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This paper examines how subsistence farmers respond to extreme
heat. Using micro-data from Peruvian households, we find that
high temperatures reduce agricultural productivity, increase area
planted, and change crop mix. These findings are consistent with
farmers using input adjustments as a short-term mechanism to
attenuate the effect of extreme heat on output. This response seems
to complement other coping strategies, such as selling livestock, but
exacerbates the drop in yields, a standard measure of agricultural
productivity. Using our estimates, we show that accounting for
land adjustments is important to quantify damages associated with
climate change.

A growing body of evidence suggests that extreme temperatures have negative
effects on crop yields.1 Based on these findings, current estimates suggest that
climate change will bring dramatic shifts in agriculture: a global warming of
2◦C, as in the most optimistic forecasts, would reduce agricultural output by
almost 25% (IPCC, 2014). Among those exposed to this shock, the rural poor in
developing countries are probably most vulnerable. They are located in tropical
areas, where the changes in climate will occur faster and be more intense, and
their livelihoods are more dependent on agriculture.

Given these potentially disruptive effects, it is extremely important to under-
stand possible margins of adjustment and the scope for mitigation. Some studies
suggest that a possible response to climate change would be the re-allocation of
economic activity, in the form of migration, changes in trade patterns or sec-
toral employment (Feng et al., 2012; Costinot et al., 2016; Colmer, 2018). Other
studies, based on farmers’ self-stated adaptive strategies, emphasize changes in
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consumption and savings as potential temporary responses (Gbetibouo et al.,
2010; Di Falco et al., 2011; Hisali et al., 2011). Less is known, however, about
the potential for productive responses (i.e., changes in input use and agricultural
practices), to attenuate the adverse effects of extreme temperatures.2

This paper examines how subsistence farmers respond to extreme tempera-
tures. It has two main contributions. First, it examines a population that has
been relatively neglected in the literature, despite comprising a large fraction of
the rural poor around the world. Second, it documents the role of short-run
productive responses, in particular the increase in land use, as a mechanism to
mitigate the negative effects of extreme temperatures on agricultural output. To
the best of our knowledge, this margin of adjustment has not been documented
before. It has, however, significant implications for the quantification of climate
change damages, and for understanding the potential long-term effects of weather
shocks.

Our empirical analysis combines survey microdata from Peruvian farming house-
holds with weather data from satellite imagery. We examine the relationship
between temperature and input demands (land and labor), as well as other agri-
cultural outcomes such as total factor productivity, yields, and output. Similar
to recent studies of the effect of temperature, we use an approach that exploits
within-locality variation in weather.

By focusing on input use, our approach addresses some limitations of existing
economic studies of the effect of temperature on agriculture. These studies focus
on outcomes such as land prices, profits and yields that can be informative of the
costs associated to raising temperatures (as in Deschenes and Greenstone (2007)
and Schlenker et al. (2006)). Moreover, since profits and yields already include
farmers’ responses, they can be used to indirectly assess the scope for mitigation
and adaptation.3 These approaches have, however, two important limitations.
First, they are not informative of the mitigation and adaptive strategies used by
farmers, only of their net effect. Second, because of their reliance on market prices,
profits and land values are not very useful in contexts with incomplete agricultural
markets or when revenues and costs are difficult to observe, for instance due to
self-consumption or the use of household inputs. This limitation is particularly
relevant when studying subsistence farmers in less developed countries.

We find that extreme heat increases area planted. The magnitude is economi-
cally significant: one standard deviation increase in our measure of extreme heat
is associated with a 6% increase in land used. Consistent with the additional
land being planted with a different crop mix, we find that extreme heat increases

2A recent paper that addresses this question is Jagnani et al. (forthcoming). Using data from Kenya,
they find that farmers increase fertilizer use as a response to increased temperatures early in the growing
season. They interpret this finding as a evidence that farmers undertake defensive investments to reduce
the adverse impacts of warmer temperatures.

3For instance, Burke and Emerick (2016) find that the effect of extreme heat on crop yields in U.S. has
not changed over time. They interpret this finding as evidence of limited long-run adaptation. Similarly,
Taraz (2018) examines differences on the effect of temperature on crop yields by baseline climate to assess
the scope of adaptation among Indian farmers.
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the quantity harvested (in absolute and relative terms) of tubers. We also find
suggestive evidence of increments in the use of domestic, including child, labor
on the farm. The increase in input use occurs despite high temperatures reduc-
ing agricultural productivity, and partially offsets the drop in total output. We
interpret these findings as evidence that subsistence farmers respond to extreme
temperatures by increasing input use within the growing season. This productive
adjustment attenuates undesirable drops in output and consumption.

Our interpretation is consistent with agricultural household models with in-
complete markets (De Janvry et al., 1991; Taylor and Adelman, 2003). In these
models, production and consumption decisions are not separable. Thus, at low
consumption levels, farmers may resort to more intensive use of non-traded inputs,
like land and domestic labor, to offset the impact of negative income or produc-
tivity shocks. This margin of adjustment may be particularly relevant for farmers
in less developed countries due to the presence of several market imperfections
and limited coping mechanisms.

With this interpretation in mind, we also examine several ex-post coping mech-
anisms previously identified in the literature on consumption smoothing, such as
migration, off-farm labor, and disposal of livestock (Beegle et al., 2006; Bandara et
al., 2015; Kochar, 1999; Munshi, 2003; Rosenzweig and Stark, 1989; Rosenzweig
and Wolpin, 1993). Consistent with previous studies, we find that households
reduce their holdings of livestock after a negative weather shock and seem to
increase hours working off the farm. Interestingly, the increase in land use as a
response to extreme heat occurs even among farmers that resort to other con-
sumption smoothing strategies. This finding suggests that productive responses
to extreme temperatures remain important to traditional farmers, even if they
have alternative risk-coping instruments at hand.

Our findings have two important implications. First, they suggest a potential
dynamic link between weather shocks and long-run outcomes. If the increase in
land use comes at the expense of investments (such as fallowing), then this short-
term response could affect future land productivity. A similar argument could
be made about child labor. While we are unable to examine these implications
due to data limitations, future research should explore these links more closely.
Second, this farmer response may affect estimations of the damages of climate
change on agricultural output. These estimates are usually based on the effect of
temperature on crop yields (Deschenes and Greenstone, 2007). This is a correct
approach under certain conditions, e.g. if land use is fixed. In that case, changes in
crop yields are the same as changes in output. However, if area planted increases
with temperature, then using crop yields would overestimate the resulting loss in
output. To illustrate this point, we use our results to predict damages of climate
change by the end of the century under two standard scenarios (RCP45 and
RCP85). Using the effect of temperature on yields, as in the existing literature,
suggests output losses in the hotter coastal region of up to 26% under different
scenarios. In contrast, taking into account changes in land use, we obtain smaller
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losses of up to 12%.
The rest of this paper is organized as follows. Section I describes the context and

the analytic framework. Section II discusses the data and the empirical strategy.
Section III presents our main results and robustness checks. Section IV examines
other other coping mechanisms, while Section V discusses the implication of our
findings for estimating climate change damages. Section VI concludes.

I. Background

A. Subsistence farming in Peru

Our empirical analysis focuses on subsistence farmers from rural Peru. In 2017,
the last year of our study, 24% of the working population was employed in agricul-
ture, but the sector only accounted for 7% of the GDP (INEI, 2018). It is, in other
words, a sector of very low productivity, with many characteristics in common
with subsistence farming in other developing countries: it is mainly composed by
small productive units (i.e., households), with low capital intensity, and low levels
of technology adoption (Velazco et al., 2012).

Table 1 presents some key summary statistics of the farmers in our sample
and defines the setting for our analysis.4 Most farmers are poor and depend on
agriculture as their main source of livelihood. The incidence of poverty in our
sample of farmers is around 50%. For comparison purposes, a similar methodology
shows that poverty over the whole of Peru during the period of analysis was
21.6%. The average farm is around 2 hectares, has a low degree of specialization
and uses practices akin to traditional, rather than industrial, farming. They rely
on domestic labor (including child labor), cultivate a variety of crops instead of
monocropping, and leave some land uncultivated. Some of this uncultivated land
is reported as fallowing while the rest is covered with grasses, bushed and forests.
These last uses are also consistent with sectoral fallowing and crop rotation, but
we can not rule out that part of this land is non-agricultural.

Figure 1 shows the number of hectares planted by calendar month during years
2014-2017. As one can see, most planting occurs during October-March. These
months correspond to spring and summer in the Southern Hemisphere and are
considered the main growing season in Peru. However, planting is not a one-off
activity as it persists throughout the year. This feature suggests that farmers
have some margin to adjust their input use during the agricultural year. Figure 2
shows that planting is usually spread over several months, and not necessarily a
one-off event. For instance, around 50% of farmers engaged in planting in two or
more months. This last observation suggests that farmers might have flexibility
to adjust their decisions during the growing season. We note that the number
of months in which farmers decided to plant could be endogenous to weather
realizations, an issue we explore below.

4Data sources and variable definitions are described in Section II.A
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Our study concentrates on two climatic regions: the coast and the highlands.5

These two regions exhibit different climate driven by their proximity to the sea
and altitude. The coast is a narrow strip extending from the seashore up to 500
meters above sea level (masl). It has a semi-arid climate, with warm temperatures
and little precipitation. The highlands extends from 500 up to almost 7,000 masl,
albeit most agriculture stops below 4000 masl. It has a much cooler and wetter
climate, with seasonal precipitations in spring and early summer.

These climatic differences are associated with different agricultural practices:
coastal farmers are more reliant on irrigation, while agriculture in the highlands is
mostly rainfed. Coastal farmers are also less likely to be poor and have a different
crop mix, cultivating a larger share of fruits and cereals. While these regional dif-
ferences do not affect the key results in our analysis (see Section III.D), they have
important implications in terms of the potential effects of greater temperatures
due to climate change.

B. Analytical framework

This section develops a simple framework to examine how subsistence farmers
adjust their production decisions as a response to extreme heat. To this end, we
follow standard agricultural producer-consumer household models in the devel-
opment literature (De Janvry et al., 1991; Benjamin, 1992; Taylor and Adelman,
2003) where households make simultaneous, potentially interrelated, consumption
and production decisions during the growing season.

Without loss of generality, let us assume an agricultural production function
with a single input. We call this input ”land” but it can refer to any other variable
input such as labor. The household has an endowment of land, T e. Land can be
used for production or “consumed” in non-productive activities (e.g., leisure).6

Household’s utility is U(c, t), where c is consumption of a market good, while t
is the amount of land used in non-productive activities. Households obtain in-
come by renting their land and by producing an agricultural good. Production
is defined by function F (A, T ), where T is the amount of land used in agricul-
ture, and A is farmer’s total factor productivity. A is a productivity shifter that
captures the idea that farmers using identical inputs can have different levels of
output due, for instance, to different farming skills, soil quality, or exposure to
weather shocks.7 Consistent with previous studies on the relation between crop

5Peru has three main climatic regions: the coast to the west, the Andean highlands, and the Amazon
jungle to the east. We do not include observations from the jungle due to small sample size and poor
quality of satellite data. We also drop 282 farmers from the coast and highlands reporting land holdings
larger than 100 hectares.

6The inclusion of land directly in the utility function is a modeling device to create a positive shadow
price (i.e., an opportunity cost of using land), and should not be taken literally. Since land cannot be
sold or rented out, without this device, the model would predict that farmers will always use all available
land. This prediction is inconsistent with the empirical observation that around 40% of land is left
uncultivated. An alternative way to generate a non-zero shadow price is to include an intertemporal
opportunity cost, for instance by allowing productivity-enhancing fallowing.

