-in cryptographically secure pseudorandom number
generator’, however as already stated, this is of no use if the device’s randomness
generation is already compromised during registration.
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4.2 Oblivious Pseudorandom Functions

In these subsections we describe some of the properties of oblivious PRFs in the literature
and explain how they can be used in our protocols.

4.2.1 OPRFs and their Variants

OPRFs can be verifiable or not, and independently, partially oblivious or not, meaning
there are four categories of OPRF that we consider.

Verifiability. Verifiable OPRFs (VOPRFs) require the server to commit to the secret
key that it uses, and allow the user to verify that the correct operation was performed by
the server with this committed key (in a way that does not reveal the key to the user).
Syntactically, the server includes a proof in in their response that the user can verify
using a server public key pk.

Note that verifiability does not guarantee that a server uses the same key over multiple
protocol runs. In order to check key consistency, the user is forced to store pk, and this
value must be deterministically generated (this is the case for DH-based OPRFs where
pk = gsk). However, this storage need not be local: all users use the same pk so it is
sufficient for this value to be published somewhere.

Partial Obliviousness. In many applications for OPRFs the server needs to partition
the input space to reduce the impact of active attacks, and this is often done by choosing
a different key for each user identity uid. In practice this could be done by applying some
key derivation function to uid and sk before the protocol is run (see below for a short
discussion of this approach). Partially-oblivious PRFs (POPRFs) contain a (plaintext)
input t that provides automated partitioning, thus the server only needs one key for all
users.

4.2.2 OPRF Literature

For a thorough treatment of OPRFs, see the SoK by Casacuberta et al. [37]; here we
summarize the most important literature for our approach. Oblivious PRFs were first
formally defined by Freedman et al. [51]. A vast array of applications has arisen for
OPRFs, including oblivious transfer and private set intersection [64], secure deduplication
in cloud storage [68], password-authenticated key exchange [63], Cloudflare’s anonymous
authentication mechanism Privacy Pass [43], checking compromised credentials [95, 75]
and Meta’s ‘de-identified telemetry’ scheme [55].
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The 2HashDH scheme by Jarecki et al. [58] (detailed in Fig. 4.2) is very efficient and
has been suggested for use in TLS 1.3 with OPAQUE as password-based authentication,
and is subject to a standardization effort [42, 28, 94].

There exist generic constructions of OPRFs from MPC techniques and homomorphic
encryption that do not fit into the syntax in Sec. 4.2.3 since the communication does
not follow a two-message pattern with the user sending the first message, see Section
2.4 of Casacuberta et al. [37] for a summary. These constructions are generally useful
for gaining properties that are not useful in our setting such as input batching [69] for
amortized efficiency gains.

POPRFs. To our knowledge, the only two (explicit) POPRFs are those by Everspaugh
et al. [49] and Tyagi et al. [96], both of which are detailed in Fig. 4.2. The former requires
a pairing which could be a hurdle in some practical applications, and the latter cannot
support key rotation in a straightforward way.

Three works [61, 71, 41] obtain partial-obliviousness for 2HashDH in a generic way by
applying a PRF to the server key and public input and using that value as the per-user
key. In our generic construction in Fig. 4.9 we use a similar idea to turn any of the
two non-PO, DH-based schemes in Fig. 4.2 into partially-oblivious variants, with the
additional benefit of efficient computation of per-user public keys in the verifiable setting.

The approach in the (unpublished) work of JKR18 [61] actually works for any
OPRF, and they present a non-updatable construction using 2HashDH and an updatable
construction that uses HashDH, which is H2(H1(x)sk): this is not an OPRF since a user
can use one interaction to obtain multiple evaluations.

Post-quantum OPRFs. Boneh et al. [25] gave two constructions of OPRFs from
isogenies: a VOPRF from SIDH [57] with a ‘one-more’ assumption and an OPRF
from CSIDH [38]. A year later, Basso et al. [14] showed that the first construction’s
assumption does not hold and gave attacks on that OPRF; the second CSIDH-based
scheme is unaffected by this work.

From lattices, Albrecht et al. [3] demonstrated that it is possible to build round-
optimal (two messages in the online phase) VOPRFs from the Banerjee and Peikert
PRF [13], but their protocols require large parameters and computation-heavy ZK proofs.

Kolesnikov et al. [69] sought to build multiple concurrent OPRF operations in a generic
way from oblivious transfer (OT). OT can be built from post-quantum assumptions [81,
47], however the PRF functionality requires 5 communication rounds and is only ‘relaxed’
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(as defined by Freedman et al. [51]). Note that these special purpose OPRFs, where more
than two rounds are required, do not fit the syntax in Sec. 4.2.3.

Seres et al. [91] have proposed an OPRF based on a version of the Legendre symbol
problem and linked this hardness to multivariate quadratic equation systems.

4.2.3 Syntax of Oblivious Pseudorandom Functions

Following Everspaugh et al. [49] and Tyagi et al. [96] we define OPRFs as a tuple
F = (F.KG,F.Req,F.BlindEv,F.Finalize,F.Ev). The syntax captures two optional properties
of OPRFs, namely partial obliviousness (user provides as input a public value in addition
to its secret input, known as POPRFs) and verifiability (user is convinced that server has
evaluated for a particular key, where the user learns a public commitment/representation
of this key, known as VOPRFs), which both are useful but not essential in our constructions
later on. In Sec. 4.2.1 we provide an overview of the prior work and how existing OPRF
constructions can fit into our approach, with and without these additional properties.
In Fig. 4.1 we depict the operation of a (P)OPRF with optional verifiability. Note that
prior work including that of Tyagi et al. [96] has a parameter generation algorithm that
passes some public parameters to all other algorithms. We choose to omit this detail for
visual clarity.

User Serverx

t F.Req req

st
pk F.Finalize

y

skF.BlindEv
rep

Fig. 4.1 OPRF operation diagram. Public input t is only present in POPRFs and
verification public key pk is only present in VOPRFs.

F.KG generates a key pair (pk,sk) (or just sk for non-verifiable OPRFs). To form a
request, the user runs F.Req(t,x) with secret input x (and in POPRFs, public input t)
and outputs a request req and a local state st. The server then runs F.BlindEv(sk,t,req)
and outputs a response rep. The user finishes by running F.Finalize(pk,rep,st), either
outputting the function evaluation y, or ⊥ if it does not accept the outcome. The
unblinded evaluation algorithm F.Ev(sk,t,x) outputs y or ⊥. The server should not learn
(anything about) the secret input x even after multiple interactions where x was provided
as input, and the user should not learn (anything about) sk.
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Name POPRF? Assumption F.Ev(sk,t,x) req rep
2HashDH [58] ✗ OM-Gap-DH H2(x,H1(x)sk) H1(x)r H1(x)r·sk

Pythia [49] ✓ OM-BCDH e(H3(t),H1(x))sk H1(x)r,t e(H3(t),H1(x)r)sk

3HashSDHI [96] ✓ OM-Gap-SDHI H2(t,x,H1(x)
1

H3(t)+sk ) H1(x)r,t H1(x)
r

H3(t)+sk

Fig. 4.2 Comparison of selected (partially) oblivious PRFs from the literature. Hash
functions Hi are labelled for comparison purposes, but when used in protocols the domains
and ranges will be different.

In Fig. 4.2 we detail the operation of three well-known OPRF protocols, all of which
are reliant on Diffie-Hellman-like assumptions. In our constructions, the key-contributing
servers will hold an OPRF secret key sk that they use for all users. User separation will
either be done by employing a partially oblivious PRF with t = uid, or by deriving a
per-user key in each protocol invocation. We will always use the password as the user’s
secret input, so hereon x = pw.

4.2.4 Security Notions of Oblivious Pseudorandom Functions

For correctness we require that honest OPRF evaluations consistently produce the
same output when provided with equal inputs. We formalize this requirement in the
functionality game in Fig. 4.3. The adversary is granted access to the Protocol oracle
which executes the protocol and records the OPRF output for each pair of public and
secret input (t,x) in a query set Q. The adversary is rewarded if the size of Q becomes
larger than one.

The privacy games capture that a server cannot glean any information about users’
private inputs, nor link transcripts of requests/responses to OPRF output values, even
with knowledge of the OPRF secret key. Our security notions are based on the security
models of Tyagi et al. [96]. Their user privacy notion has two flavours:

• POPRIV-1 essentially models an honest but curious server and so does not require
verifiability. In the game the adversary has a transcript-generation oracle that
provides the entire transcript.

• POPRIV-2 models a malicious server by allowing the adversary to separately engage
with oracles for OPRF request generation and OPRF output generation (in our
notation denoted Challenge and Finalize, respectively).

Additionally they gave a pseudorandomness game for server privacy where an adversary
interacts with a (blinded) evaluation oracle and tries to distinguish genuine operation
from operation with a random function.
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Game FUNC(A,n)
00 Q[·]←∅
01 For i ∈ [1 .. n]:
02 (pki,ski)←$ F.KG
03 A(p⃗k, s⃗k)
04 Lose
Oracle Protocol(t,x)
05 (req,st)← F.Req(t,x)
06 For i ∈ [1 .. n]:
07 repi← F.BlindEv(ski,t,req)
08 yi← F.Finalize(pki,repi,st)
09 Q[t,x] ∪←{y⃗}
10 Reward |Q[t,x]|> 1
11 Return (⃗y,req, ⃗rep)

Game PRIV-2b(A)
12 i← 0
13 ST[·]←⊥
14 b′←A()
15 Stop with b′

Oracle Challenge(t,x0,x1)
16 i

+← 1
17 (req0,st0)← F.Req(t,x0)
18 (req1,st1)← F.Req(t,x1)
19 ST[i]← (st0,st1)
20 Return (i,reqb,req1−b)
Oracle Finalize(j,pk,rep,rep′)
21 Require j ∈ [1 .. i]
22 (st0,st1)← ST[j]
23 yb← F.Finalize(pk,rep,stb)
24 y1−b← F.Finalize(pk,rep′,st1−b)
25 If y0 =⊥ or y1 =⊥:
26 Return (⊥,⊥)
27 Return (y0,y1)

