Using Non-adaptive Group Testing
to Construct Spy Agent Routes

Georgios Kalogridis
Toshiba Research Europe Limited
Telecommunications Research Laboratory
32 Queen Square, Bristol, BS1 4ND, UK
georgios.kalogridis @toshiba-trel.com

Abstract

We consider a network of remote agent platforms
that are tested by roaming spy agents in order to
identify those that are malicious, based on the out-
come of each agent. It is shown that, given a set of
spying requirements, the task of choosing the sets of
platforms which spy agents visit can be abstracted as
a group testing problem. Non-adaptive group testing,
in particulay, is considered in greater detail, and a
simple combinatorial construction for a set of agent
routes is presented which combines known results from
the prior art. Although existing techniques enable us
to construct efficient sets of agent routes, optimality
remains an open problem.

1. Introduction

Spy agents, introduced in [1], are mobile software
agents that are concurrently dispatched from one (or
more) secure platform(s) and migrate through a series
of potentially insecure remote hosts, before returning
to a secure location. Their purpose is to gather informa-
tion to help evaluate the trustworthiness of the visited
platforms. Unlike malicious agents such as viruses, spy
agents are legitimate mobile agents in the sense that
they interact with visited hosts in the way expected
by the hosts. As such they are analogous to software
decoys [2] and honeypots [3].

The main objective of a spy agent system is to eval-
uate trust in remote environments, where the remote
hosts should be unaware that their trustworthiness is
being tested. The structure of a spy agent should be
no different to that of a generic mobile agent (e.g.
an agent designed to obtain the prices of goods from
multiple e-commerce sites). A spy agent will include

Chris J. Mitchell
Information Security Group
Royal Holloway, University of London
Egham, Surrey, TW20 OEX, UK
c.mitchell@rhul.ac.uk

decoy private data and a pre-coded routing scheme,
which hosts are usually able to access to facilitate
migration. The evaluation of the remote platforms is
based on the collective outcomes of the spy agents
(i.e. the detectable impacts on the agents after visiting
the defined set of platforms), which could either be
negative (if there is no sign of security violation), or
positive (otherwise).

The main focus of this paper is the choice of sets of
routes for spy agents which efficiently identify which
remote hosts misbehave. For the purposes of this paper,
a route is defined as an (unordered) set of hosts which
an agent visits. This contrasts with the more usual
definition of route, in which the order of destinations
is of significance.

A simple solution to this problem would be to
send each spy agent to a single target host. The
evaluation process for such a design is trivial, since
a positive result for a spy agent implies a misbehaving
host. However, improved solutions are sought for the
following reasons:

o Security: Larger test groups yield more credible
results. As discussed in [1], the longer the migrat-
ing route, the less a malign host is likely to sus-
pect a spying scenario, and the greater the chance
that it can cheat without being detected. As a
result, it is more likely to misbehave, revealing
its true character.

o Economy: Less agents and less time are needed if
hosts are tested in groups instead of one by one.
This is of particular importance when routinely
performing large scale tests.

The problem of choosing a set of agent routes is
an application of group ftesting theory [4], in which
a (large) population of items containing a small set

of defectives are to be tested in order to identify the
defectives.

2. Previous work

A good overview of mobile agent security can be
found in [5], [6]. The use of spy agents to assess the
credibility of remote hosts can be classified as a pre-
emptive security evaluation technique for protecting
agents against malicious hosts. A similar concept is
discussed in [7], [8], but this previous work only
applies in trusted environments. In [9] it is suggested
that a security assessment can be made as a result
of agent migration to unknown hosts by assuming
that target hosts provide the agents with the security
information they request. However, as argued in [1], a
corrupted remote host could detect incoming security
agents and selectively behave well in order to escape
detection. The same host could behave inappropriately
when it has the opportunity to cheat without being
detected. Spy agents address this issue with the use of
combinatorial group testing methods to try to assess
the genuine character of remote hosts.