7In our context, we assume that capital such as irrigation, if used at all, is fixed.
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Table 1—Summary statistics (ENAHO 2007-2015)

(1) (2) (3)
All Coast Highlands

A. Household characteristics
Poor (%) 51.14 26.55 55.10
Household size 4.34 4.41 4.33
Primary education completed by HH head (%) 50.93 58.48 49.71
Child works (%) 21.82 9.65 23.79
At least 1 HH member has off-farm job (%) 47.54 56.45 46.10

B. Agricultural characteristics
Value of agric. output (Y) 1049.9 3263.2 693.4
Land used (T), in ha. 1.99 2.41 1.92
No. HH members work on-farm 2.31 2.21 2.33
Hire workers (%) 48.85 57.08 47.52
Uncultivated land (% of land holding) 40.30 11.81 44.89
Irrigated land (% land holding) 36.05 82.00 28.65
Fruits (% total output) 7.41 31.59 3.52
Tubers (% total output) 31.35 5.54 35.50
Cereals (% total output) 31.30 30.43 31.44
Own livestock (%) 77.61 55.95 81.10
Value of livestock 682.11 461.85 717.59

C. Weather during the last growing season
Average temperature (◦C) 22.84 33.07 21.20
Average DD 14.28 22.39 12.97
Average HDD 0.73 2.69 0.41
Share of days with HDD 0.136 0.383 0.097
Precipitation (mm/day) 3.16 0.93 3.51

Observations 53,619 7,439 46,180

Notes: Output and livestock value measured in 2007 USD. Land is measured in hectares. Temperature
is measures in Celsius degrees. HoH= household head. HH= household. DD=degree days. HDD =
harmful degree days.

yields and temperature, we assume that extreme heat has a detrimental effect on
productivity.8

Each growing season, the household maximizes utility by choosing the amount
of land allocated to productive and non-productive uses. We consider that land

8See for example Schlenker and Roberts (2009), Burke and Emerick (2016), Auffhammer et al. (2012),
Hsiang (2010), Hsiang (2016), among others.
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Figure 1. Percentage of annual area planted in a month, by climatic region

Notes: Figure depicts the share of annual area planted in a given month, averaged over farmers in
a climatic region. We consider only planting of transitory (annual) crops. Data from the National
Agricultural Survey of Peru, 2014-2017.

is a variable input. This assumption is driven by the observation that, among
subsistence farmers, planting is not a one-off activity, but instead it is spread
throughout the year (see Figure 2).9 Finally, we assume that both the utility and
the production functions are increasing and strictly concave.

Household responses to negative productivity shocks. — If input markets
exist and are well functioning, we can study consumption and production decisions
separately (Benjamin, 1992). This separation result is driven by the possibility
to trade. Thus, the household’s demand and supply of inputs for production and
consumption need not be identical to its endowments. The farmer’s use of inputs
on the farm can then be analyzed by solving the profit maximization problem
max
T

π = pf(A, T )− rT , were p and r refers to output and input prices.

The standard solution is the unconditional input demand T ∗(A, p,w). In this

9Note that multi-cropping practices, combined with the availability of uncultivated land, implies that
both inputs and outputs are flexible throughout the season, during which A is realized.
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Figure 2. Number of months of planting, by climatic region

Notes: Figure depicts the proportion of farmers by the number of months in which they plant transitory
crops. Data from the National Agricultural Survey of Peru, 2014-2017.

context, a farmer’s response to negative productivity shock, such as extreme heat,
is unequivocal: she will reduce the amount of land used in her farm.

This prediction can change in the case of incomplete markets. To illustrate this,
consider a case in which there are no input markets. In this simplified setting,
the farmer’s problem becomes:

max
T

U(c, t)

s.t. c = pF (A, T )

T + t = T e.

Solving this problem produces an unconditional demand for land that depends
not only on prices and productivity, but also on land endowment, T (A, p, T e).
Moreover, if utility is sufficiently concave (for instance if consumption levels are
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quite low or farmer has high risk aversion), then dT
dA can be negative.10

This result suggests that, in context with imperfect input markets, negative
weather shocks, such as extreme heat, could result in an increase in input use.
This occurs because the farmer uses more inputs to attenuate the fall in agricul-
tural output, and reduce the drop in consumption. This response is akin to coping
mechanisms to smooth consumption, such as selling disposable assets. The key
distinction is that it involves adjustments in productive decisions. This predic-
tion is relevant because subsistence farmers in rural Peru (and other parts of the
developing world) likely face severe imperfections in input markets (Gollin et al.,
2013; Restuccia et al., 2008).

This framework also points out to alternative explanations for a positive rela-
tion between extreme temperature and input use. For instance, this could occur if
extreme temperatures have a negative effect on aggregate supply and raise output
prices (p). Similarly, we would observe a positive relation if there are correlated
productivity shocks, such as increase in precipitation; or changes in land endow-
ments (for instance, due to sample attrition of small landholders). We address
these potential confounders in our identification strategy, and examine the role
of prices as an alternative explanation in section III.D.

With this framework in mind, our empirical analysis focuses on examining the
effect of extreme heat on input use, as well as on agricultural productivity. There
are, however, other possible responses. For instance, recent work on climate
change and adaptation has stressed changes in crop mix as a possible response
(Burke and Emerick, 2016; Costinot et al., 2016). Similarly, an influential litera-
ture highlights how households can smooth consumption by migrating, increasing
off-farm work, or selling cattle, among other strategies (see for instance Rosen-
zweig and Wolpin (1993) or Kochar (1999)). In the empirical section, we also
examine these additional potential responses.

II. Methods

A. Data

We combine household surveys with satellite imagery to construct a compre-
hensive dataset containing agricultural, socio-economic, and weather variables.
The unit of observation is the household-year. We restrict the sample to house-
holds with agricultural activities located in the coast and highlands. Our final

10Taking total derivatives to first order condition pUcFT = Ut, we obtain that:

dT

dA
(F 2
TUcc + UcFTT + Utt) + FTFAUcc + UcFTA = 0.

Assuming strictly concave utility and production functions, this expression implies that a necessary and

sufficient condition for inputs to increase with a negative productivity shock ( dT
dA

< 0) is −Ucc
Uc

> FTA
FTFA

.

Assuming, a Cobb-Douglas technology f = ATα, this condition simplifies to: −Ucc
Uc

> 1.
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dataset consists of around 53,000 observations and spans over the years 2007 to
2015. Table 1 presents some summary statistics for our sample.

Agricultural and socio-economic data. — Our main data source is repeated
cross-sections of the Peruvian Living Standards Survey (ENAHO), an annual
household survey collected by the National Statistics Office (INEI, 2007-2015).
This survey is collected in a continuous, rolling, basis. This feature guarantees
that the sample is evenly distributed over the course of the calendar year.

The survey asks the farmer to report the quantity of crops harvested in the
last 12 months, as well as the size and use of parcels planted in that period.
We use this information to construct measures of agricultural output and input
use. To measure real agricultural output, we construct a Laspeyres index using
quantity produced of each crop and baseline local prices.11 We calculate land
used by adding the size of parcels dedicated to seasonal and permanent crops.
We distinguish between domestic and hired labor. We measure hired labor using
self-reported wage bill paid to external workers in the last 12 months. To mea-
sure domestic labor, we use information on household members’ employment. In
particular, we calculate the number of household members working in agriculture
and build an indicator of child labor.12

This dataset has three relevant limitations. First, we do not observe the time
of planting, only the total land used in the last 12 months. Second, we do not
observe which specific crops are cultivated in each parcel.13 Since most farmers
grow several crops and practice inter-cropping, we cannot calculate crop-specific
yields. Finally, the information on household employment is available only for the
two weeks before the interview. Given that interviews can occur all year round
and labor use is seasonal, our measures of domestic labor may not reflect actual
input use during the whole year. While this measurement error does not affect
estimates of the effect of temperature on land use, it can affect estimates of its
impact on labor use. In those cases, we address this concern by restricting the
sample to farmers interviewed during the main growing season only.

The survey also provides information on socio-demographic characteristics,
agricultural practices and farm conditions (such as intercropping, access to ir-
rigation, and use of fertilizers), and geographical coordinates of each primary
sampling unit or survey block.14 In rural areas, this corresponds to a village or
cluster of dwellings. We use this geographical information to link the household
data to satellite imagery.

11As local prices, we use the median price of each crop in a given department (n=24) in 2007.
12Child labor is defined as an indicator equal to one if a child living in the household aged 6-14 reports

doing any activity to obtain some income. This includes helping in the family farm, selling services or
goods, or helping relatives, but excludes household chores.

13We only observe total area planted and, separately, total harvests of each crop.
14There are around 3,800 unique coordinate points in our sample. Figure A.1 in the Appendix depicts

the location of clusters used in this study.
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We complement the household survey with data on soil quality from the Harmo-
nized World Soil Database (Fischer et al., 2008; FAO/IIASA/ISRIC/ISSCAS/JRC,
2012).15

Temperature and precipitation. — We use satellite imagery to obtain high-
resolution measures of local temperature. We prefer to use satellite imagery in-
stead of ground-level measures or gridded products, such as re-analysis datasets,
due to the small number of monitoring stations (around 14 in the whole coun-
try).16 We use the MOD11C1 product provided by NASA (Wan et al., 2015).
This product is constructed using readings taken by the MODIS tool aboard the
Terra satellite. These readings are processed to obtain daily measures of daytime
temperature on a grid of 0.05 × 0.05 degrees, equivalent to 5.6 km squares at
the Equator, and is already cleaned of low quality readings and processed for
consistency.17

The satellite data provides estimates of land surface temperature (LST) not of
surface air temperature, which is the variable measured by monitoring stations.
For that reason, the reader should be careful when comparing the results of this
paper to other studies using re-analysis data or station readings. LST is usually
higher than air temperature, and this difference tends to increase with the rough-
ness of the terrain. However, both indicators are highly correlated (Mutiibwa et
al., 2015).

We complement the data on temperature with information on local precipita-
tion. We use data from the Climate Hazards Group InfraRed Precipitation with
Station data (CHIRPS) product (Funk et al., 2015). CHIRPS is a re-analysis
gridded dataset that combines satellite imagery with monitoring station data.
It provides estimates of monthly precipitation with a resolution of 0.05 × 0.05
degrees.

To link the weather and household data, we attribute to a given household the
weather conditions in the cell overlapping its coordinates. Then, we aggregate
weather data (which have daily and monthly frequency) to obtain measures of ex-
posure to weather during a given agricultural year. In our baseline specification,
we focus on exposure to weather during the last completed growing season. The
growing season is the period in which most of planting and crop growth occurs.
As shown in Section I.A, even though planting is a year-round activity, it is par-
ticularly concentrated in spring and summer. We use this period as our definition
of growing season.18 Figure 3 shows the distribution of temperatures observed

15This dataset provides information on several soil characteristics relevant for crop production on a 9
km square grid. The soil qualities include nutrient availability and retention, rooting conditions, oxygen
availability, excess salts, toxicity, and workability.

16Note that reanalysis datasets use ground-level readings as a main input and thus can be less precise
in contexts with a low number of monitoring stations (Auffhammer et al., 2013).

17MODIS validation studies comparing remotely sensed land surface temperature estimates and
ground, in situ, air temperature readings found discrepancies within the 0.1-0.4 ◦C range (Coll et al.,
2005; Wan and Li, 2008; Coll et al., 2009).

18We define the growing season as months October to March. In Section III.D, we check the robustness
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during the last completed growing season for our whole sample.19

Figure 3. Distribution of daily average temperature by growing season

Notes: density of daily temperatures during the last completed growing season (i.e., October to March).
The unit of observation is farmer-growing season.