Game PRIV-1b(A)
28 b′←A()
29 Stop with b′

Oracle Challenge(t,x0,x1)
30 (req0,st0)← F.Req(t,x0)
31 (req1,st1)← F.Req(t,x1)
32 Return (reqb,req1−b)
Game PRNGb(A,n)
33 BE[·]← 0; RE[·]← 0
34 For i ∈ [1 .. n]:
35 (pki

0,ski
0)←$ F.KG

36 (pki
1,ski

1)←$ F.KG
37 Gi←$ {g | g : U ×I →O}
38 b′←A(p⃗kb)
39 Stop with b′

Oracle Ev(t,x)
40 For i ∈ [1 .. n]:
41 y0← F.Ev(ski

0,t,x)
42 y1←Gi(t,x)
43 Return y⃗b

Oracle BlindEv(t,req)
44 BE[t] +← 1
45 For i ∈ [1 .. n]:
46 repi

0← F.BlindEv(ski
0,t,req)

47 repi
1←S.BlindEv(ski

1,t,req)
48 Return ⃗repb

Oracle H(x)
49 h0← RO(x)
50 h1←S.Ev(x)
51 Return hb

S-Oracle RestrictedEv(t,x)
52 Require RE[t] < BE[t]
53 RE[t] +← 1
54 y⃗← Ev(t,x)
55 Return y⃗

Fig. 4.3 OPRF Games for the multiple servers setting. For the meaning of instructions
Stop with, Lose, Reward, and Require see Sec. 1.3.
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Our PRIV-x games are adapted from the POPRIV-x games of Tyagi et al. [96];
in Sec. 4.2.5 we detail the differences. In short, PRIV-1 is a simplification of POPRIV-1
but with equivalent security, while PRIV-2 and POPRIV-2 are identical.

We remark we only return the request req and not the response rep nor the final
output value y in PRIV-1. It should be obvious that the adversary can compute rep
on its own because it holds the secret key to evaluate F.BlindEv. (In fact it can run
this operation with arbitrary secret keys.) Therefore, by functionality, the adversary
can obtain y by generating the request itself using the same pw as submitted to the
Challenge oracle, compute the response rep and run the F.Finalize algorithm to compute
y and obtain a full transcript. In PRIV-2 we do have a Finalize oracle, as the adversary
is allowed to submit arbitrary responses and the functionality game makes no statement
about this case. In Sec. 4.2.5 we show that PRIV-1 and POPRIV-1 are equivalent.
Furthermore, the F.Req algorithm no longer takes a public key as input and is thus
independent of the server. Instead, the F.Finalize algorithm, which uses the public key to
verify the response, now takes in the public key directly, rather than it being passed via
request state.

Definition 4.2.1 (PRIV-x Security). The advantage of an adversary A in the PRIV-x
security games defined in Fig. 4.3 for x ∈ {1,2} and OPRF F is

AdvPRIV-x
F (A) :=

∣∣∣P[GPRIV-x1
F (A) = 1

]
−P

[
GPRIV-x0

F (A) = 1
]∣∣∣.

Our PRNGb game is similar to the POPRF game in [96] for verifiable POPRFs, but
extended to our multi-server setting: the oracles now return vectors instead of single
elements. The game is parameterized by a simulator S and creates an environment
for an adversary to interact with n OPRF servers via an oracle for function evaluation
(Ev) and in modelling malicious clients a blinded evaluation oracle (BlindEv). Initially,
the game generates 2n server key pairs (or just secret keys for OPRFs that are not
verifiable): in the b = 0 case the real function is used with one of the secret keys, and
in the b = 1 case a random function is used and the simulator is tasked with providing
appropriate responses but given the other secret key. The Ev oracle returns either the
output of the F.Ev algorithm or a random function. The adversary also has access to
the BlindEv oracle, which either returns the output of the F.BlindEv algorithm or the
response generated by the simulator S.BlindEv. Queries to oracle H are either answered
by a random oracle query or simulated by S.Ev. Crucially, to maintain consistency
between Ev and BlindEv queries, the simulator can obtain Ev outputs via its own
S-Oracle RestrictedEv. However, the simulator is restricted: the number of queries to
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RestrictedEv is bounded by the number of adversary queries to BlindEv, specific for each
public input. This ensures that the adversary cannot compute more POPRF evaluations
than the number of oracle queries it made. Moreover, restricting per public input means
that querying with public input t1 cannot help the adversary compute the evaluation for
another public input t2 ̸= t1. For a more detailed description of (the single server version
of) this game motivating the modelling choices, see Section 3 of [96]: there are many
subtleties discussed regarding the simulator and limited evaluation. For our purposes, it
is sufficient to know we only build from secure (P)OPRFs, that is an OPRF for which all
realistic adversaries have negligible advantage in the security games defined in Fig. 4.3.

Definition 4.2.2 (PRNG Security). The advantage of an adversary A in the PRNG
security game defined in Fig. 4.3 for OPRF F is

AdvPRNG
F,S (A,n) :=

∣∣∣P[GPRNG1
F,S (A,n) = 1

]
−P

[
GPRNG0

F,S (A,n) = 1
]∣∣∣.

4.2.5 OPRF Definition Relations

Comparison between Mechanics of PRIV-1 and POPRIV-1

We now summarize the differences between the POPRIV-1 game of Tyagi et al. [96]
given in our notation in Fig. 4.4 and our PRIV-1 notion given in Fig. 4.3 (recall that our
PRIV-2 game is identical to the POPRIV-2 game).

Game POPRIV-1b(A)
00 (pk,sk)←$ F.KG
01 b′←A(pk,sk)
02 Stop with b′

Oracle TRANS(uid,x0,x1)
03 (req0,st0)← F.Req(t,x0)
04 (req1,st1)← F.Req(t,x1)
05 rep0← F.BlindEv(sk,t,req0)
06 rep1← F.BlindEv(sk,t,req1)
07 y0← F.Finalize(pk,rep0,st0)
08 y1← F.Finalize(pk,rep1,st1)
09 τ ← (reqb,repb,y0)
10 τ ← (req1−b,rep1−b,y1)
11 Return (τ,τ ′)

Fig. 4.4 POPRIV-1 security game [96].

In the POPRIV-1 game the adversary receives an OPRF key pair and access to a
transcript oracle TRANS that runs the server side of the OPRF functionality using
inputs (uid,x0,x1) given by the adversary, and returns the request and response values
in random order. In our PRIV-1 game the adversary is not given a key pair but has
access to a challenge oracle Challenge with the same inputs (uid,x0,x1), but only receives
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(reqb,req1−b). Our observation is that the adversary can act as the server, i.e. running
the deterministic process F.BlindEv, for arbitrary key pairs. Recall that we give public
key pk as an input to F.Finalize rather than embedding it in the state value st as done
by [96].

PRIV-x and POPRIV-x are Equivalent

We now show the equivalence of our multi-server PRIV-x games and the single-server
POPRIV-x games introduced by Tyagi et al. [96]. As stated earlier, our PRIV-2 game is
identical to the POPRIV-2 game of Tyagi et al., and so we focus on showing PRIV-1⇔
POPRIV-1.

Theorem 4.2.1. Let F be an oblivious pseudorandom function. For any adversary A
against the PRIV-1 security of F, there exists an adversary B against the POPRIV-1
security of F, such that

AdvPRIV-1
F (A)≤AdvPOPRIV-1

F (B).

Proof. The direct reduction is detailed in Fig. 4.5. B runs A, and needs to respond to
A’s calls to Challenge. Note that A’s calls to Challenge give (uid,x0,x1) as input, and A
expects (reqb,req1−b) in response, when it is playing PRIV-1b. B’s own oracle TRANSB

provides a more detailed response, and so B simply takes the reqb,req1−b that it receives
and forwards this to A.

Let b be the challenge bit in the game that B is playing, and let b′ be the bit that is
output by A. B receives (reqb,repb,y0,req1−b,rep1−b,y1) from its own call to TRANSB,
and thus providing (reqb,req1−b) to A simulates A’s expected environment.
B perfectly simulates PRIV-1b for A, since the secret key vector is correctly distributed

and the responses that A receives to its oracles calls are exactly as it would expect. The
advantage of A directly corresponds to the advantage of B. This concludes the proof.

Reduction B playing POPRIV-1b

00 receive pk,sk
01 b′←A()
02 Return b′

Oracle ChallengeA(uid,x0,x1)
03 call TRANSB(uid,x0,x1)
04 receive (reqb,repb,y0,req1−b,rep1−b,y1)
05 Return (reqb,req1−b)

Fig. 4.5 Reduction B for the proof of Thm. 4.2.1.
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Theorem 4.2.2. Let F be an oblivious pseudorandom function. For any adversary A
against the POPRIV-1 security of F, there exists an adversary B against the PRIV-1
security of F, such that

AdvPOPRIV-1
F (A)≤AdvPRIV-1

F (B).

Proof. The reduction is detailed in Fig. 4.6. In order to provide a sufficient response to

Reduction B playing PRIV-1b

00 (pk,sk)← F.KG
01 b′←A(pk,sk)
02 Return b′

Oracle TRANSA(uid,x0,x1)
03 call ChallengeB(uid,x0,x1)
04 receive (reqb,req1−b)
05 repb← F.BlindEv(sk,uid,reqb)
06 rep1−b← F.BlindEv(sk,uid,req1−b)
07 y0← F.Ev(sk,uid,x0)
08 y1← F.Ev(sk,uid,x1)
09 Return (reqb,repb,y0,req1−b,rep1−b,y1)

Fig. 4.6 Reduction B for the proof of Thm. 4.2.2.

A, the reduction B must use the values (reqb,req1−b) that it receives from TRANSA and
perform F.BlindEv on them to acquire (repb,rep1−b). Producing y0 and y1 is straightfor-
ward, since B can simply compute the OPRF evaluation with skj and the input values x0

and x1. B combines the values into output (reqb,repb,y0,req1−b,rep1−b,y1) and returns
it to A. The reduction perfectly simulates the POPRIV-1b environment for A. This
concludes the proof.

