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ABSTRACT

We show a flow-augmentation algorithm in directed graphs: There

exists a randomized polynomial-time algorithm that, given a di-

rected graph 𝐺 , two integers 𝑠, 𝑡 ∈ 𝑉 (𝐺), and an integer 𝑘 , adds

(randomly) to 𝐺 a number of arcs such that for every minimal 𝑠𝑡-

cut 𝑍 in 𝐺 of size at most 𝑘 , with probability 2
−poly(𝑘)

the set 𝑍

becomes a minimum 𝑠𝑡-cut in the resulting graph.

The directed flow-augmentation tool allows us to prove (random-

ized) fixed-parameter tractability of a number of problems parame-

terized by the cardinality of the deletion set, whose parameterized

complexity status was repeatedly posed as open problems:

(1) Chain SAT, defined by Chitnis, Egri, and Marx [ESA’13,

Algorithmica’17],

(2) a number of weighted variants of classic directed cut prob-

lems, such as Weighted 𝑠𝑡-Cut, Weighted Directed Feed-

back Vertex Set, or Weighted Almost 2-SAT.

By proving that Chain SAT is (randomized) FPT, we confirm a

conjecture of Chitnis, Egri, and Marx that, for any graph 𝐻 , if the

List 𝐻 -Coloring problem is polynomial-time solvable, then the

corresponding vertex-deletion problem is fixed-parameter tractable

(with the remark that our algorithms are randomized).
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1 INTRODUCTION

The study of graph separation problems has been one of the more

vivid areas of parameterized complexity in the recent 10–15 years.

The term “graph separation problems” captures a number of classic

graph problems where, given a (undirected or directed) graph 𝐺

with a cut budget𝑘 (and possibly some annotations, such as terminal

vertices), one aims at obtaining some separation via at most 𝑘 edge

or vertex deletions. For example, the classic 𝑠𝑡-Cut problem asks to

delete at most 𝑘 edges so that there is no 𝑠-to-𝑡 path in the resulting

graph and the Feedback Vertex Set asks to remove at most 𝑘

vertices so that the resulting graph does not contain any cycles

(i.e., is a forest in the undirected setting or a DAG in the directed

setting). In all these problems, the cardinality of the deletion set is

a natural parameter to study.

In 2004, Marx introduced the notion of important separators [15,

16] that turned out to be the key to fixed-parameter tractability of

Multiway Cut and Directed Feedback Vertex Set [1], among

many other examples. In subsequent years, the study of graph sepa-

ration problems resulted in a rich toolbox of algorithmic techniques,

such as shadow removal [19], treewidth reduction [17], or random-

ized contractions [2, 7, 8]. At SODA’21, the current authors added

one more item to this list: a flow-augmentation technique in undi-

rected graphs [10]. As a result of these developments, most open

problems regarding parameterized complexity of graph separation

problems in undirected graphs has been resolved. Our work [10]

shows that this statement can be formalized in some sense: every

problem that can be formalized as a Min UNSAT problem for some

Boolean CSP language Γ that cannot express implication, is either

𝑊 [1]-hard or FPT by one of the aforementioned techniques.

For directed graphs, the chartered landscape is much less com-

plete. The notion of important separators and related technique of

shadow removal generalizes to directed graphs, leading to fixed-

parameter tractability of Directed Feedback Vertex Set [1],

Directed Multiway Cut [6], and Directed Subset Feedback

Vertex Set [4]. A number of problems whose undirected counter-

parts are FPT turned out to be𝑊 [1]-hard in the directed setting,

https://doi.org/10.1145/3519935.3520018
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including Directed Multicut [6, 20] or Directed Odd Cycle

Transversal [14].

However, these results are far from satisfactorily charting the

parameterized complexity of directed graph separation problems.

Arguably, we seem to lack algorithmic techniques. Most notably,

the powerful treewidth reduction theorem [17], stating that (in

undirected graphs) all separations of size at most 𝑘 between two

fixed terminals live in a part of the graph with treewidth bounded

by 2
O(𝑘)

, seems not to have any meaningful counterpart in di-

rected graphs. As a result, essentially all known FPT algorithms

for graph separation problems in directed graphs rely in some part

on important separators, which is a greedy argument bounding

the number of cuts between two terminals of bounded size that

have inclusion-wise maximal set of vertices reachable from one

of the terminal. This “greedy” part of this argument breaks down

whenever a problem at hand has some weights or annotations.

On the other hand, despite efforts in the last years, we were not

able to prove lower bounds for FPT algorithms for many directed

graph separation problems. This suggests that maybe there are

still more algorithmic techniques to be explored, leading to more

positive tractability results.

In this work, we provide such a technique: we show that flow-

augmentation, introduced by current authors in [10] for undirected

graphs, generalizes to directed graphs.

Theorem 1.1. There exists a randomized polynomial-time algo-

rithm that, given a directed graph 𝐺 , two vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺), and
an integer 𝑘 , outputs a set 𝐴 ⊆ 𝑉 (𝐺) ×𝑉 (𝐺) such that the following

holds: for every minimal 𝑠𝑡-cut 𝑍 ⊆ 𝐸 (𝐺) of size at most 𝑘 , with prob-

ability 2
−O(𝑘4

log𝑘) 𝑍 remains an 𝑠𝑡-cut in 𝐺 +𝐴 and, furthermore,

𝑍 is a minimum 𝑠𝑡-cut in 𝐺 .

Here, a set 𝑍 ⊆ 𝐸 (𝐺) is an 𝑠𝑡-cut if there is no path from 𝑠 to

𝑡 in 𝐺 − 𝑍 ; it is minimal if no proper subset of 𝑍 is an 𝑠𝑡-cut and

minimum if it is of minimum possible cardinality. By 𝐺 + 𝐴 we

mean the graph𝐺 with all elements of 𝐴 added as infinity-capacity

arcs.

The proof of Theorem 1.1 is sketched in Section 2. Full proof can

be found in the arXiv version [9]. While the proof borrows a general

outline and course of action from its undirected counterpart [10],

at lower level most details are different, as directed graphs pose

different challenges. The main differences are discussed in Section 2.

Applications. To illustrate the applicability of the directed flow-

augmentation, let us first consider the Weighted 𝑠𝑡-Cut problem.

Here, we are given a directed graph 𝐺 with two terminals 𝑠, 𝑡 ∈
𝑉 (𝐺), a weight function 𝜔 : 𝐸 (𝐺) → Z+, and two integers 𝑘,𝑊 ∈
Z+, and we ask for an 𝑠𝑡-cut 𝑍 of cardinality at most 𝑘 and total

weight at most𝑊 . This problem is known to be NP-hard and FPT

when parameterized by 𝑘 +𝑊 [11].

By using directed flow-augmentation, we can ensure that the

sought solution 𝑍 is actually a minimum 𝑠𝑡-cut (i.e., of minimum

cardinality). Then, a solution can easily be found in polynomial-

time: take𝑀 := 1+∑𝑒∈𝐸 (𝐺) 𝜔 (𝑒), set the capacity of every edge 𝑒 as
𝜔 (𝑒) +𝑀 , and find an 𝑠𝑡-cut of minimum capacity. By repeating the

algorithm 2
O(𝑘4

log𝑘)
times to ensure constant success probability,

we obtain the following.

Theorem 1.2. Weighted 𝑠𝑡-Cut can be solved in randomized

time 2
O(𝑘4

log𝑘)𝑛O(1) .

The above approach turns out to be more general. An instance of

Bundled Cut consists of a directed graph𝐺 , vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺), a
nonnegative integer 𝑘 , and a family B of pairwise disjoint subsets

of 𝐸 (𝐺). The elements of B are henceforth called bundles. A cut in

a Bundled Cut instance I = (𝐺, 𝑠, 𝑡, 𝑘,B) is an 𝑠𝑡-cut 𝑍 with 𝑍 ⊆⋃B. The Bundled Cut problem asks for an 𝑠𝑡-cut that intersects at

most 𝑘 bundles, that is, |{𝐵 ∈ B | 𝑍 ∩𝐵 ≠ ∅}| ≤ 𝑘 . One can define a

weighted variant of the Bundled Cut problem where every bundle

𝐵 ∈ B is equipped with a weight 𝜔 (𝐵) ∈ Z+, we are given also a

weight bound𝑊 , and we ask for an 𝑠𝑡-cut 𝑍 that intersects at most

𝑘 bundles whose total weight is at most𝑊 .

If all bundles are singletons, then Bundled Cut just asks for

an 𝑠𝑡-cut of size at most 𝑘 (with the edges of 𝐸 (𝐺) \ ⋃B being

undeletable), so it is polynomial-time solvable. It is known that,

when restricted to bundles of size 2, Bundled Cut is𝑊 [1]-hard
when parameterized by 𝑘 [18]. To get tractability, we define the

following restriction called (Weighted) BundledCutwithOrder

where we require the following: for every 𝐵 ∈ B one can order the

arcs of 𝐵 as 𝑒𝐵
1
, . . . , 𝑒𝐵|𝐵 | such that for every 1 ≤ 𝑖 < 𝑗 ≤ |𝐵 | there

exists a path 𝑃𝐵
𝑖,𝑗

in 𝐺 that goes from one endpoint of 𝑒𝐵
𝑖
to one

endpoint of 𝑒𝐵
𝑗
and uses only undeletable arcs (i.e., from 𝐸 (𝐺)\⋃B)

and arcs of 𝐵.

Using directed flow-augmentation, we show the following.

Theorem 1.3. Weighted Bundled Cut with Order is random-

ized FPT when parameterized by 𝑘 and maximum size of a bundle.

For an integer ℓ ≥ 1, the ℓ-Chain SAT problem is the Bundled

Cut problem, where every bundle is a path of length at most ℓ . At

ESA’13, Chitnis, Egri, and Marx [3, 5] defined ℓ-Chain SAT and

showed that fixed-parameter tractability of ℓ-Chain SAT (for every

fixed ℓ ≥ 1) is equivalent to the following conjecture.

Conjecture 1.4 (Conjecture 1.1 of [3]). For every graph 𝐻 ,

if List 𝐻 -Coloring problem is polynomial-time solvable, then the

vertex-deletion variant (delete at most 𝑘 vertices from the input graph

to obtain a yes-instance to List 𝐻 -Coloring) is fixed-parameter

tractable when parameterized by 𝑘 .

Clearly, a ℓ-Chain SAT instance is a Bundled Cut with Order

instance with maximum bundle size at most ℓ . Hence, Theorem 1.3

implies the following.

Corollary 1.5. ℓ-Chain SAT is (randomized) FPT when parame-

terized by ℓ and 𝑘 , even in the weighted setting. Consequently, Con-

jecture 1.4 is confirmed (with randomized FPT algorithms).

