
A Location-Aware Strategy for Agents Negotiating
Load-balancing

Quentin Baert, Anne-Cécile Caron, Maxime Morge and Jean-Christophe Routier
Univ. Lille, CNRS, Centrale Lille

UMR 9189 - CRIStAL
F-59000 Lille, France

Email: {Quentin.Baert,Anne-Cecile.Caron,Maxime.Morge,Jean-Christophe.Routier}@univ-lille.fr
Kostas Stathis

Department of Computer Science, Royal Holloway, University of London, Egham TW20 0EX, UK
Email: Kostas.Stathis@rhul.ac.uk

Abstract—We study a novel location-aware strategy
for distributed systems where cooperating agents per-
form the load-balancing. The strategy allows agents to
identify opportunities within a current unbalanced al-
location, which in turn triggers concurrent and one-to-
many negotiations amongst agents to locally reallocate
some tasks. The tasks are reallocated according to the
proximity of the resources and they are performed in
accordance with the capabilities of the nodes in which
agents are situated. This dynamic and on-going nego-
tiation process takes place concurrently with the task
execution and so the task allocation process is adaptive
to disruptions (task consumption, slowing down nodes).
We evaluate the strategy in a multi-agent deployment
of the MapReduce design pattern for processing large
datasets. Empirical results demonstrate that our strat-
egy significantly improves the overall runtime of the
data processing.

I. Introduction

The problem of load balancing and task allocation in
distributed systems manifests itself in many applications
such as cloud computing, peer-to-peer and ad-hoc net-
works, pervasive computing, online social networks and
big data processing. In this work we are concerned with
a class of such practical applications where (a) some of
the resources, e.g. data, required to successfully execute
a task are distributed at different network nodes, and
(b) some of the nodes may encounter potential execution
hazards, e.g. slowing down nodes or communication lags.
As several resources are necessary to perform a task, any
initial allocation inevitably requires fetching some of these
resources from other nodes, thus incurring an extra time
cost for task execution [1]. In this class of applications
the task allocation can be challenged during the task
execution and should capitalize upon the way resources
are distributed in the system.

In order to tackle the problem of load balancing and task
allocation in applications such as those that motivate this
work, multi-agent technologies have received a lot of atten-
tion, especially those based on market-based scheduling,
for example see [2], [3], [4]. Apart from decentralization,

i.e. avoiding performance bottlenecks due to global control,
we show here that a multi-agent approach for situated
task allocation supports two additional crucial require-
ments (a) concurrency – where task reallocation and task
executions are concurrent, and (b) adaptation – where
task reallocation is triggered when a disruptive event is
performed. We assume that agents are cooperative, viz.,
they share the same objective: minimizing the global
runtime. We also assume there is no shared knowledge,
including any knowledge about the whole task allocation.
However, agents have a model of their peers, i.e. they
are able to compute the cost of tasks for their peers. We
further assume that a task can be performed by any single
agent without preemption and precedence order. A task is
indivisible, without deadline and not shareable i.e. a task
belongs to only one agent at a time.

The work formalizes the multi-agent situated task allo-
cation problem. By adopting a market-based approach, we
totally decentralize the load-balancing, whereby coopera-
tive agents try to minimize the completion time of the last
task to perform, i.e. the makespan. For this purpose, we
propose a novel location-aware strategy for agents to per-
form the load-balancing. Our work significantly extends [5]
with a formal framework for a negotiation strategy and its
full experimental results that are in line with [6], where the
locality of resources is taken into account. When agents
identify opportunities within a current unbalanced alloca-
tion, they trigger concurrent and one-to-many negotiations
to locally reallocate some tasks. The tasks are reallocated
according to the proximity between the required resources
and the nodes executing the tasks. This dynamic and on-
going task reallocation process takes place concurrently
with the task execution and so the distributed system
is adaptive to disruptive phenomena (task consumption,
slowing down nodes).

We consider as a practical application the distributed
deployment of the MapReduce design pattern in order to
process large datasets on a cluster [7], as with Hadoop [8].
Even if some skews in real-world datasets lead to poor

load-balancing [9], a centralized scheduler cannot be used
as a baseline to compare with our approach due to the
large number of tasks. However, multi-agent negotiation
allows task reallocation during the reduce phase in order
to decrease the job runtime. Our approach is validated for
such an application since the preliminary empirical results
show that the location-aware strategy allows to improve
the overall runtime of the data processing.

The paper is structured as follows. After an overview
of the related work in Sec. II, we formalize the multi-
agent situated task allocation problem and we define in
Sec. III the socially rational task delegation considered by
the agents in order to locally improve the task allocation.
Sec. IV sketches the iterated negotiation process which
is concurrent with task consumptions. Sec. V describes
the location-aware strategy, i.e. how agents choose which
task to perform/negotiate. Our practical application and
empirical validation are described in Sec. VI. Finally,
Sec. VII summarizes our contribution and outlines our
future work.