B. Empirical strategy

The empirical analysis aims to study how farmers respond to extreme heat.
Based on the discussion in Section I.B, we focus on productive adjustments, such
as changes in input use. To study this response, we estimate reduced-form un-
conditional factor demands linking input use to weather shocks.

In a standard production model, unconditional factor demands are a function
of total factor productivity (TFP), and agricultural prices. In the presence of

of our results to alternative ways to aggregate weather over time, such as by climatic season or during
last 12 months.

19Figure A.3 in the Appendix, shows the average distribution of daily temperatures by growing season,
and shows that the distribution is mostly stable over the time of our study.
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imperfect input markets, they could also be affected by household endowments.20

In this context, weather conditions, such as temperature and precipitation, enter
into the factor demand through their effects on A.

We approximate the reduced-form factor demand using the following log-linear
regression model:

(1) ln yijt = g(γ, ωit) + φZi + ρj + ψt + εijt,

where the unit of observation is farmer i in district j and growing season t. y is
our measure of input use and g(γ, ωit) is a non-linear function of temperature and
precipitation (ωit). The parameter of interest is γ: the reduced-form estimates
of the effect of weather shocks on input use. Note that our specification exploits
within-district variation. Thus we cannot estimate the effect of climate, but only
of weather shocks. This approach is similar to the panel regressions used in recent
studies of the effect of climate on economic outcomes (Dell et al., 2014).

Zi is a vector of farmer characteristics, ρj is a set of district fixed effects, and
ψt are climatic region-by-growing season fixed effects.21 These control variables
proxy for both determinants of TFP as well as other drivers of input use. Zi
includes possible drivers of TFP such as indicators of soil quality, household
head’s education, age, and gender, as well as measures of input endowments like
land owned and household size, ψt controls for common productivity shocks but,
to the extent that agricultural markets are national, also for agricultural prices.
Similarly, ρj accounts for location-specific determinants of productivity, such as
climate and soil quality, but can also control for other time-invariant determinants
of input use, like proximity to markets.22

Similar to previous work, we model the relation between weather and agricul-
tural productivity as a function of cumulative exposure to heat and water.23 In
particular, we construct two measures of cumulative exposure to heat during the
growing season (i.e., spring and summer): average degree days (DD) and harmful
degree days (HDD).

DD measures the cumulative exposure to temperatures between a lower bound,
usually 8◦C up to an upper threshold τ , while HDD captures exposure to temper-
atures above τ . The inclusion of HDD allows for potentially different, non-linear,
effects of extreme heat. Formally, we define the average DD and HDD during the

20For instance, in the extreme case of no input markets, input use would be proportional to input
endowments. See the discussion in Aragón and Rud (2016).

21A district is the smallest administrative jurisdiction in Peru and approximately half the size of the
average U.S. county. Our sample includes 1,320 districts out of a total of 1,854.

22A potential concern is that the inclusion of fixed effects could absorb a significant amount of weather
variance and amplify measurement error (Fisher et al., 2012; Auffhammer and Schlenker, 2014). We
examine this issue and find that there is still relatively large weather variation even after including a rich
set of fixed effects (see Tables A.2 and A.3 in the Appendix).

23See for instance Schlenker and Roberts (2006) and Schlenker et al. (2006).
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growing season as:

DD =
1

n

n∑
d=1

(min(hd, τ)− 8)1(hd ≥ 8)

HDD =
1

n

n∑
d=1

(hd − τhigh))1(hd > τ),

where hd is the average daytime temperature in day d and n is the total number
of days in a growing season with valid temperature data. Note that we do not
calculate total degree days, but instead the average degree days. This re-scaling
makes interpretation easier and help us address the issue of missing observations
due to satellite swath errors.

A key issue is to define the value of τ . Previous studies in U.S. set this value
between 29-32◦C (Schlenker and Roberts, 2006; Deschenes and Greenstone, 2007).
These estimates, however, are likely to be crop and context dependent and hence
might not be transferable to our case.24 For that reason, we prefer to use a data-
driven approach. To do so, we estimate a flexible version of equation (1) using
log of output per hectare as outcome variable and replacing g(.) with a vector
of variables measuring the proportion of days in a growing season on which the
temperature fell in a given temperature bin.25 The results, displayed in Figure 4
suggest that point estimates become negative for temperatures above 33 ◦C. We
use this temperature as our preferred τ in our baseline specification.26

We measure exposure to precipitation using the average daily precipitation
(PP) during the growing season and its square. With these definitions in mind,
we parametrize the function relating weather to productivity g(γ, ωit) as:

g(γ, ωit) = γ0DDit + γ1HDDit + γ2PPit + γ3PP
2
it.

III. Main results

This section presents our main empirical results on farmers’ responses to ex-
treme heat. We start by documenting the relationship between temperature and

24In addition to differences in crop mix and agricultural technology, we use a different measure of
temperature (i.e., land surface temperature). These factors make previous estimates not applicable to
our case study.

25This specification is similar to the one used by Burgess et al. (2017) to study the effect of weather
on mortality. Based on the distribution of temperatures in the Peruvian case, we define 11 bins: < 6◦C,
≥ 42◦C, and nine 4◦C-wide bins in between. Our omitted category is the temperature bin 22-25◦C.

26As a robustness check, we also estimate τ using an iterative regression method similar to those used
by Schlenker et al. (2006). We ran 17 regressions with different DD/HDD thresholds ranging from 26◦C
to 42◦C and compared their model fit. The results, in Figure A.4 suggests optimal temperatures in the
slightly lower 30-32 ◦C range. To ensure that our choice of τ does not drive our main results, in Figures
A.5 and A.6 in the Appendix we plot the point estimates of the HDD coefficients for the range of τ
mentioned above. Reassuringly, point estimates are of similar size, magnitude, and precision between
the 26-35◦C interval.
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our main outcomes: land productivity and land use. As a first glance at the data,
we use a flexible approach using temperature bins instead of degree days.

The results, shown in Figures 4 and 5, suggest that extreme temperatures are
associated with reductions in land productivity, but increase in area planted.
This negative relationship between productivity and input use is consistent with
farmers using more inputs to attenuate the drop in agricultural output. Below,
we examine these findings and interpretation in more detail.

Figure 4. Non-linear relationship between temperature and ln(output per ha.)

Notes: Figure displays the estimates of the effect of an increase of 1 percentage point in the proportion of
growing-season days in a given temperature bin on ln(output per ha). Circles represent points estimates,
while lines indicates 95% confidence intervals. Standard errors are clustered at the district level. All
specifications include same fixed effects and farmer controls as baseline regressions in column 1 of Tables
2 and 3.

A. Temperature and agricultural productivity

We use two approaches to examine the relation between temperature and agri-
cultural productivity. First, we follow the existing literature and estimate our
baseline specification (1) using yields (i.e., output per unit of land) as our mea-
sure of (land) productivity. This specification measures exposure to heat using
degree days (DD) and harmful degree days (HDD) averaged over the main grow-
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Figure 5. Non-linear relationship between temperature and ln(area planted)

Notes: Figure displays the estimates of the effect of an increase of 1 percentage point in the proportion
of growing-season days in a given temperature bin on ln(area planted). Circles represent points estimates,
while lines indicates 95% confidence intervals. Standard errors are clustered at the district level. All
specifications include same fixed effects and farmer controls as baseline regressions in column 1 of Tables
2 and 3.

ing season (i.e., spring and summer). A limitation of this approach is that yields
are a measure of partial productivity that reflect changes in TFP and land used.
This is not an issue when land is fixed, but can overestimate the effect of extreme
heat on productivity if farmers adjust land.

As a second approach, we estimate a production function. Assuming a Cobb-
Douglas specification we modify our baseline specification by using log of output
as outcome and controlling for log of input use.27 This approach allow us to
estimate directly the effect of extreme heat on TFP. However, it comes at the
cost of imposing parametric assumptions and, potentially, creating an endogeneity
problem due to omitted productivity drivers affecting both input use and output.
Consistent with the analytical framework proposed in Section I.B, we address this

27Assuming a Cobb-Douglas production function Yijt = AijtT
α
itL

β
it, applying logarithms, and defining

A = exp(g(γ, ωit) + φZi + ρj + ψt + εijt) we obtain the following regression model:

lnYijt = α lnTit + β lnLit + g(γ, ωit) + φZi + ρj + ψt + εijt,

where Y is agricultural output, and T and L are quantities of land and labor.
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issue by using endowments, such as household size and owned land, as predictors
for input use in an instrumental variable approach.28

Table 2 presents our results. The estimates suggest that extreme heat has
a negative effect on agricultural productivity.29 The magnitude of the effect
is economically significant: the most conservative estimate suggests that each
additional average HDD results in a 7% decrease in agricultural productivity.30

To put this figure in perspective, note that climate change scenarios discussed in
Section V envisage that, by the end of this century, the average number of HDD
over the growing season could increase between 0.30 and 0.95, while the already
warm Coast would experience increments between 1.2 to 2.9 HDD.31

What happens with total output? Consistent with a negative productivity
shock, we find that extreme heat reduces agricultural output (column 4). How-
ever, the magnitude of this effect is smaller than for TFP or yields, and we cannot
reject the null hypothesis at standard levels of confidence. This finding is sug-
gestive of responses (such as changes in production decisions) that attenuate the
effect of the productivity shock on total output.

B. Productive responses: changes in input use

We examine changes in input use as a potential margin of adjustment to high
temperatures. In our main set of results, we focus on changes in land use, both in
terms of area planted and crop mix. Our focus on land stems from its importance
as an agricultural input and because, in many contexts, it is subject to severe
market imperfections, such as ill-defined property rights. Moreover, we have
reasonably good measures of land use, but more limited information on other

28Table A.4 presents first stage estimates. The validity of this IV approach relies on the assumption
that any residual correlation between the error term and variable inputs would not carry to endowments.
This could be violated, for instance, if there are other unobserved factors that drive both output and
inputs endowments, such as political power Goldstein and Udry (2008). Table A.5 in the Appendix
provides additional checks of the effect of temperature on productivity controlling by endowments and
using a more flexible functional form.

29These results are consistent with previous findings of negative effects of high temperatures on yields.
See, for instance, Auffhammer et al. (2012), Guiteras (2009), Burgess et al. (2017), Burke et al. (2015),
Burke and Emerick (2016), Schlenker and Roberts (2009), Lobell et al. (2011).

30The estimates in Table 2 and Figure 4 are not directly comparable since they come from different
specifications. However, a back-of-the-envelope calculation suggests that their magnitudes are not im-
plausibly different. To see this, note that the proportion of days with HDD is 13.9% and the average
HDD is 0.73 (see Table 1). Thus an increase of 1 HDD is approximately equal to an increase in the share
of days above 33◦C of 19 percentage points (=0.139/0.73). For a change of this magnitude, estimates
in Figure 4 suggest a decrease in yields of around 19% while Table 2 would suggest a reduction of 11%.
The difference probably reflects the proportional allocation of additional hot days to all bins above the
threshold.

