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Noise reducing encoding strategies for spin chains
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We present an encoding technique that reduces the effects of noise on quantum spin systems
whose operation is driven by Hamiltonian evolution. This technique is widely applicable, being
most relevant to the scenarios where there are insufficient qubits to permit full scale error correction.
Instead, our technique can be implemented over small numbers of qubits and still leads to noticeable
improvements in the fidelity of operations. The encoding scheme is easy to implement, flexible with
respect to choice of Hamiltonian, and close to optimal.

I. INTRODUCTION

Quantum computers hold the promise of being able to
solve problems that are too complex for classical comput-
ers [I]; however, fault tolerant quantum computation re-
mains firmly in the future. To harness the power of quan-
tum computation on near-term devices, there is currently
a focus on Noisy Intermediate-Scale Quantum (NISQ) de-
vices, which operate in the presence of noise but without
access to full error-correction due to a limited number
of qubits [2]. Even in this setting, quantum supremacy
has recently been demonstrated [3]. Given the noise,
but a lack of error correction, we must discover alter-
native strategies for error mitigation. Here, we introduce
a simple technique that can mitigate against the effects of
noise, improving the quality of operation in devices whose
dynamics are driven by Hamiltonian evolution, using a
small number of qubits relative to the number available.

The study of state transfer [4H7] is a key test-bed for
the development of ideas based upon Hamiltonian evo-
lution. It provides a concrete task — that of transferring
an unknown quantum state from one qubit to another —
for us to study and demonstrates some of the key criteria
for use in a NISQ device in that it is a useful elementary
building block within more complex tasks and, in the
Hamiltonian formulation, permits a factor of two speed
enhancement compared to the circuit model [8] which,
while irrelevant to a computational scaling perspective,
could be absolutely critical to achieving the maximum
number of computational steps in a finite time before
decoherence overwhelms the system.

The primary focus of early studies of state transfer
was on perfect transfer [5]. However, in an imperfect
world, perfect transfer can never be achieved, and it is
preferable to consider near-perfect transfer if, in trade,
the system might be more tolerant of noise by, for ex-
ample, achieving the transfer faster. Numerous methods
have been considered for creating high quality transfer
chains, from modifying some of the couplings in a chain
[9] to encoding inputs and outputs [LOHIZ].

Nevertheless, these studies have generally focused on
unitary evolution. Few studies have even quantified the
effects of noise [7] [13], let alone attempted to directly
improve the tolerance to noise. Those that have require
unrealistic assumptions about the nature of the environ-
ment [I4], [I5] or knowledge of when and where errors

might happen [I6]. Ultimately, these effects can be ad-
dressed by error correction [I7H20] but we are interested
in the regime for which error correction is not a realis-
tic prospect because it requires too many qubits and too
many operations.

Our approach is an encoding strategy that is lighter-
touch than error correction. It generalises a method in-
troduced by Haselgrove [I1], in which an optimal encod-
ing could be found for the task of quantum state transfer
under unitary evolution. We further developed the tech-
nique in [I2] for application to unitary evolution, but we
now include the effects of noise. The method is broadly
applicable to a wide range of Hamiltonians and noise
types, and could readily be applied to tasks beyond that
of state transfer.

We show how two common types of noise — amplitude
damping and dephasing — may be treated within our for-
malism, on an otherwise perfect system, and how fidelity
in these types of system can be improved by use of en-
coding strategies.

In section [[I, we introduce the setting of our tech-
nique and the previous work by Haselgrove [I1] that we
build upon here. Section [[IT]introduces our system and a
measure of success. Section [[V] introduces our encoding
scheme. In Section [V] we incorporate the treatment of
noise. We demonstrate the application of our encoding
scheme to two example Hamiltonians — one that imple-
ments perfect state transfer [5] [7], and another specified
in [9] which is the best chain that we know of in terms
of the speed/fidelity trade-off. These are just expository
and neither of these have been optimised for the scenario.
We concentrate primarily on the single excitation sub-
space, but show how the results can be extended into the
regime of multiple excitation subspaces in Section [VII}

II. SETTING

We consider a set of IV qubits, all prepared in the state
|0). The task of state transfer requires the introduction
of an unknown state [¢)) = «|0) + 8 |1) in a given site,
a, and for the evolution of the system Hamiltonian to
cause this state to move to the output site, b. We assume
that the Hamiltonian H is excitation preserving, mean-
ing [H, ZnN:1 Z,] = 0. As such, |0) :=[0)*" is an cigen-
state. (We will typically use |0) to denote the all-zero



state of any number of qubits, where the number should
be clear from context.) Thus, the only evolution that we
have to focus on is that of the single excitation subspace,
which is spanned by a basis [n) = [0)®" ™1 |1) |0y X =),
within which the Hamiltonian is H;. Without loss of gen-
erality, we take the input site to be labelled 1, and the
output site N. Thus, perfect state transfer occurs in a

system at time ¢ if ’e;"flt = 1.