4.3 DKA and Security Models

In this section we formally define the syntax of a distributed key acquisition scheme and
define security via two games for key indistinguishability. The weaker KIND-1 security
game effectively models an honest but curious adversary as it may call oracles for honest
protocol executions for a user to learn its requests and responses. In the KIND-2 security
game the adversary is in complete control of the servers and may choose arbitrarily how
to respond to user requests.

4.3.1 Distributed Key Acquisition

A distributed key acquisition scheme is an interactive protocol between parties, where
the parties can either be users or servers.
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Syntax. A distributed key acquisition scheme for a set S of n servers that are (initially)
available to users consists of a secret key space SK, a public key space PK, a user identity
space UID, a dictionary D, a key space K, an output space O, algorithms gen, init,
acquire, recover and server.op.

The system is initialized by gen which assigns a key pair (sk,pk) ∈ SK×PK to each
server Si ∈ S, and public keys p⃗k ∈ PKn are then distributed to users. A user uid ∈ UID
with password pw ∈ D initializes itself in the system and acquires a key k ∈ K and
possibly some setup values S⃗V ∈ On by running init(uid,pw, p⃗k,S). We remark that S⃗V
is not secret, so it can be stored alongside the backed up data. The init procedure sends
out a request req ∈ RQ to each server, who will run server.op(ski,uid,req) to respond
with response rep ∈ RP. An individual user’s interaction with the system is defined
by a threshold t ∈ [1 .. n] which is the number of servers that are required to be honest
and available in order for the user to reconstruct their secret. Later, a user can acquire
output values y⃗ ∈ On by running acquire(uid,pw, p⃗k,S) and recover their key k ∈ K by
subsequently running recover(⃗y,C, S⃗V), where the set of chosen servers C is a subset of
S. Syntactically this takes as input all output values, but some may not be set, i.e. yi

may be ⊥ if server Si did not respond. With C, a user can indicate which output values
to use for the key recovery. Thus, if P(S) denotes the powerset of S, the distributed key
acquisition API is as follows:

gen→ (SK×PK)n UID×D×PKn×{S}→ init→K×On

SK×UID×RQ→ server.op→RP

UID×D×PKn×{S}→ acquire→On On×P(S)×On→ recover→K

We assume that passwords are selected uniformly at random from the set D throughout
the rest of this chapter. However, similarly to the game-based PAKE literature, it is
possible to cast the choosing of passwords according to (the min-entropy of) some
distribution Dist [30, 20].

4.3.2 A Unified Security Notion for DKA

We first describe the functionality game for DKA schemes depicted in Fig. 4.7. The
functionality game initializes the secret and public keys for all servers and initializes
several game variables to keep track of the game state. The adversary controls the honest
executions of the protocol via its oracles Init, Acquire and Recover. It has complete
control over the inputs, specifying which user identity uid, password pw and public keys
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Game FUNC(A,t,n)
00 K[·]←∅
01 CRED[·]←⊥
02 Y[·]←⊥
03 CO←∅
04 r ← 0
05 (s⃗k, p⃗k)← gen
06 S← init(s⃗k)
07 A(p⃗k)
08 Lose

Oracle Init(uid,pw, p⃗k)
09 (k, S⃗V)← init(uid,pw, p⃗k,S)
10 K[pw,uid, S⃗V] ∪←{k}
11 (req, ⃗rep)← Transcript(S)
12 Return (k,req, ⃗rep, S⃗V)

Oracle Acquire(uid,pw, p⃗k)
13 r +← 1
14 CRED[r]← (uid,pw)
15 Y[r ]← acquire(uid,pw, p⃗k,S)
16 (req, ⃗rep)← Transcript(S)
17 Return (req, ⃗rep,r)

Oracle Corrupt(i)
18 CO ∪←{i}
19 Require |CO|< t
20 Return ski

Oracle Recover(r ,C, S⃗V)
21 (uid,pw)← CRED[r]
22 y⃗← Y[r ]
23 k← recover(⃗y,C, S⃗V)
24 K[pw,uid, S⃗V] ∪←{k}
25 Reward |K[pw,uid, S⃗V]|> 1
26 Return k

Fig. 4.7 Functionality game for DKA with algorithms gen, init, acquire and recover.
Transcript is a special game procedure that records network requests sent by the DKA
algorithms. For the meaning of instructions Lose, Reward, and Require see Sec. 1.3.

p⃗k to use in Init and Acquire, and the set of chosen servers C (for reconstruction) and
setup values S⃗V in the Recover oracle. The counter r is a game variable to associate
the Recover query with the corresponding Acquire query. This gives the adversary more
freedom as we do not require these oracles to be used in succession. Via the Corrupt
oracle the adversary is allowed to corrupt up to t− 1 servers. Recall that the oracle
immediately aborts if a procedure aborts. In particular, a correct construction can abort
if it is fed garbage input (i.e. an empty set of chosen servers) as otherwise the adversary
would trigger the ‘Reward’ line that wins the functionality game. The adversary wins the
functionality game if it manages to create two different keys for a set of user id, password
and setup values.

Next, we describe the security games for DKA schemes, KIND-x for x ∈ {1,2},
provided in Fig. 4.8, which ultimately capture key indistinguishability: The task of the
adversary is to distinguish real keys generated by the protocol from random. We remark
that this implies other security properties such as privacy of the user’s password: if the
adversary learns (information about) a user’s password it can compute the real key and
compare this to the real or random key from the Challenge oracle to gain an advantage.
Similarly to PRIV-x, the KIND-x game comes in two flavours: x = 1 corresponds to
an adversary that may compromise servers but will subsequently follow the protocol
honestly, and x = 2 which allows arbitrary server behaviour and thus intuitively security
in this setting will require verifiable responses from the servers.

Initially, the game assigns passwords to all users in the user identity space UID. An
adversary can observe network traffic for executions of the protocol via its oracles Init
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and Acquire, and it specifies the user identity for these protocol runs. In the KIND-1
game for honest executions of the protocol, this is modelled by providing the adversary
a transcript of the network requests to the servers S, handled by the game. For the
KIND-2 game, the network requests are sent to the adversary directly, so the game does
not need to record the transcript. The adversary may respond in any way it likes, in
particular it may respond honestly. To aid the adversary in responding honestly without
requiring it to corrupt a server, it can query the BlindEv oracle, which will return the
honest response rep. Effectively, in the KIND-2 game the adversary becomes an active
man-in-the-middle between the Init and Acquire oracles (representing the user) and the
BlindEv oracle (representing the server).

We split the key reconstruction procedure into two processes to model the online
communication (Acquire) between the user and the servers, and the key calculation done
locally (Recover) by a user based on the servers it chooses to utilize and the public
setup values. We allow the adversary to specify these setup values S⃗V since the system’s
security should not rely on them being secret nor authentic. To model online attacks,
i.e. login attempts for specific users, the adversary can call Reveal with a purported
password and user identity, and if this guess is correct it receives the file encryption key
for that user; if incorrect it receives nothing (this mimics the subsequent inability to
decrypt files).

Definition 4.3.1 (KIND-x Security). The advantage of an adversary A in the KIND-x
games defined in Fig. 4.8 for x ∈ {1,2} and distributed key acquisition scheme DKA is

AdvKIND-x
DKA (A) :=

∣∣∣∣P[GKIND-x1
DKA (A) = 1

]
−P

[
GKIND-x0

DKA (A) = 1
]∣∣∣∣.

As is natural in the password setting, it is necessary to consider the fact that passwords
could be guessable and a successful guess that occurs before any rate-limiting has kicked
in will result in an adversary compromising a particular user. The advantage statement
needs to take into account the following generic attack, where the queries are all for
a single user identity uid: the adversary runs Init, then makes q queries to Reveal for
randomly chosen passwords in the password space, then queries Challenge. If any of the
Reveal queries returned something other than ⊥, then a user key was set for that user
identity, and if this value is equal to the key provided by Challenge then the adversary
outputs 0, and if it’s different it outputs 1 (if it received ⊥ for all Reveal queries then it
just guesses). As a result, we regard a DKA scheme as being secure if

AdvKIND-x
DKA (A)≤O

(
q
|D|

)
+ δ,
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Game KIND-1b(A,t,n)
00 K[·]←×; r ← 0
01 PW[·]←⊥; Y[·]←⊥
02 For uid ∈ UID:
03 PW[uid]←$ D
04 CH←∅; CO←∅
05 (s⃗k, p⃗k)← gen
06 S← init(s⃗k)
07 b′←A(p⃗k)
08 Stop with b′

Oracle Init(uid, p⃗k)
09 pw← PW[uid]
10 (k, S⃗V)← init(uid,pw, p⃗k,S)
11 K[pw,uid]← k
12 (req, ⃗rep)← Transcript(S)
13 Return (req, ⃗rep, S⃗V)

Oracle Acquire(uid, p⃗k)
14 r +← 1
15 pw← PW[uid]
16 Y[r ]← acquire(uid,pw, p⃗k,S)
17 (req, ⃗rep)← Transcript(S)
18 Return (req, ⃗rep,r)

Oracle Recover(r ,C, S⃗V)
19 y⃗← Y[r ]
20 k← recover(⃗y,C, S⃗V)
21 K[pw,uid]← k
22 Return
Oracle Reveal(pw′,uid)
23 k←K[pw′,uid]
24 Return k
Oracle Challenge(uid)
25 pw← PW[uid]
26 Require K[pw,uid] ̸=×
27 Require uid /∈ CH
28 CH ∪←{uid}
29 k0←K[pw,uid]
30 k1←$ K
31 Return kb

Oracle Corrupt(i)
32 CO ∪←{i}
33 Require |CO|< t
34 Return ski

Game KIND-2b(A,t,n)
35 K[·]←×; r ← 0
36 PW[·]←⊥ Y[·]←⊥
37 For uid ∈ UID:
38 PW[uid]←$ D
39 CH←∅; CO←∅
40 (s⃗k, p⃗k)← gen
41 b′←A(p⃗k)
42 Stop with b′

Oracle BlindEv(i,uid,req)
43 repi← server.op(ski,uid,req)
44 Return repi

Oracle Init(uid, p⃗k)
45 pw← PW[uid]
46 (k, S⃗V)← init(uid,pw, p⃗k,A)
47 K[pw,uid]← k
48 Return S⃗V
Oracle Acquire(uid, p⃗k)
49 r +← 1
50 pw← PW[uid]
51 Y[r ]← acquire(uid,pw, p⃗k,A)
52 Return r

Fig. 4.8 Key indistinguishability games for DKA with algorithms gen, init, acquire, recover
and server.op. The oracles in the middle column are equal for both games and hence only
displayed once. Transcript is a special game procedure that records network requests
sent by the DKA algorithms. Assuming × /∈ K, we encode uninitialized keys with ×. For
the meaning of instructions Stop with and Require see Sec. 1.3.

where q is the number of queries made by the adversary to the Reveal oracle in the
course of the game, |D| is the size of the password dictionary and δ is some negligible
function in the security parameter.

