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different ambiguity attitudes to manifest themselves in different be-
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erences upon learning independent randomization outcomes.
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1 Introduction

Does the behavior of ambiguity averse agents differ from that of expected util-

ity maximizers? The answer depends on the agents’ dynamic choice behavior.

If agents are dynamically consistent and have access to any randomization

device, then all behavior looks alike - ambiguity attitudes do not matter.

For different ambiguity attitudes to translate to different behavior, some dy-

namic inconsistencies must be assumed. Dynamically inconsistent agents,

however, may prefer to remain ignorant. Faced with this choice, I suggest a

compromise: A dynamically semi-consistent agent is consistent with respect

to signals about the world. He does, however, not update his preference

over acts if he learns the outcome of a randomization device he considers as

independent of these acts.

The Raiffa [32] critique of the Ellsberg paradox illustrates the shortcom-

ings of dynamic consistency. An agent may bet on the color of a ball drawn

from an urn that contains 10 black and yellow balls in unknown proportion.

The bets b and b respectively pay 1 if a black or yellow ball is drawn and

nothing otherwise. The Ellsberg paradox consists in the agent’s strict pref-

erence of a lottery q yielding 1 − ϵ with probability one half and nothing

otherwise. An expected utility maximizer must prefer b or b (or both) to q.

Raiffa [32] argues that even an ambiguity averse agent who prefers b and b

to q should not choose q. Instead, he should condition his choice of b or b

on the toss of a fair coin to ensure a winning probability of one half - no

matter the proportion of black and yellow balls in the urn. Dynamic con-

sistency is crucial: Raiffa’s [32] argument assumes that the agent follows his

ex-ante optimal plan and indeed chooses the bet prescribed by the coin-toss.

Theorem 3 generalizes this observation to a large set of decision problems:

any choice of a dynamically consistent agent (with any ambiguity attitude)

is observationally equivalent to the choice of an expected utility maximizer.

For an agent’s ambiguity aversion to become visible in the Ellsberg para-

dox, the agent’s behavior must be at least somewhat dynamically inconsis-

tent. If the agent’s original preference over b, b, and q, for example, coincides

with the agent’s preference over these bets conditioning on the coin toss, then

he will not follow the plan laid out by Raiffa [32]. Unfettered dynamic in-

2



consistency, however, yields counterintuitive models of learning as forgetting

as illustrated by the following example.

Say an agent may either bet on an event ρ, occurring with probability
3
5
, or its complement λ. If the agent wins he obtains 1, otherwise he gets

nothing. The agent may also choose the above lottery q, which yields 1 − ϵ

with probability one half and nothing otherwise. Ex ante the agent strictly

prefers to bet on ρ. Now use the above urn filled with black and yellow balls

to generate ambiguous signals. The agent receives the signal L if either ρ and

yellow or if λ and black. Otherwise he receives the signal R. Suppose the

agent learns L before his choice. Since the agent does not know the number

of black balls in the urn, he does not know the conditional probability of ρ

given L. Conditionally on the signal L the agent’s belief on ρ is ambiguous.

Being ambiguity averse, the agent may, upon learning L, prefer q to either

of the two bets. The same reasoning applies to the signal R. So if the

agent considers the urn ambiguous enough, he chooses q for either signal. In

this problem, the signals L and R induce the agent to forget information he

already had: the agent goes from the belief that ρ occurs with probability 3
5
,

to a vague idea about this probability for either signal. Since always choosing

q is ex-ante inferior to betting on ρ, the agent is better off ignoring the signals

L and R. Why would this agent pay any attention to the signals, given that

they lead him to make worse choices?

The notion of dynamic semi-consistency addresses the issues illustrated

above examples by retaining enough consistency for informative signals to

be valuable while permitting enough inconsistency for ambiguity attitudes

to matter.

The two examples revolve around two - orthogonal - types of uncertainty:

randomization outcomes (coin-toss) and signals about the underlying state

(L or R). My notion of dynamic semi-consistency distinguishes between these

two sources of uncertainty. While I impose dynamic consistency with respect

to signals a different normative criterion, namely independence, governs con-

ditional preferences given randomization outcomes. For a Bayesian agent the

two principles generate the same conditional preferences: for any outcome

of an (independent) randomization device the agent’s prior and posterior on

payoff relevant events coincide. The Ellsberg example demonstrates that -
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without the assumption of Bayesianism - the two principles may clash. Dy-

namic consistency requires that the agent who sets out the ex-ante optimal

plan to bet on black if heads and to bet on yellow if tails updates his pref-

erences so that betting on black and yellow are respectively best if the coin

comes up heads or tails - contradicting the independence of the coin.

Now consider the choice of a semi-consistent agent in the Ellsberg para-

dox, assuming that he ex-ante prefers the lottery q to betting on black or

yellow. Since the coin is independent of the color composition of the urn,

such an agent does not update his preference over the bets and q upon learn-

ing the outcome of the coin-toss. So the agent knows that he won’t follow

through with the ex-ante optimal plan to bet on black if heads and to bet

on yellow otherwise. As the agent prefers q to the bets whether the coin

comes up heads or not, he has to resign himself to choose q in either case.

The ambiguity aversion of a semi-consistent agent is, in sum, visible in the

Ellsberg example. Semi-consistency is, at the same time, restrictive enough

to rule out the pathological second example. Being dynamically consistent

with respect to signals, a semi-consistent agent will not choose the ex-ante

inferior option q for every signal.