We will mostly focus on the single-excitation subspace.
This makes the task computationally tractable, but is
also motivated by [12], in which it was shown that, for
unitary evolution, the single excitation subspace is the
optimal for encoding in across a broad parameter range.
These encodings were capable of out-performing error
correcting codes of the same size.

A. Encoding

Instead of controlling a single site at input and output,
we assume control of two (small) sets of sites A;, and
Aout. We are able to prepare a single-excitation state |1))
on the sites Ajy,

[Win) = |0) + 3 [¢))

and receive it on the sites Agyt. In the context of uni-
tary evolution, the challenge of finding the optimal en-
coding and decoding strategy for a fixed H; and time ¢
was solved by Haselgrove [I1]. If

Po=) I,  Pu= Y )i

ieAin ierut

are the projectors onto the input and output regions, then
Py, [¥) = |9). We proceed by evaluating the [Agy| X |Ain|
matrix

7 —iHqt
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If we select an input state |¢) to be a right singular vec-
tor of Uy, and |¢) to be the corresponding left-singular
vector, then by encoding in |¢), and waiting a time ¢, the
arriving state on the decoding region is |¢) with a proba-
bility amplitude corresponding to the singular value. The
maximum success probability is therefore just the square
of the largest singular value of U;.

We aim to generalise this encoding strategy to the con-
text of noisy systems.

III. VECTORISATION

In order to treat noise in a straightforward manner,
we make use of a ‘vectorisation’ procedure to the density
matrix [2I] so that we have a density vector given as

EDRUANIE
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The advantage of this is that it converts noise super-
operators into linear operators. As an example, for
|¥in) = a|0)+ /5 |1), the density matrix is p = | Ui ) (Viy|,
and the density vector is
lp) = |af?|00) + a*B[10) + af* 01) + |5]* |11)
= |‘1]in\Ij;kn> .

We need to know how operators on the density matrix p
manifest within this formalism.

Lemma 1. Let A and B be two linear operators that
act on a density matrix p. The vectorised form of ApB
is
|ApB) = A® BT |p).
Proof. Applying the definition for vectorisation, we have
ApB) = 3" (k| ApB |1 [k, 1)
kl
Using the completeness relation yields
[ApB) = > (k| Ali) (il p |5} (5| B 1) |k, 1)
ijkl

="k, 1) (kL AL) (1| BT 1) (il p|5)

ijkl

— (Z 1k, 1) (k1| A® BT> > Ailpli) i, 5) -

ki ij
=A® BT |p).
0

As our system can be divided into subspaces, we use
the notation |pgo), |po1), |p10), |p11) to indicate the com-
ponent of |p) on a given subspace. The 00 subspace is
a single element, |00), while the 11 subspace is spanned
by basis states |ij). The 01 and 10 subspaces are the co-
herences between these two, and are spanned by |0i) and
li0) respectively.

A. Noisy Evolution

We describe noise using the Lindblad master equation

dp _
dt

1

LiL,),
5PLn )

N
. 1
—ilH,p)+ ) (LnpL}, = 5L Lnp —

n=1

where the {L,} specify the noise. Under our vectorisa-
tion technique, we write

1 1
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where H = —iH ® 1 +4i1 ® H”. The Lindblad equation
then becomes

dlp)
W—QIP%

such that the evolution is given by
lp(t)) = €=" |p(0)) -



B. Trace

We will also need to take the partial trace over a set
of sites A, leaving just the set of qubits A remaining. We
define

Txlp) = Tz (p)) -

This is also a linear operator — if {|u;)} is an orthonormal
basis over the qubits A,

Tri(p) = Y (1a ® (uil)p(1a ® ui))

(3

such that, by Lemma [T}

Th =) (1a ® (u]) ® (1a @ (uf]).