II. Related work

Classical scheduling problems have been the subject
of extensive research producing offline schedulers for
some simple models [10]. The problem of minimizing
the makespan (the completion time of the last task to
perform) with n tasks on m unrelated machines (i.e. with
different capabilities), denoted R||Cmax, is NP-hard [11].
Pseudo-polynomial algorithms developed for this problem
include: the earliest completion time heuristic [12] (ECT),
the local search heuristics [13], the branch and bound
algorithm [14] and two-phase heuristics based on linear
programming [15]. Even if the ECT heuristic is an approx-
imation algorithm which gives acceptable results with very
small computational requirements, centralized algorithms
cannot be applied to our scenario with a large number
of tasks (i.e. 82, 283 keys in Sec. VI). The location-aware
strategy is a decentralized local search heuristic.

Multi-agent scheduling [1] has received significant atten-
tion for load-balancing problems in distributed systems,
but it is different from the classical scheduling problems
due to the following requirements:

• Scalability: global control causes a performance bot-
tleneck as it must collect status information of the
entire system in real time. Instead, task allocation can
be negotiated by agents representing the nodes [2],
[16].

• Responsiveness: classical scheduling problems are
static. The inaccurate estimation of tasks execution
time, made worse by disruptive phenomena (task
consumption, slowing down nodes, etc.), may re-
quire major modifications in the existing allocation
to stay optimal [4]. Rather than continuously recom-
puting an optimal allocation, some local modifications
during the tasks processing can improve the load-
balancing [17], [18], [19].

Most of the existing works adopting the market-based
approach (e.g. [2], [20]) model the load-balancing problem
as a non-cooperative game in order to optimize user-
centric metrics rather than system-centric ones such as the
global runtime we consider in this paper. Contrary to our
work, [3] consider task assignments to groups of agents
as necessary since tasks cannot be performed by a single
reliable agent. In this paper, we assume that a task, which
can be performed by any single agent without preemption
and precedence order, is indivisible, not shareable (i.e. a
task belongs to only one agent at a time) and without
deadline. [21] has studied multi-agent resource allocation
but their work is restricted to the assignment of a single
resource per agent. We assume here that a bundle of tasks
can be assigned to each agent. In the continuity of [22],
[23], [24] proposes potentially distributable solving meth-
ods using agent-based negotiation for resource allocation.
Even if the network topology is out of the scope of our work
(agents are fully connected in our practical application),
we go a step further by effectively decentralizing the
negotiation, and by challenging this allocation during task
processing.

For the processing of real-world datasets by the dis-
tributed deployment of the MapReduce design pattern,
it is well known that data skews are widespread and
they can lead to poor load-balancing [9]. In particular
the partitioning skew occurs when one reducer processes
a larger number of keys than others. Since the job ends
when all the reduce tasks are finished, the job runtime is
penalized by the most loaded reducer. This data skew is
tackled by [25], [26] using parametrization based on prior
knowledge about the data and the distributed computing
environment. We address this issue with the dynamic and
adaptative task reallocation which is concurrent with the
task consumption. Thus, reallocation is adaptative to the
data processing. This enables us to tackle the following
real-world issues: (a) the lack of prerequisite knowledge
over the data, (b) the inaccurate estimation of task exe-
cution time, and (c) the execution hazards (slowing down
nodes, communication lag). To the best of our knowledge,
no other proposal is scalable and responsive, like ours.

III. Situated task allocation

We formalize here the multi-agent situated task alloca-
tion (MASTA) problem where tasks have different costs
(runtime) for different agents due to the resource locality.

Definition 1 (MASTA): A multi-agent situated task
allocation problem of size (k,m, n) with k ≥ 1, m ≥ 2
and n ≥ 1 is a tuple MASTA = 〈Node,A, T , l, d, c〉 s.t.:

• Node = {node1, . . . , nodek} is a set of k nodes;
• A = {1, . . . ,m} is a set of m agents;
• T = {τ1, . . . , τn} is a set of n tasks to perform;
• l : A 7→ Node is a function which returns the location

of an agent;
• d : T ×Node 7→ N+ is a function which specifies how

many resources for a task are on a particular node;

• c : T × Node 7→ R∗+ specifies the cost of a task τ at
a given location such that the tasks with more local
resources are cheaper:

∀i, j ∈ A, d(τ, l(i)) > d(τ, l(j))⇒
ci(τ, l(i)) ≤ c(τ, l(j)) (1)

In the rest of the paper, li, ci(τ) and di(τ) denote l(i),
c(τ, li) and d(τ, li), respectively. Similarly, we denote dτ =∑
node∈Node

d(τ, node). We say that τ is local, partially local,

or distant for agent i if di(τ) = dτ , di(τ) < dτ , or di(τ) =
0, respectively.

We consider a particular MASTA problem and we
evaluate the task allocation from a collective viewpoint
by considering the maximum completion time, i.e. the
makespan.