I first show that the model of choice sets as sets of lotteries over all

actions implicitly makes an assumption of dynamic consistency. If one only

assumes dynamic semi-consistency agents only choose from the subset of

lotteries over optimal actions (Theorem 1). I show next that a (weakly)

ambiguity averse agent who is fully dynamically consistent and considers

randomization devices independent in the sense that he does not update

his preference upon learning independent randomization events is Bayesian

(Theorem 2). The latter result implies that any model of strictly ambiguity

averse agents must either drop the assumption of full dynamic consistency or

of independent randomization devices. Faced with this dilemma, I extend the

Raiffa [32] critique to a much larger set of problems allowing for informational

signals to show that any dynamically consistent choice can be explained

as a Bayesian choice (Theorem 3). This observational equivalence holds in

the comprehensive class of uncertainty averse preferences characterized by

Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [6] which of course

contains Gilboa and Schmeidler’s [15] maxmin expected utilites as well as
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Klibanoff, Mariniacci and Mukerji’s [25] smooth model.

Dynamic semi-consistency then assumes a - small and systematic - re-

laxation of dynamic consistency. Semi-consistent agents do not update their

preferences upon learning the outcome of independent randomization devices

but are dynamically consistent with respect to all other events. The Ells-

berg paradox demonstrates that the behavior of semi-consistent ambiguity

averse agent may differ from that of Bayesians: No Bayesian would choose q

for both sides of coin. But what about models where ambiguity only enters

via the agent’s information, such as the second example above? Theorem

4 shows that, even in this case, the dynamically semi-consistent behavior of

ambiguity averse and neutral agents may differ. Theorem 4 is couched within

the most well-studied model of ambiguity aversion: preferences not only have

a maxmin expected utility representation following Gilboa and Schmeidler

[15], following Epstein and Schneider [13], the agent’s information is modeled

such that dynamic consistency and consequentialism do not conflict.

2 Decision Problems

There is a finite set of outcomes X, and ∆X is the set of all lotteries over

outcomes.1 There is a state space Ω endowed with a σ-algebra Σ. Ex ante

preferences are defined over Σ-measurable Anscombe-Aumann acts F : Ω →
∆X mapping states to lotteries over outcomes. An expected utility u :

∆X → R represents the agent’s preference over constant acts which map

each state ω ∈ Ω to the same lottery in ∆X. The agent’s preference over

all Σ-measurable acts F : Ω → ∆X is represented by this utility u and a

complete and transitive ranking ≿ on utility valued acts, so that one act F

1For any finite set S, ∆S denotes the set of all lotteries on S.
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is weakly preferred to another act F ′ if u ◦ F ≿ u ◦ F ′.2

To save on notation, decision problems are defined in terms of utility

valued Σ-measurable acts f : Ω → R with f : = u◦F for some Σ-measurable

F : Ω → ∆X. The preference ≿ is monotonic in the sense that an act f

is strictly preferred to a different act f ′ if f yields a higher utility than f ′

in every state, formally f(ω) > f ′(ω) for all ω ∈ Ω implies f ≻ f ′. If f is

constant on some event E, then f(E) denotes f(ω) with ω ∈ E. For any two

Σ-measurable acts f and f ′ and any α ∈ (0, 1) define the convex combination

αf + (1 − α)f ′ so that (αf + (1 − α)f ′)(ω) = αf(ω) + (1 − α)f ′(ω) for all

ω ∈ Ω. There exist x, x′ ∈ X such that u(x) ̸= u(x′).

Fix a σ-algebra Σ′ ⊂ Σ and say ≿′ is the restriction of ≿ to the set

of Σ′-measurable acts. The agent is Bayesian with respect to Σ′ if ≿′

has an expected utility representation U(f) =
∫
ω∈Ω f(ω)dπ′(ω) with some

Σ′-measurable prior π′. Anscombe and Aumann [1] show that such an ex-

pected utility representation exists if and only if ≿′ is continuous and satisfies

independence axiom. The preference ≿′ satisfies independence axiom if

f ∼′ f ′ implies αf + (1− α)f ′ ∼′ f for any two Σ′-measurable acts f and f ′

and any α ∈ (0, 1). The preference ≿′ is continuous if for all Σ′-measurable

acts f , f ′, and f ′′ with f ≻′ f ′ ≻′ f ′′ there exist numbers α, α′ ∈ (0, 1) such

that αf + (1 − α)f ′′ ≻′ f ′ ≻′ α′f + (1 − α′)f ′′. If the independence axiom

is not assumed to hold for ≿′, then Σ′ is ambiguous. If f ∼′ f ′ implies

αf + (1 − α)f ′ ≿′ f for all Σ′-measurable acts f, f ′ and all α ∈ (0, 1) then

≿′ is (weakly) ambiguity averse. A (weakly) ambiguity averse preference

≿′ is strictly ambiguity averse if there exist two Σ′-measurable acts f, f ′

and an α ∈ (0, 1) such that f ∼′ f ′ as well as αf + (1− α)f ′ ≻′ f .3

2A preference R on acts F : Ω → ∆X can represented via such a ≿ on utility valued

acts if R is complete, transitive, monotonic, risk independent, and risk continuous. The

preference R is monotonic if F (ω)RF ′(ω) for all ω ∈ Ω implies FRF ′ for any F, F ′ : Ω →
∆X. It is risk independent if pRq implies αp + (1 − α)rRαq + (1 − α)r for all α ∈ (0, 1)

and all constant acts p, q, r ∈ ∆X. It is risk continuous if for any sequences (pn)
∞
n=1 and

(qn)
∞
n=1 of constant acts in ∆X with lim pn = p and lim qn = q and pnRqn for all n we have

pRq. The restriction of the transitive, complete, risk independent and risk continuous R

to constant acts ∆X has by the von-Neumann-Morgenstern Theorem an expected utility

representation u : ∆X → R. Since R is monotonic there exists a preference ≿ on the set

of all utility valued acts such that FRF ′ holds if and only if u ◦ F ≿ u ◦ F ′.
3Weakly but not strictly ambiguity averse preferences satisfy the independence axiom.
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To distinguish randomization events I assume that each event in Σ can

be represented as the intersection of a randomization event and a “normal”

event. So we have Σ: = Σr ∩P where the σ-algebra Σr models a universal

randomization device and the finite algebra P models all other events.