31Note that our measures of DD and HDD represent the temperatures in an ”average” day in the
growing season. Thus, an additional HDD represents an average increase of 1 harmful degree (i.e., above
33◦C ) for all the days in the growing season. Clearly, there are multiple ways to obtain the same average
increase. For example, an increase of 1 HDD could occur if the temperature for 50% of the days in the
growing season increase from 33◦C to 35◦C (2 harmful degrees), or if the daily temperature for 25% of
days increase from 33◦C to 37◦C (4 harmful degrees). An increase of 1 HDD is a sizeable change. To
put this number in perspective, note that the mean and standard deviation of HDD in our sample are
0.7 and 1.33, respectively.
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Table 2—Temperature, agricultural productivity and output

Y/T TFP Y
Dep. Variable: ln(output/ha) ln(output) ln(output) ln(output)

(1) (2) (3) (4)

Average DD in 0.020* 0.014* 0.015** 0.011
growing season (0.011) (0.007) (0.007) (0.009)

Average HDD in -0.114*** -0.064* -0.069** -0.042
growing season (0.038) (0.033) (0.033) (0.041)

Inputs controls No Yes Yes No
Method OLS OLS 2SLS OLS

No. obs. 53,493 53,487 53,487 53,619
R-squared 0.335 0.549 0.359 0.348

Notes: Standard errors (in parenthesis) are clustered at the district level. Stars indicate statistical
significance: *p <0.10, ** p <0.05, *** p <0.01. All specifications include district, month of inter-
view, and climatic region-by-growing season fixed effects, and farmer controls such as: household head
characteristics (age, age2, gender, and level of education), indicators of soil quality from Fischer et al.
(2008) (nutrient availability, nutrient retention, rooting conditions, oxygen availability, salinity, toxicity
and workability) and the share of irrigated land. Input controls: log of area planted, number of household
members working in agriculture, and amount spent on hired labor. Instruments for domestic labor and
area planted: log of household size and area of land owned. First stage joint significance F-test is 466.7.

inputs, such as labor.

Table 3 presents our main results. We find a positive and statistically significant
effect of HDD on area planted (column 1). An increase in HHD of 1 degree is
associated with an increase of almost 6% in the total area planted. This estimate
already controls for endowments, such as the total area of land available, and thus
is not simply picking up changes in the size composition of farmers. The increase
in land used is sizable and partially explains why, despite its documented negative
effects on agricultural productivity, extreme heat has a small and insignificant
effect on total output. It also explains why the estimated effect of HDD on yields
(Y/T) is larger than on total factor productivity (TFP) (see Table 2).

Columns 2 to 4 examine the effect of extreme heat on crop mix. In our context,
farmers practice multi-cropping: the average farmer grows almost six different
crops.32 To study effects on crop mix, we group crops in two categories: tu-
bers (mostly potatoes) and other crops. Tubers are the most important crop
among Peruvian subsistence farmers and account for almost 30% of the value of
agricultural output and 15% of the area planted.

32In our sample, fewer than 10% of farmers report growing only one crop. Multi-cropping is a common
practice among subsistence farmers across the developing world, and is in stark contrast with the modern
agricultural practices of the U.S. and other developed countries, which mostly practice mono-cropping.
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We find that extreme heat increases the quantity (in absolute and relative
terms) of tubers harvested. Coupled with the evidence in the previous section that
farmers adjust their land during the growing season, we interpret these findings
as suggestive evidence that the additional land is planted with a higher share of
tubers. Hence farmers adjust their use of land, both in terms of area planted
and crop composition, as a response to extreme heat. These results complement
recent studies that examine the role of changes in crop mix as a possible way to
increase food security and adapt to climate change (Harvey et al., 2014; Burke
and Emerick, 2016; Colmer, 2018).

There are, however, two important caveats. First, we do not observe the area
planted with different crops, only the amount harvested. Thus, we are unable to
disentangle the effect of extreme heat on planting decisions from different crop
sensitivities to temperature. That said, we can rule out that our results are only
reflecting less sensitivity of tubers to extreme heat: in that case, we would observe
an increase in output share, but a reduction in absolute terms.

Second, our results do not necessarily mean that tubers are more resilient to
heat than other crops.33 Farmers could prefer tubers for several reasons other
than heat tolerance. Studies on food security highlight several advantages of tu-
bers (like potatoes, cassava, and sweet potatoes) over other crops, such as short
maturity, sequential harvesting, low water and fertilizer requirements, more reli-
ability, and high nutritional content (Woolfe, 1992; Devaux et al., 2014; Motsa et
al., 2015). These features could made them relatively more attractive than other
crops, especially in the presence of negative productivity shocks. For instance,
Dercon (1996) documents that Tanzanian farmers manage risk by planting less
profitable, but more reliable, crops like sweet potatoes. Similarly, in a study of
small farmer in Madagascar, Harvey et al. (2014) find that a common coping
strategy to productivity shocks is to adjust their diet by replacing rice for tubers.

Timing. — Do the effect and responses to extreme heat vary according to the
time at which extreme temperatures are experienced? Answering this question
is relevant to understand the observed phenomena better and predict impacts
more accurately. For instance, effects could vary if crops are more sensitive to
extreme heat at some stages of development (sowing, harvesting) than others,
or if farmers face time-varying constraints to adjust to these shocks (i.e., due to

33There is some evidence that sweet potatoes and cassava are more drought tolerant than other food
crops, such as maize (Braimoh et al., 2018; Motsa et al., 2015). However, the agronomic literature is
less clear about the general heat tolerance of a crop. A main reason is that heat tolerance depends on
several context-specific factors, such as water availability, pre-conditioning to heat, and developmental
stage (Miller et al., 2001; Wahid et al., 2007). For instance, potatoes are more sensitive to heat at earlier
stages (seeding) while maize is more susceptible to heat damage at later stages (flowering and grain
filling). Damage to potato yields can also be offset by increased soil humidity, but this mechanism does
not attenuate the negative effects of heat on maize (Basu and Minhas, 1991; Rykaczewska, 2013; Edreira
and Otegui, 2012). There is also a large variation in heat tolerance between different varieties of the
same crop. For instance, the heat tolerance of some potato cultivars can be twice as large than that of
less resilient varieties (Ahn et al., 2004). Note that in our data, we can only identify crops, not cultivars
or varieties.
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Table 3—Temperature and land use

ln(area planted) ln (output) Tubers
Dep. Variable: Tubers Other crops % output

(1) (2) (3) (4)

Average DD in -0.006 -0.197*** 0.126*** -0.029***
growing season (0.009) (0.028) (0.016) (0.003)

Average HDD in 0.055*** 0.093** -0.160*** 0.022***
growing season (0.018) (0.043) (0.042) (0.004)

Endowment controls Yes Yes Yes Yes

No. obs. 53,493 53,493 53,493 53,493
R-squared 0.443 0.454 0.463 0.525

Note: [Notes] Standard errors clustered at the district level (in parenthesis). Stars indicate statistical
significance: *p <0.10, ** p <0.05, *** p <0.01. All specifications include district, month of interview,
and climatic region-by-growing season fixed effects, and the same farmer controls as baseline regression
in Table 2. Endowment controls: log of household size and area of land owned.

seasonal crop or input suitability). Alternatively, we might be observing a delayed
response from farmers to extreme temperatures in previous agricultural seasons,
not a response to a contemporaneous shock.

To examine this issue, we first restrict our sample to those farmers interviewed
during the fall or winter months (April to September, in the southern hemisphere).
As mentioned before, although planting and harvesting are year-round activities,
the most important planting period (in terms of area) corresponds to spring and
summer, the growing season months. Thus, our sample restriction allows us to
focus on those farmers who have already completed most of their annual land use
decisions.34 Then, we construct separate measures of weather for each of the last
four seasons (i.e., fall, winter, spring, and summer). Specifically, if a household
is interviewed during the fall or winter of year t, we match each observation with
the weather outcomes in that location during the fall, winter and spring of year
t − 1 (April to December), and for the summer of year t (January to March).
This procedure effectively summarizes the weather conditions over the 12 months
previous to the end of the last growing season.

Figures 6 and 7 depict the effect of average HDD in different seasons on our
measures of productivity (Y/T) and land used (T). The main observation is that
the effect of extreme heat on productivity and land use is driven by shocks that
occur during the spring. This timing is consistent with the biological response
(and the human reaction) to heat experienced during a sensitive period in the

34Recall that interviewers ask about the total land used in agriculture over the past 12 months
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agricultural calendar. Previous studies show that, while plants are vulnerable
to high temperatures throughout their life-cycle, the potential harm is highest
during the sowing period (Slafer and Rawson, 1994). Moreover, it suggests that
the observed changes in land use are a response to productivity shocks within the
agricultural season.

To explore the possibility of within-growing season responses by farmer in area
planted, we make use of data from the Peruvian National Agricultural Survey,
available for four years, between 2014 and 2017 (INEI, 2014-2017). This is a lon-
gitudinal dataset that has farm-level data of monthly planting over a 12-month
period. In Figure A.2 and Table A.1 in the Appendix, we show the results of
regressing the area planted on a given month on monthly HHD realizations (con-
temporaneous and lagged values), using farmer fixed effects. Thus, we use within-
farmer variation to explore how planting by a farmer responds to temperature
shocks during the agricultural season. Results show that farmers increase their
planting one and two months after they were exposed to harmful temperatures.
These findings support the idea that farmers indeed respond during the growing
season to extreme heat, and reduce concerns such that the increase in land is
picking up differences in timing of planting across different farmers or locations.

Changes in labor use. — Finally, we examine the effect of extreme heat on
labor. We distinguish two types of labor: domestic and hired. In contrast to
land use, we do not have good proxies for labor used during the agricultural
season. We only observe the wage bill of hired workers in last 12 months, not
actual number of workers. More importantly, we only have information on labor
outcomes of household members during the last 2 weeks before the interview, not
for the whole agricultural year. Because of these limitations, the results on labor
use should be interpreted with caution.

Table 4 presents our findings. Columns 1 to 4 examine the effect on two mea-
sures of domestic labor: number of household members working on the farm, and
an indicator of child labor. We estimate the effect of HDD using the baseline
specification (columns 1 and 2) as well as an alternative specification restricting
the sample to farmers interviewed in spring and summer and using average HDD
in spring as a measure of exposure to extreme heat. By focusing on households
interviewed at the moment when most of the productivity shock occurs, we can
partially address the data limitations mentioned above. Column 5 examines the
effect on wage bill: our proxy for hired labor.

Similar to the results on land used, we find that HDD has a positive and, in most
cases, significant effect on measures of domestic labor. Interestingly, extreme heat
seems to increase the likelihood of child labor. This last result is consistent with
findings in the literature on child labor showing that poor households may resort
to employing children in productive activities when subject to negative income
shocks (Beegle et al., 2006; Bandara et al., 2015). In contrast, the coefficient
of HHD on hired labor’s wage bill is negative, albeit also insignificant. These
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Figure 6. Effect of exposure to HDD by season on ln(output per ha.)

Notes: Figure displays the estimates of the effect of HDD in different seasons on ln(yields). Circles
represent points estimates, while lines indicates 95% confidence intervals. Standard errors are clustered
at the district level. All specifications include same fixed effects and farmer controls as baseline regression
in Table 2.

findings suggest a slight tendency of farms to use more intensively domestic labor
as a response to extreme heat.

C. Discussion

Our findings are hard to reconcile with predictions from a standard production
model. As discussed in Section I.B, a standard production model would predict a
weakly negative relation between HDD and input use, as well as a negative effect
on output. The reduction in productivity would drive the negative effect on input
use. However, if extreme heat shocks occur after input decisions are sunk (i.e.,
after planting), there would be no effect of HDD on area planted.35

35A model with factor biased productivity shocks (i.e., extreme temperatures affecting relatively more
one factor of production), could also generate changes in input ratios and, potentially, increase use of
some inputs. However, it is unlikely to explain the observed increase in land and domestic labor. To see
this, consider an alternative model with competitive input and output markets, two inputs (land and

labor), and a CES production function f(T, L) = [AT ρ + BLρ]
γ
ρ , where T and L refers to land and

labor, and A and B are factor-specific productivity shifters. Cost-minimization requires that the input
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Figure 7. Effect of exposure to HDD by season on ln(area planted)

Notes: Figure displays the estimates of the effect of HDD in different seasons on ln(yields). Circles
represent points estimates, while lines indicates 95% confidence intervals. Standard errors are clustered
at the district level. All specifications include same fixed effects and farmer controls as baseline regression
in Table 2.