Definition 2 (Task allocation/Workload/Makespan): A
task allocation P is a partition of tasks among agents, i.e
a set of m task bundles {P (1), . . . , P (m)} such that:

∪i∈AP (i) = T (2)

∀i ∈ A,∀j ∈ A \ {i}, P (i) ∩ P (j) = ∅ (3)

The workload of the agent i ∈ A in the allocation P is
defined as:

wi(P) =
∑

τ∈P (i)

ci(τ) (4)

The makespan of P is defined as:

Cmax(P) = max{wi(P) | i ∈ A} (5)

We define the socially rational task delegation consid-
ered by the agents in order to locally improve the task
allocation.

Definition 3 (Socially rational task delegation): Let P
be a task allocation. The delegation δ of the task τ from
agent i to agent j is defined s.t. the resulting allocation
δ(P) = {P ′(1), . . . , P ′(m)} is as follows:

∀k ∈ A \ {i, j}, P ′(k) = P (k) (6)

P ′(i) = P (i) \ {τ} ∧ P ′(j) = P (j) ∪ {τ} (7)

The delegation is socially rational iff:

wj(P) + cj(τ) < wi(P) (8)

Since a socially rational task delegation δ strictly decreases
the local makespan between the two agents, it does not
increase the global makespan (Cmax

(
δ(P)

)
≤ Cmax(P)).

We can now denote Γi(P) the set of socially rational task
delegations that an agent i can initiate:

Γi(P) = {τ ∈ P (i) | wj(P) + cj(τ) < wi(P)} (9)

A task allocation P is said stable if no agent can perform
a socially rational task delegation.

Property 1: A non-stable task allocation can always lead
to a stable one using a finite number of socially rational
task delegations.

Proof 1: Let P a task allocation and WP =<
wi1 , . . . , wim > the vector of the workloads in decreasing
order where wir denotes the rth largest workload. If P is
not stable, there exists a socially rational task delegation
δ which leads to P ′ = δ(P). Formally,

∃i, j ∈ A,max
(
wi(P

′), wj(P
′)
)
< max

(
wi(P), wj(P)

)
(10)

∧∀k ∈ A \ {i, j}, wk(P) = wk(P ′) (11)

It implies that WP ′ < WP in the lexicographic order.
Formally,

∃r ∈ [1,m] ∀r′ < r,WP ′(r′) = WP (r′) ∧WP ′(r) < WP (r)

Since there is a finite number of allocations and the order
is strict, there is a finite number of socially rational task
delegations.

Let us consider the following walk-through example.

Example 1: Let MASTAex =< Node,A, T , l, d, c > a
problem of size (2, 2, 7), where Node = {node1, node2},
A = {1, 2} and T = {τ1, . . . , τ7} with l(1) = node1,
l(2) = node2. The locations and costs of tasks are repre-
sented in Tab. I. Let us consider the task allocations Pmks

τ1 τ2 τ3 τ4 τ5 τ6 τ7

d1(τk) 1 0 3 6 1 6 0
d2(τk) 0 4 6 12 4 1 7

c1(τk) 1 8 15 30 9 8 14
c2(τk) 2 4 12 24 6 13 7

TABLE I: Locations and costs of tasks

and P such that Pmks = {{τ1, τ3, τ5, τ6}, {τ2, τ4, τ7}} and
P = {{τ2, τ4, τ6}, {τ1, τ3, τ5, τ7}}. Pmks is optimal since
Cmax(Pmks) = 35 (w1(Pmks) = 33 and w2(Pmks) =
35). It is not the case of P since w1(P) = 46, w2(P) = 27,
and so Cmax(P) = 46.
Let P ′ = δ1(P) be the task allocation where δ1 is the
delegation of τ6 from agent 1 to agent 2. Since w1(P ′) =
38 and w2(P ′) = 40, δ1 improves the makespan (i.e.
Cmax(P ′) = 40). However P ′ is not stable.
Let P ′′ = δ2(P ′) be the task allocation where δ2 is the
delegation of τ1 from agent 2 to agent 1. Even if P ′′ is not
optimal (Cmax(P ′′) > Cmax(Pmks)), P ′′ is stable.

IV. Negotiation process

We sketch here the iterated negotiation process which
is concurrent with task consumptions. When a task is
performed, it is removed from the set of tasks, and so the
multi-agent system tries to minimize the makespan with
respect to this new MASTA problem.

A task consumption is a disruptive event which modifies
the MASTA problem and the task allocation.