By standard reductions, a Directed Feedback Vertex Set in-

stance can also be represented as a Bundled Cut with Order

instance (with maximum size of a bundle and budget bounded lin-

early in the parameter of the input instance). Furthermore, in case

of a weighted variant
1
the reduction preserves weights. Hence, we

obtain the following.

1
In Weighted Directed Feedback Vertex Set, the input graph is equipped with

vertex weights being positive integers and one asks for a solution of cardinality at

most 𝑘 and total weight bounded by a threshold given on input.



Directed Flow-Augmentation STOC ’22, June 20–24, 2022, Rome, Italy

Corollary 1.6. Weighted Directed Feedback Vertex Set, pa-

rameterized by the cardinality of the deletion set, is (randomized)

FPT.

The question of parameterized complexity of Weighted Di-

rected Feedback Vertex Set (which we answer affirmatively in

Corollary 1.6) has been asked e.g. at Recent Advances in Parame-

terized Complexity school in December 2017 [22] and in [13].

We also take the applicability of directed flow-augmentation one

step further and prove fixed-parameter tractability of Weighted

Almost 2-SAT. Here, we are given a 2-CNF formula 𝜙 , where every

clause 𝐶 has weight 𝜔 (𝐶), and positive integers 𝑘 and𝑊 ; the goal

is to delete at most 𝑘 clauses of total weight at most𝑊 to get a

satisfiable instance.

Theorem 1.7. Weighted Almost 2-SAT parameterized by 𝑘 is

(randomized) FPT.

The FPT algorithm for (unweighted) Almost 2-SAT problem

was one of the first applications of important separators and one of

the first bridges between graph separation problems and (boolean)

constraint satisfaction problems [21].

Compared to the previous applications, applying directed flow-

augmentation to Weighted Almost 2-SAT in Theorem 1.7 is much

more technically advanced. By known reductions [12], (Weighted)

Almost 2-SAT is FPT-equivalent to (Weighted) Digraph Pair

Cut. In this problem, we are given a directed graph 𝐺 , a vertex

𝑠 ∈ 𝑉 (𝐺), and a number of pairs T ⊆
(𝑉 (𝐺)

2

)
. The goal is to delete

at most 𝑘 edges of𝐺 such that for every pair 𝑥𝑦 ∈ T , either 𝑥 or𝑦 is

not reachable from 𝑠 . (In the weighted variant, edges have positive

integer weights and we also require that the total weight of deleted

edges is not larger than a given threshold.)

In the process of solving a (Weighted) Digraph Pair Cut in-

stance, an algorithmmakes some decisions about some pairs𝑥𝑦 ∈ T
whether 𝑥 or 𝑦 will be not reachable from 𝑠 in the final graph. The

vertices guessed to be unreachable can be merged into one sink

𝑡 ; the solution 𝑍 needs to be then an 𝑠𝑡-cut, but may be required

to be more than a minimal 𝑠𝑡-cut to satisfy other pairs of T . On
the other hand, in an inclusion-wise minimal solution 𝑍 every arc

(𝑢, 𝑣) serves some purpose: 𝑢 is reachable from 𝑠 in 𝐺 − 𝑍 , but 𝑣 is
not. This leads to a definition of a star 𝑠𝑡-cut: a set 𝑍 ⊆ 𝐸 (𝐺) is a
star 𝑠𝑡-cut if it is an 𝑠𝑡-cut and, for every (𝑢, 𝑣) ∈ 𝑍 , the vertex 𝑢
is reachable from 𝑠 in 𝐺 − 𝑍 but 𝑣 is not. Clearly, every minimal

𝑠𝑡-cut is a star 𝑠𝑡-cut, but the reverse implication is far from true.

To apply directed flow-augmentation to Weighted Almost 2-

SAT, we enhanced the procedure of Theorem 1.1 to star 𝑠𝑡-cuts: the

procedure returns a set 𝐴 ⊆ 𝑉 (𝐺) ×𝑉 (𝐺) and a maximum 𝑠𝑡-flow

P in 𝐺 +𝐴 such that for every star 𝑠𝑡-cut 𝑍 of size at most 𝑘 , with

probability 2
−O(𝑘4

log𝑘)
the set 𝑍 remains a star 𝑠𝑡-cut in𝐺 +𝐴 and,

furthermore, the edges of 𝑍 ∩ 𝐸 (P) is exactly a minimum 𝑠𝑡-cut in

𝐺 +𝐴. That is, the arcs of 𝐴 make 𝑍 contain a minimum 𝑠𝑡-cut and,

furthermore, the flow P avoids edges of 𝑍 that are not part of the

said minimum 𝑠𝑡-cut.

Future work. We believe the new technique introduced in this

work opens new research directions. We would like to point out to

three of them.

In the Min UNSAT(Γ) problem, we are given an instance of a

Constraint Satisfaction Problem over language Γ and an integer

𝑘 to delete at most 𝑘 clauses to get a satisfiable instance. Here,

we restrict only to binary alphabet. Note that if Γ allows unary

clauses and equalities, Min UNSAT(Γ) becomes the question of

minimum (undirected) 𝑠𝑡-cut and when Γ allows unary clauses and

implications, Min UNSAT(Γ) becomes the question of minimum

(directed) 𝑠𝑡-cut.

Recall that the undirected flow-augmentation algorithm [10] led

to full classification of the Min UNSAT(Γ) for Boolean alphabet

into FPT problems and𝑊 [1]-hard problems for languages Γ that

are unable to express implication (and thus directed cuts). Up to

this work, the main roadblock into generalizing this result to all

Boolean languages was the ℓ-Chain SAT problem (which is easily

expressible in the CSP world). Now this roadblock is removed and

exploring this classification is a promising research direction.

Moreover, a similar generalization to the “star 𝑠𝑡-cut” was also

present in the undirected case and was pivotal to fixed-parameter

tractability of Generalized Coupled MinCut problem [10]. We

believe the exemplary case of Theorem 1.7 shows that directed

flow-augmentation has potential to be a handy tool in proving

fixed-parameter tractability of further Boolean Min UNSAT CSP

problems.

Corollary 1.6 provides an alternative algorithm for the classic

Directed Feedback Vertex Set algorithm, albeit with worse time

complexity. We remark that up to now only one approach to fixed-

parameter tractability of Directed Feedback Vertex Set was

known, namely the one using important separators [1]. A second

newly opened research direction is: have we learned anything new

about Directed Feedback Vertex Set? To be more precise, let us

recall two other important open problems about Directed Feed-

back Vertex Set: is it solvable in time 2
O(𝑘)𝑛O(1) and does it

admit a polynomial kernel?

For the third direction, wemention that it is possible that directed

flow-augmentation can help with resolving the question of the

parameterized complexity of the Directed Multicut problem

with three terminal pairs, parameterized by the solution size. Recall

that this problem is FPT for two terminal pairs [6] and W[1]-hard

for four [20].

2 OVERVIEW

In this section we sketch the proof of Theorem 1.1.

Note that the actual formal statement in the full version [9] is

a bit more general: it handles a bit wider family of cuts than only

minimal cuts (called star 𝑠𝑡-cuts) and provides also a handy object

called witnessing flow. While these extensions are critical for the

Weighted Almost 2-SAT algorithm, already the case of minimal

𝑠𝑡-cuts encompasses main technical ideas and thus this overview

focuses only on this case. The full version of the theorem, and

associated definitions, are presented at the end of this section.

Basic notation. Before we start, let us agree on basic nomencla-

ture. All our graphs can be multigraphs. Edges may have capacities

1 or +∞. The input graph has all edge capacities equal to 1. Since

we never consider flows of value greater than 𝑘 , a +∞-capacity
edge is equivalent to (𝑘 + 1) copies of an edge of capacity 1. If 𝐺

is a graph and 𝐴 ⊆ 𝑉 (𝐺) ×𝑉 (𝐺), then 𝐺 +𝐴 is the graph 𝐺 with

every arc of 𝐴 added with capacity +∞.
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For vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺), an 𝑠𝑡-flow is a collection P of paths from

𝑠 to 𝑡 such that no edge of capacity 1 lies on more than one path

of P. The value of the flow is the number of paths. By 𝜆𝐺 (𝑠, 𝑡) we
denote the maximum possible value of an 𝑠𝑡-flow; note that it may

happen that 𝜆𝐺 (𝑠, 𝑡) = +∞. An 𝑠𝑡-flow is a maximum 𝑠𝑡-flow or

𝑠𝑡-maxflow if its value is 𝜆𝐺 (𝑠, 𝑡). By convention, if 𝜆𝐺 (𝑠, 𝑡) = +∞,
then any 𝑠𝑡-flow that contains a path with all edges of capacity +∞
is considered an 𝑠𝑡-maxflow.

A set 𝑍 ⊆ 𝐸 (𝐺) is an 𝑠𝑡-cut if it contains no edge of capacity +∞
and there is no path from 𝑠 to 𝑡 in 𝐺 − 𝑍 . An 𝑠𝑡-cut 𝑍 is minimal

if no proper subset of 𝑍 is an 𝑠𝑡-cut and minimum (or 𝑠𝑡-mincut)

if it has minimum possible cardinality. By Menger’s theorem, if

𝜆𝐺 (𝑠, 𝑡) < +∞ then the size of every 𝑠𝑡-mincut is exactly 𝜆𝐺 (𝑠, 𝑡)
and there are no 𝑠𝑡-cuts if 𝜆𝐺 (𝑠, 𝑡) = +∞.

For an 𝑠𝑡-cut 𝑍 , the 𝑠-side of 𝑍 is the set of vertices reachable

from 𝑠 in𝐺 −𝑍 , and the 𝑡-side of 𝑍 is the complement of the 𝑠-side.

Note that this is not symmetric as we do not mandate that 𝑡 is

reachable from all elements of the 𝑡-side in 𝐺 − 𝑍 . If we have two
(inclusion-wise) minimal 𝑠𝑡-cuts𝐶1 and𝐶2 such that both endpoints

of every edge of 𝐶1 lie in the 𝑠-side of 𝐶2 (and thus both endpoints

of every edge of 𝐶2 lie in the 𝑡-side of 𝐶1), then a vertex is between

𝐶1 and 𝐶2 if it is both in the 𝑡-side of 𝐶1 and 𝑠-side of 𝐶2.

One flow-augmentation step. If we do not pay particular attention

to the exact bound on the probability of a success and we are happy

with any 1/𝑓 (𝑘) bound for a computable function 𝑓 , it suffices to

prove the following:

Theorem 2.1. There exists a computable function 𝑓 : N → Z+
and a polynomial-time algorithm that, given a directed graph 𝐺 , two

vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺), and an integer 𝑘 , outputs a set𝐴 ⊆ 𝑉 (𝐺) ×𝑉 (𝐺)
such that 𝜆𝐺+𝐴 (𝑠, 𝑡) > 𝜆𝐺 (𝑠, 𝑡) and for every minimal 𝑠𝑡-cut 𝑍 of

size at most 𝑘 that is not a minimum 𝑠𝑡-cut, 𝑍 remains an 𝑠𝑡-cut in

𝐺 +𝐴 with probability at least 1/𝑓 (𝑘).