%

Typically, one picks the standard basis for performing
the trace, in which case |u}) = |u;).

C. Quality of Transfer

If our aim is to successfully transfer a state from one
location to another, we must introduce a measure of suc-
cess. For Hamiltonian evolution, the measure of success
is the transfer fidelity [5], whose derivation we reproduce
here, using the vectorised notation, before later (Sections
and expanding it to include the noisy evolution and
encoding/decoding.

The density matrix after evolution is given as

) =U:@ U/ |p),

where U; = et The fidelity of state transfer is given

by
F = (a0 + 8" (1)) ® (a (0] + B (1)) T |p')

for a specific input state «|0) + 5 |1). However, to truly
judge the efficacy of the protocol, one should average over
all possible input states, by identifying o = cosg and
8= sing such that the average fidelity of state transfer
is

. 1 27 ™
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where, for an excitation preserving Hamiltonian,
Fo = (11| Tye™t|11) = | (N] e~ 1t 1) |2

and H; = —iH; ® 1 +il® H{. Although we want our
transfer fidelity to be as high as possible, we note that
there is a natural threshold of 2 [4], which is the fidelity
achieved by classically transferring a quantum state, that
we need to beat.

IV. ENCODING STRATEGY

We now introduce our encoding scheme, where the ini-
tial state is encoded over the 0 and 1 excitation subspaces
of a set of qubits Aj,. Our aim is to find the ideal choice of
state |¢) for the initial encoding of |¥,) = «|0) + B |v),
and a decoding unitary U acting on the decoding region
Aoyt such that the state «|0) + §1) is reproduced on
a single site with the maximum fidelity. We are assum-
ing here that U is performing the decoding onto a single
qubit in the decoding region. In [I2] we took a differ-
ent approach of encoding onto a separate ancilla qubit.
However, our motivation here is that we will be encod-
ing over as many qubits as we can, so that precludes the
possibility of making additional qubits interact [22].

The initial state evolves through time according to

|p') = €= (a|0) + B[v)) (a[0) + 5* [¥7))

which we will then decode. Upon decoding, we trace out
all other qubits because they are irrelevant. Hence, the
transfer fidelity is

F = (a0 + 8" (1")(a 0] + B (L) TNU @ U T, |p")
Let R = TnU®U*T). . e2t. As in Sec. [[II C| we average

out

over all possible input states (parameters «, 8) to give

F= é (2(00] R |00) + 2 (11| R [¢pyp*) +

+ (00| R [vp*) + (11| R |00) +
+ (01 R [097) + (10| R [¢0)) -

Since R |[*) describes a one-qubit density matrix,
which has trace 1, we have that (00|R |¢y*) +
(11| R |Ypyp*)y = 1. We make one further assump-
tion about the noise model — that it’s excitation non-
increasing. This means that e*|00) = |00). From this,
we infer the decoding unitary should map

u |O>Aout = ‘0>Aout ’

Consequently, (00|R]00) = 1 and (11|R|00) = O.
Hence, under this assumption,

1

F:
6

B+ (1R [py™) +
+ (01| R [097) + (10| R [¢0)) . (1)

We remain free to choose |¢) and the action of U on the
single-excitation subspace, to maximise F. We start by
considering the components (10| R |¢0) and (11| R |1)*)
separately.

We start with (11| R |¢p¢*). How are we to pick U?
Note that if there is an excitation on the decoding re-
gion, that can only result from an excitation in the input
(as the noise cannot introduce excitations). As such, we
definitely want to provide a |1) state on the output if
possible. Consequently, we impose that

U |1’l> = |N7 ¢n> 7V7’L S Aout7



i.e. a single excitation on the output spin, and some arbi-
trary state over the other qubits of the decoding region,
subject to the {|¢,)} forming an orthonormal basis over
Aout\N~

If we explicitly write out the state after evolution, the
only terms remaining in the (1,1) subspace are

N
Z Vrm |0M)

n,m=1

et [y —

Thus,

(1R [py") = (1| TNUU* > ypm [nm)

n,meANout

= (11‘TN Z TYnm |Na¢n> |Na¢:n>

n,mEANout

Using the orthonormal basis {|¢y)} for the trace T

leaves
Z Ynn-

n€ENout

(1 R ") =

This allows us to see that our choice of U is irrelevant
(beyond our earlier very natural assumptions), for the
(11| R |¢3p*) component. We need now only to find the
input state |¢)) to maximise > V.

