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DISCUSSION OF: TREELETS—AN ADAPTIVE MULTI-SCALE
BASIS FOR SPARSE UNORDERED DATA

BY FIONN MURTAGH

University of London

The work of Lee et al. is theoretically well founded and thoroughly motivated
by practical data analysis. The algorithm presented has the following important
properties:

1. Hierarchical clustering using a novel, adaptive, eigenvector-related, agglomer-
ative criterion.

2. Principal components analysis carried out locally, leading to the required sam-
ple size for consistency being logarithmic rather than linear; and computational
time being quadratic rather than cubic.

3. Multiresolution transform with interesting characteristics: data-adaptive at each
node of the tree, orthonormal, and the tree decomposition itself is data-adaptive.

4. Integration of all of the following: hierarchical clustering, dimensionality re-
duction, and multiresolution transform.

5. Range of data patterns explored, in particular, block patterns in the covariances,
and “model” or pattern contexts.

While I admire the work of the authors, nonetheless I have a different point of
view on key aspects of this work:

1. The highest dimensionality analyzed seems to be 760 in the Internet advertise-
ments case study. In fact, the quadratic computational time requirements (Sec-
tion 2.1 of Lee et al.) preclude scalability. My approach in Murtagh (2007a) to
wavelet transforming a dendrogram is of linear computational complexity (for
both observations, and attributes) in the multiresolution transform. The hierar-
chical clustering, to begin with, is typically quadratic for the n observations,
and linear in the p attributes. These computational requirements are necessary
for the “small n, large p” problem which motivates this work (Section 1). In
particular, linearity in p is a sine qua non for very high dimensionality data
exploration.
Since L = O(p) in Section 2.1, this cubic time requirement has to be alleviated,
in practice, through limiting L to a user-specified value.

2. The local principal components analysis (Section 2.1) inherently helps with
data normalization, but it only goes some distance. For qualitative, mixed quan-
titative and qualitative, or other forms of messy data, I would use a correspon-
dence analysis to furnish a Euclidean data embedding. This, then, can be the
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basis for classification or discrimination, benefiting from the Euclidean frame-
work. See Murtagh (2005).

3. My final point is in relation to the following (Section 1): “The key property that
allows successful inference and prediction in high-dimensional settings is the
notion of sparsity.” I disagree, in that sparsity of course can be exploited, but
what is far more rewarding is that high dimensions are of particular topology,
and not just data morphology.
This is shown in the work of Hall et al. (2005), Ahn et al. (2007), Donoho and
Tanner (2005) and Breuel (2007), as well as Murtagh (2004). What this leads
to, potentially, is the exploitation of the remarkable simplicity that is concomi-
tant with very high dimensionality: Murtagh (2007b). Applications include text
analysis, in many varied applications, and high frequency financial and other
signal analysis.

In conclusion, I thank the authors for their thought-provoking and motivating
work.
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