Indeed, an algorithm for Theorem 1.1 may first randomly guess

the size of the minimal 𝑠𝑡-cut 𝑍 it cares about and then repeat the

algorithm of Theorem 2.1, adding the output set 𝐴 to the graph 𝐺 ,

as long as 𝜆𝐺 (𝑠, 𝑡) is smaller than the guessed size of 𝑍 . Thus, in

the remainder of this section we sketch the proof of Theorem 2.1.

For the proof of Theorem 2.1, we fix one minimal 𝑠𝑡-cut 𝑍 of size

at most 𝑘 that is not a minimum 𝑠𝑡-cut and we bound from below

the probability that the algorithm never adds an arc from the 𝑠-side

to the 𝑡-side of 𝑍 .

The algorithm for Theorem 2.1 is recursive. We start with com-

puting an 𝑠𝑡-maxflow P in𝐺 ; the goal is to push somehow an extra

unit of flow from 𝑠 to 𝑡 by adding arcs so that no added arc violates

the cut 𝑍 . The algorithm tries to isolate smaller and smaller parts

of the graph through which it tries to push an extra unit of flow,

guessing some properties of the cut 𝑍 along the way to guide the

recursion. To obtain the desired success probability, we need to

very restrictively guess properties of the cut 𝑍 .

Natural candidates as separations between distinct areas for re-

cursive calls are minimum 𝑠𝑡-cuts. This was also the case for the

undirected counterpart of [10]: the algorithm there constructed

a maximal sequence of noncrossing and pairwise disjoint mini-

mum 𝑠𝑡-cuts, partitioned them into minimal subsegments where

the graph in-between was connected, and recursed on them.

In the undirected case, the edges of a minimum 𝑠𝑡-cut 𝐶 is the

entire “interface” between the 𝑠-side and 𝑡-side of𝐶 . In the directed

case, there can be an unbounded number of arcs with tails in the

𝑡-side of 𝐶 and heads in the 𝑠-side of 𝐶 . This makes the interaction

between the 𝑠-side of𝐶 and 𝑡-side of𝐶 much more complicated and

harder to grasp in recursive calls.

One of the main ideas of the proof of Theorem 2.1 — and one of

the main differences between it and its undirected counterpart [10]

— is a very careful choice of the minimum 𝑠𝑡-cuts we want to sepa-

rate along. Let us now introduce it in detail.

Reachability patterns, leaders, and mincut sequences. An instance

is a tuple I = (𝐺, 𝑠, 𝑡, 𝑘) where 𝐺 is a directed graph, 𝑠, 𝑡 ∈ 𝑉 (𝐺),
and 𝑘 is a nonnegative integer. An instance with a flow is a pair

(I,P) whereI = (𝐺, 𝑠, 𝑡, 𝑘) is an instance and P = {𝑃1, 𝑃2, . . . , 𝑃𝜆}
is an 𝑠𝑡-flow. In an instance with a maximum flow we additionally

require 𝜆 = 𝜆𝐺 (𝑠, 𝑡), that is, P is a maximum 𝑠𝑡-flow. With an

instance with a flow (I,P) we associate the residual graph 𝐺P .
For an instance with a maximum flow (I = (𝐺, 𝑠, 𝑡, 𝑘),P =

{𝑃1, . . . , 𝑃𝜆}), a reachability pattern is a directed graph𝐻 with vertex

set 𝑉 (𝐻 ) = [𝜆], that is, each vertex 𝑖 ∈ 𝑉 (𝐻 ) corresponds to a

path 𝑃𝑖 ∈ P, that contains a self-loop at every vertex. The pattern

associated with (I,P) is a graph 𝐻 with 𝑉 (𝐻 ) = [𝜆] and (𝑖, 𝑗) ∈
𝐸 (𝐻 ) if and only if there exists 𝑣 ∈ 𝑉 (𝑃𝑖 ) \ {𝑠, 𝑡} and 𝑢 ∈ 𝑉 (𝑃 𝑗 ) \
{𝑠, 𝑡} such that there is a 𝑣 to 𝑢 path in 𝐺P . Note that a pattern

associated with (I,P) is a reachability pattern if and only if every

path 𝑃𝑖 has at least one internal vertex.

For a vertex 𝑣 ∈ 𝑉 (𝐺), the set RReach(𝑣) is the set of vertices
reachable from 𝑣 in 𝐺P . For a vertex 𝑣 ∈ 𝑉 (𝐺) and an index

𝑖 ∈ [𝜆], the last vertex on 𝑃𝑖 residually reachable from 𝑣 , denoted

LastReach(𝑣, 𝑃𝑖 ), is the last (closest to 𝑡 ) vertex𝑢 on 𝑃𝑖 that is reach-

able from 𝑣 in𝐺P . Note that if 𝑢 is reachable from 𝑣 in𝐺P , then all

vertices preceding 𝑢 on 𝑃𝑖 are also reachable from 𝑣 in 𝐺P , that is,
the set of vertices of 𝑃𝑖 reachable from 𝑣 in 𝐺P form a prefix of 𝑃𝑖 .

Furthermore, note that if 𝑣1 and 𝑣2 are on 𝑃 𝑗 and 𝑣1 is earlier than

𝑣2 on 𝑃 𝑗 , then LastReach(𝑣1, 𝑃𝑖 ) is not later than LastReach(𝑣2, 𝑃𝑖 )
on 𝑃𝑖 (they may be equal).

Let 𝐶 be an 𝑠𝑡-mincut in I and let 𝐻 be a reachability pattern.

For 𝑖 ∈ [𝜆], the leader of the path 𝑃𝑖 after 𝐶 (with respect to the

pattern 𝐻 ), denoted leader𝐻 (𝐶, 𝑖), is the first (closest to 𝑠) vertex 𝑣
on 𝑃𝑖 such that for every (𝑖, 𝑗) ∈ 𝐸 (𝐻 ) the vertex LastReach(𝑣, 𝑃 𝑗 )
is after 𝐶 on 𝑃 𝑗 . A few remarks are in place. First, the notion of the

leader is well-defined for any 𝐻 as the vertex 𝑡 is always a feasible

candidate. Second, since a reachability pattern is required to contain

a self-loop at every vertex, for every 𝑖 ∈ [𝜆] there is at least one
edge (𝑖, 𝑗) ∈ 𝐸 (𝐻 ) to consider. Third, as𝐶 is oriented from the 𝑡-side

to the 𝑠-side in𝐺P , leader𝐻 (𝐶, 𝑖) is after 𝐶 on 𝑃𝑖 and, furthermore,

the entire path in 𝐺P from leader𝐻 (𝐶, 𝑖) to LastReach(𝑣, 𝑃 𝑗 ) for
every (𝑖, 𝑗) ∈ 𝐸 (𝐻 ) lies on the 𝑡-side of 𝐶 .

For an 𝑠𝑡-mincut 𝐶 and a reachability pattern 𝐻 , we define the

mincut 𝐻 -subsequent to 𝐶 as follows. If 𝑡 ∈ RReach(leader𝐻 (𝐶, 𝑖))
for some 𝑖 ∈ [𝜆], the mincut𝐻 -subsequent to𝐶 is undefined. Other-

wise, one can argue that 𝛿+ (RReach(leader𝐻 (𝐶, 𝑖))) is an 𝑠𝑡-mincut

for every 𝑖 ∈ [𝜆]. Let 𝑋 =
⋃

𝑖∈[𝜆] RReach(leader𝐻 (𝐶, 𝑖)). By sub-

modularity, 𝐶 ′ := 𝛿+ (𝑋 ) is also an 𝑠𝑡-mincut; we proclaim 𝐶 ′ to be

the mincut𝐻 -subsequent to𝐶 . Observe that, by definition, for every

𝑖 ∈ [𝜆], the leader leader𝐻 (𝐶, 𝑖) lies in the 𝑡-side of 𝐶 and 𝑠-side of
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𝐶 ′, the set RReach(leader𝐻 (𝐶, 𝑖)) lies in the 𝑠-side of𝐶 ′ and for ev-
ery (𝑖, 𝑗) ∈ 𝐸 (𝐻 ) any path in 𝐺P from leader𝐻 (𝐶, 𝑖) to a vertex on

𝑃 𝑗 in the 𝑡-side of 𝐶 (in particular, to LastReach(leader𝐻 (𝐶, 𝑖), 𝑃 𝑗 ))
lies entirely in the 𝑡-side of 𝐶 and 𝑠-side of 𝐶 ′. Furthermore, for

every tail of an edge (𝑢, 𝑣) ∈ 𝐶 ′ ∩ 𝐸 (𝑃 𝑗 ), either 𝑢 is the leader

leader𝐻 (𝐶, 𝑗) or there exists leader𝐻 (𝐶, 𝑖) (possibly with 𝑖 = 𝑗 )

such that 𝑢 ∈ RReach(leader𝐻 (𝐶, 𝑖)). Note that in the latter case,

there is no 𝑠𝑡-mincut with leader𝐻 (𝐶, 𝑖) in its 𝑠-side and 𝑢 in its

𝑡-side because there is a residual path from leader𝐻 (𝐶, 𝑖) to 𝑢. This
proves the following observation.

Lemma 2.2. Let ((𝐺, 𝑠, 𝑡, 𝑘),P) be an instance with maximum

flow, let 𝐻 be the reachability pattern associated with it, let 𝐶 be an

𝑠𝑡-mincut and let 𝐶 ′ be an 𝑠𝑡-mincut whose endpoints are entirely in

the 𝑡-side of 𝐶 . Let 𝐺 ′ be a graph constructed from 𝐺 by contracting

the 𝑠-side of 𝐶 onto 𝑠 and 𝑡-side of 𝐶 ′ onto 𝑡 and let P ′ be an 𝑠𝑡-flow
in 𝐺 ′ consisting of the subpaths of paths of P between the edge of

𝐶 and the edge of 𝐶 ′. Suppose P ′ is an 𝑠𝑡-maxflow in 𝐺 ′. If 𝐶 ′ is
𝐻 -subsequent to𝐶 , then the pattern associated with ((𝐺 ′, 𝑠, 𝑡, 𝑘),P ′)
is still 𝐻 . Moreover, the 𝑠𝑡-mincut 𝐻 -subsequent to 𝐶 is an 𝑠𝑡-mincut

closest to 𝐶 with this property.