The intersection of the two algebras Σr ∩P is defined as the set of all events

E∩E ′ for E ∈ Σr and E ′ ∈ P .4 The agent is Bayesian with respect to Σr with

prior πr. The agent is indifferent between using the universal device Σr and

objective randomization. To capture this indifference say that Σr is weakly

independent of P , in the sense that f ∼
∑m

i=1 π
r(Ei)fi holds for any finite

set of P-measurable acts {f1, · · · , fm} and partition {E1, · · · , Em} ⊂ Σr of

Ω and act f with f(ω) = fi(ω) if ω ∈ Ei for all ω ∈ Ω.5 If the agent is

Bayesian then Σr is weakly independent of P if and only if the two algebras

are stochastically independent.

The agent gets to choose an action a from a finite set of actions A. Dif-

ferent choices a ∈ A induce different (utility valued) acts g(a, ·) : Ω → R
that are measurable with respect to an algebra of payoff relevant events

R ⊂ P . The agent may condition his choice of an action a on outcomes of

the universal randomization device and on his signals, described by an infor-

mation algebra Q ⊂ P . The partitions QP and RP generate the algebras

Q and R. A priori, the agent does not rule out any signal θ ∈ QP , in the

sense that he strictly ranks any two Q-measurable acts f, f ′ : Ω → R with

f(θ∗) ̸= f ′(θ∗) for some θ∗ ∈ QP and f(θ) = f ′(θ) otherwise.6 If the agent is

Bayesian with respect to Q, then the preceding condition holds if and only

if the agent assigns positive probability to each event θ in the information

partition QP .

A choice problem is summarized by (≿,Q, g) the agent’s preference ≿
over Σ-measurable (utility-valued) acts, the information partition Q, and

the function g which maps the agents actions and all states to utilities. If

the agent is Bayesian with respect to Σ then the decision problem (π,Q, g) is

Bayesian where π is the Σ-measurable prior on Ω that represents ≿. The

4Alternatively one could define the state space as a space of two component vectors:

Ω: = Ωr × P with E ⊂ Ωr and E′ ⊂ P denoting randomization and other events.
5Weak independence also entails (a form of) continuity: the agent is indifferent between

any two acts f and f ′ that only differ on some event E ∈ Σr with πr(E) = 0.
6As f and f ′ are utility-valued, they yield different utilities in the event θ if f(θ) ̸= f ′(θ).
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agent’s preference has a maxmin expected utility (MMEU) representation

following Gilboa and Schmeidler [15] if there exists a convex and compact

set C of Σ-measurable priors π on Ω, such that ≿ is represented by U(f) =

minπ∈C
∑

ω∈Ω f(ω)π(ω). Since ≿ is a preference over utility valued acts any

MMEU preference is defined by a set of beliefs C. An agent with a MMEU

preference is Bayesian if C is a singleton, otherwise the agent is strictly

ambiguity averse.7

In the problem (≿,Q, g) the agent chooses a Σr ∩ Q-measurable plan

p : Ω → A, which specifies an action for each event the agent may observe.

If the plan a is measurable with respect to the agent’s information algebra

Q, then it is as pure plan and A is the set of all such pure plans. For any

plan p : Ω → A, define Ap as the set pure plans sometimes chosen by p, so

formally Ap consists of all pure plans a such that p(ω) = a(ω) for all ω ∈ E

for some non-empty E ∈ Σr. Any plan p : Ω → A can then be represented as

a partition {Ep(a)}a∈Ap ⊂ Σr of Ω where for all a ∈ Ap we have p(·) = a(·)
on Ep(a). We can interpret {Ep(a)}a∈Ap as a particular randomization device

that generates the plan p by choosing the pure plan a in the randomization

event Ep(a).

Any such plan p induces a Σ-measurable act g(p(·), ·) : Ω → R. Due

to the assumption that the universal randomization device Σr is weakly in-

dependent of P , the agent is indifferent between a plan p and a lottery

over pure plans p ∈ ∆A if both choose any given pure plan with the same

probability. Expressed formally, we have g(p(·), ·) ∼
∑

a∈A p(a)g(a(·), ·) if

p(a) = πr(Ep(a)) holds for all a ∈ A. The randomization device Σr is rich

in the sense that for any lottery p ∈ ∆A with A∗ : = {a : p(a) > 0)} there

exists a partition {E(a)}a∈A∗ ⊂ Σr of Ω with πr(E(a)) = p(a) for all a ∈ A∗.

To skirt the issue of conditional preferences given null events, I assume

that any pure plan a is either adopted with positive probability or never, so

7For a MMEU with set of beliefs C, the above assumption on the possibility of every

signal translates to 0 < π(θ) for all π ∈ C and all θ ∈ QP .
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the agent’s choice set is8

P (A) : = {p : πr(Ep(a)) > 0 for all a ∈ Ap}.

For any set of pure plans A′ ⊂ A, the set P (A′) is the set of all plans

p ∈ P (A) with Ap ⊂ A′.