Instead, our findings are consistent with models of subsistence farmers in a
context of incomplete markets (De Janvry et al., 1991; Taylor and Adelman,
2003). In this scenario, production and consumption decisions are not separable
(Benjamin, 1992). Thus, farmers exposed to negative shocks may need to resort
to more intensive use of non-traded inputs, like land and domestic labor, to offset
undesirable drops in output and consumption. In this sense, changes in input use
are akin to other consumption smoothing mechanisms, such as selling disposable
assets or increasing off-farm work (Rosenzweig and Wolpin, 1993; Kochar, 1999).

To the best of our knowledge, this margin of adjustment, namely increasing
land use on the extensive margin, has not been previously documented in the
consumption smoothing literature, nor in existing studies of the effect of tem-
perature on agriculture. However, it may be particularly relevant for farmers in
less developed countries due to the presence of several market imperfections and

ratio (T/L) is equal to (Aw
Br

)1/(1−ρ), where w and r are the input market prices. Note that if extreme

temperature affects only land then the land-labor ratio would decrease (because of a drop in A/B). This
prediction together with the reduction in output (due to higher costs) imply a reduction in land, T . The
effect on labor is, however, ambiguous.
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Table 4—Temperature and labor use

Domestic labor Hired
No. HH Child No. HH Child labor

Dep. variable: members work labor members work labor ln(wage bill)
in farm in farm

(1) (2) (3) (4) (5)

Average DD in -0.015*** -0.017*** 0.021
growing season (0.005) (0.004) (0.015)

Average HDD in 0.033* 0.017* -0.067
growing season (0.017) (0.009) (0.056)

Average DD -0.014** -0.018***
in spring (0.007) (0.004)

Average HDD 0.027 0.028***
in spring (0.020) (0.010)

Sample Full sample Spring & summer Full sample
Endowment controls Yes Yes Yes Yes Yes

Mean outcome 2.311 0.407 2.294 0.432 2.536
No. obs. 53,619 28,744 26,714 14,352 53,618
R-squared 0.448 0.271 0.464 0.312 0.244

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical signifi-
cance: *p <0.10, ** p <0.05, *** p <0.01. All specifications include district, month of interview, and
climatic region-by-growing season fixed effects, and the same farmer controls as baseline regression in
Table 2. Columns 2 and 4 restrict the sample to farmers interviewed during the growing season (spring
and summer). Columns 2 and 4 also restrict the sample to households with at least one child aged 6 to
15 years. HH = household.

limited coping mechanisms, such as crop insurance or savings.36

Our findings have at least two important implications. First, it suggests a po-
tential dynamic link between weather shocks and long-run outcomes. Leaving
land uncultivated, i.e., fallowing, is a common practice in traditional agriculture
to avoid depleting soil nutrients, recover soil biomass, and restore land produc-
tivity (Goldstein and Udry, 2008). If the increase in area planted as a response
to extreme temperature comes at the expense of fallow land, then this short-
term response could affect land productivity in the medium- or long-term. To
explore this hypothesis, we evaluate whether past weather shocks affect current
agricultural yields. We do so by adding to our baseline regression values of HHD
from the last 8 previous years (see Table A.9 in the Appendix).37 For most lags,

36We examine the importance of market imperfections in Table A.10 in the Appendix. This table
estimates heterogeneous effects of HDD on area planted by several indicators of market development, such
as share of output sold in market, share of farmers hiring workers, and number of branches of agricultural
banks. The evidence is consistent with the positive effect driven by market imperfections. However, we
recommend caution to the reader when interpreting these results due to potential endogeneity of the
indicators of market development.

37We choose this time span based on the fallow duration of 6 to 8 years documented for subsistence
farmers in Peruvian highlands (Brush et al., 1981; Orlove and Godoy, 1986). We present results adding
one lag at a time, and also all of them simultaneously. This last specification is quite demanding due to
correlation between past weather shocks.



VOL. VOLUME NO. ISSUE CLIMATE CHANGE AND AGRICULTURE 25

we cannot rule out their effect are statistically insignificant. However, the effect
of HDD lagged 7 years is negative and marginally significant (p-value= 0.083).
While suggestive of medium-term effects, we interpret these findings cautiously.
We do not have information on the fallow history of a plot or a farm, so we cannot
directly link changes in fallowing in the past to current productivity. Similarly,
we do not have reliable information on the use of uncultivated land.38 Thus we
cannot satisfactorily examine the effects of temperature on fallow duration or
extent.

Second, this farmer response may affect estimations of the damages of climate
change on agricultural output. These estimates are usually based on the effect of
temperature on crop yields (Y/T ). This is a correct approach if land use is fixed.
In that case, changes in crop yields are the same as changes in output. However,
using crop yields may be less informative in contexts in which farmers respond
to weather shocks by changing land use. As we show in Section V, taking into
account this adaptive response reduces, in a non-trivial magnitude, the predicted
damages.

D. Additional checks

Alternative specifications. — Table 5 presents several checks of the robust-
ness of our main results to alternative model specifications. We report only the
estimate associated with the measure of extreme heat (HDD). Each row uses a
different specification.

Row 1 restricts our sample only to farmers interviewed in fall and winter. By
that time, the main growing season has passed and farmers have reaped the
main harvest of the year. This specification drops almost half of the baseline
sample, but it reduces concerns of measurement error due to mismatch of planting
and harvesting decisions, confounding of current and previous weather shocks, or
recall bias. Row 2 estimates a more parsimonious model without any individual
or household-level controls, only district and region-by-year fixed effects, while
row 3 implements a more conservative clustering at province (n= 159) instead of
district level (n=977). In all three cases, our results are similar to the baseline
specification.

Our results are also robust to alternative ways to measure exposure to extreme
heat. Row 4 uses the number of days in growing seasons with HDD, while row 5
uses average HDD during the last 12 months instead of during the last completed
growing season. We also obtain similar results when allowing for different HDD
thresholds by climatic region, i.e., coast and highlands (row 6).39 Figures A.5 and

38Farmers report fallowing in only a quarter of uncultivated land. The rest is reported as covered with
bushes, grasses, and forest. These uses are also consistent with fallowing and crop rotation (Denevan,
2003, Ch. 3). However, we do not know if this land is left fallow or is non-agricultural land.

39These region-specific thresholds were chosen by replicating the analysis shown in Figure ?? in the
coast and highland observations separately. The results from this exercise are presented in Figure ??, in
the Appendix.
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A.6 in the Appendix further assess the sensitivity of our results to different values
of the threshold (τ) ranging from 26◦C to 42◦C. These results show that lower
thresholds produce similar results, while higher thresholds increase the magnitude
of our baseline estimates and reduce their precision.

Prices as omitted variables. — An important concern is that our results might
be driven by changes in relative prices. Extreme heat shocks can reduce aggregate
supply and increase agricultural prices. This price increase would, in turn, create
incentives to increase production and input use. In our baseline specification, we
address this concern by including a set of climatic region-by-growing season fixed
effects. To the extent that agricultural markets are national or circumscribed to
climatic regions, this approach would control for agricultural prices. However, if
agricultural markets are narrower, we could have an omitted variables problem.

We examine the relevance of this issue in two ways (see rows 7 to 8 in Table 5).
First, we add province-by-growing season fixed effects (row 7). This is a much
richer set of time-varying controls than our baseline specification and, under the
assumption that agricultural markets are province-wide, effectively controls for
prices. Second, we add proxies of local prices at district level (row 8). We focus on
tubers and cereals: the two main types of crops in our sample. For each crop type,
we construct a price index at the district level and add it to baseline regression.40

In both cases, our results remain similar to the baseline specification.

Regional differences. — As discussed in Section I.A, our sample has two dis-
tinct climatic regions: coast and highlands. The coast has a warm semi-arid
climate with very little precipitation, especially in the central and southern coast.
In contrast, the highlands are cooler and receive more rain. These climatic differ-
ences are apparent when observing the distribution of daily temperature in these
two regions (see Figure ?? in the Appendix). The two regions also differ in their
agricultural practices. Coastal farmers are, on average, substantially better off,
are more productive, more educated, and more likely to have access to irrigation.
Compared to highland farmers, coastal farmers are also more likely to specialize
on fruits and cereals, less likely to own livestock and cultivate a larger share of
their land.

Given these regional differences, a relevant question is whether our baseline
specification, which pools all observations, may be hiding relevant heterogeneity
in the effects and responses to extreme heat. We address this question by relaxing
the baseline specification and allowing for different effects of weather variables
(DD, HDD, and precipitation) by climatic region. In particular, we modify the
baseline specification by including interaction terms of weather variables with an
indicator of being located in the highlands. Table 6 shows the estimates of the

40The price index for each crop type is a Laspeyres index using self-reported unit prices and output
shares of each crop (within a crop group) in baseline year 2007. We then take natural logarithms.
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Table 5—Robustness checks

ln(output ln(area Tubers No.
Dep. variable: per ha) planted) % output obs.

(1) (2) (3) (4)

1. Interviewed in -0.106** 0.079*** 0.019*** 26,799
fall and winter (0.045) (0.026) (0.006)

2. Excluding individual -0.120** 0.065*** 0.023*** 53,493
controls (0.046) (0.020) (0.005)

3. Clustering by -0.114*** 0.055*** 0.022*** 53,493
province (n=159) (0.036) (0.020) (0.005)

4. Using no. of HHD days -0.529** 0.313** -0.118*** 53,493
during growing season (0.212) (0.126) (0.042)

5. Using average HDD -0.165*** 0.095*** 0.043*** 53,493
in last 12 months (0.051) (0.030) (0.009)

6. Diff. thresholds by region -0.113*** 0.046** 0.021*** 53,493
33◦C Coast, 36◦C Highlands (0.043) (0.018) (0.005)

7. Adding province-by- -0.121*** 0.052*** 0.022*** 53,480
growing season FE (0.042) (0.018) (0.005)

8. Adding local prices -0.122*** 0.061*** 0.024*** 49,713
(0.044) (0.021) (0.005)

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical signifi-
cance: *p <0.10, ** p <0.05, *** p <0.01. All specifications, except in row 2 include the same controls
as baseline regression in Table 2. Row 1 restricts the sample to farmers interviewed in fall and winter
(i.e., April to August). Row 7 adds province-by-growing season fixed effects while row 8 includes logs of
price indexes for tubers and cereals at district level.

effect of HDD for each region, and displays the p-value of the test of equality of
both estimates.

Our main conclusions still remain the same after allowing for regional differ-
ences: in both regions, extreme heat has a negative effect on productivity and a
positive effect on the quantity of land used. Surprisingly, despite coastal farmers
being normally exposed to higher temperatures, there are no statistical differences
in the magnitude of the effect on yields in both regions.41 There are, however,

41This result echoes findings by Burke and Emerick (2016) among U.S. corn farmers. Using a long
difference approach, they find that extreme heat has similar detrimental effects on crop yields across
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some quantitative differences on the effect on land use. In particular, the increase
in area planted is smaller in the coast. In this region, there is also no significant
change in crop mix, measured by the share of tubers in total output.

A possible interpretation of these findings is that mitigation and adaptive re-
sponses vary by baseline climate.42 For instance, warmer areas could have de-
veloped different ways to cope with extreme heat other than using their land
more intensively. This interpretation is in line with recent papers that combine
high-frequency temperature variation with long-run climate differences to study
adaptation to climate change (Barreca et al., 2015; Heutel et al., 2017; Auffham-
mer, 2018).