Definition 4 (Task consumption): Let P be the
current task allocation for the problem MASTA =
〈Node,A, T , l, d, c〉. The consumption γ of the task τ by

agent i leads to the task allocation P ′ = γ(P) for the
problem MASTA′ = 〈Node,A, T ′, l, d, c〉 such that:

T ′ = T \ {τ} (12)

P ′(i) = P (i) \ {τ} (13)

∀j ∈ A \ {i}, P ′(j) = P (j) (14)

Obviously, task consumption may decrease the makespan.
The sequence of task consumptions, which removes all the
tasks from the initial allocation until a final empty one ⊥,
consists of an iteration of MASTA problems.
Decentralized task delegation process. Agents op-

erate in concurrent, one-to-many and single-round negotia-
tions for task delegations. Each negotiation, which is based
on the Contract Net Protocol [27], includes three decision
steps: (a) the choice of the task to negotiate by the strategy
of the initiator described in Sec. V, (b) the refusals/bids
from the peers based on the social rationality of the task
delegation, and (c) the selection of the winning bid by
the initiator, e.g. the bidder with the smallest workload.
Several negotiations involving different groups of agents
may concurrently occur and agents can bid in several
simultaneous negotiations as in [28]. The concurrency of
task delegations improves the responsiveness of the task
reallocation. Even if an agent which is involved in a
negotiation as a bidder cannot initiate another negotiation
(and conversely), agents can simultaneously bid in con-
current negotiations. In order to tackle the eager bidder
problem [29], we adopt a conservative approach where the
task delegations are warranted to be socially rational [30].
Therefore, several task delegations can be concurrently
negotiated.

Since there is no shared knowledge, an agent has partial
and not necessarily true beliefs about the current alloca-
tion P . Indeed, agent i knows its own workload wi(P) and
it has a belief base:

Bi(P) = 〈wi1(P), . . . , wii−1(P), wii+1(P), . . . , wim(P)〉
(15)

where wij(P) is the belief of agent i about the workload of
agent j in the allocation P .

The set of potential socially rational task delegations
ΓBi (P) that an agent i can initiate in the task allocation
P is based on its belief base Bi(P). Formally,

ΓBi (P) = {τ ∈ P (i) | wij(P) + cj(τ) < wi(P)}. (16)

Similarly, the computation of the local makespan by the
initiator of a negotiation is based on its belief base,
possibly inaccurate. This is the price to pay for the decen-
tralization. However, an agent informs its peers about their
workload when they are triggered for the first time, within
the negotiation messages, and after each task consump-
tion. Therefore, the bidder belief base is updated and the
latter rejects the task delegations which are not socially
rational. Therefore, a successful negotiation can only reach
a socially rational task delegation, and so tends to improve
the makespan.

Concurrent consumptions and delegations. Task
delegations and task consumptions are concurrent and
complementary since a task removal may allow new so-
cially rational task delegations. Fig. 1 represents their im-
pact on the allocation until all of the tasks are performed.
Starting from the initial allocation P0, agents perform
socially rational task delegations to improve the makespan
(e.g. the path from P0 to Pk) until a task consumption
(e.g. the edge from Pk to P ′0), which eventually interrupts
the path toward a stable allocation (e.g. the path from
Pk to P ′0 represented in grey). A task consumption may
occur when the agents have reached a stable allocation
(e.g. P ′stable) or not (e.g. Pk).

Socially rational task delegation

T
as

k
co

n
su

m
p

ti
o
n
s

P0
. . . Pk . . . Pstable T

P ′0 . . . P ′stable T ′(T

P ′′0 . . . P ′′stable T ′′(T ′

⊥ ∅

Fig. 1: Concurrent task consumptions (vertical edges) and
task delegations (horizontal edges).

V. Location-aware strategy

During the overall process, task negotiations and task
consumptions are concurrent. The strategy of an agent
allows to select the next potential socially rational dele-
gation and the next task to perform.

Definition 5 (Strategy): Let P be an allocation, the
strategy of agent i is the couple (performi, negotiatei)
where:

• performi : 2T 7→ T ∪ {⊥}, selects the next task to
perform within P (i) or none (denoted ⊥) if P (i) = ∅;

• negotiatei : 2T 7→ T ∪ {⊥}, selects the next task
to negotiate within ΓBi (P) or none (denoted ⊥) if
ΓBi (P) = ∅.

Local agnostic strategy. In a first approach, an agent
i can perform the largest task in its bundle and negotiate
the smallest one in the set of potential socially rational
delegations. Formally,

>
τ = argmax

τ∈P (i)

{ci(τ)} (17)

<
τ = argmin

τ∈ΓB
i (P)

{ci(τ)} (18)

where
>
τ and

<
τ denote the next task to perform and the

next one to negotiate, respectively. This strategy only
requires that the agent sorts the tasks by their costs.

However, resource fetching consumes time and represents
an extra cost for task execution.

In order to measure the locality of tasks, we define the
local availability ratio of an agent i for a task as the ratio
between the number of local resources for this task with
respect to the agent and the total number of resources for
the task:

Definition 6 (Local availability ratio): The local avail-
ability ratio of the agent i for the task τ (denoted oi(τ))
is defined as:

oi(τ) =
di(τ)

dτ
(19)

The maximum local availability ratio for the task τ is:

ô(τ) = maxi∈A{oi(τ)} (20)

Location-aware strategy. Intuitively, an agent should
perform first the tasks which may cost more for its peers
and it should negotiate first the tasks which may cost less
for its peers. According to this strategy, an agent performs
first the large local tasks and it negotiates first the large
distant ones based on its local beliefs and knowledge,
i.e. the local availability ratios and the task costs. This
strategy is built on a data structure, called local-aware
bundle.