For a reachability pattern 𝐻 , an 𝐻 -sequence of mincuts is a se-

quence 𝐶1,𝐶2, . . . ,𝐶ℓ of mincuts defined as follows. 𝐶1 is the 𝑠𝑡-

mincut closest to 𝑠 and for 𝑎 > 1 the mincut 𝐶𝑎 is the mincut

𝐻 -subsequent to 𝐶𝑎−1, as long as it is defined. Observe that for

every 1 ≤ 𝑎 < 𝑏 ≤ ℓ and 𝑖 ∈ [𝜆] we have that the edge of 𝐶𝑎 on 𝑃𝑖
lies strictly before the edge of 𝐶𝑏 on 𝑃𝑖 . That is, the 𝑠-side of 𝐶𝑎 is

contained in the 𝑠-side of 𝐶𝑏 and, furthermore, on every path 𝑃𝑖
the 𝑠-side of 𝐶𝑎 is a strict subset of the 𝑠-side of 𝐶𝑏 .

Preprocessing and the base case of the recursion. The input to

a recursive call is an instance with a flow (I = (𝐺, 𝑠, 𝑡, 𝑘),P =

{𝑃1, . . . , 𝑃𝜆}) and the goal is to return a set 𝐴 ⊆ 𝑉 (𝐺) ×𝑉 (𝐺) such
that 𝜆 < 𝜆𝐺+𝐴 (𝑠, 𝑡) and for everyminimal 𝑠𝑡-cut𝑍 with 𝜆 < |𝑍 | ≤ 𝑘

the set 𝑍 remains an 𝑠𝑡-cut in 𝐺 +𝐴 with good enough probability.

In the initial, root call we set P to be any 𝑠𝑡-maxflow.

A recursive call first performs a few preprocessing steps. If

𝜆 < 𝜆𝐺 (𝑠, 𝑡), it is safe to return𝐴 = ∅. If 𝜆𝐺 (𝑠, 𝑡) = 0 or 𝜆𝐺 (𝑠, 𝑡) ≥ 𝑘 ,

then there is no minimal 𝑠𝑡-cut of size at most 𝑘 that is not a mini-

mum 𝑠𝑡-cut. If this is the case, we can return 𝐴 = {(𝑠, 𝑡)}. Hence-
forth we assume 0 < 𝜆𝐺 (𝑠, 𝑡) < 𝑘 and that P is an 𝑠𝑡-maxflow.

A relatively standard preprocessing step (that thus we do not

describe here) can ensure that both 𝛿+ (𝑠) and 𝛿− (𝑡) (the set of edges
with tail in 𝑠 and the set of edges with head in 𝑡 , respectively) are

disjoint and are both 𝑠𝑡-mincuts. In particular, this implies that the

pattern 𝐻 associated with I and P is a reachability pattern.

In the recursive steps, we will aim at either decreasing 2𝑘 − 𝜆 or

keeping 𝑘 and 𝜆 intact, but decreasing the number of edges in the

pattern 𝐻 associated with (I,P). Intuitively, less edges in 𝐸 (𝐻 )
means that the graph 𝐺 is somewhat simpler.

In the base case of the recursion,𝐻 consists of 𝜆 isolated vertices,

with a loop on every vertex of 𝑉 (𝐻 ) = [𝜆]. In other words, 𝐺P

contains no path from a vertex of𝑉 (𝑃𝑖 ) \{𝑠, 𝑡} to a vertex of𝑉 (𝑃 𝑗 ) \
{𝑠, 𝑡} for any distinct 𝑖, 𝑗 ∈ [𝜆], or equivalently 𝐺 \ {𝑠, 𝑡} contains
no path from a vertex of𝑉 (𝑃𝑖 ) to a vertex of𝑉 (𝑃 𝑗 ). In this case, the

paths 𝑃𝑖 are somewhat independent in𝐺 and it is relatively easy to

show the following. (Here, an edge 𝑒 ∈ 𝐸 (𝐺) is bottleneck if there

exists a minimum 𝑠𝑡-cut 𝐶 with 𝑒 ∈ 𝐶 .)

Lemma 2.3. Let (I,P) be an instance with maximum flow with

proper boundaries and let 𝐻 be its reachability pattern. If |𝑉 (𝐻 ) | =
|𝐸 (𝐻 ) |, then for every minimal 𝑠𝑡-cut 𝑍 that is not a minimum cut,

there exists 𝑖 ∈ [𝜆] such that no edge of 𝑍 ∩ 𝐸 (𝑃𝑖 ) is a bottleneck

edge.

Lemma 2.3 allows the following step: sample 𝑖 ∈ [𝜆] at random
and return 𝐴 consisting of duplicates of all bottleneck edges of

𝑃𝑖 . Lemm 2.3 ensures that with probability at least 𝜆−1 ≥ 𝑘−1, a
minimal 𝑠𝑡-cut that is not a minimum 𝑠𝑡-cut remains an 𝑠𝑡-cut in

𝐺 + 𝐴, while 𝜆𝐺+𝐴 (𝑠, 𝑡) > 𝜆𝐺 (𝑠, 𝑡) follows from the fact that we

duplicated all bottleneck edges on one flow path.

If |𝐸 (𝐻 ) | > |𝑉 (𝐻 ) |, we aim at decomposing the graph further

and make some recursive calls. We compute the 𝐻 -sequence of

mincuts 𝐶1,𝐶2, . . . ,𝐶ℓ . Note that we have 𝐶1 = 𝛿+ (𝑠) and it is easy

to see that 𝐶2 is defined, and thus ℓ ≥ 2. We set a threshold ℓbig

depending on 𝑘 (in the actual proof we have ℓbig being polynomially

bounded in 𝑘) and split into two cases: ℓ ≤ ℓbig or ℓ > ℓbig.

Small ℓ case. In this case, we can afford guessing (by random

coin flip) for each 𝑖 ∈ [ℓ] and 𝑒 ∈ 𝐶𝑖 , whether the endpoints of

𝑒 = (𝑢, 𝑣) are in the 𝑠-side or 𝑡-side of 𝑍 .

There are a few simple cases. If for some 𝑒 = (𝑢, 𝑣) we guessed
that 𝑢 is in the 𝑠-side of 𝑍 and 𝑣 is in the 𝑡-side, then 𝑒 ∈ 𝑍 ; we

can recurse on 𝐺 ′ := 𝐺 − 𝑒 and P ′ := P \ {𝑃} with parameter

𝑘 − 1, where 𝑃 ∈ P is a flow path containing 𝑒 , and obtain a set

𝐴′, and return 𝐴 := 𝐴′ ∪ {(𝑠,𝑢), (𝑣, 𝑡)}. If for some 𝑒 = (𝑢, 𝑣) we
guessed that 𝑢 is in the 𝑡-side of 𝑍 and 𝑣 is in the 𝑠-side of 𝑍 , then

we can return 𝐴 = {(𝑠, 𝑣), (𝑢, 𝑡)} as 𝑠 − 𝑣 − 𝑢 − 𝑡 is an augmenting

path in 𝐺 + 𝐴 with respect to P, so 𝜆𝐺+𝐴 (𝑠, 𝑡) > 𝜆. Finally, if for

every 𝑒 ∈ 𝐶ℓ , both endpoints of 𝑒 are in the 𝑠-side of 𝑍 , then we can

recurse on 𝐺 ′ being the graph 𝐺 with the 𝑠-side of 𝐶ℓ contracted

onto 𝑠 ; the fact that 𝐶ℓ+1 is undefined implies that in the recursive

call the associated pattern is a proper subgraph of 𝐻 .

In the main case, let 𝐴0 consist of edges (𝑠, 𝑣) for any endpoint

𝑣 of an edge 𝑒 ∈ 𝐶𝑖 , 𝑖 ∈ [ℓ] that is guessed to be in the 𝑠-side of 𝑍

and edges (𝑢, 𝑡) for any endpoint 𝑢 of an edge 𝑒 ∈ 𝐶𝑖 , 𝑖 ∈ [ℓ] that
is guessed to be in the 𝑡-side of 𝑍 . If the guess is correct, 𝑍 remains

an 𝑠𝑡-cut in 𝐺 + 𝐴0. If 𝜆𝐺+𝐴0
(𝑠, 𝑡) > 𝜆, then we can return 𝐴0, so

assume otherwise.

Let 𝐶 be the minimum 𝑠𝑡-cut in 𝐺 + 𝐴0 that is closest to 𝑡 . For

every endpoint of an edge of𝐶 , we guess whether it is in the 𝑠-side

or 𝑡-side of 𝑍 . We again have a few simple cases. If for some 𝑒 =

(𝑢, 𝑣) ∈ 𝐶 , 𝑢 is in the 𝑠-side of 𝑍 and 𝑣 is in the 𝑡-side of 𝑍 , we have

𝑒 ∈ 𝑍 and we recurse on𝐺−𝑒 as before. If a head 𝑣 of an edge of𝐶 is

in the 𝑠-side of 𝑍 , then we return 𝐴 := 𝐴0 ∪ {(𝑠, 𝑣)}; 𝜆𝐺+𝐴 (𝑠, 𝑡) > 𝜆

follows from the fact that 𝐶 is the closest to 𝑡 minimum 𝑠𝑡-cut in

𝐺 +𝐴0.

We are left with the most interesting case where𝐶 is completely

in the 𝑡-side of 𝑍 . We define 𝑎 ∈ [ℓ] to be the maximum index such

that all endpoints of𝐶𝑎 are in the 𝑠-side of 𝑍 . This is well-defined as

𝐶1 = 𝛿+ (𝑠) is in the 𝑠-side of 𝑍 (as we are not in any of the simple

cases). Also we have 𝑎 < ℓ and𝐶𝑎+1 is defined (again, we are not in
any of the simple cases) and also 𝐶 lies entirely in the 𝑡-side of 𝐶𝑎 .

Let 𝐺 ′ be the graph 𝐺 with the 𝑠-side of 𝐶𝑎 contracted onto 𝑠 and
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the 𝑡-side of 𝐶 contracted onto 𝑡 . Let P ′ be the flow P projected

onto 𝐺 ′ (i.e., we shorten all paths to start from the edges of 𝐶𝑎 and

end with the edges of 𝐶).

The crucial observation is that the pattern associated with 𝐺 ′

and P ′ is a proper subgraph of 𝐻 . Indeed, by the choice of 𝑎 (and

exclusion of the simple cases), there is at least one tail 𝑢 of an edge

of𝐶𝑎+1 that is in the 𝑡-side of 𝑍 ; this vertex 𝑢 lies in the 𝑡-side of𝐶𝑎
and the 𝑠-side of 𝐶𝑎+1. Moreover, 𝑢 is in the 𝑡-side of 𝐶 as the edge

(𝑢, 𝑡) has been added to 𝐴0 and 𝐶 is an 𝑠𝑡-mincut in 𝐺 +𝐴0. Since

𝐶𝑎+1 is the mincut𝐻 -subsequent to𝐶𝑎 , by Lemma 2.2 the subgraph

between 𝐶𝑎 and 𝐶𝑎+1 maintains all reachability (in the residual

graph) described by 𝐻 , but 𝐶𝑎+1 is chosen to be the closest-to-𝐶𝑎
minimum 𝑠𝑡-cut that satisfies Lemma 2.2. Since 𝑢 is in the 𝑡-side

of 𝐶 but 𝑠-side of 𝐶𝑎+1, we can infer that for at least one edge of

𝐻 , the corresponding reachability is not present in 𝐺 ′ and P ′. We

recurse on 𝐺 ′ and P ′’; this decrease in |𝐸 (𝐻 ) | is a progress in the

recursive step.