Cryptographic tracing can be used to detect unau-
thorised modifications to an agent’s code in a multi-
host route [10]. Traces are logs of the operations
performed by an agent during its lifetime. In a tracing
scenario, platforms are required to create, maintain and
exchange authenticated logs for all incoming agents.
After an agent’s termination, its owner can acquire
all the secure logs and compare them against the
logs produced locally to “reconstruct the crime” and
detect discrepancies. However, this approach has the
following limitations:

o If the language adopted for agents allows for the
processing of very complicated data structures,
the modifications to the agent’s internal state
could be difficult to represent and require a lot
of space, rendering the mechanism practically
infeasible [10].

o Privacy issues are likely to arise for secure log
management.

e Only attacks involving illegal modification of
code, state and execution flow of a mobile agent
can be detected. Indirect attacks, such as misuse
of a personal email address, cannot be detected.

The spying approach allows unaware malicious
hosts to abuse “normal” agents (e.g. without request-
ing proofs), and infers their trustworthiness from the
somewhat limited information available after agent
termination.

3. Detecting attacks on spy agents

A taxonomy of attacks on mobile agents is given in
[5]. The impact of an attack depends on the scenario.
For example, unauthorised manipulation of the agent’s
code [11] might be detectable, or the delayed return
of an agent could imply delibarate retention of an
agent for malicious processing [12]. However, it is not
always possible to detect an attack. Spy agents are used
in scenarios where attacks result in detectable impacts,
and the detection of the origin of such attacks (i.e. one
or more malicious host(s)) is inferred from examining
the results of all the spy agents.

Note that it is not necessary for all the agents to
arrive back in a safe environment in order to complete
the analysis. A lost agent could be considered as a
positive outcome, in an appropriate scenario.

One possible means of detecting host misbehaviour
is the observation of privacy violations of Personally
Identifiable Information (PII) included in an agent,
such as email addresses. In [13] the authors imple-
ment a honeypot email system, in which decoy email
addresses are uniquely registered with providers, in ac-
cordance with a mutual privacy agreement. A provider
is deemed to be responsible for the reception of any
unsolicited email via the associated email address, pro-
vided that the “secrecy” of this unique email address is
not compromised. A host is held responsible for both
attacks in which it abuses the email address itself, and
indirect attacks, involving the disclosure of the decoy
email address to an unauthorised third party, knowingly
or unknowingly (e.g. due to poor storage security).
However, the use of this honeypot email system is
limited by the fact that the registation process requires
manual input.

A spy agent containing such a decoy email address
can both automate the process of revealing it (to
more than one host) and can give a malicious host
an incentive to misbehave, as described in section 1.
The outcome of a spy agent test is determined by
whether or not a host in the agent’s route violates
the confidentiality of the spy agent’s email address.
In this case, a positive outcome is equivalent to the
reception of unsolicited email via the unique email
address associated with the route.

4. Problem formulation

4.1. Assumptions and objectives

We make the following basic assumptions when
designing our sets of agent routes.

o The order in which a spy agent visits a subset
of target platforms is of no significance. Thus,
the subset of target hosts to be visited defines a
route.

o A target platform is aware of the routes of all the
spy agents that visit it.

« Potentially malicious target hosts do not share any
information about visiting agents, and will not
collaborate to attempt to avoid detection.

o An untrustworthy spy agent will always perform
an act which will enable the sender of the agent
to detect that it has visited a malicious platform.
That is, a spy agent visiting a malicious host will
always yield a positive outcome. (This is rather
a strong assumption, which we revisit in Section
6).

These assumptions enable us to consider spy agent
routes as unordered sets of hosts that spy agents visit,
where each set returns “positive” when it contains at
least one malicious host, and ‘“negative” otherwise.
Clearly the problem of efficiently identifying the mali-
cious (defective) hosts is identical to the classic group
testing problem [14].

Optimal sets of spy agent routes can be designed
using efficiency criteria, security criteria or a combi-
nation of both. In terms of efficiency, the following
criteria are adapted from the group testing literature
[15]:

(Eff-1) A design is deemed optimal if it can be used
to test the maximum possible number of target
hosts using a given number of spy agents.

(Eff-2) Alternatively, we can define a design to be
optimal if it can reliably detect the maximum
number of malicious hosts from amongst a
given number of target hosts.