Let
= > > 1) (il (mm|e? |ij)
,J €Ain MENouy
such that (11| R [¢9*) = > yun = (Y| R[Y). It follows

that we are able to maximise the (11| R |¢¢*) compo-
nent by selecting |¢) to be the eigenvector of R with the
maximum eigenvalue.

We now continue on, to understand how to indepen-
dently maximise the other component in Eq. . It is
sufficient to maximise only (10| R [t0) as this can al-
ways be made real by incorporating a phase on U, such
that (10| R |0) = (01| R |0%*), and both are real.

For an excitation non-increasing Q, after evolution we
can parameterise the term

N
=00100) + > 7o [n0) .

n=1

e [y0)

One can readily calculate

U®U*Th,, 2" [¢0) =

Yoo |00) +

out

Z Tno ‘N’ ¢n> ‘0> . (2)

n€Aout

The application of the final trace yields

RI$0) = 70[00) + D Ym0 (0dn)[10). (3)

neAout

The required overlap

(10| R[$0) = Y 7m0 (0l ¢n) = > o (N|U [n)

n€ANAout n€Aout

is maximised by setting UT |N) parallel to Y. 7,0 |n).
One component of each of these states is fixed,

*

Tn
0[pp) = —d
Olon) = T — o

and leaves them otherwise free. This yields an optimal
value of the component

(10| R [0) = | > lyml?,
meA

which can alternatively be expressed as
[[(Pous ® (0]) €2 (J4) ® 0))]] .

In the case of unitary evolution, this recovers the result of
Haselgrove [IT]. Therefore our encoding |¢)) will be the
eigenvector corresponding to the largest right singular
vector of

S = (Pous ® (0]) 2" (P, ® |0)). (4)
Instead of finding the maximum right singular vector of
S, we can alternatively find the maximum eigenvector of
Sts.

Note that, in optimising the two components sepa-
rately, the conditions on the choice of U are mutually
compatible, it is only the choice of encoding [¢)) that
could potentially differ. The overall expression for the
fidelity is thus

_ 1

F= 7+7

S +3V/ WSS ) +

(dJI Rl|y). ()
An exactly optimal choice of |¢) in all circumstances is
non-trivial, but we will see in Sec. [V] that there are in-
stances where this can be solved exactly. Furthermore, an
extremely good approximation can be made in many rea-
sonable cases. Equally, our intended operating regime for
these encodings is with small sizes of encoding/decoding
region, for which exact optimisation is possible.

V. SPECIAL CASES

We will now study some special cases in which we can
find the optimal |¢) and hence evaluate F'.

A. Unitary Evolution

We now derive the optimal encoding strategy in the
noise-free case, which coincides exactly with Haselgrove’s
strategy [I1]. We consider, first, the R term.
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We can rearrange this to get

R= ZIJ

i,J,m
= Z 17) ¢

= STS.
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In this case, the R term does not further constrain our
choice of |[¢), and we are free to pick it to optimise the
S term via Eq. (4)), thereby reproducing the strategy of
Haselgrove.

B. Large Decoding Region

Consider the case where A,y comprises every qubit in
the system. This is clearly not a realistic scenario, but is
nevertheless interesting. We restrict the noise model to
being excitation preserving, with the maximally mixed
state (of each excitation subspace) being the fixed points
of the map. One such example is dephasing noise. The
state

is an eigenstate of @ because it’s the maximally mixed
state, and thus the fixed point of the map. Hence, R = 1.
Again, the choice of [¢) is irrelevant to this term, and we
need only consider the term arising from S.

C. Amplitude Damping Noise

One important type of noise that we can treat within
this formalism is amplitude damping noise. This de-
scribes the relaxation of a system as it loses energy to
the environment. The Lindblad operators are L; =

%’E(Xi + 1Y;), where T', = %1 is a measure of the
strength of the noise, T7 being the longitudinal param-
agnetic relaxation time [23].