3 Two Examples

To formalize the two examples in the introduction say X : = {0, 1− ϵ, 1} is

the set of outcomes and u(x) = x for all x, so that the utility of the lottery

where the agent wins 1 − ϵ with probability 1
2
is u(q) = 1−ϵ

2
. The events

heads H and tails T are randomization events, so H,T ∈ Σr. Since the coin

is fair we have πr(H) = πr(T ) = 1
2
. Conversely, P contains the events ρ and

λ as well as the events that a black or yellow ball is drawn, denoted by β

and β. The bets on black, yellow, ρ and λ are respectively denoted b, b, r,

and l. If the agent chooses the action b then he gets g(b, ω) = 1 if ω ∈ β

and g(b, ω) = 0 otherwise. The acts induced by the three other bets g(a, ·)
for a ∈ {b, r, l} similarly yield 1 in the respective winning events β, ρ, and λ

and nothing otherwise. The choice q, in contrast, yields a constant expected

utility g(q, ω) = 1−ϵ
2

for all ω ∈ Ω. In the first example the action set is

{b, b, q} and the partition of payoff relevant events is {β, β}. In the second

example {ρ, λ} is the partition of payoff relevant events while {L,R} with

L : = (ρ∩ β)∪ (λ∩ β) and R : = Ω \L is the agent’s information partition.

The action set in the second example is {l, r, q}.
In the example of the Ellsberg paradox, the agent does not receive any

signals, so his set of actions {b, b, q} is also his set of pure plans. The ran-

domization device is rich enough to generate any lottery over {b, b, q}. The

agent can for example throw a coin and plan to bet on black if heads and

to bet on yellow if tails. This plan can be represented as p : Ω → A with

p(ω) = b if ω ∈ H and p(ω) = b if ω /∈ H. Since Σr is weakly independent

8Given that Σr is rich and weakly independent, this restriction is without loss of gen-

erality in the sense that for any plan p /∈ P (A) there exists a p′ ∈ P (A) such that

g(p(·), ·) ∼ g(p′(·), ·) and πr(Ep(a)) = πr(Ep′
)(a) for all a ∈ A.
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of P and since πr(H) = 1
2
, the agent is indifferent between g(p(·), ·) and the

objective randomization 1
2
g(b, ·) + 1

2
g(b, ·) over the two bets.

In the second example the agent has the non-trivial information partition

QP = {L,R}. We therefore have to consider more complex pure plans, such

as the plan a : Ω → {r, l, q} with a(ω) = r if ω ∈ R and a(ω) = l otherwise.

According to this plan a the agent bets on ρ if he learns the signal R and

bets on λ if he learns L. Since there are two signals and three actions (r,

l, and q), there are nine different pure plans. The randomization device Σr

contains partitions to generate any lottery over these nine pure plans. The

agent can, for example, set out a plan p where he chooses each pure plan a

in some event Ep(a) that occurs exactly with probability one ninth.

The next section defines dynamically semi-consistent conditional prefer-

ences. Semi-consistency requires that preferences over P measurable acts do

not change upon learning independent randomization outcomes. In terms

of the above example this assumption yields that the agent in the Ellsberg

paradox who prefers g(q, ·) to g(b, ·) continues to hold this preference upon

learning any randomization outcome, in particular H or T . Semi-consistency

also requires that the agent is dynamically consistent with respect to informa-

tive signals. Given that L and R in the second example are such informative

signals, this assumption entails that the agent who adopts an ex ante op-

timal plan a specifying actions a(L) and a(R) for the signals L and R will

follow through with these actions upon learning his signal. Theorem 1 then

shows that the choice set of a semi-consistent agent can be modelled as the

set of lotteries over all his ex ante optimal pure plans. Given that choosing q

the unique ex ante optimal pure plan for the agent in the Ellsberg paradox,

Theorem 1 yields that a semi-consistent agent must set out of choose q in

the Ellsberg paradox.

4 Conditional Preferences and Optimal Plans

Fix a choice problem (≿,Q, g) and say that p ∈ P (A) is the plan adopted

by the agent. Upon learning events in Σ the agent forms conditional prefer-

ences. For any preference ≿, plan p, and event E∩θ with E ∈ Σr, πr(E) ̸= ∅
and θ ∈ QP define a conditional preference ≿p

E∩θ. This definition has
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two non-standard aspects. The present conditional preferences are not con-

sequentialist as they may depend on the agent’s plan p (as well as on

the fixed decision problem). Conditional preferences are moreover not spec-

ified for all (non-null) events but only for non-null randomization events,

signals and their intersections. These relaxations allow for dynamic consis-

tency. Machina [30], McClennen [31], Epstein and Le Breton [10] and Ghi-

rardato [14] showed that dynamic consistency implies ambiguity neutrality if

consequentialist conditional preferences are defined for all (non-null) events.

Conversely, dynamic consistency is compatible with a variety of ambiguity

attitudes if conditional preferences are only defined for a select set of events

and/or depend on ex-ante plans.9

The agent is a consistent planner in the sense of Siniscalchi [35]: he

only adopts plans that he sticks with. For the agent to stick with a plan p

this plan must for each signal and randomization event prescribe an action

that is optimal upon learning both. The set of all such plans is

P ∗ : = {p ∈ P (A) : g(a(θ), ·) ≿p
Ep(a)∩θ g(a, ·) for all a ∈ A, a ∈ Ap, θ ∈ QP}.

Assuming that the agent does not simultaneously learn signals and ran-

domization outcomes, the chosen plan p must also satisfy a condition of

interim optimality. Upon learning only his signal or the randomization event

the plan pmust be best among all plans that he will ultimately follow through

with. If the agent learns his signal first, the plan p ∈ P ∗ is interim optimal

if g(p(·), ·) ≿p
θ g(p(·), ·) for all p ∈ P ∗ and all θ ∈ QP . If the agent learns

in the inverse order then p ∈ P ∗ must prescribe optimal pure plans once all

randomization uncertainty has resolved. So g(a(·), ·) ≿p
Ep(a) g(a

′(·), ·) must

hold for all chosen pure plans a ∈ Ap and alternative pure plans a′.