We remark here that the above progress in the recursion is the

main reason to introduce the notions of reachability patterns and

sequences of mincuts. It seems to us very delicate; we were not able

to reproduce a similar measure of progress with different ways of

defining sequences of cuts 𝐶1, . . . ,𝐶ℓ .

Large ℓ case. The progress in the previous case is possible par-

tially due to the fact that ℓ is bounded in 𝑘 and we could afford

guessing the 𝑠-side/𝑡-side assignment of all endpoints of all cuts 𝐶𝑖 .

If ℓ is large (unbounded in 𝑘), we need to resort to a color-coding

step to split the long sequence of 𝐶𝑖 ’s into smaller chunks that are

eligible for the small ℓ case.

Let 𝑍𝑡𝑠 be the set of edges of paths of P whose tail is in the

𝑡-side of 𝑍 but head is in the 𝑠-side of 𝑍 . On each flow path 𝑃𝑖 ,

we have |𝐸 (𝑃𝑖 ) ∩ 𝑍 | = |𝐸 (𝑃𝑖 ) ∩ 𝑍𝑡𝑠 | + 1 and thus |𝑍𝑡𝑠 | ≤ 𝑘 − 𝜆.

An index 𝑎 ∈ [ℓ] is touched if there is an endpoint of an arc of

𝑍 ∪ 𝑍𝑡𝑠 that is in the 𝑡-side of 𝐶𝑎 and 𝑠-side of 𝐶𝑎+1. We have at

most 2|𝑍 ∪ 𝑍𝑡𝑠 | ≤ 4𝑘 − 2𝜆 touched indices.

Recall that the construction of the cuts 𝐶1,𝐶2, . . . ,𝐶ℓ ensures

that, for every 𝑎 ∈ [ℓ − 1], between𝐶𝑎 and𝐶𝑎+1 one can find a path

from 𝑃𝑖 to 𝑃 𝑗 in the residual graph for every (𝑖, 𝑗) ∈ 𝐸 (𝐻 ). On the

other hand,𝐺 − {𝑠, 𝑡} features no path in the residual graph from 𝑃𝑖
to 𝑃 𝑗 if (𝑖, 𝑗) ∉ 𝐸 (𝐻 ). In some sense, it means that the connectivity

between paths 𝑃𝑖 that is present in the entire graph𝐺 is repeatedly

realized between each two consecutive cuts 𝐶𝑎 .

The fact that we are operating with the residual graph was es-

sential for the small ℓ case. Here, we need to depart from the resid-

ual graph and observe the following: for every (𝑖, 𝑗) ∈ 𝐸 (𝐻 ) and
1 ≤ 𝑎 ≤ ℓ − 𝜆, there is a path in𝐺 from 𝑃𝑖 to 𝑃 𝑗 that starts between

𝐶𝑎 and 𝐶𝑎+1, ends between 𝐶𝑎+𝜆−1 and 𝐶𝑎+𝜆 , and is contained be-

tween 𝐶𝑎 and 𝐶𝑎+𝜆 .
This has a number of consequences. First, if ℓbig is large enough,

then 𝐻 must be transitive.

Second, for every 𝑎 ∈ [ℓ] let 𝐿𝑎 ⊆ [𝜆] be the set of indices 𝑖

such that both endpoints of the unique edge of 𝐸 (𝑃𝑖 ) ∩𝐶𝑎 are in

the 𝑠-side of 𝑍 . Observe that if for some 1 ≤ 𝑎 ≤ ℓ − 𝜆, all indices
𝑎 ≤ 𝑏 ≤ 𝑎 + 𝜆 are untouched, then the set 𝐿𝑎+𝜆 is downward-closed:

there is no arc (𝑖, 𝑗) ∈ 𝐸 (𝐻 ) such that 𝑖 ∈ 𝐿𝑎+𝜆 but 𝑗 ∉ 𝐿𝑎+𝜆 .
Third, observe that if 𝐿 ⊆ [𝜆] is downward-closed, then for

every 𝑖 ∈ 𝐿 and 𝑗 ∉ 𝐿, the graph 𝐺 − {𝑠, 𝑡} contains no path from

𝑃𝑖 to 𝑃 𝑗 . Hence, if we denote by cl(𝐿𝑎) be the minimal superset of

𝐿𝑎 that is downward-closed, we have that 𝐿𝑏 ⊆ cl(𝐿𝑎) whenever
1 ≤ 𝑎 ≤ 𝑏 ≤ ℓ .

In particular, if 𝐿𝑎 is downward-closed, we have the following.

(1) 𝐿𝑏 ⊆ 𝐿𝑎 for 𝑏 ≥ 𝑎.

(2) For every 𝑖 ∈ 𝐿𝑎 , the entire prefix of 𝑃𝑖 up to the edge of 𝐶𝑎
is in the 𝑠-side of 𝑍 , as every path from a vertex 𝑣 on such

prefix to 𝑡 needs to intersect 𝐶𝑎 ∩
⋃

𝑗 ∈𝐿𝑎 𝐸 (𝑃 𝑗 ) (and 𝑍 is a

minimal 𝑠𝑡-cut).

(3) Symmetrically for every 𝑖 ∉ 𝐿𝑎 , the entire suffix of 𝑃𝑖 from

the edge of 𝐶𝑎 is in the 𝑡-side of 𝑍 .

(4) There is no edge 𝑒 = (𝑢, 𝑣) ∈ 𝑍 with 𝑢 in the 𝑡-side of 𝐶𝑎
and 𝑣 in the 𝑠-side of 𝐶𝑎 . Indeed, if 𝑒 = (𝑢, 𝑣) were such an

edge, then by minimality of 𝑍 the graph𝐺 −𝑍 would need to

feature a path from 𝑠 to 𝑣 and from𝑢 to 𝑡 ; the first path needs

to traverse an edge of 𝐶𝑎 ∩ 𝐸 (𝑃𝑖 ) for 𝑖 ∈ 𝐿𝑎 and the second

path needs to traverse an edge of 𝐶𝑎 ∩ 𝐸 (𝑃 𝑗 ) for 𝑗 ∉ 𝐿𝑎 ,

hence in between we have a path from 𝑃𝑖 to 𝑃 𝑗 in 𝐺 − {𝑠, 𝑡}.

Let𝑇 be the set of touched indices. We say that two indices 𝑎 < 𝑏

are close if 𝑏 − 𝑎 ≤ 𝜆. The set 𝑇 partitions into blocks: maximal sets

of indices such that two consecutive indices are close to each other.

Let 𝐵1, . . . , 𝐵𝑟 be the blocks and for 1 ≤ 𝛼 ≤ 𝑟 , let 𝑎𝛼 and 𝑏𝛼 be the

minimum and maximum index of the block 𝐵𝛼 . We have 𝑏𝛼 − 𝑎𝛼 =

O(𝑘𝜆) while indices 𝑎𝛼−𝜆, 𝑎𝛼−𝜆+1, . . . , 𝑎𝛼−1 and𝑏𝛼 +1, . . . , 𝑏𝛼 +𝜆
are untouched (we ignore here boundary cases when 𝑎𝛼 ≤ 𝜆 or

𝑏𝛼 + 𝜆 > ℓ which are easy to adjust to). In particular, 𝐿𝑎𝛼−1 and
𝐿𝑏𝛼+𝜆 are downward-closed. Denote 𝐿←𝛼 = 𝐿𝑎𝛼−1, 𝐿

→
𝛼 = 𝐿𝑏𝛼+𝜆 ,

and 𝐷𝛼 = 𝐿←𝛼 \ 𝐿→𝛼 .

An important observation from the downward-closedness of 𝐿←𝛼
and 𝐿→𝛼 is the following: for every edge 𝑒 ∈ 𝑍 , there is a block 𝐵𝛼
such that both endpoints of 𝑒 lie between 𝐶𝑎𝛼 and 𝐶𝑏𝛼+1. Hence, 𝑍
partitions into 𝑍1 ⊎ 𝑍2 ⊎ . . . ⊎ 𝑍𝑟 where 𝑍𝛼 is the set of edges of 𝑍

with both endpoints between 𝐶𝑎𝛼 and 𝐶𝑏𝛼+1.
For every 𝛼 ∈ [𝑟 ], define a graph 𝐺𝛼 as follows: contract the

𝑠-side of𝐶𝑎𝛼−1 onto 𝑠 , contract the 𝑡-side of𝐶𝑏𝛼+𝜆 onto 𝑡 , and from

the edges incident with 𝑠 or 𝑡 leave only the ones on paths 𝑃𝑖 for

𝑖 ∈ 𝐷𝛼 . The flow paths 𝑃𝑖 for 𝑖 ∈ 𝐷𝛼 naturally project to a flow

P𝛼 of size |𝐷𝛼 | in 𝐺𝛼 . The important observation again from the

downward-closedness of 𝐿←𝛼 and 𝐿→𝛼 is as follows: in𝐺𝛼 , 𝑍𝛼 is a

minimal 𝑠𝑡-cut.

This in particular implies that 𝐷𝛼 ≠ ∅ and thus

[𝜆] = 𝐿←
1
⊋ 𝐿→

1
= 𝐿←

2
⊋ 𝐿→

2
= . . . = 𝐿←𝑟 ⊋ 𝐿→𝑟 = ∅.

We would like to recurse on instances I𝛼 = (𝐺𝛼 ,P𝛼 , 𝑘𝛼 ) where
𝑘𝛼 = |𝑍𝛼 |, but there is a significant problem: we do not know the

blocks 𝐵𝛼 . However, following a similar step in the undirected

algorithm of [10], we can deal with it with color-coding.