The local-aware bundle of agent i (see Fig. 2) is
divided in three subbundles in accordance with the local
availability ratios of the agent for the tasks.

1) The maximum local bundle (denoted MB) contains
the tasks such that agent i owns at least one re-
source and there is no other agent which owns more
resources for this task. Formally,

∀τ ∈MB, oi(τ) 6= 0 ∧ oi(τ) = ô(τ) (21)

In MB, the tasks are sorted in decreasing order of
cost (cf. left of Fig. 2).

2) The intermediate local bundle (denoted IB) contains
the tasks which are partially local. Formally,

∀τ ∈ IB, 0 < oi(τ) < ô(τ). (22)

In IB, the tasks are sorted in decreasing order of
local availability ratio and the tasks with the same
local availability ratio are sorted in decreasing order
of cost (cf. center of Fig. 2).

3) The distant bundle (denoted DB) contains the tasks
which are distant. Formally,

∀τ ∈ DB, oi(τ) = 0. (23)

In DB, the tasks are sorted in increasing order of
cost (cf. right of Fig. 2).

When an agent looks for a task to perform, it starts from
the top of the maximum local bundle, i.e. the largest local
task. When an agent looks for a task to negotiate, it starts
from the bottom of the distant bundle (i.e. the largest
distant task) and it selects the first one which is a potential

Fig. 2: The local-aware bundle contains the maximum local
bundle (at left), the intermediate local bundle (at center)
and the distant bundle (at right). The rectangle size
represents the cost of the task. The arrows depict the order
in which an agent looks for a task to perform/negotiate.

socially rational delegation according to its beliefs, Bi(P).
Formally,

• An agent looks for the task to perform
>
τ ∈MB s.t.

∀τ ∈MB \ {>τ }, ci(
>
τ) ≥ ci(τ). (24)

When MB = ∅, it looks for
>
τ ∈ IB s.t.

∀τ ∈ IB \ {>τ },

oi(
>
τ) > oi(τ) ∨

(
oi(

>
τ) = oi(τ) ∧ ci(

>
τ) ≥ ci(τ)

)
. (25)

Then, when IB = ∅, it looks for
>
τ ∈ DB s.t.

∀τ ∈ DB \ {>τ }, ci(
>
τ) ≤ ci(τ). (26)

Finally, when MB = IB = DB = ∅, the agent has
no task to perform.

• An agent looks for the task to negotiate
<
τ ∈ DB s.t.

∀τ ∈
(
DB ∩ ΓBi (P)

)
\ {<τ }, ci(

<
τ) ≥ ci(τ). (27)

Then, when DB = ∅, it looks for
<
τ ∈ IB s.t.

∀τ ∈
(
IB ∩ ΓBi (P)

)
\ {<τ },

oi(
<
τ) < oi(τ) ∨

(
oi(

<
τ) = oi(τ) ∧ ci(

<
τ) ≥ ci(τ)

)
. (28)

Then, when IB = ∅, it looks for
<
τ ∈MB s.t.

∀τ ∈
(
MB ∩ ΓBi (P)

)
\ {<τ }, ci(

<
τ) ≤ ci(τ). (29)

Finally, when such a task is not found the agent stops
to negotiate.

It is worth noticing that the leximax order over the
intermediate local bundle promotes the principle that an
agent should perform large local tasks and negotiate large
distant ones. When an agent browses the intermediate

local bundle, it starts from the tasks with a high local
availability ratio in order to perform them and it starts
from the tasks with a low local availability ratio in order
to negotiate them. When the agent considers tasks which
have the same local availability ratio, it always browses
them in the same order: from the costliest to the less
costly task (cf. Fig. 2). Thus, when the agent browses the
intermediate local bundle to look for a task to perform,
it considers the most local and costliest task. When the
agent browses the intermediate local bundle to look for a
task to negotiate, it considers the less local and costliest
task.

τ1 τ2 τ3 τ4 τ5 τ6 τ7
o1(τk) 1 0 0.33 0.33 0.2 0.85 0
o2(τk) 0 1 0.66 0.66 0.8 0.14 1

TABLE II: Local availability ratios

Example 2 (Local-aware bundle): Recall Ex. 1 where we
assume, for illustration purposes, that a remote resource
is twice more expensive than a local one. Formally,

ci(τ) = di(τ) + 2
(
dτ − di(τ)

)
= 2dτ − di(τ) (30)

Tab. II represents the local availability ratios of the agents
for all the tasks. Let us consider the allocation where
agent 1 owns all the tasks. According to the local agnostic
strategy, agent 1 cannot discriminate amongst τ2 and τ6
for delegation since these tasks have the same cost for the
agent. According to the location-aware strategy and its
bundle given in Fig. 3, agent 1 considers:

• the execution of the tasks τ6, τ1, τ4, τ3, τ5, τ2, then
τ7;

• the negotiation of the tasks τ7, τ2, τ5, τ4, τ3, τ1, then
τ6.