9All upcoming results hold if one permits only one of these two paths out of the dilemma

of dynamic consistency. We can either follow the beautiful arguments Hill [20] and assume

that there exist consequentialist dynamically consistent preferences for select set of events

or we can assume that dynamically consistent preferences depend on ex-ante plans. For

the case of MMEU representations Epstein and Schneider [13] developed the theory of

consequentialist consistent updating for specific sets of events. Conversely, Hanany and

Klibanoff [17] define consistent conditional preferences by letting conditional preferences

≿p
E not only depend on conditioning events E but also on ex-ante choices p. For an ax-

iomatic approach to updating ambiguity averse preferences that does not impose dynamic

consistency see Gilboa and Schmeidler [16].
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A ≿-best plan among all plans that the agent will follow through upon

learning signals and randomization outcomes (in any order) is an optimal

plan.

The agent is (dynamically) consistent if he follows through with any

ex-ante optimal plan. Formally the agent is consistent if

g(p(·), ·) ≿ g(p(·), ·) for all p ∈ P (A) ⇔
g(p(·), ·) ≿p

θ g(p(·), ·) for all p ∈ P (A) and all θ ∈ QP ⇔
g(a(θ), ·) ≿p

Ep(a)∩θ g(a, ·) for all a ∈ A, a ∈ Ap, θ ∈ QP ⇔

g(a(·), ·) ≿p
Ep(a) g(a

′(·), ·) for all a ∈ Ap and a′ ∈ Ap.

A semi-consistent agent is dynamically consistent with respect to sig-

nals and considers the randomization device to be strongly independent. The

randomization device Σr is strongly independent of P if the agent does

not update his preference over P-measurable acts upon learning any ran-

domization event - no matter which plan he adopted ex ante. Formally, the

agent considers the randomization device strongly independent if for any P-

measurable acts f and f ′, ex-ante plan p ∈ P (A), θ ∈ QP , and E ∈ Σr with

πr(E) > 0

f ≿ f ′ ⇔ f ≿p
E f ′ and f ≿p

θ f
′ ⇔ f ≿p

E∩θ f
′.

The agent is consistent with respect to signals if for any ex-ante plan p ∈ P ∗,

a ∈ Ap, and E ∈ Σr with πr(E) > 0

g(p(·), ·) ≿ g(p(·), ·) for all p ∈ P ∗ ⇔
g(p(·), ·) ≿p

θ g(p(·), ·) for all p ∈ P ∗, θ ∈ QP

and

g(a(·), ·) ≿ g(a′(·), ·) for all a′ ∈ A ⇔
g(a(θ), ·) ≿p

θ g(a, ·) for all a ∈ A, θ ∈ QP .

Theorem 1 shows that it is without loss of generality to represent the

agent’s choice set as a set of objective lotteries over a set of pure plans.

Whether the agent is consistent or semi-consistent there exists a set of pure

plans A such that the agent is indifferent between his optimal plan in P (A)

12



and the ≿-best lottery in ∆A. For consistent agents ∆A equals the set of

all possible objective lotteries ∆A; for a semi-consistent A equals the set of

all optimal pure plans A∗ : = {a∗ ∈ A : g(a∗(·)) ≿ g(a(·)) for all a ∈ A}.

Theorem 1 Fix a decision problem (≿,Q, g).

a) A plan is optimal for a consistent agent if and only if it is indifferent

to the ≿-best lottery in ∆A.

b) A plan is optimal for a semi-consistent agent if and only if it is indif-

ferent to the ≿-best lottery in ∆A∗.

Proof Say pc and ps are optimal plans for a consistent or respectively semi-

consistent agent. I first show that pc and ps are ≿-best plans in P (A) and

P (A∗). I then show that any ≿-best plan in P (A) and P (A∗) is indifferent

to a ≿-best lottery in ∆A and ∆A∗.

Since consistent agents follow through with any ex-ante optimal plan, any

≿-best plan pc in P (A) is an optimal plan for a consistent agent.

To see that any ≿-best plan ps in P (A∗) is an optimal plan for a semi-

consistent agent, use first the strong independence of Σr and then the agent’s

consistency with respect to signals to see that, for a semi-consistent agent,

P ∗ equals P (A∗):

P ∗ = {p ∈ P (A) : g(a(θ), ·) ≿p
Ep(a)∩θ g(a, ·) for all a ∈ A, a ∈ Ap, θ ∈ QP} =

{p ∈ P (A) : g(a(θ), ·) ≿p
θ g(a, ·) for all a ∈ A, a ∈ Ap, θ ∈ QP} =

{p ∈ P (A) : g(a(·), ·) ≿ g(a′(·), ·) for all a′ ∈ A, a ∈ Ap} = P (A∗).

Since the agent is a consistent planner, P ∗ must contain all optimal plans

of the agent. To see that any≿-best plan ps in P (A∗) = P ∗ is an optimal plan

for a semi-consistent agent, we have to show that any such plan ps respects

the two conditions of interim optimality. Considering the case that the agent

first learns randomization outcomes, fix an outcome E of the randomization

device used to generate the plan ps, so that there exists a plan a ∈ Aps with

E = Eps(a), E ∈ Σr, and πr(E) > 0. Since ps ∈ P (A∗) and a ∈ Aps ,

g(a(·), ·) ≿ g(a′(·), ·) holds for all a′ ∈ A. Since Σr is strongly independent

and since πr(E) > 0, g(a(·), ·) ≿ps

E g(a′(·), ·) holds for all a′ ∈ A. The

plan ps consequently satisfies the condition of interim optimality if the agent
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first learns the randomization outcome. The agent’s dynamic consistency

with respect to signals implies that g(ps(·), ·) ≿ps

θ g(p(·), ·) holds for all p ∈
P ∗, θ ∈ QP , so that ps also satisfies the condition for interim optimality if

the agent first learns his signal.