Sample Γ ⊆ [ℓ], aiming at follows: for every 𝑎 that is close to a

touched index, we want 𝑎 ∈ Γ if and only if 𝑎 is touched. If we put

every 𝑎 ∈ [ℓ] into Γ with probability 0.5 independently of other

indices, the success probability is 2
−O(𝑘𝜆)

. Then, the indices of Γ
partition into Γ-blocks: one Γ-block is a maximal subset of Γ in

which two consecutive indices are close. If the guess is successful,

every block is a Γ-block, but there may be numerous Γ-blocks that
are in fact wholy untouched.
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We can guess 𝑟 ≤ 4𝑘 −2𝜆, sets 𝐿←𝛼 , 𝐿→𝛼 as well as sizes 𝑘𝛼 = |𝑍𝛼 |
for 𝛼 ∈ [𝑟 ]. For every Γ-block, we guess its “type” in [𝑟 ], aiming

that a true block 𝐵𝛼 has type 𝛼 . For a Γ-block 𝐵 of type 𝛼 (𝐵),
we construct from it an instance (𝐺𝐵, 𝑠, 𝑡, 𝑘𝛼 (𝐵) ) with flow P𝐵 in

the same way as we constructed 𝐺𝛼 (𝐵) and P𝛼 (𝐵) for 𝐵𝛼 (𝐵) . If
𝑘𝛼 (𝐵) > |𝐷𝛼 (𝐵) | (i.e., 𝑍𝛼 (𝐵) is not a minimum cut in 𝐺𝛼 (𝐵) ) we
recurse on it, obtaining a set 𝐴𝐵 (we denote 𝐴𝐵 = ∅ for cases
𝑘𝛼 (𝐵) = 𝐷𝛼 (𝐵) ).

The final set 𝐴 consists of:

(1) for every Γ-block 𝐵 with minimum index 𝑎 and maximum

index 𝑏, the following edges:

(a) for every (𝑢, 𝑣) ∈ 𝐴𝐵 :

• if 𝑢 ≠ 𝑠 and 𝑣 ≠ 𝑡 , just the arc (𝑢, 𝑣) itself;
• if 𝑢 = 𝑠 and 𝑣 ≠ 𝑡 , all arcs (𝑢 ′, 𝑣) where 𝑢 ′ ranges over
all tails of edges of 𝐶𝑎−1 on paths 𝑃𝑖 for 𝑖 ∈ 𝐷𝛼 ;

• if 𝑢 ≠ 𝑠 and 𝑣 = 𝑡 , all arcs (𝑢, 𝑣 ′) where 𝑣 ′ ranges over
all tails of edges of 𝐶𝑏+𝜆 on paths 𝑃𝑖 for 𝑖 ∈ 𝐷𝛼 ;

• if 𝑢 = 𝑠 and 𝑣 = 𝑡 , all arcs (𝑢 ′, 𝑣 ′) where 𝑢 ′ ranges over
all tails of edges of 𝐶𝑎−1 on paths 𝑃𝑖 for 𝑖 ∈ 𝐷𝛼 and 𝑣 ′

ranges over all tails of edges of 𝐶𝑏+𝜆 on paths 𝑃𝑖 for

𝑖 ∈ 𝐷𝛼 ;

(b) for every 𝑖 ∈ [𝜆] \ 𝐷𝛼 and arc from the tail of the edge of

𝐶𝑎−1 ∩ 𝐸 (𝑃𝑖 ) to the tail of the edge of 𝐶𝑏+𝜆 ∩ 𝐸 (𝑃𝑖 );
(2) for every 1 ≤ 𝑐 ≤ ℓ for which there is no Γ-block 𝐵 with

minimum index 𝑎 andmaximum index𝑏 and 𝑎−1 ≤ 𝑐 ≤ 𝑏+𝜆:
• for every 𝑖 ∈ [𝜆], an edge from the tail of the edge of

𝐶𝑐 ∩ 𝐸 (𝑃𝑖 ) to the tail of the edge of 𝐶𝑐+1 ∩ 𝐸 (𝑃𝑖 );
(3) for every 1 ≤ 𝑐 ≤ ℓ for which there is no Γ-block 𝐵 with

minimum index 𝑎 andmaximum index𝑏 and 𝑎−1 < 𝑐 < 𝑏+𝜆:
• for every 1 ≤ 𝛼 ≤ 𝑟 , for every 𝑖, 𝑗 ∈ 𝐷𝛼 , an edge from

the tail of the edge of 𝐶𝑐 ∩ 𝐸 (𝑃𝑖 ) to the tail of the edge of

𝐶𝑐 ∩ 𝐸 (𝑃 𝑗 ).

To see that 𝜆𝐺+𝐴 (𝑠, 𝑡) > 𝜆, notice first that as𝑍 is not a minimum

𝑠𝑡-cut, there exists an index 𝛼 where 𝑘𝛼 = |𝑍𝛼 | > 𝐷𝛼 . We push an

extra unit of flow along flow paths 𝑃𝑖 , 𝑖 ∈ 𝐷𝛼 as follows.

• For every Γ-block 𝐵 of type 𝛼 (with minimum index 𝑎 and

maximum index 𝑏), we push |𝐷𝛼 | + 1 units of flow from the

tails of edges of 𝐶𝑎−1 on paths 𝑃𝑖 for 𝑖 ∈ 𝐷𝛼 to the tails

of edges of 𝐶𝑏+𝜆 on paths 𝑃𝑖 for 𝑖 ∈ 𝐷𝛼 using edges of 𝐴𝐵

(Point 1a) and inductive assumption from the recusive call.

• For every Γ-block 𝐵 of type 𝛼 ′ ≠ 𝛼 , we push |𝐷𝛼 | + 1 units
of flow along edges added in Point 1b for paths 𝑃𝑖 , 𝑖 ∈ 𝐷𝛼 .

• For every 1 ≤ 𝑐 ≤ ℓ for which there is no Γ-block 𝐵 with

minimum index 𝑎 andmaximum index𝑏 and 𝑎−1 ≤ 𝑐 ≤ 𝑏+𝜆,
we push |𝐷𝛼 | + 1 units of flow along edges added in Point 2

for paths 𝑃𝑖 , 𝑖 ∈ 𝐷𝛼 .

• We use edges added in Point 3 to reshuffle the flow on paths

𝑃𝑖 , 𝑖 ∈ 𝐷𝛼 between the steps above, if needed.

Let us now briefly analyse the progress in the above recursion.

If 𝑟 > 1, then all recursive calls treat strictly smaller value of 𝑘 .

For 𝑟 = 1, we have 𝐷1 = 𝜆 and possibly 𝑘𝛼 = 𝑘 . However, then

the recursive calls fall into the “small ℓ case” as the cuts 𝐶𝑐 inside

recursive call remain an 𝐻 -sequence of mincuts. This is the desired

progress and it finishes the overview of the proof of Theorem 2.1.

2.1 Star cuts

For more advanced applications of the framework, such as the

algorithm for Weighted Almost 2-SAT, we need the full version

of Theorem 2.1, which we present here. The proofs are deferred to

the full version [9].

An 𝑠𝑡-cut 𝑍 is a star 𝑠𝑡-cut if for every (𝑢, 𝑣) ∈ 𝑍 , in the graph

𝐺 − 𝑍 there is a path from 𝑠 to 𝑢 but there is no path from 𝑠 to 𝑣 .

Note that every minimal 𝑠𝑡-cut is a star 𝑠𝑡-cut, but the implication

in the other direction does not hold in general. For a star 𝑠𝑡-cut 𝑍

in 𝐺 , by core𝐺 (𝑍 ) ⊆ 𝑍 we denote the set of arcs (𝑢, 𝑣) ∈ 𝑍 such

that there exists a path from 𝑣 to 𝑡 in 𝐺 − 𝑍 . We drop the subscript

if the graph 𝐺 is clear from the context. We observe the following.

Lemma 2.4. If 𝑍 is a star 𝑠𝑡-cut in a graph 𝐺 , then core(𝑍 ) is a
minimal 𝑠𝑡-cut.

We say that a set of arcs 𝐴 ⊆ 𝑉 (𝐺) ×𝑉 (𝐺) is compatible with a

star 𝑠𝑡-cut 𝑍 if the following holds: for every 𝑣 ∈ 𝑉 (𝐺), there is a
path from 𝑠 to 𝑣 in𝐺 −𝑍 if and only if there is a path from 𝑠 to 𝑣 in

(𝐺 +𝐴) − 𝑍 . Equivalently: the 𝑠-sides and 𝑡-sides of 𝑍 are equal in

𝐺 and 𝐺 +𝐴, or no arc of 𝐴 has its tail in the 𝑠-side of 𝑍 in 𝐺 and

its head in the 𝑡-side of 𝑍 in 𝐺 .

An immediate yet important observation is as follows.

Lemma 2.5. If 𝑍 is a star 𝑠𝑡-cut in 𝐺 and 𝐴 ⊆ 𝑉 (𝐺) × 𝑉 (𝐺) is
compatible with 𝑍 , then 𝑍 is a star 𝑠𝑡-cut in 𝐺 +𝐴 as well.

We remark that albeit in the setting of Lemma 2.5 the cut 𝑍

remains a star 𝑠𝑡-cut in 𝐺 + 𝐴, it may happen that core𝐺 (𝑍 ) ⊊
core𝐺+𝐴 (𝑍 ), as the arcs of 𝐴 may add some new reachability to-

wards 𝑡 .

Assume 𝑍 is a star 𝑠𝑡-cut in𝐺 such that core(𝑍 ) is an 𝑠𝑡-mincut.

An 𝑠𝑡-maxflow P is a witnessing flow if 𝐸 (P) ∩𝑍 = core(𝑍 ), that is,
P contains one edge of core(𝑍 ) on each flow path and no other edge

of 𝑍 . A witnessing flow may not exist in general, even if core(𝑍 )
is an 𝑠𝑡-mincut. In contrast, on undirected graphs an arbitrary 𝑠𝑡-

maxflow is a witnessing flow for the counterpart of core(𝑍 ) when
the latter is an 𝑠𝑡-mincut [10]. However, our flow-augmentation

procedure will ensure that not only core(𝑍 ) becomes an 𝑠𝑡-mincut

in the augmented graph, but also a flow is returned that is a wit-

nessing flow in the augmented graph. Formally, for a star 𝑠𝑡-cut 𝑍

in𝐺 ,𝐴 ⊆ 𝑉 (𝐺) ×𝑉 (𝐺), and an 𝑠𝑡-maxflow P̂ in𝐺 +𝐴, we say that
(𝐴, P̂) is compatible with 𝑍 if 𝐴 is compatible with 𝑍 , core𝐺+𝐴 (𝑍 )
is an 𝑠𝑡-mincut in𝐺 +𝐴, and P̂ is a witnessing flow for 𝑍 in𝐺 +𝐴.
Our flow-augmenting procedure will return a pair (𝐴, P̂) that is
compatible with a fixed star 𝑠𝑡-cut 𝑍 with good probability.

Theorem 2.6. There exists a polynomial-time algorithm that,

given an instance I = (𝐺, 𝑠, 𝑡, 𝑘), returns a set𝐴 ⊆ 𝑉 (𝐺) ×𝑉 (𝐺) and
an 𝑠𝑡-maxflow P̂ in 𝐺 +𝐴 such that for every star 𝑠𝑡-cut 𝑍 of size at

most 𝑘 , with probability 2
−O(𝑘4

log𝑘)
the pair (𝐴, P̂) is compatible

with 𝑍 .