The following spying security requirements are rel-
evant here [1]:

o Target hosts should be incapable of deciding
whether or not they are dealing with spy agents;
« Potentially malicious target hosts should be given
a motive to misbehave by using spy agents as
“bait”.
From these general requirements, the following se-
curity criteria can be derived [1].

(Sec-1) The number of hosts that each spy agent visits
should be maximised. The rationale for this
is that the more target hosts that a spy agent
visits, the greater is the likelihood that the
target host is unable to distinguish it from a
“regular” agent and, hence, the more reliable
the tests are.

(Sec-2) The number of hosts in common between any
pair of spy agent routes should be minimised.
This is based on the assumption that the
target hosts will be less likely to be able to
distinguish spy agents from “regular” agents
if spy agents appear to be as different from
one another as possible. Ideally, any two spies
should visit no more than one common target
host.

From the above it is clear that the spy agent route
optimisation problem is a version of the classic group
testing problem, modified by the inclusion of some
additional security optimization criteria.

4.2. Group testing scenario hypotheses

There are two types of group testing algorithms: se-
quential and nonadaptive. Sequential algorithms allow
later tests to use the outcomes of all previous tests. In
a nonadaptive scheme, the set of tests is completely
predetermined. Sequential algorithms require, in gen-
eral, fewer tests, since the extra information allows for
more efficient designs. On the other hand, nonadaptive
algorithms can be conducted in parallel, which, in
general, reduces the overall test time if not the number
of tests.

The history of sequential algorithms goes back over
60 years [14]. Non-adaptive algorithms have been
studied for a shorter time, including work on the hyper-
geometric non-adaptive group testing (NGT) problem
[16] and d-complete designs [17]. Much recent NGT
research has been driven by applications in DNA
library screening in molecular biology, where the items
are DNA subsequences (clones) and tests are done on
pools of clones to determine which clones contain a
particular DNA sequence [15]. For that reason NGT
algorithms are also known as pooling designs [18].

The choice of the most suitable algorithm depends
on the application. In this paper the following scenario
hypotheses are made:

o Completing a single test may take a long time.

« A test outcome that is initially negative may, after
some unidentified time, change to positive. In
such cases, adaptive tests may perform poorly
from both an efficiency and a security point of
view.

o The assumption that malicious hosts always pro-
cess agents in a detectably malicious way is more
valid within a narrower time frame.

These hypotheses may characterise, for example, a
scenario where each spy agent contains a unique decoy
email address and tests a destination set against a

violation of PII privacy, as described in section 3. In
this case, the impact of the misuse of a set of email
addresses could be realised at any time after the related
set of spy agents have commenced their migration.

It is clear that in scenarios such as the one described
above, NGT designs are preferable. There is a rich
literature on such schemes and their applications [19],
including equivalent objects such as cover-free families
[20]. Constructing optimal examples of the various
classes of design is an ongoing research topic, and
comparison of different schemes is a non-trivial subject
[15].

In this paper we propose the use of a rather simple
NGT construction, which is based on well-known com-
binatorial block designs, for reasons given in Section
5.2. Next, some fundamental notation and properties
for such designs are given.

4.3. Notation

Let S be the set of n items (target hosts), i.e. |S| =
n. We define a spy agent route design, D, as a set
system D = (S,R), where R is a set of subsets of
S. The route design is said to be uniform if all routes
contain the same number of hosts, i.e. |R;| = |R;| for
all R;, R; € R. The cardinality of R, |R|, equals the
total number of spy agents.

A route design may be represented by an incidence
matrix M = (m;;), where rows are labelled by routes
(tests) and columns by target hosts (items). Then,
m,; = 1 if route ¢ contains host j, and m;; = 0
otherwise. Each row is an incidence vector, r;, of the
subset {j|m;; = 1}, and each column is an incidence
vector, c;, of the subset {i|m;; = 1}. We then identify
these row and column vectors (r; and c;) with the
routes (R;) and hosts, so that we refer to a route
r; and a host c;. We also abuse our notation further
and apply set operations to these binary vectors. For
example, the union (intersection) of two (or more)
incidence vectors corresponds to applying the boolean
OR (AND) operation to their corresponding entries. In
the same fashion, the size of an incidence vector (i.e.
its Hamming weight) is equal to the cardinality of its
corresponding subset, i.e. |r;| = |R;].