Since a plan pc (ps) is optimal for a consistent (semi-consistent) agent if

and only if it is a ≿-best plan in P (A) (P (A∗)), it now suffices to show that

the agent is, for any non-empty set of pure plans A, indifferent between the

best lotteries and plans in ∆A and P (A). So fix any ∅ ≠ A ⊂ A, ≿-best

lottery p ∈ ∆A and ≿-best plan p ∈ P (A). Since Σr is rich there exists a

partition
(
Ep′(a)

)
a∈A′ of Σ

r such that πr(Ep′(a)) = p(a) for all a ∈ A′ : = {a |
p(a) > 0}. Since Σr is weakly independent the agent is indifferent between

the plan p′ ∈ P (A) generated by the randomization device
(
Ep′(a)

)
a∈A′ and

the lottery and p. The weak independence of Σr also implies that the agent

is indifferent between the plan p and the lottery p′ ∈ ∆(A) with p′(a) =

πr(Ep(a)) for all a ∈ Ap.

We in sum obtain

g(p(·), ·) ≿ g(p′(·), ·) ∼
∑
a∈A

p(a)g(a(·), ·) ≿
∑
a∈A

p′(a)g(a(·), ·) ∼ g(p(·), ·)

so that p and p are indeed indifferent. □

Theorem 1 shows that modelling the agent’s choice set as ∆A is not

without loss of generality. The assumption that the agent may choose any

lottery over actions upon learning his type hides an assumption of dynamic

consistency. The model of the agent’s randomization device as an explicit

algebra excavates this assumption. Part b) of Theorem 1 shows that the

choice set of a semi-consistent agent is a subset of ∆A that depends on

the agent’s preference over pure acts A. In contrast, part a) shows that

modelling the agent’s choice set as ∆A is without loss of generality if the

agent is consistent. Theorem 1 applies whether the agent learns his signal

before or after he learns the outcome of the randomization device. In the

sequel I assume that the sets of lotteries ∆A and ∆A∗ respectively are the

choice sets of consistent and semi-consistent agents. Dropping the explicitly

modeled randomization devices, call the ≿-best lottery in ∆A ( ∆A∗) the

optimal choice or a consistent (semi-consistent) agent.
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5 Bayesian agents

The Ellsberg Paradox shows that dynamic consistency may clash with strong

independence. The present section firstly shows that this conflict never arises

for Bayesian agents. Theorem 2 then shows that the converse also holds: Any

dynamically consistent agent with access to a strongly independent universal

randomization device must be Bayesian.

To understand the relation between dynamic consistency and strong in-

dependence for Baysians, consider a Bayesian agent with prior π. For this

agent the universal randomization device Σr is weakly independent of all

other events P if and only if π(E ∩ E ′) equals π(E)π(E ′) for all E ∈ Σr,

E ′ ∈ P . So weak independence reduces to standard stochastic indepen-

dence in the Bayesian case. The same holds for strong independence as the

Bayesian’s preference over P-measurable acts do not change with learning

any (non-null) event E ∈ Σr, if and only if π(E ′) = π(E ′ | E) holds for all

E ′ ∈ P .10 Since for all E ′ ∈ P and all non-null E ∈ Σr π(E ′ | E) = π(E ′)

holds if and and only if π(E ∩ E ′) = π(E)π(E ′), a Bayesian agent is con-

sistent if and only if he is semi-consistent. In the Bayesian case dynamic

consistency and strong independence then prescribe the same conditional

preferences for randomization events: While Bayesian updating defines con-

sistent conditional preferences, the weak-independence of Σr from P implies

their independence according to the agent’s prior π.

Theorem 2 shows that Baysian agents are the only dynamically consistent

and ambiguity averse agents who consider Σr strongly independent. So any

dynamically consistent agent with an ambiguity averse preference≿ considers

Σr to be strongly independent of P if and only if he is Bayesian.

Theorem 2 Say a dynamically consistent agent has an ambiguity averse

preference ≿. If this agent considers the randomization device Σr strongly

independent of P, then ≿ satisfies the independence axiom.

Proof Suppose the agent’s choices in some problem (≿,Q, g) violate the

10While strong and weak independence both reduce to the standard independence con-

dition if the agent is a Bayesian, neither one implies the other without the assumption of

ambiguity neutrality.
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independence axiom. In particular, suppose that p∗ ∈ ∆A is an optimal

choice in (≿,Q, g) for the agent, even though some a∗ ∈ A with p∗(a∗) > 0

is not. Say the agent strictly prefers the pure plan ã to a∗, so g(ã(·), ·) ≻
g(a∗(·), ·).

Define a Σr ∩ Q measurable plan p∗ : Ω → A such that πr(Ep∗(a)) =

p∗(a) for all pure plans a ∈ A. By Theorem 1 p∗ is an optimal plan for

the (consistent) agent. It must in particular be at least as good as the

pure plan ã, so g(p∗(·), ·) ≿ g(ã(·), ·). The consistency of the agent then

implies g(p∗(·), ·) ≿p∗

Ep∗ (a∗)
g(ã(·), ·). Since p∗ restricted to Ep∗(a∗) equals

a∗ we then have g(a∗(·), ·) ≿p∗

Ep∗ (a∗)
g(ã(·), ·). Since the agent considers the

randomization device Σr to be strongly independent of P , we then obtain

the contradiction g(a∗(·), ·) ≿ g(ã(·), ·). □

The trade off between independence and dynamic consistency described

in Theorem 2 is reminiscent to the trade off between symmetry and dynamic

consistency described in Epstein and Seo [11] and [12]. They show that a

dynamically consistent agent, who considers a series of random experiments

to be symmetric, must be ambiguity neutral. While Epstein and Seo [11]

and [12] suggest various compromises between symmetry and dynamic con-

sistency to allow for ambiguity aversion, I here suggest to curtail dynamic

consistency just enough to allow for ambiguity aversion and independent

randomization to co-exist.