4.4 Constructions

In this section we present two schemes, parameterized by an Oblivious PRF F =
(F.KG,F.Req,F.BlindEv,F.Finalize,F.Ev), and prove their security in the models from
Sec. 4.3. Our constructions follow a generic blueprint, portrayed in Fig. 4.9.
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4.4.1 Generic Construction

There are four possibilities for OPRFs: verifiable or non-verifiable, and partially-oblivious
or regular. In order to handle both partially-oblivious and regular oblivious PRFs, we
desire that each server can derive a per-user key on the fly, see the Cli.SKG and Cli.PKG
algorithms in Fig. 4.9. If the OPRF is partially oblivious then the auxiliary input uid
creates domain separation in the key used by the OPRF server, and so the per-user key
pair is just the single key pair created by F.KG, for all users. To work with verifiable
(regular) OPRFs such that the servers are not required to store per-user data, we need
the OPRF secret key sk to be a group element with public key gsk for some generator g.
Then, the server simply multiplies in the group its own OPRF secret key with a hash of
the user’s identity to create the secret key component, and raises its own public key to
the hash value to get the public key component; this public key component is provided
to the user. If a verifiable OPRF is being used and it does not have this method of
operation, and this includes all OPRFs built from non-DH assumptions, then another
mechanism is required. For non-verifiable (non-DH) OPRFs, the server simply needs
some way of generating per-user secret keys using its master secret key and the user’s
identity, e.g. a key derivation function.

The init algorithm allows the user to compute a random key using its password pw
and a set of servers S that can be reconstructed later using pw and (a subset of) S. It
creates an OPRF request and awaits the response for each server. We have used the
‘Await’ keyword in Fig. 4.9 to indicate this computation is not done locally. Computing
the OPRF responses is done by server.op, which is a wrapper of the OPRF’s blind
evaluation function using the per-user key. The responses are finalized by init to obtain
the OPRF output values, which are used by setup to compute the key and potentially
some setup values. The setup algorithm is setting specific and will be discussed later.

The reconstruction of the key is similar, but split in two algorithms acquire and recover.
This allows the user to choose which subset of servers C to use, after seeing the OPRF
outputs (some servers may not respond). Indeed, this modularization allows any choice
function from the OPRF output space to the power set of S. The OPRF output values
are computed by acquire, to be used subsequently by the local reconstruct algorithm
inside recover to recompute the key. Similarly to setup, the reconstruct algorithm is
setting specific.

We remark that the scheme stops working (in the sense that the user cannot decrypt
their files) if one of the servers chosen for recover is not consistent with its responses. If
the OPRF is verifiable, then the user can identify which server has replied inconsistently
and exclude it from the servers chosen for recover, so it is recommended to use verifiable
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Proc gen
00 For i ∈ [1 .. n]:
01 (ski,pki)← F.KG
02 Return s⃗k, p⃗k
Proc Cli.SKG(ski,uid)
03• cski← ski ·HCli.KG(uid)
04◦ cski← ski

05 Return cski

Proc Cli.PKG(pki,uid)
06• cpki← pkHCli.KG(uid)

i
07◦ cpki← pki

08 Return cpki

Proc server.op(ski,uid,req)
09 cski← Cli.SKG(ski,uid)
10 repi← F.BlindEv(cski,uid,req)
11 Return repi

Proc init(uid,pw, p⃗k,S)
12 (req,st)← F.Req(uid,pw)
13 For i ∈ [1 .. n]:
14 Await repi← server.op(Si,uid,req)
15 cpki← Cli.PKG(pki,uid)
16 yi← F.Finalize(cpki,repi,st)
17 (k, S⃗V)← setup(⃗y)
18 Return k, S⃗V
Proc acquire(uid,pw, p⃗k,S)
19 (req,st)← F.Req(uid,pw)
20 For i ∈ [1 .. n]:
21 Await repi← server.op(Si,uid,req)
22 cpki← Cli.PKG(pki,uid)
23 yi← F.Finalize(cpki,repi,st)
24 Return y⃗
Proc recover(⃗y,C, S⃗V)
25 For i ∈ [1 .. n]\C:
26 yi←⊥
27 k← reconstruct(⃗y, S⃗V)
28 Return k

Fig. 4.9 PERKS, a generic DKA protocol construction. The lines marked with • are
executed iff a standard OPRF is used as building block. The lines marked with ◦ are
executed iff a POPRF is used as building block. Procedures setup and reconstruct are
as in Fig. 4.10 for the n out of n setting and as in Fig. 4.11 for the t out of n setting. In
a slight abuse of notation, we specify server.op on the user side with a server Si as input,
who will use its secret key ski to evaluate the procedure.

OPRFs when available. Alternatively, assuming the set of servers is small, the user could
proceed by trying different subsets and rerunning recover until successful. In Sec. 4.6 we
discuss how existing OPRF schemes from the literature can be used in PERKS.

4.4.2 n out of n setting

In Fig. 4.10 we provide the construction for the setting where all n key servers are required
for key (re)production. The setup values S⃗V are effectively ignored in this setting, they
are only present in the construction to be syntactically correct. The user derives their
key as the XOR of the OPRF output values. The construction allows a user to generate
a key even if it cannot produce randomness itself, and as long as at least one of the n
servers is not malicious, the key produced will be pseudorandom.
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Proc setup(⃗y)
00 Assert size(⃗y) = n
01 k← y1⊕ . . .⊕yn
02 Return (k, S⃗V =⊥)

Proc reconstruct(⃗z, S⃗V =⊥)
03 Assert size(⃗z) = n
04 k← z1⊕ . . .⊕ zn
05 Return k

Fig. 4.10 Construction for n out of n setting.

Proc setup(⃗y)
00 Assert size(⃗y) = n
01 k←$ K
02 α⃗← SecShare(k,t,n)
03 S⃗V← α⃗ +y⃗
04 Return k, S⃗V

Proc reconstruct(⃗z, S⃗V)
05 Assert size(⃗z) = t
06 S = ∅
07 For each zi ̸=⊥:
08 αi← S⃗Vi− zi

09 α⃗′ ∪←{αi}
10 k← SecCombine(α⃗′)
11 return k

Fig. 4.11 Construction for t out of n setting.

4.4.3 t out of n setting

We now demonstrate how to use secret sharing to derive a key using only a subset of
the active servers. In addition to OPRF F, the protocol uses a secret sharing scheme
SSS = (SecShare,SecCombine). The user will locally run setup to acquire a vector of
values, that can be stored alongside its ciphertexts at the storage server, where each
entry is an OPRF output summed with a secret sharing of the user’s key. This idea was
used by Everspaugh et al. [49] in the threshold version of their OPRF system. Later,
the user can rederive the file encryption key by interacting with at least t servers. If
reconstruction (or file decryption) fails, the user can retry with a different subset of
servers. If F is verifiable then the user can identify if a server has not responded correctly,
and omit that result from the reconstruct phase.

Conceptually this scheme is quite different to the n out of n scheme in Sec. 4.4.2.
The file encryption key k is generated randomly by the user of the system, rather than
as a function of the user password and the OPRF keys of the servers. This does not
necessarily imply it has to be sampled on the device though. Indeed, we can bootstrap
the procedure by first running an n′ out of n′ scheme for t ≤ n′ ≤ n with an initially
trusted subset of the servers to generate the random key k, and for most applications it
would be prudent to do so.
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4.5 Security Proofs

We first provide the theorems and proofs for KIND-1 security and subsequently for
KIND-2, reducing the security of our construction to the PRIV-1 and PRIV-2, respec-
tively, security of the underlying OPRF and the PRNG security of the underlying OPRF.
While the t out of n case is a generalization of the n out of n, we still provide a proof for
the special n out of n case as it is more instructive, and the proof is easily adaptable to
the generic t out of n case.

Theorem 4.5.1. Let PERKS be an n-out-of-n DKA scheme built using OPRF F according
to Fig. 4.9 and Fig. 4.10. For any adversary A against the KIND-1 security of PERKS,
there exist adversaries B and C against the PRIV-1 and PRNG security of F respectively,
such that

AdvKIND-1
PERKS (A,n,n)≤ n ·

(
2 ·AdvPRIV-1

F (B)+AdvPRNG
F (C,1)+ q

|D|

)
.

Proof Intuition. We will show a reduction from the KIND-1 to KIND′-1, where the
server that may not be corrupted is fixed at the start of the game. Subsequently we
will bound the KIND′-1 advantage using a sequence of game hops, starting with the
b = 0 side where a real key is returned to the adversary and ending with the b = 1 side
(random key). To provide a reduction to PRNG security we need to embed the PRNG
challenge in one of the servers, which means that we will not be able to answer Corrupt
queries for that index. To do this, we pick the server in the KIND′-1 game that may not
be corrupted. The reduction from KIND-1 to KIND′-1 invokes a loss of 1

n . Then, for
the majority of this proof we will calculate the advantage of an adversary attempting to
distinguish in which game it is playing, to bound the advantage of the KIND′-1 game.