The location-aware strategy leads agent 1 to perform τ6
and to negotiate τ7 in order to decrease the makespan since
τ6 is almost local and τ7 is distant. In particular, agent 1
executes τ6 before τ1 since τ6 is more expensive (cf. Tab. I).
We emphasize that the tasks in the intermediate local
bundle are sorted first by local availability ratio, then by
cost. Whether agent 1 is seeking to negotiate or perform a
task, it will consider the tasks which have the same local
availability ratio in the same order (e.g. τ4, then τ3).

Fig. 3: The local-aware bundle of agent 1

VI. Practical application

We apply our framework to revisit the distributed de-
ployment of the MapReduce design pattern in order to
process large datasets on a cluster [7]. Within such a
cluster a MapReduce job consists of two successive phases:
map and reduce. During the map phase, nodes filter in
parallel input data and generate key-value pairs written
into data chunks. During the reduce phase, nodes process
in parallel the keys and their individual lists of values. In
order to transfer map output to the corresponding reduce
tasks, the partitioning specifies that all the values for each
key are grouped together and make sure that all the values
of a single key go to the same reducer. This partitioning
is fixed a priori ; in Hadoop it is evaluated modulo the
number of reducers by default.

Even though Hadoop distributes keys evenly across
reducers, some reducers are still assigned more data be-
cause the assigned key groups contain significantly more
values [9]. Thus, the reducers’ runtime is highly uneven.
By revisiting MapReduce with our location-aware strategy
we allow agents to perform the load-balancing and thus
improve the job runtime. For this purpose, we specify the
cost function in conformance with Eq. 1.

Definition 7 (Locality-based linear cost function): The
locality-based linear cost function for agent i ∈ A is
defined s.t.:

ci(τ) =
∑

ρ∈chunksτ

ci(ρ), with ci(ρ) =

{
|ρ| if lρ = li

κ× |ρ| otherwise

(31)
where chunksτ denotes the dτ data chunks (ρ1, . . . , ρdτ)
required by task τ , |ρ| is the size of chunk ρ, and lρ its
location. We arbitrarily use κ = 10. The ingenuousness
and inaccuracy of the cost function is removed by the
dynamic and adaptive task reallocation which allows us
to best exploit the computation nodes.

We have developed a multi-agent version of the MapRe-
duce pattern in a distributed system setting using the
MAS4Data test-bed [31]. MAS4Data is implemented in
Akka [32] for highly concurrent, distributed, and resilient
message-driven applications. Even if fault-tolerance of
nodes is out of the scope of this paper, we assume that: (a)
the message transmission delay is arbitrary but not negligi-
ble, (b) the messages sent between a given pair of agents is
such that their order is always preserved and (c) messages
may be lost. For (c) we have included acknowledgments
and deadline mechanisms in the interaction protocol used
between agents. In addition, to decrease the complexity
related to the design of a reducer agent, we have adopted
a modular agent architecture that allows for concurrent
operation between negotiation and performance of reduce
tasks, as well as separation between communicative and
decision making behaviours.

Our experiments have been performed on 16 PCs with 4
cores Intel(R) i7 and 16GB RAM each. They are based on
a 8 Gio dataset (82, 283 keys) which has been generated

such that the initial task allocation (cf. Fig. 5) is poorly
load-balanced in order to check that the proximity between
the data resources and the processing nodes has an impact
on the makespan and so on the job runtime. The initial
task allocation is the outcome of the partitioning of the
MapReduce process. In other words, when there is no ne-
gotiation, MAS4Data has the same behaviour as Hadoop.

Fig. 4 compares the median job runtimes when the
agents adopt the local agnostic strategy or the location-
aware one with 10 runs for each (re)allocation. We observe
that the location-aware strategy significantly improves the
runtime, around −7.6%. For comparison, the job runtime
without challenging the Hadoop default partitioning is
853 seconds (around +100%). We deduce that the price
of the negotiation can be neglected regarding the impact
of the load-balancing. Moreover, the negotiation allows to
decrease the job runtime and even more with the location-
aware strategy.

����

����

����

����

����

����

������� ����������� ��������������

�
�
�
���

�
�
��
�

Fig. 4: The median job execution times (and the standard
deviations) with the trivial strategy and the locality-based
one (10 runs).

Due to the observable nondeterminism of distributed ex-
ecution, we consider a distinctive runtime. Fig. 5 compares
the task allocation when all the tasks have been performed
independently of whether they have been negotiated (or
not) amongst the 16 agents in accordance with the local
agnostic strategy or the location-aware one1. Both strate-
gies are compared ex-post. We observe that the makespan
of the initial allocation is approximately 3.3 108, around
2.5 108 (−24%) for the negotiation with the local agnostic
strategy and 2 108 (−30.7%) for the location-aware one.
We deduce that the cost of the negotiation, in particular
with the location-aware strategy, is less than the time
saved by the load-balancing.