6 Consistency: Observational Equivalence

Theorem 2 implies that we cannot simultaneously assume dynamic consis-

tency, a strongly independent randomization device, and (strict) ambiguity

aversion. To make room for ambiguity aversion, we can either weaken dy-

namic consistency or accept that agents change their preferences upon learn-

ing independent events. If we follow the second path out of this dilemma, dif-

ferent ambiguity attitudes do not manifest themselves in the agents’ choices:

Theorem 3 shows that any choice of a consistent agent can be rationalized

as the choice of a Bayesian agent. To state Theorem 3 say the Bayesian

version of a decision problem replaces the preference ≿ over utility valued
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acts with an expected utility representation π, keeping all else equal.

Theorem 3 Fix a choice problem (≿,Q, g). If p∗ ∈ ∆A is an optimal choice

for a consistent agent, then p∗ is an optimal choice in a Bayesian version of

the problem.

Proof Since the partitions of information and of payoff relevant events,

QP and RP , are both finite we can represent any act
∑

a∈A p(a)g(a(·), ·) as
a vector(∑

a∈A

p(a)g
(
a(θ), σ

))
θ∈QP ,σ∈RP

∈ Rm with m : =| QP | × | RP | .

The convex (and compact) hull of all such vectors C : = {
∑

a∈A p(a)g(a(·), ·) :
p ∈ ∆A} represents the set of all lotteries ∆A.

Let f ∗ : =
∑

a∈A p∗(a)g(a(·), ·). Since the agent is dynamically consistent

p∗ is the ≿-best lottery in ∆A, so f ∗ represents the ≿-best act in C. The

set11 {f ∈ Rm : f ≫ f ∗} is convex and has f ∗ is on its boundary. The

monotonicity of ≿ implies that {f ∈ Rm : f ≫ f ∗} is disjoint from C. Since
f ∗ is also on the boundary of C there exists a separating hyperplane H : =

{f ∈ Rm : fπ = f ∗π} with f ′π ≤ f ∗π < fπ for all f ′ ∈ C and all f ≫ f ∗.

Since H ∩{f ∈ Rm : f ≫ f ∗} = ∅, π(θ∩σ) ≥ 0 holds for all θ ∈ QP , σ ∈ RP

and π(θ̃ ∩ σ̃) > 0 for some θ̃ ∩ σ̃ ∈ QP ∩RP . So π can be normalized to be a

Q∩R-measurable probability. A Bayesian with prior π assigns the expected

utility f ∗π to the utility valued act f ∈ C and is maxmizing his expected

utility by choosing p∗.

□

Theorem 3 extends Raiffa’s [32] critique of the Ellsberg paradox to gen-

eral choice problems with learning: No outside observer is able to discern

the ambiguity attitudes of consistent agents. The separating hyperplane ar-

gument in the proof of Theorem 3 is, of course, not new. Most recently

Kuzmics [26] applied it to a wide range of decision problems involving am-

biguity. Kuzmics [26] reviews the long pedigree of the argument. Other

11The notation f ≫ f ′ stands for f(ω) > f ′(ω) for all ω ∈ Ω.
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responses to the Raiffa’s [32] critique can be found in the representations by

Seo [36], Saito [34] and Ke and Zhan [21]. While Seo’s [36] represenation as-

sumes that randomization need not provide hedging, Saito [34] parameterizes

the degree to which hedging is valuable. Ke and Zhang [21] let the value of

hedging depend on the agents “subjective timing” of his own randomization

and nature’s move.

7 Semi-Consistency: Observational Difference

The introductory discussion of the Ellsberg paradox shows that semi-consistent

and consistent agents behave differently. Theorem 4 shows that such be-

havioral differences may arise even in the simplest models with informative

signals. Following the second example in the introduction, Theorem 4 consid-

ers the case where ambiguity only enters via the agent’s informative signals.

Theorem 4 furthermore assumes preferences with a MMEU-representation,

that permit consistent consequentialist conditional preferences for all signals

in the information partition QP .

Theorem 4 Fix a decision problem (≿,Q, g), such that ≿ has a MMEU-

representation, ambiguity enters only via the agent’s information partition

QP and such that there exists a set of consequentialist and consistent con-

ditional preferences for all signals in the information partition QP . Then

the set of optimal choices of a semi-consistent agent in the decision problem

(≿,Q, g) may be disjoint from the set of optimal choices in any Bayesian

version (π,Q, g) of (≿,Q, g).

Proof Define (≿,Q, g) such that RP = {ρ, λ} is the partition of payoff

relevant events, QP = {L,M,R} is the information partition and A : =

{l,m, r} the set of actions. Say ≿ has a MMEU-representation with the set

of beliefs C∗ which assigns probability 1
2
to the two payoff relevant events

λ and ρ. So π(λ) = π(ρ) = 1
2
holds for each π ∈ C∗ and the agent is an

expected utility maximizer with respect to the partition of payoff relevant

events. Furthermore assume that
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C∗ : =
{
π : π(λ ∩ L) = .5− α, π(λ ∩M) = α,

π(ρ ∩M) = .3− α, π(ρ ∩R) = .2 + α, α ∈ [.1, .2]
}
.

The following two tables illustrate the agent’s MMEU. The first table lists

π(θ ∩ σ) for all (θ, σ) ∈ {L,M,R} × {ρ, λ} parametrized by α ∈ [.1, .2]. The

second table lists the agent’s utility g(a, σ) for all (a, σ) ∈ {l,m, r} × {λ, ρ}.