Due to the structure of the amplitude damping noise
Q4, we can find analytical solutions for evolution con-
strained within the zero and single excitation subspaces
by considering the evolution of each subspace of the den-
sity vector separately. We first look at evolution of the
|11) subspace which is given by

d|p11)
dt

This has a direct solution

lp11(t)) = e~ 2=te™ 1t 911 (0))

= (=2T', 1+ H1) |p11) -

Applying the same logic to the other subspaces of |p)
tells us that the components evolve as

lpoo) — |P00> (7
lpo1) = e~ "=ttt poy) (8
lp10) = e~ =te™ 0 pyg) (9
lp11) — e QF“teﬂlt 1) + (1= e ) |pgo) . (10

This result gives us an exact solution for the evolution of
the density vector when subject to amplitude damping
noise and shows that the effect of this noise is just to
add the deterioration term I',,. We can see instantly that
solutions can be taken directly from the noise-free case
and our only opportunity to minimise noise is to make
transfer as fast as possible.

In this instance, we have that S = e~ =Sy, where Sy
was the S matrix in the absence of noise. Similarly,

R=e 2t 37 |j) (i (oo ™1 i)
— —21" tzb ,Ll Jlez 1tP ute zH1t|>

=sts.

Again, R does not affect the choice of |¢). Hence, the
strength of the noise does not affect the choice of [1)), so
one can find the optimal encoding in the noiseless case
(i.e. utilising Haselgrove’s technique), and this is the op-
timal encoding for all noise strengths, just with reduced

fidelity
2
¢ (\/GFO —2— 1)) )

That said, when considering optimising over time as
well, adding noise will tend to bring the optimal time
(marginally) earlier.

In Fig. we plot the effects of amplitude damping
noise (having optimised for time) for two different Hamil-
tonians. It is noteworthy that by the time we use an en-
coding/decoding region of size 7, the transfer fidelity has
been significantly enhanced, and there is essentially no
difference between the performance of the two Hamilto-
nians.

)
)
)
)

_ 1 1
FFm:3+6<1+€_F

D. Optimising over Components

We have now seen a number of cases in which R does
not influence the optimal choice of |¢), which is just se-
lected to be the maximum eigenvector of STS as R oc 1
of S'S. In the case of general noise, we do not expect
this to always hold, but we anticipate that R will hold
less relevance, and the S term will dominate. This mo-
tivates our simplifying assumption that [¢)) will be close
to being an eigenvector of STS. In which case, we can
approximate

F~ <1/z\2\/STS+R|z/J>. (11)

[\J\F—‘
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Figure 1. Performance of different Hamiltonians in the presence of amplitude damping noise, chain length 35, combatted with

encoding of differing sizes.
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Figure 2. Comparison of upper and lower bound for average
fidelity for a uniformly coupled chain of N = 35 and dephasing
strength of I', = 0.3.

Thus, |¢) is just the maximum eigenvector of

2V StS + R.

Using the |¢) in this way must represent a lower bound on
the achievable fidelity. In contrast, the independent opti-
misation of the R and S terms yields an upper bound to
this value. In Fig. [2| we take the case of dephasing noise

(L; = ,/F—;Zi), which is not expected to have R o 1.

For the maximum possible opportunity to see a discrep-
ancy between the upper and lower bounds, we push the
dephasing so strong as to render the transfer fidelities
unusable. Even at this extreme, we see that the upper
and lower bounds coincide, and thus anticipate that they
will do so at all intermediate regimes. We thus expect
this method to be essentially optimal across all relevant
parameters.

VI. EXAMPLES

For the sake of concrete examples, we choose to per-
form transfer along the length of a chain coupled via a
Hamiltonian

l\.’J\H

w\H
uMz

N—
Z (XnXnt1 + Yy Ypi1) —

We impose that J; < 1 for all ¢ in order to facilitate a
fair comparison. There are a wide variety of different
coupling strengths that one could consider. We have not
made a detailed study of performance of the many dif-
ferent options. However, the e T=* factor that arises in
amplitude damping noise strongly suggests that we must
find solutions that are as fast as possible. We therefore
consider three cases — the perfect state transfer chain [5],
since it is the fastest such case [8] 24]; the uniformly cou-
pled chain [4], and a tweaked version that is optimised
for end-to-end transfer with high fidelity [9].

We consider two noise models, amplitude damping, as
introduced in Sec.[V C] and dephasing noise. For dephas—
ing noise, the Lindblad operators are L; I./2Z;,
where I',, is a measure of the strength of dephasmg noise
and I', = =, where T, is the transverse paramagnetic
relaxation tlme

The results for the uniformly coupled chain are plotted
in Fig. [3] comparing the effects of dephasing and ampli-
tude damping noise. These plots, and indeed all others
for different Hamiltonians, consist of contours of constant
fidelity that are straight lines. This is because the dom-
inant noise term is of the form e~ ('=*T=)t on a single
excitation — we already saw in Sec. [VC| that this is the
only contribution from amplitude damping. For dephas-
ing noise, note that the noise terms are of the form

r r
==:N"z,. 972, — 2121
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Figure 3. A comparison of average fidelity achieved for the uniformly coupled Hamiltonian with varying noise parameters for

N = 35.