The set of defective items can be represented as
a binary vector § = (01,02,...,0,), where §; = 1
if host c; is defective, and §; = O otherwise. The
outcome of all tests can be represented by a vector
a = (ai,as,...,a|), where a; = 1 if route r;
contains a defective host, and a; = 0 otherwise,
ie. a; = {¢ : |r; N 4] > 0}. The union of all
the columns corresponding to defective hosts is thus
equal to the outcome vector. This follows from the

fourth assumption in section 4.1, i.e. that if a host
is defective then all routes containing it will yield a
positive outcome.

Definition 1: Suppose that there are at most d ma-
licious nodes in a network of n nodes (n > d). If the
outcome vector, a, of the incidence matrix, M, of a
route design, D, can be used to successfully identify
all the malicious and honest nodes in the network,
regardless of how they are distributed, then we call
the route design a d-classifier.

In group testing terminology, a d-classifier D is a
(d,n) NGT design [19]. If we assume the use of a
uniform design D, the problem of designing an optimal
spy agent route design (as defined in Section 4.1) can
be summarised as follows:

Problem 1: For any given d and n find a d-classifier
route design D satisfying one or more of the following
criteria (where the choice of criteria depends on the
scenario):

1) For given other parameters, maximize |R;| (de-
rived from (Sec-1)).

2) |R; N R;| < 1 for every pair of distinct routes
R;, R; € R (derived from (Sec-2)).

3) For given other parameters, maximize n (derived
from (Eff-1)).

4) For given other parameters, maximize d (derived
from (Eff-2)).

5. A spying classifier design

5.1. Properties of d-classifiers

In order to show how to construct a d-classifier, we
first give some key properties of the incidence matrices,
M, of route designs, D. All the results in this section
are taken from Kautz and Singleton [21] (who use a
somewhat different terminology).

Definition 2: An incidence matrix M is said to be
d-separable if the unions of the subsets of at most d
columns are all distinct.

Theorem 1: A route design D is a d-classifier if and
only if its incidence matrix M is d-separable.

One problem with the use of d-separable designs
(i.e. route designs with a d-separable incidence matrix)
is that no efficient general decoding algorithm is known
for such designs. The trivial decoding algorithm (in-
volving considering every possible subset of defective
hosts) has complexity exponential in n. As a result we
consider a slightly more restrictive class of designs for
which we do have an simple and efficient decoding
algorithm.

Definition 3: An incidence matrix M is said to be
d-disjunct if the union of any set of d columns does
not contain any other column as a subset.

Lemma 1: An incidence matrix M is d-disjunct if
and only if, given any column c; and any set of d other
columns, there is at least one row in which c; has a
one and all the d columns have a zero.

Theorem 2: If the incidence matrix M is d-disjunct
then M is d’'-separable and d'-disjunct for all d’ < d.

Theorem 3: An incidence matrix M is d-disjunct if
and only if the union of all negative rows (i.e. rows
that yield a negative outcome) contains all the negative
columns (i.e. columns that correspond to negative
items).

Theorem 3 implies that the decoding algorithm of
a d-disjunct design has complexity linear in n, since
items (columns) not appearing in negative rows are
defective (positive). In other words, in a d-disjunct
design, if a column vector is contained in the outcome
vector, then this column vector is positive.

Corollary 1: The route design of a d-disjunct matrix
is a d-classifier with the following decoding:

0={j:c; Ca}
5.2. A simple block design construction

There are numerous constructions for d-disjunct
matrices [19], [20]. In this paper we consider construc-
tions based on block designs.