There are, however, other possible explanations that we cannot rule out. For
instance, these findings may reflect lower land availability in the coast. In this
region, agriculture occurs in densely populated valleys, surrounded by very arid
deserts, and depends heavily on access to irrigation.43 These features can con-
strain the expansion of agricultural land. Similarly, they may be driven by coastal
farmers having access to other, non-agricultural, coping mechanisms. This is plau-
sible given that coastal farmers tend to be better off and are closer to cities and
other urban areas. For these reasons, we interpret with caution as only suggestive
evidence of different responses by climatic region.

Very cold days. — Our previous results focus on the effect and responses to
high temperatures. However, as hinted in Figure ??, low temperatures could also
have a negative effect on agricultural productivity. This is especially relevant in
the Highlands where around 6% of days in the growing season have temperatures
below 8◦C. To examine this issue, we replicate our main results adding a measure
of low-temperature degree days. This measure is similar to our variables DD and
HDD, but uses only temperatures below 8◦C.

Table 7 shows the results. There are two relevant observations. First, our base-
line results of the effect of HDD on yields and land use remain unaffected. Second,
similar to extreme heat, low temperatures have a negative effect on yields, and
increase land use and share of tubers. These last results are consistent with our in-
terpretation that farmers increase land use as a response to negative productivity
shocks.

IV. Other coping mechanisms

Our main results suggest that farmers adjust input use as a mechanism to
cope with the negative effects of extreme temperatures. In this section, we study
other coping mechanisms previously documented in the consumption smoothing

time, despite the observed increase in average temperatures. Burke and Emerick (2016) interpret this
finding as suggestive evidence of limited long-term adaptation to higher temperatures.

42Indeed, we observe similar results when using an indicator of cool and warm regions instead of a
climatic region dummy (see Table A.8 in the Appendix).

43The share of uncultivated land is almost 45% in the highlands and 11.5% in the coast (see Table 1).
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Table 6—Effect of HDD on land productivity, output and land use - by climatic region

ln(output ln(total ln(area Tubers
per ha) output) planted) % output

(1) (2) (3) (4)

(A) Average HDD × -0.114** -0.063 0.034* 0.006
Coast (0.047) (0.047) (0.019) (0.004)

(B) Average HDD × -0.142** 0.016 0.118** 0.038***
Highlands (0.057) (0.044) (0.047) (0.010)

Diff. (B)-(A) 0.706 0.226 0.097 0.002
p-value

No. obs 53,493 53,619 53,493 53,619
R-squared 0.336 0.348 0.443 0.526

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical signifi-
cance: *p <0.10, ** p <0.05, *** p <0.01. All specifications include district, month of interview, and
climatic region-by-growing season fixed effects, and the same farmer controls as baseline regression in
Table 2.

Table 7—Effect of low temperatures on land productivity, output, and land use

ln(output ln(total ln(area Tubers
per ha) output) planted) % output

(1) (2) (3) (4)

Average low DD -0.122* 0.071 0.212*** 0.047***
(0.067) (0.051) (0.053) (0.014)

Average DD 0.010 0.017 0.012 -0.024***
(0.013) (0.010) (0.009) (0.003)

Average HDD -0.105*** -0.047 0.040** 0.018***
(0.039) (0.041) (0.017) (0.004)

Observations 53,389 53,515 53,389 53,515
R-squared 0.336 0.348 0.444 0.525

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical signifi-
cance: *p <0.10, ** p <0.05, *** p <0.01. All specifications include district, month of interview, and
climatic region-by-growing season fixed effects, and the same farmer controls as baseline regression in
Table 2. Low DD = degree days below 8◦C.
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literature, such as working in non-agricultural activities (Rosenzweig and Stark,
1989; Kochar, 1999; Colmer, 2018), migrating (Munshi, 2003; Feng et al., 2012;
Kleemans and Magruder, 2017; Jessoe et al., 2017) or selling livestock (Rosenzweig
and Wolpin, 1993). Then, we examine how these coping mechanisms interact with
changes in land use.

We start by examining whether farmers in our context use other coping mech-
anisms (see Table 8). Our first set of outcomes focuses on the use of livestock as
a buffer against income shocks (columns 1 to 3). We find that HDD is associated
with an increase in the probability that a farmer reports a decrease in livestock
value.44 This reduction seems to come from households selling, rather than con-
suming their livestock. These results are consistent with farmers selling livestock
to offset the adverse effects of extreme heat.

Next, we focus on indicators of off-farm work (columns 4 and 5). We use an
indicator of a household member having a non-agricultural job, as well as the
total number of hours worked off-farm (conditional on having a non-agricultural
job). As in Table 4, we restrict the sample to households interviewed during
the growing season (i.e., spring and summer). These outcomes capture supply
of off-farm employment in the extensive and intensive margin. In the extensive
margin, the estimate is insignificant. However, the estimate on the intensive
margin is positive and statistically significant: farmers with off-farm jobs seem
to increase the number of hours worked in that activity. While suggestive of off-
farm employment as a coping strategy, this result is not robust to using the whole
sample of farmers.

In columns 6 and 7, we look for evidence of short-term migration. Due to
data limitations, we cannot measure migration directly. Instead, we use proxy
variables such as an indicator of whether any member has been away for more
than 30 days and household size. Similar to the results on off-farm employment,
none of these outcomes seems to be affected by extreme temperature. However, we
should interpret these last results with caution. Our analysis focuses on a short
period (within a year), and these adjustments may happen over a longer time
frame. In addition, our measures of labor and migration may be noisy proxies of
actual behavior. These factors likely reduce the power of our statistical analysis
and could explain the insignificant results.

44Our definition of livestock includes cattle, horses, sheep, llamas, and pigs.
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Table 8—Other responses to extreme heat

Livestock buffer Off-farm work Short-term migration
Dep. variable: Decrease in Sold Consumed HH member ln(hours HH member

livestock livestock livestock has off-farm worked away 30+ HH size
value job off-farm) days
(1) (2) (3) (4) (5) (6) (7)

Average DD -0.008*** -0.012*** -0.013*** 0.009** 0.026*** 0.003** -0.006
(0.002) (0.002) (0.003) (0.004) (0.009) (0.001) (0.014)

Average HDD 0.022*** 0.016* 0.007 0.006 0.054** -0.002 0.016
(0.007) (0.009) (0.009) (0.011) (0.025) (0.002) (0.033)

Mean outcome 0.332 0.517 0.476 0.464 57.548 0.085 4.339

No. obs. 48,169 48,169 48,169 26,726 12,377 53,619 53,619
R-squared 0.077 0.146 0.240 0.213 0.169 0.083 0.244

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance: *p <0.10, ** p <0.05, *** p <0.01. All
specifications include district, month of interview, and climatic region-by-growing season fixed effects, and the same farmer controls as baseline regression
in Table 2. Columns 1 to 3 restrict the sample to farmers who reported having livestock 12 months ago. Columns 4 and 5 restrict the sample to farmers
interviewed in spring and summer. Column 5 further restricts the sample to households in which at least one member has an off-farm job. All regressions
are estimated using OLS. All regressions, except in columns 5 and 7, have a binary outcome variable.
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A. Interactions with productive responses

Our results suggest that, in our sample, farmers seem to use livestock sales as a
coping strategy to smooth negative weather shocks. A natural question is how this
coping strategy interacts with the productive responses, such as increasing input
use, identified in our main results. Does having livestock eliminate the need to
change land use, or do they complement each other? These are relevant questions
to better understand the portfolio of coping strategies available to subsistence
farmers.

We examine these issues by estimating heterogeneous responses to extreme
heat for farmers with different ability to use other coping strategies. Based on our
previous findings, we interact HDD with indicators of owning livestock 12 months
ago and having at least one household member employed in a non-agricultural
activity. We use these indicators as proxies of farmers’ ability to use livestock
and off-farm employment as buffers to negative income shocks.

Our results in Table 9 suggest that the effect of HDD on land use (area planted
and relative share of tubers) is qualitatively similar between farmers with and
without livestock (columns 2 and 3). However, the magnitude of the effect is
larger among farmers who do not own livestock. This result is not driven by
these latter farmers experiencing a larger negative productivity shock. As shown
in column 1, the effect of HDD on agricultural yields is similar for both types of
farmers and, if anything marginally smaller for farmers without livestock. In the
case of off-farm employment (columns 4 to 6), there are no significant quantitative
differences in the effect of HDD in any outcome.

We interpret these results as evidence that farmers do not use one strategy
exclusively but instead use a combination of responses to cope with extreme
heat. These responses include both sale of disposable assets (such as livestock)
and adjustments in production decisions (such as changes in land use).

V. Implications for estimating damages from climate change

Most models assessing climate change damages use estimates of the effect of
temperature on crop yields to calculate the loss of agricultural output and, hence,
rural income. This approach is correct if, among other things, the amount of land
used is constant. However, if farmers increase land use, as we have documented
above, this approach would ignore an important margin of productive adaptation
and overestimate the actual fall in agricultural output.

In this section, we quantitatively assess the magnitude of this overestimation
of damages. To do so, we obtain end-of-the-century predictions of temperature
over our study area from current climate change projections. Then, we calculate
the predicted change in agricultural output by extrapolating the effect of these
temperatures on agricultural yields. This is the approach commonly used in the
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Table 9—Coping strategies and productive responses

Livestock buffer Off-farm work
ln(output ln(area Tubers ln(output ln(area Tubers

Dep. variable: per ha) planted) % output per ha) planted) % output
(1) (2) (3) (4) (5) (6)

(A) Average HDD × -0.087* 0.055*** 0.024*** -0.100** 0.041** 0.017***
D = 0 (0.044) (0.019) (0.005) (0.048) (0.018) (0.005)

(B) Average HDD × -0.121** 0.018 0.015*** -0.112** 0.040** 0.020***
D = 1 (0.047) (0.018) (0.005) (0.046) (0.018) (0.005)

Diff. (B)-(A) 0.059 0.002 0.000 0.392 0.956 0.113
p-value

D is indicator = 1 if HH owns livestock Any HH member has off-farm job

No. obs. 53,493 53,493 53,619 53,493 53,493 53,619
R-squared 0.336 0.452 0.525 0.335 0.444 0.525

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical signifi-
cance: *p <0.10, ** p <0.05, *** p <0.01. All specifications include district, month of interview, and
climatic region-by-growing season fixed effects, and the same farmer controls as baseline regressions in
Table 2. Regressions includes interaction of HDD with an indicator variable D of whether household
owned livestock 12 month ago (columns 1 to 3) or has a member with a non-agricultural job (columns 4
to 6). All regressions also include the interaction of HDD with an indicator of climatic region. The third
row reports the p-value of test of equality of estimates in first two rows.

literature.45 Finally, we compare these results to predictions obtained using our
estimates of the effect of temperature on output. These latter estimates take into
account changes in land use.

Importantly, this exercise only assumes changes in temperature (DD and HDD)
and keeps everything else constant. Thus, it does not account for other potential
factors and responses associated with climate change such as changes in CO2, in-
crease risk of natural disasters, changes in water availability, degradation of land
quality, migration, changes in sectoral employment, etc. For that reason, our
results should be interpreted with caution: they do not attempt to predict the
effect of global warming on Peruvian agriculture, but only to highlight the im-
portance of accounting for farmers’ changes of land use when estimating damages
from climate change.

A. Climate change projections

We obtain temperature projections from two climate change scenarios: RCP45
and RCP85. These scenarios, used in the IPCC’s Fifth Assessment Report (IPCC,
2014), represent two different sets of assumptions about the future trajectory of
global greenhouse gas emissions.46 RCP85 is a ‘business as usual’ framework in
which no additional policies to reduce greenhouse gas emissions are introduced.