Proof. In game KIND′-1, the environment is identical to KIND-1 except that it picks a
random index j out of all n servers at the start of the game and the adversary loses if it
calls Corrupt on index j. We simulate KIND-1 by simply forwarding all oracle queries to
KIND′-1. Given that the adversary may corrupt up to (n−1) servers in the course of its
execution and the index j in KIND′-1 is picked uniformly at random independently of
the adversary, the probability that server j will be corrupted is bounded by 1− 1

n . Thus,
with probability at least 1

n , game KIND′-1 will not abort and the simulation succeeds, as
the games are identical in this case. As a result,

AdvKIND-1
PERKS (A)≤ n ·AdvKIND′-1

PERKS (A).
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We proceed to bound AdvKIND′-1
PERKS (A) using a sequence of games Gi, and define

ϵi = P
[
GGi

PERKS(A) = 1
]
. Game G0 is the b = 0 side, i.e. with the key returned in the

Challenge query being the key computed in the protocol (if it exists) of the KIND′-1
game, and consequently ϵ0 = P

[
GKIND′-10

PERKS (A) = 1
]
.

In game G1, the environment is identical to G0 except that for every user identity uid,
the challenger will create two passwords: one will be used in Init, Acquire and Recover
queries, and the other in Challenge and Reveal queries. Note that Reveal returns ⊥ for
any password that is not the selected password.

Intuitively, an adversary that can distinguish these games can infer information about
the password or key from the req,rep values it sees from interacting with Init, Acquire
and Recover, so it notices when a different password has been used in the Reveal and
Challenge queries. From such an adversary we build a reduction with similar advantage
against PRIV-1 of the underlying OPRF F.

The reduction B is detailed in Fig. 4.12. B plays the PRIV-1b game and simulates
the KIND′-10 game (G0) or its two-password version (G1) to A. Let b′ be the output
bit of A, i.e. its indication of which game Gb′ that A believes it is playing. To create
the simulation, B selects pw0,pw1 for each uid and generates OPRF key pairs for each
of the n key servers. When A calls Init or Acquire for some uid, the reduction will
look up the two passwords pw0,pw1 associated with that user identity and call its own
Challenge(uid,pw0,pw1) oracle and receive (reqb,req1−b). B then uses secret keys for
each OPRF server to produce repi values for reqb. Moreover, B computes OPRF outputs
yi for pw0 and the user key k, to be used for Reveal and Challenge queries. Importantly,
we already want to remark here that B will simulate G0 if it is playing the PRIV-10

game (because the req, rep and k are all consistent with pw0) and B will simulate G1

if it is playing the PRIV-11 game (because k is derived from pw0 and req and rep are
derived from pw1).

Acquire queries are handled similarly to Init queries, with the difference being that the
OPRF output values yi are simply stored by B in array Y indexed by reconstruct counter
r, instead of being used to compute the key immediately. For Recover queries, the input
given by the adversary is (r ,C, S⃗V), and recall that in the n-out-of-n construction the S⃗V
are ignored and key reconstruction will fail if the chosen server set C is anything other
than the full set of servers, i.e. C = (S1, . . . ,Sn). This means the only interesting input is
r , but the adversary has no control over the (deterministic) operations involved that will
reconstruct the user key for password pw0 for the uid corresponding with reconstruct
counter r .
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For queries to Reveal of the form (pw′,uid), the reduction simply returns K[pw′,uid].
This will either be × if no value has been set or potentially user key k if pw′ = pw0 and
K[pw0,uid] has already been set. For Challenge(uid) queries, B checks if the uid has
been queried before, and if not it will return k. To answer a Corrupt query, B needs
to check if the query is allowed and abort otherwise, but A would lose anyway as this
would be an illegal oracle query in both games.

As we remarked above, if B is playing PRIV-10, it will provide req,rep and k values
to A that are consistent with each other (and consistent with password pw0), and thus
this is a perfect simulation of G0. If B is playing PRIV-11, then pw0 governs Challenge
and Reveal queries, while pw1 governs Init and Reconstruct queries and thus this is a
perfect simulation of G1.

It is left to argue that A’s success in distinguishing these games carries over to an
advantage for B. Intuitively, a win for A implies some way of linking (req, ⃗rep) tuples to
the user keys output by the protocol in the G0 case, or noticing the absence of such a
link in the G1 case (to see this, consider n = 1 and a protocol where k = pw and (req, ⃗rep)
information theoretically hide pw and k: an adversary has no way of distinguishing G0

from G1). This implies that A gains some information from its (req, ⃗rep) values: if b′ = 0
then A believes that its oracles are all running the same password, and thus (reqb, ⃗rep) is
linked to k, so B outputs 0; if b′ = 1 then A thinks its oracles have been separated, and
B outputs 1. To conclude, any advantage for A directly corresponds to the advantage for
the reduction B:

ϵ0− ϵ1 ≤AdvPRIV-1
F (B).

In game G2, the environment is identical to G1 except that the Reveal and Challenge
oracles return a random element of the key space. For interactions with Sj , the reduction
will replace the function F.Ev(skj , ·, ·) by a random function of the same domain and
range, where blinded evaluation queries are simulated. Recall Sj is the randomly picked
server that the adversary may not corrupt. This invokes a reduction C to the PRNG
security of OPRF F. We show that we can use an adversary A that distinguishes between
G1 and G2 to win the PRNG game with the same advantage, i.e.:

ϵ1− ϵ2 ≤AdvPRNG
F (C,1).

Let C play the PRNG game and simulate the KIND′-1 game (more specifically, either
G1 or G2) to A. The reduction is detailed in Fig. 4.13.

The reduction C receives a public key for its own PRNGb(C,1) game, and then chooses
two passwords for each user: pw0 for Reveal and Challenge queries, and pw1 for Init
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Reduction B playing PRIV-1b

00 K[·]←⊥; PW[·]←⊥; Y[·]←⊥
01 For uid ∈ UID:
02 pw0,pw1←$ D
03 PW[uid]← pw0,pw1
04 CH←∅; CO←∅
05 r ← 0
06 For i ∈ [1 .. n]:
07 (ski,pki)← F.KG
08 b′←A(p⃗k)
09 Return b′

Oracle Init(uid, p⃗k)
10 pw0,pw1← PW[uid]
11 call ChallengeB(uid,pw0,pw1)
12 receive (reqb,req1−b)
13 For i ∈ [1 .. n]:
14 cski← DKA.Cli.SKG(ski,uid)
15 repi← F.BlindEv(cski,uid,reqb)
16 yi← F.Ev(cski,uid,pw0)
17 (k, S⃗V)← setup(⃗y)
18 K[pw0,uid]← k
19 Return (reqb, ⃗rep, S⃗V)
Oracle Corrupt(i)
20 Require i ̸= j
21 CO ∪←{i}
22 Return ski

Oracle Acquire(uid, p⃗k)
23 r +← 1
24 pw0,pw1← PW[uid]
25 call ChallengeB(uid,pw0,pw1)
26 receive (reqb,req1−b)
27 For i ∈ [1 .. n]:
28 cski← DKA.Cli.SKG(ski,uid)
29 repi← F.BlindEv(cski,uid,reqb)
30 yi← F.Ev(cski,uid,pw0)
31 Y[r ]← (y1, . . . ,yn)
32 Return (reqb, ⃗rep,r)

Oracle Recover(r ,C, S⃗V)
33 y⃗← Y[r]
34 k← DKA.recover(⃗y,C, S⃗V)
35 K[pw0,uid]← k
36 Return
Oracle ChallengeA(uid)
37 Require uid /∈ CH
38 pw0,pw1← PW[uid]
39 CH ∪←{uid}
40 k←K[pw0,uid]
41 Return k
Oracle Reveal(pw′,uid)
42 k←K[pw′,uid]
43 Return k

Fig. 4.12 Reduction B for the proof of Theorem 4.5.1 and Theorem 4.5.2. Procedures
setup and reconstruct as in Fig. 4.10 for Thm. 4.5.1 and as in Fig. 4.11 for Thm. 4.5.2.

and Reconstruct queries. It is with the uncorrupted server Sj ’s interactions that C will
embed its own queries. For any query to Init or Reconstruct, the reduction C needs to
call its own Ev oracle with pw0 to receive the session key share yj that will be set for
future Challenge and Reveal queries, and its own BlindEv oracle with pw1 to acquire
repj that the adversary A expects to receive. Note that the user key is only set for pw0.

To answer a Corrupt query, C needs to check if the query is allowed and abort
otherwise, but A would lose anyway as this would be an illegal oracle query in both
games. For Reveal queries on (pw′,uid), the reduction simply returns K[pw′,uid]. This
will either be × if no value has been set or potentially k if pw′ = pw0 and K[pw0,uid] has
already been set. For Challenge(uid) queries, C first checks if the uid has been queried
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before, and if not it will return k. Eventually, C outputs to its own challenger whatever
A outputs.

In the event that C is playing PRNG0, the responses to its own queries will be the
real F, and thus this perfectly simulates game G1 for A. If C is playing PRNG1 then req
and the rep values lie in the correct space but for some other randomly chosen function,
and the key share for server Sj is an output of this random function, so the user key
returned in Challenge is an output of a random function XORed with ‘genuine’ key
shares, which is equivalent to choosing a random element of the key space. Thus this is a
perfect simulation of G2 for A.

In game G2 the Reveal and Challenge queries return a random element of the key
space. Thus in G3 we make a change to the Reveal oracle to use the key derived from
pw0 again. In all games up until this point the Reveal and Challenge oracles have been
consistent with each other, but in G3 they are not. Note that the adversary can only
notice a difference between G2 and G3 if it queries Reveal on pw0, as Reveal returns ⊥
for all other passwords and the other oracles are identical. We remark that in both games
Init and Reconstruct use pw1 and Challenge simply samples a random key from the key
space, so no information about pw0 can be leaked from the oracle queries. Hence, the
best any adversary can do is query the Reveal oracle for a randomly guessed password.

ϵ2− ϵ3 ≤
q
|D|

.

In game G4 we re-merge queries such that for a given user identity uid, queries to
Init, Reconstruct and Reveal are all associated with a single password. In a very similar
manner to the hop between G0 and G1, this invokes a PRIV-1 term. The reduction itself
is almost identical to reduction B in Fig. 4.12, except that line 40 is replaced by selection
of a random key from the key space.

ϵ3− ϵ4 ≤AdvPRIV-1
F (B).

Game G4 is the b = 1 side, i.e. with the key returned in the Challenge query being a
randomly chosen key, of the KIND′-1 game. Consequently ϵ4 = P

[
GKIND′-11

PERKS (A)
]
.