A block design is an ordered pair (V, B), where the
set BB is a collection of |B| = b subsets (blocks) of the
set V, and each element of V' is contained in r blocks.
A t-(v,k, \) block design (or simply a t-design) is
a block design (V,B), where |V| = v, |B| = k for
every B € B, and any t subset of V' occurs in exactly
A blocks. For a 2-design the following equations apply
[22]:

bk = vr (1a)
AMov=1)=rk-1) (1b)

We specifically focus on 2-designs for the following

reasons:

« If we use a block design as a route design, taking
blocks as hosts and elements of V' as routes, then
the security requirement |R; N R;| < 1 (Problem
1) is automatically satisfied by 2-(v, k, 1) designs.

o It can be shown [23], [24] that for a small number
of defectives, more precisely if d < 2, there
are cases where 2-designs are optimal pooling
designs.

o There are many known construction methods for
2-designs (see, for example, [22], [25]).

Theorem 4: An incidence matrix of a t-(v,k, 1)
design, where the blocks correspond to columns and
the elements to rows, is (¢ — 1)-disjunct, where:

k
¢=[r—1)
Proof: By definition of a t-design and since A\ =
1, two columns intersect in at most ¢ — 1 rows. The
weight of each column is |B| = k. Hence, it takes the
union of at least ¢ = [;2] columns to cover another
column [21, Theorem 6]. The result follows. O

From Theorem 4 it follows immediately that a 2-
(v,k,1) design may be used as a d-disjunct route
design, where:

d=k-1 3)

This gives a simple means of constructing sets of
visited hosts for spy agents. If we assume the use of a
2-(v, k, 1) design, then the optimisation problem given
in Problem 1 becomes rather simpler. This is because
there is much less freedom to choose the parameters
of the route design (essentially there are only two
“degrees of freedom”). Note, though, that the reduced
problem may exclude some optimal solutions.

Problem 2: Find a 2-(v, k, 1) design in the follow-
ing scenarios:

1) (Sec): Given the number of target hosts n [= b],
find a design that maximises the cardinality of
each route r. This is achieved when k is min-
imised, since, from (1a) and (1b), (k — 1)r? +
r—>bk=0.

2) (Eff): Given the number of spy agents v, find the
maximum number of target hosts b that can be
tested. This is also achieved when & is minimised,

since, from (la) and (1b), b = Zé::g

In Problem 2 the choice of a minimum d [= k — 1],
gives a 2-design which is optimal both from a security
and an efficiency point of view. This follows since a
larger number of blocks (i.e. target platforms) implies
a larger number of blocks containing an element (i.e.
larger route cardinality). However, the choice of d is
critical. An underestimate for the maximum number
of malicious hosts means that malicious hosts will
not be identified, whereas an overestimate for the
maximum number of malicious hosts will compromise
the efficiency and security of the route design.

5.3. Examples

The finite projective plane of order two is known
as the Fano plane, and is a 2-design with v =0 =7
and £ = r = 3. The corresponding spy agent system
thus has seven hosts, seven tests, three hosts per test

Figure 1. Fano plane

Table 1. 2-(7,3,1) incidence matrix

B1 | B> | Bs | B4 | Bs | Be | By
V1 1 1 1 0 0 0 0
V2 1 0 0 1 1 0 0
V3 1 0 0 0 0 1 1
V4 0 1 0 1 0 1 0
V5 0 1 0 0 1 0 1
V6 0 0 1 1 0 0 1
V7 0 0 1 0 1 1 0

(and three tests per host). The Fano plane is shown
diagrammatically in Figure 1. Note that each point has
three lines on it and each line contains three points.

An incidence matrix for the Fano Plane is given in
Table 1, which has the following seven blocks: (V, B) :
B = {Bl, BQ, Bg, .B47 B5, B6, B7}, Bl = {’Ul, Va2, ’Ug},
By = {vi,vs,v5}, By = {vi,v6,07}, By =
{’02,’04,1}6}, B5 = {’Ug,’U5,’U7}, B6 = {’Ug,’l)4,’l)7} and
B7 = {U3, Vs, U6}.

It is trivial to verify that this matrix is 2-disjunct and
is not 3-disjunct. Hence, this design will successfully
identify two defectives but not three.