Fig. 6 depicts the number of tasks t such that α ≤
oi(t) < α + 0.1 where agent i performs t. The initial task
allocation is poorly load-balanced since there are more

1Our preliminary empirical analysis shows that: (a) information
status (meta-communication) is free with respect to resource fetching
in the context of large dataset processing and (b) there is no added
value to have more than one reducer agent per node/disk.

��

�����
�

�����
�

�������
�

�����
�

�������
�

�����
�

� � � � � � � � � �� �� �� �� �� �� ��

�
�
��
��
�
�

������������

������������������
��������������
��������������

Fig. 5: Initial task allocation (Hadoop) and ex-post task al-
location with the local agnostic strategy and the location-
aware one.

than 4.6 104 tasks such as oi(τ) = 0. We observe that the
location-aware strategy promotes the performance of tasks
which are mostly local, i.e. oi(τ) ≥ 0.5. This is not the case
for the local agnostic strategy. For instance, there are 171
tasks that have been performed by an agent which owns
60% of the chunks (i.e. resources) using the location-aware
strategy but none with the local agnostic one. Since the
location-aware strategy promotes the execution of tasks
by the nodes which are closer to the chunks, the load-
balancing is improved and so the job runtime is decreased.

��
�

��
�

��
�

��
�

��
�

��
�

� ��� ��� ��� ��� ��� ��� ��� ��� ��� �

�
�
�
�
�
��
�
��
��
�
�
�

����������

������������������
��������������
��������������

Fig. 6: Number of tasks (with a logarithmic scale) per local
availability ratio of the performing agent.

VII. Conclusion

In this paper, we have formalized the multi-agent situ-
ated task allocation problem to develop a location-aware
strategy for addressing the load balancing problem in
distributed systems. The strategy adopts a market-based
approach that allows us to decentralize load-balancing in
order to minimize the makespan, i.e. the completion time
of the last task to perform. During the overall process, task
negotiations allow agents that use the strategy to reallo-
cate the tasks concurrently with task consumption. The

strategy also enables agents to select the next potential
socially rational delegation and the next task to perform.
According to their local beliefs and knowledge, the agents
perform first large local tasks and they negotiate first
large distant ones. In order to validate our approach, we
have developed a prototype where agents negotiate the
reduce tasks of the MapReduce design pattern in a dis-
tributed setting. Our experimental results show that, for
such an application, the proposed location-aware strategy
improves the application’s load-balancing and so the job
execution time.

We are currently evaluating our prototype with nu-
merous and representative experiments with real-word
datasets with various jobs/clusters. Some of these settings
suggest that we need to extend our strategy to negotiate
(a) task swaps to improve the makespan of stable allo-
cations, and (b) task bundles in order to speedup the
negotiation process. Even if our adaptive and dynamic
approach tackles the problem of drop of performance,
our long-term future work should take into account fault
tolerance and so data replication.

Acknowledgment

This work is supported by the call ULille “Internation-
alisation Actions bilatérales”. We thank the reviewers for
their comments.

References

[1] Y. Jiang, “A survey of task allocation and load balancing in
distributed systems,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 27, no. 2, pp. 585–599, 2016.

[2] W. E. Walsh and M. P. Wellman, “A market protocol for
decentralized task allocation,” in ICMAS, 1998, pp. 325–332.

[3] O. Shehory and S. Kraus, “Methods for task allocation via agent
coalition formation,”Artif. Intell., vol. 101, no. 1-2, pp. 165–200,
1998.

[4] J. Turner, Q. Meng, G. Schaefer, and A. Soltoggio, “Distributed
strategy adaptation with a prediction function in multi-agent
task allocation,” in Proc. of AAMAS, 2018, pp. 739–747.

[5] Q. Baert, A.-C. Caron, M. Morge, J.-C. Routier, and K. Stathis,
“Adaptive Multi-agent System for Situated Task Allocation,” in
Proc. of AAMAS, 2019, pp. 1790–1792.

[6] Q. Baert, A.-C. Caron, M. Morge, and J.-C. Routier, “Fair
multi-agent task allocation for large datasets analysis,” Knowl-
edge and Information Systems, vol. 54, no. 3, pp. 591–615, Mar
2018.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified data pro-
cessing on large clusters,” in Symposium on Operating Systems
Design and Implementation, 2004, pp. 137–150.

[8] The Apache Software Foundation. Apache Hadoop. https://
hadoop.apache.org, visited 2019-07-01.

[9] Y. Kwon, K. Ren, M. Balazinska, and B. Howe,“Managing skew
in Hadoop.” IEEE Data Eng. Bull., vol. 36, no. 1, pp. 24–33,
2013.

[10] B. Chen, C. N. Potts, and G. J. Woeginger, Handbook of combi-
natorial optimization. Springer, 1998, ch. A review of machine
scheduling: Complexity, algorithms and approximability, pp.
1493–1641.