3 APPLICATIONS: WEIGHTED 𝑠𝑡-CUT,

WEIGHTED DFVS, WEIGHTED CHAIN SAT

3.1 Tractable case of Weighted Bundled Cut

An instance of Bundled Cut consists of a directed graph𝐺 , vertices

𝑠, 𝑡 ∈ 𝑉 (𝐺), a nonnegative integer 𝑘 , and a family B of pairwise
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disjoint subsets of 𝐸 (𝐺). An element 𝐵 ∈ B is called a bundle. An

edge that is part of a bundle is deletable, otherwise it is undeletable.

A cut in a Bundled Cut instance I = (𝐺, 𝑠, 𝑡, 𝑘,B) is an 𝑠𝑡-cut 𝑍

that does not contain any undeletable edge, that is, 𝑍 ⊆ ⋃B. A cut

𝑍 touches a bundle 𝐵 ∈ B if 𝑍 ∩ 𝐵 ≠ ∅. The cost of a cut 𝑍 is the

number of bundles it touches. A cut 𝑍 is a solution if its cost is at

most 𝑘 . The Bundled Cut problem asks if there exists a solution

to the input instance.

An instance of Weighted Bundled Cut consists of a Bundled

Cut instance I = (𝐺, 𝑠, 𝑡, 𝑘,B) and additionally a weight function

𝜔 : B → Z+ and an integer𝑊 ∈ Z+. The weight of a cut 𝑍 in I
is the total weight of all bundles it touches. A solution 𝑍 to I is

a solution to the Weighted Bundled Cut instance (I, 𝜔,𝑊 ) if
additionally the weight of 𝑍 is at most𝑊 . The Weighted Bundled

Cut problem asks if there is a solution to the input instance. Note

that any Bundled Cut instance can be treated as a Weighted

Bundled Cut instance by setting 𝜔 uniformly equal 1 and𝑊 = 𝑘 .

When parameterized by 𝑘 , it is well known that Bundled Cut is

W[1]-hard even if all bundles are of size 2 [18]. To get tractability,

we define the following restriction called Weighted Bundled Cut

with Order where we require the following: in the input instance

((𝐺, 𝑠, 𝑡, 𝑘,B), 𝜔,𝑊 ), for every 𝐵 ∈ B one can order the arcs of 𝐵

as 𝑒𝐵
1
, . . . , 𝑒𝐵|𝐵 | such that for every 1 ≤ 𝑖 < 𝑗 ≤ |𝐵 | there exists a

path 𝑃𝐵
𝑖,𝑗

in 𝐺 that goes from one endpoint of 𝑒𝐵
𝑖
to one endpoint

of 𝑒𝐵
𝑗
and uses only undeletable arcs and arcs of 𝐵.

In this subsection we prove the following theorem.

Theorem 3.1. Weighted Bundled Cut with Order is random-

ized FPT when parameterized by 𝑘 and maximum size of a bundle.

The main workhorses behind the proof of Theorem 3.1 are the

flow-augmentation routine and the following lemma.

Lemma 3.2. Assume we are given a Weighted Bundled Cut

with Order instance I = ((𝐺, 𝑠, 𝑡, 𝑘,B), 𝜔,𝑊 ) Then one can in time

FPT with parameters 𝜆𝐺 (𝑠, 𝑡), maximum size of a bundle, and 𝑘 check

if there is a solution to I that is an 𝑠𝑡-mincut, where for 𝜆𝐺 (𝑠, 𝑡) we
treat every deletable edge as of capacity 1 and every undeletable edge

as of capacity +∞.

Proof of Theorem 3.1 using Lemma 3.2. Let𝑏 be themaximum

size of a bundle. We will describe a randomized algorithm that runs

in time FPT in 𝑏 and 𝑘 and, if given a yes-instance, answers yes

with probability 2
−O( (𝑏𝑘)4 log(𝑏𝑘))

, and never answers yes to a no-

instance. Repeating the algorithm 2
O( (𝑏𝑘)4 log(𝑏𝑘))

times gives the

desired algorithm.

Consider a solution 𝑍 to the input Weighted Bundled Cut

with Order instance I = ((𝐺, 𝑠, 𝑡, 𝑘,B), 𝜔,𝑊 ). Without loss of

generality, we can assume that𝑍 is a minimal 𝑠𝑡-cut. Note that |𝑍 | ≤
𝑏𝑘 . Apply flow-augmentation (Theorem 1.1) to 𝐺 and parameter

𝑏𝑘 , obtaining a set 𝐴, and add all arcs of 𝐴 to 𝐺 as undeletable arcs.

Note that adding arcs 𝐴 to𝐺 does not break the requirements for a

Weighted Bundled Cut with Order instance. With probability

2
−O( (𝑏𝑘)4 log(𝑏𝑘))

the set𝑍 is still a solution in the final instance and

is an 𝑠𝑡-mincut. Run the algorithm of Lemma 3.2, returning its

answer. □

Thus, we are left with proving Lemma 3.2.

Proof of Lemma 3.2. For every bundle 𝐵 ∈ B, fix an order 𝐵 =

(𝑒𝐵
1
, . . . , 𝑒𝐵|𝐵 |) as in the definition of a Weighted Bundled Cut

with Order instance. Let 𝑏 be the maximum size of a bundle.

Compute a maximum 𝑠𝑡-flow P = {𝑃1, 𝑃2, . . . , 𝑃𝜆} where 𝜆 :=

𝜆𝐺 (𝑠, 𝑡). Fix a hypothetical solution 𝑍 ; note that 𝑍 contains exactly

one deletable edge on every path 𝑃𝑖 ; denote by 𝑓𝑖 the unique edge of

𝐸 (𝑃𝑖 )∩𝑍 . Branch, guessing the following information about𝑍 . First,

guess the number 𝜅 ≤ 𝑘 of bundles touched by 𝑍 . Let those bundles

be 𝐹1, 𝐹2, . . . , 𝐹𝜅 ∈ B. For every 𝑖 ∈ [𝜆], guess the indices 𝛼 (𝑖) ∈ [𝜅]
and 𝛽 (𝑖) ∈ [𝑏] such that 𝑓𝑖 = 𝑒

𝐹𝛼 (𝑖 )
𝛽 (𝑖) . There are 2

O(𝜆 log(𝑘𝑏))
options.

We perform a simple sanity check we consider only options where

the mapping 𝑖 ↦→ (𝛼 (𝑖), 𝛽 (𝑖)) is injective.
We also guess a partition of B into sets B1, . . . ,B𝜅 , aiming at

𝐹 𝑗 ∈ B𝑗 . By standard objects for derandimizing color-coding, this

can be turned into a branch into 2
O(𝜅)

log |B| options.
For every 1 ≤ 𝑗 ≤ 𝜅 and every 𝐵 ∈ B𝑗 we make a sanity check:

we expect that, for every 𝑖 ∈ [𝜆] such that 𝛼 (𝑖) = 𝑗 the edge 𝑒𝐵
𝛽 (𝑖)

actually lies on 𝑃𝑖 . If this is not the case, we remove 𝐵 from B𝑗 and

B (making its edges undeletable). Clearly, 𝐹 𝑗 remains in B𝑗 in the

branch where the guesses are correct.

We now make the following (main) filtering step. Iterate over

all 1 ≤ 𝑗 ≤ 𝜅 and indices 1 ≤ 𝑖1, 𝑖2 ≤ 𝜆 such that 𝛼 (𝑖1) = 𝛼 (𝑖2) = 𝑗

but 𝛽 (𝑖1) < 𝛽 (𝑖2). Consider 𝐵 ∈ B𝑗 such that there exists another

𝐵′ ∈ B𝑗 such that 𝑒𝐵
′

𝛽 (𝑖1) is before 𝑎
𝐵
𝛽 (𝑖1) on 𝑃𝑖1 but 𝑒

𝐵′

𝛽 (𝑖2) is after

𝑎𝐵
𝛽 (𝑖2) on 𝑃𝑖2 . Assume 𝐵 = 𝐹 𝑗 . Then 𝐵′ ∩ 𝑍 = ∅. By the property of

the Weighted Bundled Cut with Order instance, 𝐺 contains a

path𝑄 from an endpoint of 𝑒𝐵
′

𝛽 (𝑖1) to an endpoint of 𝑒𝐵
′

𝛽 (𝑖2) that uses

only undeletable edges and edges of 𝐵′. Hence, 𝑄 is disjoint with

𝑍 . However, as 𝑒𝐵
𝛽 (𝑖1) ∈ 𝑍 lies after 𝑒𝐵

′

𝛽 (𝑖1) on 𝑃𝑖1 while 𝑒
𝐵
𝛽 (𝑖2) ∈ 𝑍

lies before 𝑒𝐵
′

𝛽 (𝑖2) on 𝑃𝑖2 , 𝑄 goes from the 𝑠-side of 𝑍 to the 𝑡-side of

𝑍 , a contradiction. Hence, 𝐵 ≠ 𝐹 𝑗 and we can remove such 𝐵 from

B𝑗 and B.
After we perform the filtering step exhaustively, for every 1 ≤

𝑗 ≤ 𝜅 we can order B𝑗 as 𝐵 𝑗,1, . . . , 𝐵 𝑗, |B𝑗 | such that for every

1 ≤ 𝜉 < 𝜁 ≤ |B𝑗 | and for every 𝑖 ∈ [𝜆], if 𝛼 (𝑖) = 𝑗 , then 𝑒
𝐵𝜉

𝛽 (𝑖) is

before 𝑒
𝐵𝜁

𝛽 (𝑖) on 𝑃𝑖 . Let 𝑎
𝑍
𝑗
be such that 𝐹 𝑗 = 𝐵 𝑗,𝑎𝑍

𝑗
.

In the end, we also check if still 𝜆 = 𝜆𝐺 (𝑠, 𝑡). If this is not the
case, we terminate the current branch.