If, for example, the first two hosts are malicious,
then the matrix in Table 1 produces an outcome vector
a={1,1,1,1,1,0,0}. From Corollary 1, the defec-
tives (i.e. the hosts not appearing in all negative tests,
rg and r7) are c; and co, which is correct. However,
if the first three hosts are defectives, then the outcome
vector is a = {1,1,1,1,1,1,1}. The decoding algo-
rithm given in Corollary 1 suggests that all hosts are
defective, contradicting the implicit assumption that
there are most two defectives. It is thus impossible
to decide which hosts are defective.

Consider another scenario in which we require each
spy route to contain at least five hosts and d = 2.
Hence:

3)

W=D e o4 @11

>
r>5= —

One set of 2-design parameters satisfying this in-
equality has (v, b, 7, k,) = (15,35,7,3,1). There are
known to be at least 80 pair-wise nonisomorphic 2-
designs with these parameters [25], which could, for

example, be utilised for multiple re-evaluations of a set
S.

6. Conclusions and future work

Remote security evaluations are unreliable by nature.
Malicious hosts may selectively misbehave depending
on whether or not they believe they are being eval-
vated. This paper defines a way of identifying the
malicious hosts in a hostile network, while maximising
the chance that they will misbehave. This is done by
applying combinatorial group testing theory to the spy
agent paradigm. A simple block design is proposed for
use in constructing spy agent routes with the desired
properties.

A number of possible directions for further research
present themselves, including the following.

« How might the rather strong assumptions made in
this paper be relaxed? More specifically:

— What if malicious nodes behave badly in a
probabilistic fashion, when the incentive for
them to misbehave is maximised? What if the
spying design is not even optimum?

— Can the criteria of maximum size of routes
and minimum route intersection sizes be jus-
tified in a practical scenario? What other
criteria may be considered?

e What practical scenarios can be devised, and
what aspects of the host trustworthiness can be
evaluated?

« How might spy agents be constructed, what data
could they carry, and what operations may they
run remotely, e.g. in an e-commerce scenario?

« How could spy agent network scenarios be com-
promised by colluding malicious hosts, and how
might this be addressed?

Future research will explore these areas. For exam-
ple:

« A honeypot email system could be used to detect
the abuse of the agent’s email address privacy
(section 3).

o Inconsistent behaviour could be addressed by
applying error-tolerant group testing designs [23].

In general, practical scenarios may require a range
of different testing mechanisms for determining out-
comes, different criteria for maximising the incen-
tive to misbehave, and different optimum route set
constructions (which may not necessarily be non-
adaptive). Work on the application of spy agents to
specific scenarios is ongoing.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(91

(10]

(11]

G. Kalogridis, C. J. Mitchell, and G. Clemo, “Spy
agents: Evaluating trust in remote environments,” in
Proceedings of the 2005 International Conference on
Security and Management, H. R. Arabnia, Ed. Las
Vegas, Nevada, USA: CSREA Press, June 20-23 2005,
pp. 405-411.

B. Michael, N. Rowe, M. Auguston, D. Drusinsky,
R. Riehle, H. Rothstein, L. Montiero, D. Julian,
G. Fragkos, E. Uzuncaova, and T. Wingfield, “Intel-
ligent software decoys,” in Naval Postgraduate School
Research, February (special ed.) 2003, vol. 13, no. 1SE,
pp. 42-44.

N. Provos, “A virtual honeypot framework,” in Proceed-
ings of the 13th USENIX Security Symposium, August
2004, pp. 1-14.

D. Du and F. Hwang, Combinatorial Group Testing and
Its Applications, 2nd ed. World Scientific, 2000.

N. Borselius, “Security for agent systems and mobile
agents,” in Security for Mobility, C. J. Mitchell, Ed.
IEE, London, 2004, ch. 12, pp. 287-303.

W. Jansen and T. Karygiannis, “Mobile agent security,”
National Institute of Standards and Technology, NIST
Special Publication 800-19, August 1999.

P. C. Chan and V. K. Wei, “Preemptive distributed
intrusion detection using mobile agents,” in /1th IEEE
International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE).
IEEE Computer Society, June 2002, pp. 103-108.