Collecting the terms results in the claimed bound, since

AdvKIND-1
PERKS (A)≤ n ·AdvKIND-1′

PERKS (A), and
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AdvKIND′-1
PERKS (A) =

∣∣∣P[GKIND′-11
PERKS (A)

]
−P

[
GKIND′-10

PERKS (A)
]∣∣∣= |ϵ4− ϵ0|

= |ϵ0− ϵ1 + ϵ1− ϵ2 + ϵ2− ϵ3 + ϵ3− ϵ4|

≤AdvPRIV-1
F (B)+AdvPRNG

F (C,1)+ q
|D|

+AdvPRIV-1
F (B).
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Reduction C playing PRNGb(C,1)
00 receive pkj

01 K[·]←⊥
02 PW[·]←⊥
03 For uid ∈ UID:
04 pw0,pw1←$ D
05 PW[uid]← pw0,pw1
06 CH←∅;CO←∅
07 For i ∈ [1 .. n]\{j}:
08 (ski,pki)← F.KG
09 b′←A(p⃗k)
10 Return b′

Oracle Corrupt(i)
11 Require i ̸= j
12 CO ∪←{i}
13 Return ski

Oracle Init(uid, p⃗k)
14 pw0,pw1← PW[uid]
15 call Ev(uid,pw0)
16 receive y
17 yj ← y
18 (req,st)← F.Req(uid,pw1)
19 call BlindEv(uid,req)
20 receive rep
21 repj ← rep
22 For i ∈ [1 .. n]\{j}:
23 cski← DKA.Cli.SKG(ski,uid)
24 repi← F.BlindEv(cski,uid,req)
25 yi← F.Ev(cski,uid,pw0)
26 (k, S⃗V)← setup(⃗y)
27 K[pw0,uid]← k
28 Return (req, ⃗rep, S⃗V)

Oracle Acquire(uid, p⃗k)
29 r +← 1
30 pw0,pw1← PW[uid]
31 call Ev(uid,pw0)
32 receive y
33 yi← y
34 (req,st)← F.Req(uid,pw1)
35 call BlindEv(uid,req)
36 receive rep
37 repi← rep
38 For i ∈ [1 .. n]\{j}:
39 cski← DKA.Cli.SKG(ski,uid)
40 repi← F.BlindEv(cski,uid,req)
41 yi← F.Ev(cski,uid,pw0)
42 Y[r ]← (y1, . . . ,yn)
43 Return (req, ⃗rep,r)

Oracle Recover(r ,C, S⃗V)
44 y⃗← Y[r]
45 k← DKA.recover(⃗y,C, S⃗V)
46 K[pw0,uid]← k
47 Return
Oracle Reveal(pw′,uid)
48 k←K[pw′,uid]
49 Return k
Oracle ChallengeA(uid)
50 Require uid /∈ CH
51 pw0,pw1← PW[uid]
52 CH ∪←{uid}
53 k←K[pw0,uid]
54 Return k

Fig. 4.13 Reduction C for the proof of Theorem 4.5.1. Procedures setup and reconstruct
as in Fig. 4.10.
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Theorem 4.5.2. Let PERKS be an t-out-of-n DKA scheme built using OPRF F according
to Fig. 4.9 and Fig. 4.11 for t such that 1 ≤ t ≤ n. For any adversary A against the
KIND-1 security of PERKS, there exist adversaries B and C against the PRIV-1 and
PRNG security of F respectively, such that

AdvKIND-1
PERKS (A,t,n)≤

(
n

t−1

)
·
(

2 ·AdvPRIV-1
F (B)+AdvPRNG

F (C,n− t+1)+ q
|D|

)
.

Proof Sketch. We remark Theorem 4.5.1 is the special case t = n of this theorem
and the game hops are very similar to that proof. For brevity we only provide the
modifications to the proof here rather than duplicating the proof in its entirety. We also
believe that only highlighting the steps where the proof needs to be generalized increases
clarity.

For the first step, the success probability of the simulation now depends on t, as the
reduction needs to select n− t+1 uncorrupted servers. We denote this set of indices of
uncorrupted servers with J . A lower bound for the success probability is provided by the
number of ways to select (t−1) servers out of (t−1) servers divided by the number of
ways to select (t−1) servers out of n servers:

1(
n

t−1

) .

Note that for t = n we obtain the lower bound 1
n from Theorem 4.5.1.

The reduction B in Fig. 4.12 from the indistinguishability between G0 and G1 to
the PRIV-1 game is the same as in Theorem 4.5.1 with the trivial modification that
it uses the t out of n setup and reconstruct procedures from Fig. 4.11 instead of the
procedures from Fig. 4.10. We apply the same modification to the reduction C from the
indistinguishability between G1 and G2 to the PRNG game. Moreover, the special case
i = j, where j is the index of the uncorrupted server in reduction C is now generalized
to i ∈ J , where J is the set of indices of uncorrupted servers. For completeness we
provide the updated reduction in Fig. 4.14, but intuitively nothing novel happens in the
reduction.

We need to argue replacing XOR in the setup and reconstruct procedures with a key
sharing scheme also simulates G2, i.e. the selected key is a random element from the key
space. It is clear the adversary can have at most (t−1) ‘genuine’ key shares because
(n− t+1) servers return a random element. By the security of the secret sharing scheme,
with (t−1) key shares, any k ∈ K can still be reconstructed. Thus, if key share st ∈ K is
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a random element of the key space, then so is the reconstructed key. It is clear this holds
as st is the XOR of S⃗Vt and yt, where yt is a random element of K.

There is no modification to the hop from G2 to G3. The final hop from G3 to G4 is
again the same as in in Theorem 4.5.1 with the trivial modification that it uses the t out
of n setup and reconstruct procedures from Fig. 4.11. Collecting the terms yields the
claimed result.
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Reduction C playing PRNGb(C,n− t+1)
00 receive p⃗k

′

01 K[·]←⊥; PW[·]←⊥
02 For uid ∈ UID:
03 pw0,pw1←$ D
04 PW[uid]← pw0,pw1
05 CH←∅;CO←∅
06 For i ∈ J :
07 pki← pk′

σ(i)
08 For i ∈ [1 .. n]\J :
09 (ski,pki)← F.KG
10 b′←A(p⃗k)
11 Return b′

Oracle Init(uid, p⃗k)
12 pw0,pw1← PW[uid]
13 (req,st)← F.Req(uid,pw1)
14 For i ∈ J :
15 call Evσ(i)(uid,pw0)
16 receive yi

17 call BlindEvσ(i)(uid,req)
18 receive repi

19 For i ∈ [1 .. n]\J :
20 cski← DKA.Cli.SKG(ski,uid)
21 repi← F.BlindEv(cski,uid,req)
22 yi← F.Ev(cski,uid,pw0)
23 (k, S⃗V)← setup(⃗y)
24 K[pw0,uid]← k
25 Return (req, ⃗rep, S⃗V)
Oracle Reveal(pw′,uid)
26 k←K[pw′,uid]
27 Return k

Oracle Acquire(uid, p⃗k)
28 r +← 1
29 pw0,pw1← PW[uid]
30 (req,st)← F.Req(uid,pw1)
31 For i ∈ J :
32 call Evσ(i)(uid,pw0)
33 receive yi

34 call BlindEvσ(i)(uid,req)
35 receive repi

36 For i ∈ [1 .. n]\J :
37 cski← DKA.Cli.SKG(ski,uid)
38 repi← F.BlindEv(cski,uid,req)
39 yi← F.Ev(cski,uid,pw0)
40 Y[r ]← (y1, . . . ,yn)
41 Return (req, ⃗rep,r)

Oracle Recover(r ,C, S⃗V)
42 y⃗← Y[r]
43 k← DKA.recover(⃗y,C, S⃗V)
44 K[pw0,uid]← k
45 Return
Oracle ChallengeA(uid)
46 Require uid /∈ CH
47 pw0,pw1← PW[uid]
48 CH ∪←{uid}
49 k←K[pw0,uid]
50 Return k
Oracle Corrupt(i)
51 Require i /∈ J
52 CO ∪←{i}
53 Return ski

Fig. 4.14 Reduction C for the proof of Theorem 4.5.2. Procedures setup and reconstruct
as in Fig. 4.11. J is a set of t indices that may not be corrupted. σ is a bijection of the
uncorrupted indices in the KIND game to the indices in the underlying PRNG game.
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We now provide the theorems and proofs for KIND-2 security. For completeness we
provide the modified reductions but as the modifications are trivial the descriptions will
be brief. The theorems bound the advantage by AdvPRIV-2

F (B) (instead of PRIV-1) and
in the proof we only need to adapt the reductions to use the F.finalize procedure and
the Finalize oracle in the PRIV-2 game to compute the OPRF output value (instead of
using the F.ev procedure and the Ev oracle), since the response may now be maliciously
formed.

Theorem 4.5.3. Let PERKS be an n-out-of-n DKA scheme built using OPRF F according
to Fig. 4.9 and Fig. 4.10. For any adversary A against the KIND-2 security of PERKS,
there exist adversaries B and C against the PRIV-2 and PRNG security of F respectively,
such that

AdvKIND-2
PERKS (A,n,n)≤ n ·

(
2 ·AdvPRIV-2

F (B)+AdvPRNG
F (C)+ q

|D|

)
.

Proof Sketch. The proof goes analogously to the proof of Theorem 4.5.1. We need
to adapt the reductions as they cannot assume functionality and simply call the F.ev
procedure or the Ev oracle, since the rep values may now be maliciously formed. Therefore,
the reductions now use the F.finalize procedure and the Finalize oracle in the PRIV-2
game to compute the OPRF output value y (or receive ⊥). The modifications are trivial
but for completeness we provide the updated reductions here. The reduction B is detailed
in Fig. 4.15 and reduction C is detailed in Fig. 4.16.

Theorem 4.5.4. Let PERKS be an t-out-of-n DKA scheme built using OPRF F according
to Fig. 4.9 and Fig. 4.11 for t such that 1 ≤ t ≤ n. For any adversary A against the
KIND-2 security of PERKS, there exist adversaries B and C against the PRIV-2 and
PRNG security of F respectively, such that

AdvKIND-2
PERKS (A,t,n)≤

(
n

t−1

)
·
(

2 ·AdvPRIV-2
F (B)+AdvPRNG

F (C,n− t+1)+ q
|D|

)
.