45See, for example, Deschenes and Greenstone (2007)
46We use the model output produced by the Hadley Centre Global Environment Model version 2

(HadGEM2-ES).
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This scenario forecasts an increase of 4.9 ◦C in global temperatures by the end of
the century. RCP45 is a more optimistic scenario that assumes increased efforts
to curb emissions at a global scale and forecasts an average 2.4 ◦C increase in
global temperatures.47

For each scenario, we obtain gridded data at a resolution 1.25 x 1.875 degrees
of monthly temperatures for the baseline year 2005 and the forecast for the year
2099. We then adjust for model-specific error in a similar way to Deschenes and
Greenstone (2011) to account for the fact that the historical temperatures (from
MODIS) and predicted temperatures (from the HadGEM2-ES model) are from
different sources.48 Then, we use the predicted temperature distribution for each
scenario j and location k to calculate DDjk and HDDjk for the end of the century.
49

Panel A in Table 10 presents the predicted average ∆DD and ∆HDD for our
whole sample and each climatic region in both scenarios.50 Note that the increase
in average HDD is 0.305 ◦C in the RCP45 scenario and more than three times,
0.950 ◦C in the ‘business as usual’ scenario. The increase in temperature will
create substantially more harmful temperatures in the coast than in the highlands.
While the coast is expected to experience 1.20-2.91 additional harmful degrees a
day during growing season months, the highlands are expected to experience just
up to 0.7 HDD a day, in the most pessimistic scenario. These results are a
natural consequence of the current distribution of temperatures in both regions:
as previously mentioned, the coast is already drier and hotter than the highlands.
Thus, a shift in the distribution of temperature has a larger effect on the frequency
of extremely hot days.

B. Predicted effects on agriculture

We calculate the predicted change on agricultural yields and output using
the estimated effect of temperature on agricultural outcomes and the predicted
changes in temperatures from climate change forecasts. In particular, we calculate
the predicted effects as follows:

∆yijk = β̂1∆DDjk + β̂2∆HDDjk

47In Table A.12 in the Appendix, we also include precipitation projections. While the results are
qualitatively similar, we focus on temperatures only as there is less consensus (‘low confidence’) about
the sign and the magnitude of projected precipitations patterns (IPCC, 2014, Ch. 27).

48We calculate the implied temperature change (i.e., 2099 compared to 2005) for each month-location
according to each HadGEM2 scenario, and then add this to the average temperature in our (MODIS)
dataset for each day of the year.

49We assume the same optimal temperature threshold as discussed in the previous section, 33◦C. In
both scenarios, average precipitation is predicted to stay within one standard deviation of its natural
internal variability, so we do not assume any change in this respect (IPCC, 2014).

50Formally, ∆HDDjk = HDDk − ¯HDDk where ¯HDDk is the average historical HDD in location j.
We use a similar procedure to calculate the change in degree-days ∆DDjk.
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where y is the outcome (i.e, yield or output) of farmer i in location k, while

β̂1 and β̂2 correspond to the estimated effect of DD and HDD for each climatic
region (coast and highlands) taken from columns 1 and 2 in Table 6.

Panels B and C in Table 10 present our results. The main observation is
that using yields to predict the effect of climate change can lead to a substantial
overestimation of the loss of agricultural output. This finding suggests that taking
into account farmers’ adjustments in land use is quantitatively important when
estimating damages associated with climate change.

For instance, assuming the quantity of land used is fixed, we would predict
that drops in output are equal to drop in yields. This implies a drop in output
of up to 4 percent (column 4) under RCP85. However, the predicted change in
output is positive: around 0.02 percent. Overestimation is particularly salient in
the coast. In that region, assuming land used is fixed, output losses are estimated
to range from 10 to 26 percent. These magnitudes are almost twice as large as
when allowing for changes in land used. In the highlands, the differences when
using both types of approaches are much smaller, but they produce qualitatively
different results: a drop in yields, but an increase in output.

Naturally, land is a finite resource, and thus this particular strategy is not
dynamically consistent. In other words, farmers will not be able to offset output
losses in the face of higher temperatures by adding more land to their production
function indefinitely. Nevertheless, note that the farmers in our sample keep large
amounts of unused land during any given growing season (see Table 1). In the case
of highland farmers this is as high as 40% of their land holdings. It is, therefore,
a productive adaptation with a significant margin over the near term.

As a final point, our predictions highlight potentially heterogeneous impacts on
agricultural production: while the coast will experience sizable output losses, the
impact in the highlands would be slightly positive. This result is consistent with
other studies that predict large negative effects of climate change on warm (lower
latitude) areas but smaller (albeit less conclusive) effects on cooler (higher lati-
tude) areas (Deschenes and Greenstone, 2007, 2012; Auffhammer and Schlenker,
2014).

VI. Conclusion

This paper examines how subsistence farmers respond to extreme temperature.
Using micro-data from Peruvian farmers, we show that extreme temperatures
decrease agricultural productivity, but increase area planted. The expansion of
area planted is coupled with changes in crop mix. We also find suggestive evidence
of an increase in domestic labor.

We interpret these results as evidence that farmers use productive adjustments,
such as changes in input use, as strategies to attenuate drops in output and con-
sumption. This interpretation is consistent with predictions of producer-consumer
models in the presence of incomplete markets.
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Table 10—Predicted effects of temperature on agriculture under two climate change sce-

narios

RCP 4.5 RCP 8.5
All Coast Highlands All Coast Highlands
(1) (2) (3) (4) (5) (6)

A. Predicted change of temperature

∆ DD 2.001 0.820 2.196 4.385 1.565 4.850
∆ HDD 0.305 1.204 0.157 0.950 2.910 0.627

B. Predicted effect on agriculture

∆ Yields (ln Y/T) 0.002 -0.099 0.018 -0.036 -0.258 0.001
∆ Output (ln Y) 0.007 -0.051 0.016 0.016 -0.136 0.041

C. Differences on estimate of damages

∆ yields - ∆ output -0.005 -0.047 0.002 -0.052 -0.122 -0.040
Notes: Table presents predictions of the effect of increased temperatures on agriculture under two
climate change scenarios (RCP 4.5 and 8.5). Predictions uses region-specific estimates of the effect of
temperature on yields and output from columns 1 and 3 in Table 6. Precipitation is assumed to remain
constant.

Our results point out to a margin of adjustment not previously documented
in the literature. This response could be relevant in other contexts with sub-
sistence farmers and incomplete markets. In addition, this paper highlights the
importance of high temperature realizations, expected to keep increasing due to
climate change, as an income and productivity shock. This measure could be used
alongside other standard measures, such as rainfall, to study farmers’ decisions
and would require new policy instruments that would address the consequences
of heat exposure among subsistence farmers.

There are, however, several unsolved issues. First, due to data limitations, we
cannot investigate other important topics such as the potential long-term effects,
interactions with other long-run adaptive strategies (like defensive investments
or adoption of new technologies), Second, we cannot directly examine the role of
different market distortions on shaping this response to extreme temperatures.
Third, while our findings are specific to the Peruvian case (with distinct regional
differences), our methodology could be used to study similar phenomena in other
contexts. Finally, we are unable to examine how farmers acquire information
about weather shocks. This is relevant given that how and when farmers learn
about the weather shock can affect their ability to respond to it. Examining these
issues warrants future research.
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Devaux, André, Peter Kromann, and Oscar Ortiz, “Potatoes for sustain-
able global food security,” Potato Research, 2014, 57 (3-4), 185–199.

Di Falco, Salvatore, Marcella Veronesi, and Mahmud Yesuf, “Does Adap-
tation to Climate Change Provide Food Security? A Micro-Perspective from
Ethiopia,” American Journal of Agricultural Economics, 2011, 93 (3), 829–846.
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ONLINE APPENDIX
Climate Change and Agriculture: Subsistence Farmers’ Response to

Extreme Heat
Fernando M. Aragón and Francisco Oteiza and Juan Pablo Rud

Additional Figures and Tables

Figure A.1. ENAHO observations 2007-2015

Notes: Map depicts Peru’s climatic regions and location of the ENAHO clusters used in this study.
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Table A.1—Effect of HDD on area planted in a given month

Area planted with transitory crops (has) in month t % annual
area planted

(1) (2) (3) (4) (5) (6)

HDDt−4 -0.0003 -0.0016** -0.0003 -0.0024 -0.0014*** 0.0388***
(0.000) (0.001) (0.000) (0.002) (0.000) (0.011)

HDDt−3 0.0002 -0.0001 0.0004 0.0020 -0.0014** 0.0831***
(0.000) (0.001) (0.000) (0.002) (0.001) (0.013)

HDDt−2 0.0024*** 0.0039*** 0.0010 0.0033** 0.0017*** 0.1257***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.015)

HDDt−1 0.0018*** 0.0022** 0.0017* 0.0024** 0.0024*** 0.0486***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.016)

HDDt -0.0003 -0.0003 0.0002 -0.0004 0.0017** -0.1069***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.015)

HDDt+1 -0.0028***
(0.001)

HDDt+2 -0.0011*
(0.001)

HDDt+3 -0.0021***
(0.001)

HDDt+4 0.0005
(0.001)

Specification Baseline Only Only Spring Adding Alternative
Coast Highlands planting leads outcome

No. obs. 480,462 98,317 382,145 192,348 438,298 480,280
R-squared 0.023 0.023 0.033 0.012 0.026 0.118
No. farmers 38,485 7,908 30,577 38,467 38,471 38,472

Notes: Standard errors clustered at farmer level (in parenthesis). Stars indicate statistical significance:
*p <0.10, ** p <0.05, *** p <0.01. Regression uses data from the Peruvian National Agricultural
years 2014 to 2017. This dataset has farm-level data of monthly planting over a 12-month period. All
specifications include farmer, month-by-strata, and year-by-strata fixed effects. Columns 2 and 3 restrict
sample to a climatic region (Coast or Highlands). Column 4 restricts sample to planting done in months
of August to December. Column 5 adds leads of HDD, while column 6 uses the share of annual area
planted in a given month (i.e. area planted in month t / total area planted in a year) as outcome variable.
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Figure A.2. Effect of lagged HDD on area planted in a given month

Notes: Figure displays results of regressing area planted with transitory (annual) crops in month t on
lagged values of HDD (t to t − 4). Regression uses data from the Peruvian National Agricultural years
2014 to 2017. This dataset has farm-level data of monthly planting over a 12-month period. Regression
includes farmer, month-by-strata, and year-by-strata fixed effects. Dots are point estimates and lines
indicate 95% confidence intervals. Standard errors clustered at the farmer level. Estimates and additional
checks are available in Table A.1.
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Figure A.3. Distribution of daily average temperature by growing season

Notes: Figure depicts the share of days spent in each temperature bin by the farmers in our sample,
during the 2007-2015 growing seasons (i.e., October to March).
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Figure A.4. Optimal temperature threshold using the iterative regression approach

Table A.2—Temperature variation under various sets of fixed effects (in ◦C)

DD HDD
R2 σe |e| > 1◦C R2 σe |e| > 1◦C

(1a) (1b) (1c) (2a) (2b) (2c)
No fixed effects (FE) 4.81 100.0% 1.34 28.6%
District FE 0.90 1.50 37.7% 0.86 0.44 23.2%
District + growing season FE 0.91 1.41 36.5% 0.86 0.43 23.1%
District + growing season-by-region FE 0.92 1.40 36.2% 0.87 0.42 23.1%