This is diagonal. Of the N2 diagonal elements in the sin-
gle excitation subspace, N2 — N of them are —2I,, the
exceptions being terms of the form |[nn), which are 0.
Informally, then, the dominant behaviour will be similar
to —2I',1, albeit with some correction due to the {|nn)},
the most relevant component of which is that the expo-
nential decay tends towards the maximally mixed state
of the subspace, instead of leaking out of the subspace
(as was the case for amplitude damping). It is this to
which we ascribe the reason for a given fidelity contour
being realised by a marginally higher value of ', than
..

Given that the dominant noise term is for the form
e~ (T=+T2)t it is clear that for a fixed transfer fidelity,
we follow a contour of approximately constant I', + T,
which is what we observe. As such, it is not necessary
to reproduce versions of Fig. 3] for multiple different en-
coding region sizes and Hamiltonian models. Instead, it
is sufficient to refer back to Fig [l which provides the
equivalent plots with I, = 0 fixed.

VII. TOWARDS A MULTIPLE-EXCITATION

ENCODING

So far, we have concentrated on encoding into the
single-excitation subspace. This was partially motivated
by the observation in [12] that the optimal encoding
choice in the case of unitary evolution is in the single ex-
citation subspace, and that this outperforms any usage
of error correction. Nevertheless, it is certainly possible
that using the higher excitation subspaces and error cor-
recting codes could enhance the protection against noise
— loss of excitations from the decoding region is our source
of error, so if we had several excitations and could toler-
ate the loss of all but one, this is going to achieve a higher
fidelity (although, exactly the same expectation can be

applied, erroneously, to the unitary evolution case).

In fact, the formalism developed so far is readily gen-
eralised, being aware of the discrepancy indicated in [12]
for the case of decoding when multiple excitations are
present, compared to what Haselgrove originally claimed
to be optimal [11].

Consider a decoding region of size |Agys| = M and
let us encode using the excitation subspaces up to and
including the k. We shall restrict to k < M/2. The
purpose behind this assumption on the excitation number
is that it lets us define U much as before: U |0) = |0) and

Ulz) = N, ¢z)

for any = € {0,1} with weight w, > 1 and w, < k,
where the |¢,) are orthonormal. Here, we have used z to
describe the basis state of the M qubits in the decoding

region. There are
k (.7‘ r)
nz_l n

of these, and the states |¢,) only have support on M —1
qubits, so the maximum number must be 2¥~!. Since
Zi{ (M) =2M 1, we need to pick k to restrict to less
than half the posslble total sum, i.e. k < M/2. For larger
weights, we cannot achieve the orthonormal condition
[25], and a further approximation would be necessary.
We should also note that the exact solution for amplitude
damping is no longer applicable.

Repeating the previous calculations, the (11| R [i1*)
term becomes otherwise independent of the choice of U,
and we recover a similar matrix to before,

> > |

x,y€{0,1}Ainl ze{o,l}N
w,<k
wczthI

R= ) (] (2, 2] €2 |20,50) . (12)



Here, wo" indicates the weight of the bit string restricted
only to the components in Agy;. Similarly, optimisation
of the (10| R |40) term requires selection of the unitary

such that

*
Yz0,00

Z |’Yz0,00|2

2€{0,1}M

(0l¢z) =

where

Yoy = (@, y| €2 [90) .

This leads to a matrix

S= > |z)(20,00[e% Y ]20,00) (2.
z€{0,1}M 2€{0,1}Ain]
wy>1 w,>1

= (Pout ® (0))e2* (P, ©0)).

This time P,,, and P, are projectors onto the 1 to k
excitation subspaces on the input and output regions re-
spectively, and onto all other qubits being in the |0) state.