L M R

λ .5− α α 0

ρ 0 .3− α .2 + α

the set of priors C∗

l m r

λ 21 10 0

ρ 0 10 21

utilities g(a, σ)

To see that the decision problem permits a set of consequentialist con-

sistent conditional preferences for all signals, we need some further defini-

tions. For any set of beliefs C, say C |Q : = {π |Q : π ∈ C} is the set

of all of Q-marginals π |Q of all priors in C and (for each θ ∈ QP ) say

C(· | θ) : = {π(· | θ) : π ∈ C} is the set of θ-updates π(· | θ) for all π ∈ C.

Epstein and Schneider [13] showed that any MMEU decision problem per-

mits a set of consequentialist consistent conditional preferences {≿θ}θ∈QP if

the set of beliefs C is rectangular with respect to QP in the sense that

C =
{
π : π(· | θ) ∈ C(· | θ) for all θ ∈ QP and π |Q∈ C |Q

}
To see that the present set of beliefs C∗ is rectangular note that it can be

represented as{
π : π(· | θ) ∈ C∗(· | θ) for all θ ∈ QP and π |Q∈ C∗ |Q

}
with

C∗(λ | L) = {1}, C∗(λ | M) =
[1
3
,
2

3

]
, and C∗(λ | R) = {0}

C∗ |Q=
{(

π(L), π(M), π(R)
)
=

(
.5− α, .3, .2 + α

)
: α ∈ [.1, .2]

}
.

Since C∗(λ | L) = {1} and C∗(λ | R) = {0} the agent knows whether ρ

or λ holds if he obtains signal L or R. If the agent receives the signal L or R
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he is then best off by respectively choosing l and r. The following calculation

shows that m is the agent’s unique best choice when he receives the signal

M .

max
a∈A

min
π∈C∗

∑
θ∈QP ,σ∈RP

π(θ ∩ σ)g(a(θ), σ) =

max
a(M)∈A

min
α∈[.1,.2]

(
(.5− α)g(l, λ) + αg

(
a(M), λ

)
+

(.3− α)g
(
a(M), ρ

)
+ (.2 + α)g(r, ρ)

)
=

.7× 21 + .3
(

max
a(M)∈A

min
γ∈[ 1

3
, 2
3
]
(γg

(
a(M), λ

)
+ (1− γ)g

(
a(M), ρ

))
=

.7× 21 + .3
(

min
γ∈[ 1

3
, 2
3
]
(γg(m,λ) + (1− γ)g(m, ρ)

)
.

The first equality follows from the definition of C∗ and the optimality

of l = a∗(L) and r = a∗(R) in the events L and R. The second equality

recognizes that the agent obtains utility 21 = g(l, λ) = g(r, ρ) if either L or

R occurs which happens with the objective probability .7 = .5− α+ .2 + α.

With the complementary probability .3 the agent faces a basic Ellsberg urn

type problem, where γ = α
α+.3−α

. In this problem the agent is best off

choosing m which yields the same utility in the two payoff relevant events.

So a∗ with a∗(L) = l, a∗(M) = m, and a∗(R) = r is the pure plan that

maximizes minπ∈C∗
∑

θ∈QP ,σ∈RP π(θ ∩ σ)g(a(θ), σ); a∗ is therefore also the

unique semi-consistent optimal choice.

However, any Bayesian with the same utility g : A × Ω → R strictly

prefers either a′ or a′′ with a′(M) = l, a′′(M) = r, and a′(θ) = a′′(θ) = a∗(θ)

for θ ∈ {L,R} to a∗. □

Just as in the second introductory example, ambiguity enters the above

decision problem only via the agent’s signals. In the above example it is how-

ever in the best interest of the agent to learn his signals. With a probability

.7 the agent learns the payoff relevant event. This information is precise

enough for the agent to accept the ambiguity that arises when he obtains the

signal M .
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8 Conclusion

The present study stands at the crossroads of three concepts: dynamic con-

sistency, independence, and ambiguity. An event is ambiguous for an agent if

he does not know its probability. The agent is ambiguity neutral if he is indif-

ferent over all objective mixtures over sets of indifferent acts. A dynamically

consistent agent follows through with any ex-ante optimal plan. Finally an

event E is independent of some some algebra P if learning E never overturns

the agent’s ex-ante preference over P-measurable acts.

Independence and dynamic consistency are compatible for ambiguity averse

agents. For (strictly) ambiguity averse agents the two principles conflict. The

behavior of any dynamically consistent agent can moreover be replicated as

the behavior of an expected utility maximizer with a suitably defined prior.

To create room for ambiguity averse preferences that also manifest themselves

in the agent’s behavior I suggest the model of dynamic semi-consistency.

This model blends dynamic consistency and independence to derive condi-

tional preferences. A semi-consistent agent is dynamically consistent with

respect to informative signals, he does, however, not update his preferences

upon learning uninformative independent events. The resulting dynamic in-

consistency is enough for the behavior of ambiguity neutral agents to differ

from the behavior of agents that are not.

Importing the present insights into game theory we see that any equilib-

rium in mixed strategies of a game with dynamically consistent and ambigu-

ity averse agents is also the equilibrium of a Baysian version of the original

game. This equivalence between Baysian and ambiguity averse game the-

ory affects the equilibrium notions by Klibanoff [23], Lo [28], [29], Bade [4],

Lehrer [27], Riedel and Sass [33], and Azrieli and Teper [3]. To generate

novel predictions, applied works have then indeed not used these equilibrium

notions. Ellis [9] and Kellner and Le Quement [22], for example, assume in-

consistent updating to respectively study information aggregation and cheap

talk with ambiguity averse agents. Similarly, Bose and Renou’s [5] model of

mechanism design relies on dynamic inconsistencies to ensure that the set of

implementable social choice functions increases with the agents’ ambiguity
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