Proof Sketch. This proof effectively applies both the adaptations made in Theo-
rem 4.5.2 and Theorem 4.5.3. The reduction C is detailed in Fig. 4.17. Reduction B is
the same as in Theorem 4.5.3 with the trivial modification that it uses the t out of n
setup and reconstruct procedures from Fig. 4.11 instead of the procedures from Fig. 4.10.
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Reduction B playing PRIV-2b

00 K[·]←⊥; PW[·]←⊥; Y[·]←⊥
01 For uid ∈ UID:
02 pw0,pw1←$ D
03 PW[uid]← pw0,pw1
04 CH←∅; CO←∅
05 r ← 0
06 For i ∈ [1 .. n]:
07 (ski,pki)← F.KG
08 b′←A(p⃗k)
09 Return b′

Oracle Init(uid, p⃗k)
10 pw0,pw1← PW[uid]
11 call ChallengeB(uid,pw0,pw1)
12 receive (j,reqb,req1−b)
13 For i ∈ [1 .. n]:
14 Await repi

b←A.server.opi(uid,reqb)
15 Await repi

1−b←A.server.opi(uid,req1−b)
16 cpki← DKA.Cli.PKG(pki,uid)
17 call FinalizeB(j,cpki,repi

b,repi
1−b)

18 receive (yi
0,yi

1)
19 (k, S⃗V)← setup(⃗y0)
20 K[pw0,uid]← k
21 Return S⃗V
Oracle ChallengeA(uid)
22 Require uid /∈ CH
23 pw0,pw1← PW[uid]
24 CH ∪←{uid}
25 k←K[pw0,uid]
26 Return k

Oracle Acquire(uid, p⃗k)
27 r +← 1
28 pw0,pw1← PW[uid]
29 call ChallengeB(uid,pw0,pw1)
30 receive (j,reqb,req1−b)
31 For i ∈ [1 .. n]:
32 Await repi

b←A.server.opi(uid,reqb)
33 Await repi

1−b←A.server.opi(uid,req1−b)
34 cpki← DKA.Cli.PKG(pki,uid)
35 call FinalizeB(j,cpki,repi

b,repi
1−b)

36 receive (yi
0,yi

1)
37 Y[r ]← (y1

0, . . . ,yn
0)

38 Return r
Oracle Recover(r ,C, S⃗V)
39 y⃗← Y[r]
40 k← DKA.recover(⃗y,C, S⃗V)
41 K[pw0,uid]← k
42 Return
Oracle BlindEv(i,uid,req)
43 repi← DKA.server.op(ski,uid,req)
44 Return repi

Oracle Reveal(pw′,uid)
45 k←K[pw′,uid]
46 Return k
Oracle Corrupt(i)
47 Require i ̸= j
48 CO ∪←{i}
49 Return ski

Fig. 4.15 Reduction B for the proof of Theorem 4.5.3 and Theorem 4.5.4. Procedures
setup and reconstruct as in Fig. 4.10 for Thm. 4.5.3 and as in Fig. 4.11 for Thm. 4.5.4.
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Reduction C playing PRNGb(C,1)
00 receive pkj

01 K[·]←⊥; PW[·]←⊥
02 For uid ∈ UID:
03 pw0,pw1←$ D
04 PW[uid]← pw0,pw1
05 CH←∅;CO←∅
06 For i ∈ [1 .. n]\{j}:
07 (ski,pki)← F.KG
08 b′←A(p⃗k)
09 Return b′

Oracle Init(uid, p⃗k)
10 pw0,pw1← PW[uid]
11 (req,st)← F.Req(uid,pw1)
12 For i ∈ [1 .. n]:
13 Await repi←A.server.opi(uid,req)
14 If i ̸= j:
15 cski← DKA.Cli.SKG(ski,uid)
16 yi← F.Ev(cski,uid,pw0)
17 Else:
18 call Ev(uid,pw0)
19 receive yi

20 cpki← DKA.Cli.PKG(pki,uid)
21 y′

i← F.Finalize(cpki,repi,st)
22 If y′

i =⊥:
23 yi←⊥
24 (k, S⃗V)← setup(⃗y)
25 K[pw0,uid]← k
26 Return S⃗V
Oracle ChallengeA(uid)
27 Require uid /∈ CH
28 pw0,pw1← PW[uid]
29 CH ∪←{uid}
30 k←K[pw0,uid]
31 Return k
Oracle Reveal(pw′,uid)
32 k←K[pw′,uid]
33 Return k

Oracle Acquire(uid, p⃗k)
34 r +← 1
35 pw0,pw1← PW[uid]
36 (req,st)← F.Req(uid,pw1)
37 For i ∈ [1 .. n]:
38 Await repi←A.server.opi(uid,req)
39 If i ̸= j:
40 cski← DKA.Cli.SKG(ski,uid)
41 yi← F.Ev(cski,uid,pw0)
42 Else:
43 call Ev(uid,pw0)
44 receive yi

45 cpki← DKA.Cli.PKG(pki,uid)
46 y′

i← F.Finalize(cpki,repi,st)
47 If y′

i =⊥:
48 yi←⊥
49 Y[r ]← (y1, . . . ,yn)
50 Return (req, ⃗rep,r)

Oracle Recover(r ,C, S⃗V)
51 y⃗← Y[r]
52 k← DKA.recover(⃗y,C, S⃗V)
53 K[pw0,uid]← k
54 Return
Oracle BlindEv(i,uid,req)
55 If i ̸= j:
56 rep← DKA.server.op(ski,uid,req)
57 Else:
58 call BlindEv(uid,req)
59 receive rep
60 Return rep
Oracle Corrupt(i)
61 Require i ̸= j
62 CO ∪←{i}
63 Return ski

Fig. 4.16 Reduction C for the proof of Theorem 4.5.3. Procedures setup and reconstruct
as in Fig. 4.10.
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Reduction C playing PRNGb(C,n− t+1)
00 receive p⃗k

′

01 K[·]←⊥; PW[·]←⊥
02 For uid ∈ UID:
03 pw0,pw1←$ D
04 PW[uid]← pw0,pw1
05 CH←∅;CO←∅
06 For i ∈ J :
07 pki← pk′

σ(i)
08 For i ∈ [1 .. n]\J :
09 (ski,pki)← F.KG
10 b′←A(p⃗k)
11 Return b′

Oracle Init(uid, p⃗k)
12 pw0,pw1← PW[uid]
13 (req,st)← F.Req(uid,pw1)
14 For i ∈ [1 .. n]:
15 Await repi←A.server.opi(uid,req)
16 If i ∈ J :
17 call Evσ(i)(uid,pw0)
18 receive yi

19 If i /∈ J :
20 cski← DKA.Cli.SKG(ski,uid)
21 yi← F.Ev(cski,uid,pw0)
22 cpki← DKA.Cli.PKG(pki,uid)
23 y′

i← F.Finalize(cpki,repi,st)
24 If y′

i =⊥:
25 yi←⊥
26 (k, S⃗V)← setup(⃗y)
27 K[pw0,uid]← k
28 Return S⃗V
Oracle ChallengeA(uid)
29 Require uid /∈ CH
30 pw0,pw1← PW[uid]
31 CH ∪←{uid}
32 k←K[pw0,uid]
33 Return k

Oracle Acquire(uid, p⃗k)
34 r +← 1
35 pw0,pw1← PW[uid]
36 (req,st)← F.Req(uid,pw1)
37 For i ∈ [1 .. n]:
38 Await repi←A.server.opi(uid,req)
39 If i ∈ J :
40 call Evσ(i)(uid,pw0)
41 receive yi

42 If i /∈ J :
43 cski← DKA.Cli.SKG(ski,uid)
44 yi← F.Ev(cski,uid,pw0)
45 cpki← DKA.Cli.PKG(pki,uid)
46 y′

i← F.Finalize(cpki,repi,st)
47 If y′

i =⊥:
48 yi←⊥
49 Y[r ]← (y1, . . . ,yn)
50 Return (req, ⃗rep,r)

Oracle Recover(r ,C, S⃗V)
51 y⃗← Y[r]
52 k← DKA.recover(⃗y,C, S⃗V)
53 K[pw0,uid]← k
54 Return
Oracle BlindEv(i,uid,req)
55 If i ∈ J :
56 call BlindEvσ(i)(uid,req)
57 receive rep
58 Else:
59 rep← DKA.server.op(ski,uid,req)
60 Return rep
Oracle Reveal(pw′,uid)
61 k←K[pw′,uid]
62 Return k
Oracle Corrupt(i)
63 Require i /∈ J
64 CO ∪←{i}
65 Return ski

Fig. 4.17 Reduction C for the proof of Theorem 4.5.4. Procedures setup and reconstruct
as in Fig. 4.11. J is a set of t indices that may not be corrupted. σ is a bijection of the
uncorrupted indices in the KIND game to the indices in the underlying PRNG game.
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4.6 Use of Existing OPRFs in PERKS
As we have mentioned in Sec. 4.4, the DH-based VOPRFs in Fig. 4.2 allow the server to
store one master key and compute private and public keys for users on the fly using uid:
this operation is specified in Fig. 4.9. Remember that for non-verifiable OPRFs there is
no public key and thus on-the-fly computation of per-user key material just needs to run
a key derivation function from the server’s (single) master key sk and uid to the same
space as sk.

For non-DH VOPRFs, the DH group trick is not directly applicable, so either a similar
trick using the structure of the public and secret keys needs to be found, or the server
needs to store per-user key material. We regard finding such tricks in post-quantum
VOPRFs as future work. The CSIDH-based scheme of Boneh et al. [25] is not defined as
a VOPRF, however this would appear to be a good candidate for a VOPRF that could
fit with our DH trick.

For key rotation, the Pythia OPRF has no ‘outer hash’ (that destroys algebraic
structure) and so is eligible for simple key rotation. Note that the aforementioned
HashDH scheme can provide key rotation but only if the user stores inner hash values,
but this is undesirable in our setting and modelling security for this case is not trivial.