For all the cases we have been considering, S di-
vides into a block-diagonal structure based on excita-
tion number. For excitation preserving @, this is triv-
ial = |2i,0) |0) — |20ut0)|0) only if =z and z have
the same weight. For amplitude damping noise, the
excitation-decreasing terms are due to terms of the form
(X +1Y) ® (X +¢Y). This requires that we are able to
remove an excitation from both halves of |¢) |0), which is
clearly not possible — they have no effect, and we revert
to the excitation preserving case.

R has an identical subspace structure.
consider the term

To see this,

(zz] et |20, y0)

from Eq. . From our previous discussion, we know
that the Hamiltonian and noise will either preserve the
number of excitations of x and y, or decrease them by an
equal number. But since they must both end up having
the same excitation number (w, ), they must have started
with the same excitation number. Note, however, that
although both S and R are block diagonal, it does not
necessarily mean that |¢) is always supported on just one
excitation subspace — this is an effect of the square root
in Eq. .

With both S and R in place, Eq. still holds. Does
the approximation in Eq. remain useful? Does en-
coding in higher excitation subspaces yield an improved
fidelity?

In the noise-free case, so long as the maximum transfer
amplitude in the single excitation subspace is at least
V2 — 1, the optimal encoding is in the single excitation
subspace. By continuity, we expect this to remain true
for weak noise as well.

We have not performed extensive studies of the multi-
ple excitation subspaces, which are computationally far

o

A
P
’,I

-@ Upper bound, 1&2 excitation subspaces

0.6 - Lower bound, 1&2 excitation subspaces

Transfer Fidelity

4 Exact 1&2 subspace solution

-4 1 excitation subspace

! 2 4 6 8
Time

Figure 4. Average fidelity over time for a uniformly coupled
chain of N = 13. Encoding/decoding region of 5 qubits. We
compare the upper bound for fidelity in the two excitation
case with a lower bound and an exact solution. The exact
solution case is hidden under the single excitation case. There
is no advantage to using higher excitation subspaces. (y4 =
0.02,v. = 0.04)

more demanding. However, we have performed simple
tests on more modestly sized systems, and have never
found an improvement by going to higher excitation sub-
spaces. In Fig. [d] we depict a typical case; a single noisy
instance of a uniformly coupled chain. For reference, we
display (blue triangles), the behaviour in the single exci-
tation subspace. In solid black circles, we show an upper
bound on the achievable fidelity based on separate opti-
misation of |¢) for the matrices R and S. In red squares,
we show the fidelity achieved due to the approximation
of Eq. , a lower bound of what can be achieved. In
higher excitation subspaces, the coincidence of these two
lines is clearly not as tight as it was in the first excitation
subspace. For such small cases, we can exactly find the
optimal solution (grey diamonds). In all such cases we
have tried, it has always been close to the lower bound
that is the best achievable value.

VIII. CONCLUSION

We have a presented a simple to implement scheme
that can be applied to a wide range of Hamiltonians
to improve fidelity in the presence of noise, by giving
near-optimal encoding strategies. This is applicable to
any Hamiltonian that is excitation-preserving. We have
demonstrated that larger encoding and decoding regions
lead to better transfer in the presence of noise although
reducing the overall transfer distance. Even modest sizes
of encoding region can convert scenarios that are impos-
sible for transfer into reasonable propositions. This is
most compelling in the case of the uniform chain, which
suggests there is little value in considering other state
transfer systems with more complex, harder to imple-
ment, coupling schemes.

We have also shown that it is of benefit to choose a



Hamiltonian that allows faster transfer over one that (in
the absence of noise) produces higher fidelity transfer.
Our scheme leads to further improvement in these faster
transfer chains. This technique can be applied to NISQ
devices to allow some improvement in state transfer fi-
delity with respect to noise without implementing a full
error correction scheme.

We have explicitly considered a specific form of Hamil-
tonian based on a spin chain. However, our derivation
only assumed an excitation-preserving Hamiltonian, and
does not depend on any underlying coupling geometry.
Similarly, a broad class of noise models can be handled.

We have primarily focused on the single excitation sub-
space, but have provided a route via which the formalism
can continue to higher excitation encodings, although nu-
merics have failed to find any gain from doing so.

Here, we focused on state transfer for the sake of having
a concrete task to talk about. However, the formalism
could easily be adapted to other Hamiltonian-based tasks
[26] 27], particularly those whose success is measured by
fidelity. One might also be able to extend this work to
cover other Hamiltonian models such as those that have
different subspace structures [28],[29] including those from
the Jordan-Wigner transformation.
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