Notes: This table replicates Table 2 of Fisher et al. (2012), It summarises regressions of measures of
temperature on various sets of fixed effects and shows how much of the variation they absorb. The first
three columns use average degree days (DD), and the last three columns use harmful degree days(HDD),
using a threshold of 33◦C. Columns (a) report the R2 of the regression; columns (b) report the standard
deviation of the residuals (remaining temperature variation) in degrees Celsius during the growing season;
and columns (c) report what fraction of the observations have a residual that is larger than 1◦C over the
growing season.
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Figure A.5. Effect of HDD on ln(output per hectare) using alternative DD/HDD thresholds

Table A.3—Temperature variation under various sets of fixed effects (in oF )

Variable: DD HDD
Measure: R2 σe |e| > 1◦F R2 σe |e| > 1◦F

(1a) (1b) (1c) (2a) (2b) (2c)
No fixed effects (FE) 8.66 100.00 2.40 39.27
District FE 0.90 2.70 46.30 0.86 0.79 25.73
District + growing season FE 0.91 2.54 45.54 0.86 0.77 25.43
District + growing season-by-region FE 0.92 2.52 44.98 0.87 0.76 25.34

Notes: This table replicates Table 2 of Fisher et al. (2012), It summarises regressions of measures of
temperature on various sets of fixed effects and shows how much of the variation they absorb. The first
three columns use average degree days (DD), and the last three columns use harmful degree days(HDD),
using a threshold of 33oF . Columns (a) report the R2 of the regression; columns (b) report the standard
deviation of the residuals (remaining temperature variation) in Farenheit degrees during the growing
season; and columns (c) report what fraction of the observations have a residual that is larger than 1oF
over the growing season.
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Figure A.6. Effect of HDD on ln(area planted) using alternative DD/HDD thresholds

Table A.4—First stage of 2SLS regression (column 3 in Table 2)

Dep. Variable: ln(area planted) ln(no. HH members
members work in farm)

(1) (2)

ln(area owned) 0.165*** 0.007***
(0.005) (0.001)

ln(HH size) 0.195*** 0.494***
(0.013) (0.006)

No. obs. 53,487 53,487
R-squared 0.478 0.481

Notes: Standard errors clustered at district level (in parenthesis). Stars indicate statistical significance:
*p <0.10, ** p <0.05, *** p <0.01. Table presents first stage of 2SLS regression presented in column 3 in
Table 2. Regression has all included such as district, month of interview, and climatic region-by-growing
season fixed effects, and a set of farmer controls.
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Figure A.7. Non-linear relationship between temperature and agricultural yields by region

- Coast
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Figure A.8. Non-linear relationship between temperature and agricultural yields by region

- Highlands
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Table A.5—Temperature and agricultural productivity (TFP), alternative specifications

Dep. Variable: ln(output)
(1) (2) (3)

Average DD in 0.014* 0.014* 0.013*
growing season (0.007) (0.007) (0.007)

Average HDD in -0.064* -0.063* -0.062*
growing season (0.033) (0.033) (0.033)

Inputs controls Yes Yes Yes
Endowment controls Yes No Yes
3rd degree Taylor No Yes Yes
expansion of inputs

No. obs. 53,487 53,487 53,487
R-squared 0.550 0.552 0.552

Notes: Standard errors clustered at district level (in parenthesis). Stars indicate statistical significance:
*p <0.10, ** p <0.05, *** p <0.01. All specifications are estimated using OLS and include district,
month of interview, and climatic region-by-growing season fixed effects, and the same farmer controls as
regression in column 2 of Table 2. Input controls: log of area planted, number of household members
working in agriculture, and amount spent on hired labor. Endowment controls: log of household size
and area of land owned. Columns 2 and 3 include a 3rd degree Taylor expansion of two inputs: log of
area planted, number of household members working in agriculture.

Table A.6—Effect of HDD on other farm inputs

Fertilizers Pesticides
(1) (2) (3) (4)

Dep var: Extensive Intensive Extensive Intensive
Average DD -0.003 -0.021 0.001 0.002

(0.003) (0.022) (0.004) (0.018)
Average HDD 0.003 0.002 0.005 0.029

(0.010) (0.052) (0.008) (0.043)
No. obs. 53,619 53,618 53,619 53,618
R-squared 0.272 0.375 0.245 0.354

Notes: Extensive margin use is studied using a dummy variable equal to one if the farmer reports
to have used fertilizers/pesticides during the last growing season. Intensive margin use is defined as
the logarithm of total amounts spent on fertilizers/pesticides. Standard errors clustered at the district
level (in parenthesis). Stars indicate statistical significance: *p <0.10, ** p <0.05, *** p <0.01. All
specifications include district, month of interview, and climatic region-by-growing season fixed effects,
and the same farmer controls as baseline regression in Table 2.
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Table A.7—Effect of temperature on farm labor inputs, by type of farmer

Household Labor Hired Labor
(1) (2) (3) (4)

Dep var:
HH members

in farm
HH hours
in farm Child labor ln(wage bill)

Average HDD x Owns livestock 0.019 0.032∗ 0.024∗ -0.095
(0.012) (0.019) (0.012) (0.061)

Average HDD x No livestock 0.014 0.016 0.029∗ -0.038
(0.014) (0.024) (0.015) (0.055)

No. obs. 26,724 26,726 14,358 53,618
R-squared 0.513 0.361 0.315 0.247

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical signifi-
cance: *p <0.10, ** p <0.05, *** p <0.01. All specifications include district, month of interview, and
climatic region-by-growing season fixed effects, and the same farmer controls as baseline regression in
Table 2. Sample restricted to interviews conducted during the growing season (i.e. October to March) in
columns 1 and 2, since dependent variable is defined as work conducted over the past week. In column
3, we restrict the sample to households with children between the ages of 6 and 15.

Table A.8—Effect of HDD on land productivity, output and land use - by baseline climate

ln(output ln(total ln(area Tubers
per ha) output) planted) % output

(1) (2) (3) (4)

(A) Average HDD x -0.126*** -0.066 0.039** 0.009**
Hot areas (0.040) (0.041) (0.018) (0.004)

(B) Average HDD x -0.228** 0.038 0.221** 0.050***
Cool areas (0.102) (0.068) (0.097) (0.019)

Diff. (B)-(A) 0.305 0.130 0.054 0.026
p-value

No. obs 53,493 53,619 53,493 53,619
R-squared 0.336 0.348 0.443 0.527

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical sig-
nificance: *p <0.10, ** p <0.05, *** p <0.01. All specifications include district, month of interview,
and climatic region-by-growing season fixed effects, and the same farmer controls as baseline regression
in Table 2. Cool areas = clusters with average growing season temperature in period 2007-2015 below
the sample median (22.4◦C). Hot areas = clusters with average growing season temperature in period
2007-2015 above the sample median.
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Table A.9—Effect of lagged HDD on land productivity

Dep. Variable: ln(output/ha)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Average HDD in -0.105** -0.106** -0.096** -0.092* -0.111*** -0.102*** -0.071** -0.077** -0.042
growing season t (0.042) (0.041) (0.038) (0.047) (0.041) (0.039) (0.034) (0.033) (0.039)

Average HDD in -0.015 0.026
growing season t-1 (0.025) (0.033)

Average HDD in -0.016 0.028
growing season t-2 (0.027) (0.039)

Average HDD in -0.031 0.003
growing season t-3 (0.028) (0.039)

Average HDD in -0.042 -0.043
growing season t-4 (0.031) (0.038)

Average HDD in -0.007 0.014
growing season t-5 (0.020) (0.026)

Average HDD in -0.036 -0.020
growing season t-6 (0.024) (0.027)

Average HDD in -0.049* -0.045
growing season t-7 (0.028) (0.032)

Average HDD in -0.044 -0.047
growing season t-8 (0.030) (0.040)

No. obs. 53,493 53,493 53,493 53,493 53,493 52,056 46,636 41,465 41,465
R-squared 0.335 0.335 0.335 0.335 0.335 0.332 0.333 0.330 0.330

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance: *p <0.10, ** p <0.05, *** p <0.01. All
specifications include district, month of interview, and climatic region-by-growing season fixed effects, and the same farmer controls as baseline regression
in Table 2.
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Table A.10—Effect of temperature on land uses, by proxies of market development

ln(area planted)
(1) (2) (3) (4) (5) (6)

Average HDD 0.180*** 0.075** 0.279** 0.211* 0.150** 0.573**
(0.068) (0.034) (0.138) (0.113) (0.068) (0.280)

Average HDD -0.297** -0.098 -0.438* -0.315 -0.631 -0.184*
×W (region level) (0.143) (0.142) (0.255) (0.224) (0.397) (0.098)

W = % output % land with % farmers % use % apply to ln(no. branches per
sold registered title hire workers pesticides agric. credit 100,000 inhab. 2009)

Mean W 0.276 0.158 0.497 0.449 0.082 2.570

No. obs 53,493 53,493 53,493 53,493 53,493 53,493
R-squared 0.443 0.443 0.443 0.443 0.443 0.443

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance: *p <0.10, ** p <0.05, *** p <0.01. All
specifications include district, month of interview, and climatic region-by-growing season fixed effects, and the same farmer controls as baseline regression
in Table 2. W are proxies of market distortions calculated at region (n=24) level. Data for constructing these measure comes from the ENAHO survey,
except in columns 5 and 6 which were obtained from the National Agricultural Census 2007 and the Superintendencia de Banca, Seguros y AFP (SBS).
Column 6 refers to the number if of branches of banks providing credit to farmers.
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Table A.11—Effect of temperature on household income, consumption and poverty rates

ln(inc/capita) ln(cons/capita) Poor (Yes=1)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Sample: All Coast Highlands All Coast Highlands All Coast Highlands
Average DD 0.023∗∗∗ 0.010 0.024∗∗∗ 0.021∗∗∗ 0.013 0.021∗∗∗ -0.014∗∗∗ -0.009 -0.013∗∗∗

(0.004) (0.012) (0.004) (0.004) (0.014) (0.004) (0.003) (0.012) (0.003)
Average HDD -0.017 -0.015 -0.008 -0.014 -0.016 0.001 0.003 0.009 -0.008

(0.013) (0.013) (0.022) (0.010) (0.010) (0.017) (0.007) (0.008) (0.015)
No. obs. 53,619 7,439 46,180 53,619 7,439 46,180 53,619 7,439 46,180
R-squared 0.380 0.388 0.335 0.452 0.451 0.416 0.264 0.282 0.244

Notes: Standard errors clustered at the district level (in parenthesis). Stars indicate statistical significance: *p <0.10, ** p <0.05, *** p <0.01. All
specifications include district, month of interview, and climatic region-by-growing season fixed effects, and the same farmer controls as baseline regression
in Table 2.



58 AMERICAN ECONOMIC JOURNAL MONTH YEAR

Table A.12—Predicted effects of temperature and precipitation on agriculture under two

climate change scenarios

RCP 4.5 RCP 8.5
All Coast Highlands All Coast Highlands
(1) (2) (3) (4) (5) (6)

A. Predicted change of temperature

∆ DD 2.001 0.820 2.196 4.385 1.565 4.850
∆ HDD 0.305 1.204 0.157 0.950 2.910 0.627
∆ Precipitation 0.910 0.137 1.038 0.122 -0.560 0.235

B. Predicted effect on agriculture

∆ Yields (ln Y/T) -0.058 -0.110 -0.050 0.093 -0.326 0.163
∆ Output (ln Y) 0.049 -0.066 0.068 0.089 -0.271 0.148

C. Differences on estimate of damages

∆ yields - ∆ output -0.107 -0.044 -0.118 0.004 -0.055 0.015
Notes: Table presents predictions of the effect of increased temperatures on agriculture under two
climate change scenarios (RCP 4.5 and 8.5). Predictions uses region-specific estimates of the effect of
temperature and precipitation on yields and output from columns 1 and 3 in Table 6.