An edge 𝑒 ∈ 𝐸 (𝐺) is vulnerable if 𝑒 = 𝑒𝐵
𝛽 (𝑖) for some 𝑖 ∈ [𝜆] and

𝐵 ∈ B𝛼 (𝑖) . Note that all edges of 𝑍 are vulnerable, all vulnerable

edges are deletable, and vulnerable edges appear only on paths of

P.
We now construct an auxiliary weighted directed graph 𝐻 as

follows. Start with 𝐻 consisting of two vertices 𝑠 and 𝑡 . For every

1 ≤ 𝑗 ≤ 𝜅 , add a path 𝑃𝐻
𝑗
from 𝑠 to 𝑡 with |B𝑗 | edges; denote the 𝑎-

th edge as 𝑒 𝑗,𝑎 and set its weight as𝜔 (𝑒 𝑗,𝑎) = 𝜔 (𝐵 𝑗,𝑎). Furthermore,

for every 1 ≤ 𝑖1, 𝑖2 ≤ 𝜆, denote 𝑗1 = 𝛼 (𝑖1), 𝑗2 = 𝛼 (𝑖2), for every
1 ≤ 𝑎1 ≤ |B𝑗1 | and 1 ≤ 𝑎2 ≤ |B𝑗2 |, for every endpoint 𝑢1 of 𝑒

𝐵 𝑗
1
,𝑎
1

𝛽 (𝑖1) ,

for every endpoint 𝑢2 of 𝑒
𝐵 𝑗

2
,𝑎
2

𝛽 (𝑖2) , if 𝐺 contains a path from 𝑢1 to 𝑢2

consisting only of nonvulnerable edges, then add to 𝐻 an edge of

weight +∞ from the corresponding endpoint of 𝑒 𝑗1,𝑎1 (i.e., tail if
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and only if 𝑢1 is a tail of 𝑒
𝐵 𝑗

1
,𝑎
1

𝛽 (𝑖1) ) to the corresponding endpoint of

𝑒 𝑗2,𝑎2 (i.e., tail if and only if 𝑢2 is a tail of 𝑒
𝐵 𝑗

2
,𝑎
2

𝛽 (𝑖2) ).

Observe that 𝑍 ′ := {𝑒 𝑗,𝑎𝑍
𝑗
| 1 ≤ 𝑗 ≤ 𝜅} is an 𝑠𝑡-cut in 𝐻 . Indeed,

if 𝐻 would contain an arc (𝑣,𝑢) with 𝑣 before 𝑒 𝑗,𝑎𝑍
𝑗
and 𝑢 after

𝑒 𝑗 ′,𝑎𝑍
𝑗′
for some 𝑗, 𝑗 ′ ∈ [𝜅], then this arc was added to 𝐻 because of

some path between the corresponding endpoints in 𝐺 and such a

path would lead from the 𝑠-side to 𝑡-side of 𝑍 . Also, in the other

direction, observe that if 𝑌 ′ = {𝑒 𝑗,𝑎 𝑗
| 1 ≤ 𝑗 ≤ 𝜅} is an 𝑠𝑡-mincut

in 𝐻 , then

𝑌 =

{
𝑒
𝐵𝛼 (𝑖 ),𝑎𝛼 (𝑖 )
𝛽 (𝑖) | 𝑖 ∈ [𝜆]

}
is a solution to I of the same weight.

Hence, it suffices to find in 𝐻 an 𝑠𝑡-cut of cardinality 𝜅 and

minimum possible weight. Since 𝜅 ≤ 𝜆𝐻 (𝑠, 𝑡), this can be done in

polynomial time. □

3.2 Applications

In all three discussed problems, we are given both a bound 𝑘 on the

cardinality of the solution and a bound𝑊 on the total weight of

the solution. The parameter is 𝑘 .

In Weighted Cut, the solution is an 𝑠𝑡-cut. In Weighted DFAS,

the solution is a feedback arc set in a directed graph. Note that

by standard reduction, this is equivalent to Weighted DFVS. In

Weighted 𝑏-Chain SAT, the problem is in fact a Weighted Bun-

dled Cut where every bundle is a path of length at most 𝑏.

Note that Weighted Cut is Weighted Bundled Cut with

bundles of size 1 and no undeletable edges while Weighted 𝑏-

Chain SAT isWeighted Bundled Cutwith bundles of size at most

𝑏. Furthermore, in both problems the assumption for Weighted

Bundled Cut with Order is satisfied (in the latter case, order the

edges along the path). We infer the following.

Theorem 3.3. Weighted Cut is randomized FPT when parame-

terized by 𝑘 .

Theorem 3.4. Weighted 𝑏-Chain SAT is randomized FPT when

parameterized by 𝑘 and 𝑏.

By standard approach, Weighted DFAS can be solved using a

subroutine for Weighted Skew Multicut. Here, we are given

a directed graph 𝐺 , a tuple (𝑠𝑖 , 𝑡𝑖 )𝑏𝑖=1 of terminal pairs, a weight

function 𝜔 : 𝐸 (𝐺) → Z+, and integers 𝑘,𝑊 . The goal is to find a

set 𝑍 ⊆ 𝐸 (𝐺) of cardinality at most 𝑘 , weight at most𝑊 , and such

that there is no path from 𝑠𝑖 to 𝑡 𝑗 in 𝐺 − 𝑍 for any 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑏.

We observe the following reduction.

Lemma 3.5. Given a Weighted Skew Multicut instance I =

(𝐺, (𝑠𝑖 , 𝑡𝑖 )𝑏𝑖=1, 𝜔, 𝑘,𝑊 ), one can in polynomial time construct an equiv-

alent Weighted Bundled Cut with Order instance

I ′ = (𝐺 ′,B, 𝜔, 𝑘,𝑊 ) with the same 𝑘 and𝑊 and bundles of size 𝑏

each.

Proof. To construct the graph𝐺 ′, we start with𝑏 disjoint copies
𝐺1, . . . ,𝐺𝑏

of the graph 𝐺 . By 𝑣𝑖 , 𝑒𝑖 , etc., we denote the copy of

vertex 𝑣 or edge 𝑒 in the copy 𝐺𝑖
. We set 𝐵𝑒 = {𝑒𝑖 | 𝑖 ∈ [𝑏]} for

𝑒 ∈ 𝐸 (𝐺) and B = {𝐵𝑒 | 𝑒 ∈ 𝐸 (𝐺)}, that is, all 𝑏 copies of one edge

of 𝐺 form a bundle. We set weights of bundles as 𝜔 ′(𝐵𝑒 ) = 𝜔 (𝑒).

There will be no more bundles, so all arcs introduced later to 𝐺 ′

are undeletable.

For every 1 ≤ 𝑖 < 𝑗 ≤ 𝑏 and 𝑣 ∈ 𝑉 (𝐺), we add to 𝐺 ′ an
arc (𝑣𝑖 , 𝑣 𝑗 ). These arcs make the instance satisfy the “order” prop-

erty with the natural order (𝑒1, 𝑒2, . . . , 𝑒𝑏 ) for the bundle 𝐵𝑒 . Fur-
thermore, we add to 𝐺 ′ vertices 𝑠 and 𝑡 and arcs (𝑠, 𝑠𝑖

𝑖
) and (𝑡𝑖

𝑖
, 𝑡)

for every 𝑖 ∈ [𝑏]. This finishes the description of the instance

I ′ = (𝐺 ′,B, 𝜔 ′, 𝑘,𝑊 ).
It is straightforward to observe that if 𝑍 is a solution to the

instance I, then ⋃
𝑒∈𝑍 𝐵𝑒 is a solution to I ′ of the same weight

and touching |𝑍 | bundles. In the other direction, note that if 𝑍 ′ is a
solution to I ′ then 𝑍 = {𝑒 ∈ 𝐸 (𝐺) | 𝑍 ′ ∩ 𝐵𝑒 ≠ ∅} is a solution to

I. □

We deduce the following.

Theorem 3.6. Weighted DFAS and Weighted DFVS are ran-

domized FPT when parameterized by 𝑘 .

4 WEIGHTED ALMOST 2-SAT

The final application of the flow-augmentation framework is to

the problem Weighted Almost 2-SAT. Let us recall the problem

definition. The input consists of a 2-CNF formula 𝜙 , viewed as a set

of 2-clauses; a weight function 𝜔 : 𝜙 → Z+; and integers 𝑘,𝑊 ∈ Z+.
The objective is to find a clause deletion set 𝑍 ⊆ 𝜙 such that 𝜙 − 𝑍
is satisfiable, |𝑍 | ≤ 𝑘 , and 𝜔 (𝑍 ) = ∑

𝐶∈𝑍 𝜔 (𝐶) ≤ 𝑊 . We refer to

a clause set 𝑍 ⊆ 𝜙 such that 𝜙 − 𝑍 is satisfiable as a solution. Our

goal is thus to find such a solution 𝑍 , with |𝑍 | ≤ 𝑘 and 𝜔 (𝑍 ) ≤𝑊 ,

in time FPT parameterized by 𝑘 . We show the following.

Theorem 4.1. Weighted Almost 2-SAT is randomized FPT pa-

rameterized by 𝑘 , with a running time of 2
𝑘O(1)𝑛O(1) .

As in theAlmost 2-SAT-algorithm of Kratsch andWahlström [12],

we solve the problem by reduction to the auxiliary problem Di-

graph Pair Cut. Let use define the weighted version of this. An

instance I = (𝐺, 𝑠, 𝑡, 𝜔,T , 𝑘,𝑊 ) of Weighted Digraph Pair Cut

consists of a digraph 𝐺 with special vertices 𝑠 and 𝑡 , a weight func-

tion 𝜔 : 𝐸 (𝐺) → Z+, a set T ⊆
(𝑉 (𝐺)

2

)
of pairs of vertices of𝐺 , and

integers 𝑘,𝑊 ∈ Z+. Refer to a set of edges 𝑍 ⊆ 𝐸 (𝐺) as a solution
if 𝑍 is an 𝑠𝑡-cut and for every pair 𝑝 ∈ T , at most one endpoint of

𝑝 is reachable from 𝑠 in 𝐺 − 𝑍 . The goal is then to find a solution

𝑍 ⊆ 𝐸 (𝐺) such that |𝑍 | ≤ 𝑘 and 𝜔 (𝑍 ) ≤𝑊 . Note that the addition

of a sink vertex 𝑡 differs from the original formulation of Digraph

Pair Cut [12]; we add such a vertex 𝑡 in order to make use of the

flow-augmentation technique. We show that Weighted Almost

2-SAT FPT-reduces to Weighted Digraph Pair Cut.

Lemma 4.2. Let I = (𝜙,𝜔, 𝑘,𝑊 ) be an instance of Weighted

Almost 2-SAT. In time 2
𝑂 (𝑘)

we can produce a list of instances I ′ =
(𝐺, 𝑠, 𝑡, 𝜔 ′,T , 𝑘 ′,𝑊 ′) of Weighted Digraph Pair Cut such that I is

a yes-instance if and only if at least one instance I ′ is a yes-instance,
where 𝑘 ′ = 𝑂 (𝑘) for each produced instance.

Therefore, it suffices to provide an FPT-algorithm for Weighted

Digraph Pair Cut. Let I = (𝐺, 𝑠, 𝑡, 𝜔,T , 𝑘,𝑊 ) be an instance of

Weighted Digraph Pair Cut and let 𝑍 be a minimal solution

to I. Then 𝑍 must be a star 𝑠𝑡-cut; i.e., for every (𝑢, 𝑣) ∈ 𝑍 , 𝑢 is

reachable from 𝑠 in 𝐺 − 𝑍 but 𝑣 is not. Therefore, the tool of flow
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augmentation for star 𝑠𝑡-cuts (Theorem 2.6) is applicable to the

problem, and our algorithm is based around this method. We defer

to the full version [9] for the proof.
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