This invokes a tradeoff: the Pythia OPRF provides key rotation at a computational
cost (due to the pairing operation), while 2HashDH and 3HashSDHI are fast but without
key rotation. As a result, the system designer needs to judge if the ‘user initiated’ key
rotation methods in Sec. 4.7 are viable for the system’s users, and if so 2HashDH or
3HashSDHI can be used.

Note that each of the three OPRFs in Fig. 4.2 are proven secure in different models,
and only the 3HashSDHI scheme has been proven secure in our OPRF security games.
Thus it remains to formally prove that the other two schemes do in fact meet PRIV-x
and PRNG security, or by showing that the proven security properties of the other
schemes—VOPRF UC functionality for 2HashDH, and one-more unpredictability and
one-more PRF for Pythia—are at least as strong as PRIV-x and PRNG.

4.7 Using PERKS as a Storage System

We now explain why our approach is well-suited to derivation of a backup key for
outsourced storage systems, and particularly for instant messaging. Then, we describe
how our construction can be used to build a feature rich file system for cloud storage,
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incorporating recent work analysing security of symmetric encryption schemes where a
user encrypts ‘to themself’, deduplication, and efficient key rotation.

Instant messaging apps are generally free to download and use, and users are often
unwilling to pay for additional features. This leaves very little room for manoeuvre when
designing a secure backup service: users must use an internal solution like WhatsApp’s
(see Sec. 4.1.3), where the protocol is potentially strong but not open source, so users
have to place their trust in the provider. A service such as the one we propose needs to
be extremely efficient in terms of bandwidth and storage to possibly be offered as a free
service: this is why we aim to only use the most efficient OPRFs, and enforce minimal
user and server storage. In particular, we envision OPRF services with multiple other
roles in addition to PERKS, hence our system does not require the OPRF servers to be
given a particular (share of a) key, as is done in many prior works [60, 62, 15].

The constructions defined in Sec. 4.4 allow a user to derive a single symmetric key
from a password. It remains to select a symmetric encryption primitive for encryption, a
decision that is informed by the desired functionality and security properties.

Note that in the case of long-term encrypted backup, if a user’s device is compromised
and they wish to change their encryption key, they may still wish to recover messages
stored under the old key (i.e. even if they believe that an adversary is already in possession
of those messages). From this perspective, the user may wish to recover their messages
after they have already chosen a new password for use with new messages, creating an
overlap in the epochs of the system: this is a departure from the regular theoretical
approach to key rotation via updatable encryption and we discuss this further below.

Encrypt-to-Self. In Chapter 3 we showed that integrity protection can still be obtained
in the event of user key corruption: if the user stores short file (ciphertext) hashes then
even if the user knows that their key is corrupted they can check ciphertext integrity
when downloading files and discard any where the hash does not match a local entry.
We demonstrated a method to compute these hashes during encryption, to avoid making
two passes over plaintext data.

Deduplication. If the user expects to upload some files many times, for example by
backing up an entire disk periodically, and wants to avoid storing multiple copies of files
then they can employ deduplication techniques such as convergent encryption [93, 17].
File key derivation for a file F could be for example kF ←H(k||F ) for some cryptographic
hash function H.
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Key Rotation. If the user wishes to rotate their file encryption key in PERKS then
there are three possibilities:

1. Use an OPRF service that has automated key rotation, e.g. by using the Pythia
OPRF [49]. Note that for the n out of n construction, just one OPRF server
updating its ski value results in a change in file encryption key. If this is used,
then the server will provide ‘tokens’ that work similarly to updatable encryption
(UE) update tokens: unblinded values provided under the old key can be efficiently
modified to unblinded values under the new key, without the need to call the OPRF
service under all the old inputs.

2. Use a different password. This will result in new OPRF output values for all OPRF
servers. (Note that another credential modification technique is possible via an
OPRF service that supports tweaks, i.e. different uid input values for the same
user: this will result in different OPRF output values for the OPRF servers offering
this.)

3. (t out of n construction only) Choose a new key k, essentially running setup again.
This results in a new key share vector α⃗ but the yi values are unchanged so the
user needs to publish a new public vector S⃗V.

In all of these cases, the user can avoid downloading, decrypting, reencrypting and
reuploading all of their files every time they update their file encryption key by utilizing
updatable encryption [26, 72, 29], where the user can send a short update token to the
ciphertext storage server (CSP) with which the underlying key for the ciphertexts can
be rotated efficiently, without leaking information to the CSP. However the challenge is
providing availability of key material in consecutive epochs. In the efficient (ciphertext-
independent) UE schemes just mentioned, the update token calculation requires knowledge
of an old key and a new key at the beginning of the new epoch. For user-initiated actions
(items 2 and 3) this is trivial: the user runs the protocol to get their old key, then runs
the protocol again using their new inputs, calculates the token, sends that to the file
storage server and then deletes both keys locally. In the OPRF server key rotation setting
(item 1) care is required: if a new epoch begins while the user does not have a local
copy of the file encryption key available then the user would be locked out of access to
their ciphertexts. To solve this issue the OPRF services could make a transition period
available to users, where access is given to the OPRF functionality for the old and the
new OPRF keys.
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4.8 Conclusion and Reflection

With the exception of the PRNG definition that is inherited from the work of Tyagi
et al. [96] and adapted to our multi-server setting, the security definitions presented in
this thesis are game-based rather than simulation-based. Many papers in the literature
present OPRF security in the universal composability framework [35] which reflects the
fact that OPRFs are regularly composed with other primitives and are used in highly
concurrent scenarios. We avoided using the UC model for our formalization of KIND-x
due to the inherent requirement in the UC framework for the parties to agree on a session
identifier sid before an instance of the protocol begins. It is of course trivial to agree on
sid either via an additional round of communication or using counters stored at each
party, however both of these options are extremely undesirable in the scenario that we
consider. We consider it valuable future work to define a UC functionality that captures
key acquisition with the same properties as our KIND-x games, with the additional
benefit of composability.

At USENIX ’15, Everspaugh et al. [49] (ECSJR) presented the first definition of
partially-oblivious OPRFs (POPRFs) and a candidate construction using pairings (more
details in Sec. 4.2.3). Their motivating setting was a user engaging in password-based
authentication with some web server, where instead of the web server storing password
hashes, it would interact with ‘a Pythia service’ that hardened the user’s password using
a POPRF and a random per-user value as the OPRF public input t. ECSJR used
one-more unpredictability and one-more pseudorandomness as properties of the POPRF
but do not consider any formal security properties for the use cases that motivated their
paper, whereas in our case we needed to create KIND-x as a security definition that
captures the indistinguishability of the keys used by the user in the eventual application.
An interesting future research topic would be to categorize the security definitions for
(P)OPRFs, to ascertain the ‘correct’ expectations of security. To provide a brief summary
of the difficulties in comparing notions, Tyagi et al. explicitly referred to the ECSJR
one-more pseudorandomness property as “non-standard” and advertise their own notions
as avoiding the need for the ECSJR approach, while ECSJR provide a very brief sketch
(in the ePrint version [50] only) of the difficulty in proving their own POPRF UC secure
(there is no outer hash because they seek key rotation, and this makes a UC proof nigh
on impossible because the simulator can never see the necessary random oracle queries),
followed by an unproven claim that adding an extra outer hash gives a UC-secure VOPRF.

Finally, we remark that our approach defines an OPRF interaction as being two
messages, namely a blinded representation of the password from the user to the server
and then an application of the OPRF secret key to this blinded value in response. It is
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known how to construct (V)OPRFs with post-quantum security in this (round-optimal)
manner [3] (see Sec. 4.6 for more details on existing P- and V-OPRF constructions),
however it is still unclear if efficient constructions are feasible, and such constructions
may not follow the two-message syntax that we use. In the event that relatively efficient
verifiable OPRFs with post-quantum security can be constructed using some other syntax
then firstly this would be a significant breakthrough, and further it would be necessary
to adapt our formalism.
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Chapter 5

Conclusion

In this thesis we have extensively discussed the security of instant messaging, an ubiquitous
communication tool in the modern world. ACD [5] observed that research on secure
messaging protocols routinely only considers settings with a guaranteed in-order delivery of
messages, while most real-world protocols like Signal are actually designed for out-of-order
delivery. We reassessed the model and construction of ACD and argue that there is not
only a mismatch between theory and practice, but there is also a mismatch between what
users intuitively expect and what cryptographers deliver. The intuitive notion of forward
secrecy is not provided: One would expect past sent messages to remain confidential
after an exposure, however academic literature has only focused on confidentiality of
received messages. This is a strange choice, considering it is simultaneously assumed
that the adversary has complete control of all network traffic, and thus could easily
decide not to deliver a message. It has long been dismissed as an unavoidable attack
but we identify that the reason for this is the lack of modelling of physical time, which
is required to express that ciphertexts may time out and expire. Hence we developed
new security models for the out-of-order delivery setting with immediate decryption.
Our model incorporates the concept of physical clocks and implements a maximally
strong corruption model. In Sec. 2.7 we discussed some questions the formal treatment
of Chapter 2 may have raised and elaborated on the thought process behind the design
choices.

A large part of this thesis has focused on securing the content of instant messages.
However, as alluded to earlier, this all feels irrelevant if the contents are subsequently
uploaded to the cloud in plaintext. It is important to recognize that in practice no system
is used in isolation and we have looked at secure backup solutions as a step towards
bridging the gap between theory and practice in the field of instant messaging. We
explored techniques to enable devices to securely outsource storage of data in Chapter 3.
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We identified that in our case, where encryptor and decryptor are the same entity, we
can maintain integrity protection when the key is compromised. We introduced the
ETS primitive and designed a surprisingly efficient provably secure construction of ETS.
Since its design choices were already extensively discussed during its description, we
will not repeat that discussion here. Our ETS construction assumes a random key is
provided. In Chapter 4 we demonstrated how a user can actually generate (and recover)
a cryptographic key to decrypt its backup after losing access to its device. Our solutions
rely on the existence of OPRF servers to convert a human-memorable password into a
single cryptographic secret. In Sec. 4.8 we commented on some of the design choices
made when formalizing our backup solution and we discussed some suggestions for future
research in the area.
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