[11] E. Horowitz and S. Sahni, “Exact and approximate algorithms
for scheduling nonidentical processors,” Journal of the ACM,
vol. 23, no. 2, pp. 317–327, 1976.

[12] O. H. Ibarra and C. E. Kim,“Heuristic algorithms for scheduling
independent tasks on nonidentical processors,” Journal of the
ACM, vol. 24, no. 2, pp. 280–289, 1977.

[13] A. M. A. Hariri and N. Potts, Chris, “Heuristics for scheduling
unrelated parallel machines,” Computers & operations research,
vol. 18, no. 3, pp. 323–331, 1991.

[14] S. Martello, F. Soumis, and P. Toth, “Exact and approximation
algorithms for makespan minimization on unrelated parallel
machines,”Discrete applied mathematics, vol. 75, no. 2, pp. 169–
188, 1997.

[15] J. K. Lenstra, D. B. Shmoys, and E. Tardos, “Approximation
algorithms for scheduling unrelated parallel machines,” Mathe-
matical programming, vol. 46, no. 1-3, pp. 259–271, 1990.

[16] B. An, V. Lesser, D. Irwin, and M. Zink, “Automated nego-
tiation with decommitment for dynamic resource allocation in
cloud computing,” in Proc. of AAMAS, 2010, pp. 981–988.

[17] G. Attiya and Y. Hamam, “Task allocation for maximizing reli-
ability of distributed systems: A simulated annealing approach,”
Journal of parallel and Distributed Computing, vol. 66, no. 10,
pp. 1259–1266, 2006.

[18] P.-Y. Yin, S.-S. Yu, P.-P. Wang, and Y.-T. Wang, “Task allo-
cation for maximizing reliability of a distributed system using
hybrid particle swarm optimization,” Journal of Systems and
Software, vol. 80, no. 5, pp. 724–735, 2007.

[19] Q.-M. Kang, H. He, H.-M. Song, and R. Deng, “Task allocation
for maximizing reliability of distributed computing systems
using honeybee mating optimization,” Journal of Systems and
Software, vol. 83, no. 11, pp. 2165–2174, 2010.

[20] S. K. Garg, S. Venugopal, J. Broberg, and R. Buyya, “Dou-
ble auction-inspired meta-scheduling of parallel applications on
global grids,” Journal of Parallel and Distributed Computing,
vol. 73, no. 4, pp. 450–464, 2013.

[21] A. Damamme, A. Beynier, Y. Chevaleyre, and N. Maudet, “The
Power of Swap Deals in Distributed Resource Allocation,” in
Proc. of AAMAS, 2015, pp. 625–633.

[22] T. Sandholm, “Contract types for satisficing task allocation,” in
Proceedings of the AAAI spring symposium: Satisficing models,
1998, pp. 23–25.

[23] U. Endriss, N. Maudet, F. Sadri, and F. Toni, “Negotiating
socially optimal allocations of resources,” JAIR, vol. 25, no. 1,
pp. 315–348, 2006.

[24] A. Nongaillard and P. Mathieu, “Reallocation problems in agent
societies: A local mechanism to maximize social welfare,” Jour-
nal of Artificial Societies and Social Simulation, vol. 14, no. 3,
p. 21, 2011.

[25] Q. Chen, D. Zhang, M. Guo, Q. Deng, and S. Guo, “SAMR: A
self-adaptive MapReduce scheduling algorithm in heterogeneous
environment,” in International Conference on Computer and
Information Technology. IEEE, 2010, pp. 2736–2743.

[26] M. Liroz-Gistau, R. Akbarinia, and P. Valduriez, “FP-Hadoop:
efficient execution of parallel jobs over skewed data,” VLDB
Endowment, vol. 8, no. 12, pp. 1856–1859, 2015.

[27] R. G. Smith, “The contract net protocol: High-level commu-
nication and control in a distributed problem solver,” IEEE
Transactions on computers, vol. 29, no. 12, pp. 1104–1113,
December 1980.

[28] B. Alrayes, Ö. Kafalı, and K. Stathis, “Concurrent bilateral ne-
gotiation for open e-markets: the CONAN strategy,” Knowledge
and Information Systems, vol. 56, no. 2, pp. 463–501, 2017.

[29] M. Schillo, C. Kray, and K. Fischer, “The eager bidder problem:
a fundamental problem of dai and selected solutions,” in Proc.
of AAMAS, 2002, pp. 599–606.

[30] Q. Baert, A.-C. Caron, M. Morge, and J.-C. Routier, “Negotia-
tion Strategy of Divisible Tasks for Large Dataset Processing,”
in Proc. of EUMAS, ser. LCNS, vol. 10767. Springer, 2017, pp.
370–384.

[31] ——. MAS4Data. https://github.com/cristal-smac/mas4data,
visited 2019-07-01.

[32] Lightbend, Inc. Akka toolkit. https://akka.io, visited 2019-07-
01.