D. Dasgupta and H. Brian, “Mobile security agents
for network traffic analysis,” in DARPA Information
Survivability Conference and Exposition II. Anaheim,
California: IEEE Computer Society Press, June 2001,
pp. 12-14.

N. Borselius, C. J. Mitchell, and A. T. Wilson, “On
mobile agent based transactions in moderately hostile
environments,” in Advances in Network and Distributed
Systems Security, Proceedings of IFIP TC11 WGI1.4
First Annual Working Conference on Network Security,
B. D. Decker, F. Piessens, J. Smits, and E. V. Her-
reweghen, Eds. Kluwer Academic Publishers, Boston,
November 2001, pp. 173-186.

G. Vigna, “Cryptographic traces for mobile agents,”
in Mobile Agents and Security, ser. Lecture Notes in
Computer Science, G. Vigna, Ed., vol. 1419. Springer-
Verlag, Berlin, 1998, pp. 137-153.

A. Corradi, M. Cremonini, R. Montanari, and C. Ste-
fanelli, “Mobile agents integrity for electronic com-
merce applications,” Information Systems, vol. 24,
no. 6, pp. 519-533, 1999.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

O. Esparza, M. Soriano, J. L. Muifioz, and J. Forné, “A
protocol for detecting malicious hosts based on limiting
the execution time of mobile agents,” in Proceedings of
the Eighth IEEE International Symposium on Comput-
ers and Communications. 1EEE Computer Society,
2003, pp. 251-256.

J. Seigneur, A. Lambert, P. Argyroudis, and
C. Jensen, “PR3 email honeypot,” Department
of Computer Science, University of Dublin,
Tech. Rep. TCD-CS-2003-39, 2003, available at
https://www.cs.tcd.ie/publications/tech-reports/reports.
03/TCD-CS-2003-39.pdf.

R. Dorfman, “The detection of defective members of
large populations,” Annals of Mathematical Statistics,
vol. 14, no. 4, pp. 436440, 1943.

H. Q. Ngo and D. Z. Du, “A survey on combinatorial
group testing algorithms with applications to DNA
library screening,” in Discrete Mathematical Prob-
lems with Medical Applications, ser. DIMACS Discrete
Math. Theoret. Comput. Sci., vol. 55, 2000, pp. 171-
182.

F. K. Hwang and V. T. Sos, “Non-adaptive hyper-
geometric group testing,” Studia Sci. Math. Hungar.,
vol. 22, pp. 257-263, 1987.

K. A. Bush, W. T. Federer, H. Pesotan, and
D. Raghavarao, “New combinatorial designs and their
application to group testing,” Journal of Statistical
Planning and Inference, vol. 10, pp. 335-343, 1984.

D. J. Balding, W. J. Bruno, E. Kanill, and D. C. Torney,
“A comparative survey of non-adaptive pooling de-
signs,” Genetic Mapping and DNA Sequencing, vol. 81,
pp. 133-154, 1996.

D. Z. Du and F. K. Hwang, Pooling Designs and
Nonadaptive Group Testing. World Scientific, 2006.

R. Wei, “On cover-free families,” 2006, preprint avail-
able at http://ccc.cs.lakeheadu.ca/psfiles/CFE.ps.

W. Kautz and R. Singleton, “Nonrandom binary su-
perimposed codes,” IEEE Transactions on Information
Theory, vol. 10, no. 4, pp. 363-377, 1964.

T. Beth, D. Jungnickel, and H. Lenz, Design Theory,
2nd ed. Cambridge University Press, 1999, vol. 1.

D. J. Balding and D. C. Torney, “Optimal pooling
designs with error detection,” Journal of Combinatorial
Theory, Series A, vol. 74, no. 1, pp. 131-140, 1996.

P. Erdos, P. Frankl, and Z. Firedi, “Families of finite
sets in which no set is covered by the union of two
others,” Journal of Combinatorial Theory, Series A,
vol. 33, pp. 158-166, 1982.

C. J. Colbourn and J. H. Dinitz, The Handbook of
Combinatorial Designs, 2nd ed. CRC Press, 2006.

