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22 ABSTRACT

23 Compared to boreal or Mediterranean biomes, the influence of fire on peatlands in Central Europe is not well 

24 studied. We aim to provide first analysis of statistically significant charcoal-inferred fire events from a peatland 

25 from central European lowlands, spanning the period of the last 650 years, and define peatland vegetation and 

26 microbial trait-related responses to local fire events. Here, we reconstructed regional and local fire activity 

27 from Bagno Kusowo bog (Poland) using high-resolution microscopic charcoal and macroscopic charcoal and 

28 its morphotypes, inferring past fire regimes using numeric analyses. We compared fire data with extra-local 

29 (pollen) and local (plant macrofossils, testate amoebae (TA) and their trait composition) proxies. Our data 

30 show that within the chronological uncertainties, regional fires recorded in the peat core coincide with 

31 historically-documented fires. Macroscopic charcoal analysis suggests 3-8 local fire events, while fire 

32 frequency varied between 0-2 events/1000 years. Wood charcoal was dominant throughout the profile, 

33 pointing to forest fires in close proximity to the peatland. Local fire activity was the most intensive in the 17th 

34 century, when the water table was at its lowest. The abundance of Sphagnum spp. declined, whereas vascular 

35 plants, mixotrophs and TA with proteinaceous shells were significantly positively correlated to fire. 

36 Xenosomes were significantly negatively correlated to fires, and they responded to water table lowering. We 

37 show that the peatlands’ vegetation recovered from low-intensity and short-lasting disturbances and, to some 

38 extent, maintained “pristine” local vegetation cover with Sphagnum as the dominant species. A substantial 

39 decrease of TA traits common before disturbances, mainly mixotrophs and TA with proteinaceous shells, 

40 temporarily re-appeared  after fire. We conclude that TA communities in peatlands are good bioindicators of 

41 disturbances.

42 Keywords: Central Europe, charcoal, functional and morphological traits, high-resolution, macrofossils, 

43 palaeoecology, fire history, peatland
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44 1. INTRODUCTION

45 Increased fire activity is anticipated by climatic models in the near future, and this alteration will strongly 

46 affect ecosystems (EEA Report, 2012). Peatlands are predicted to suffer from global changes and 

47 anthropogenic influence, their response to changing climate already being recorded in the boreal and temperate 

48 biomes (Dise, 2009). Peatlands located in temperate Central and Eastern Europe may become threatened, even 

49 though currently fire activity in this area is not as pronounced as in other latitudes (e.g. boreal or Mediterranean 

50 ecosystems; Marlon et al. (2013)). As this area of Europe is considered virtually fire-free, it received much 

51 less attention compared to areas classified as typical ‘pyromes’ (Archibald et al., 2013). Similarly to Western 

52 and Central Europe the use of fire by humans is recorded since at least the Mesolithic (ca. 11200 years back) 

53 or Neolithic (ca. 7500 years back; (Clark et al., 1989; Barber et al., 2004; Kuneš et al., 2008; Kothieringer et 

54 al., 2015; Vannière et al., 2016) and natural fires have been recorded especially in fire-prone Pinus sylvestris-

55 dominated forests (Adámek et al., 2015). Drying or hydrological instability observed in peatlands in central 

56 European lowlands over the last 300 years, as an effect of human activity but also changing climate 

57 (Lamentowicz et al., 2015; Marcisz et al., 2015; Gałka et al., 2017b), may trigger an increase in fire activity in 

58 the future. During droughts fires can easily spread on dry peatland surfaces, causing carbon emissions 

59 (Kettridge et al., 2015; Turetsky et al., 2015). Severe fires are strong ecosystem disturbances that cause 

60 hydrological fluctuations and affect local vegetation composition (Kuhry, 1994), especially when smouldering 

61 combustion takes place over long periods (Benscoter et al., 2015). The influence of fire on the peatland surface 

62 is demonstrated by the change in the microtopography: a reduction of hummock microforms that are much 

63 drier than hollows and, therefore, burn first (Sillasoo et al., 2011; Benscoter et al., 2015). Even though 

64 ombrotrophic peatland vegetation is, in general, resilient to fire, burning can have an influence on mosses over 

65 decades (Magnan et al., 2012). Sillasoo et al. (2011) showed that severe fires can influence ombrotrophic bog 

66 vegetation composition typical for dry hummocks, mainly Ericaceae (Tuittila et al., 2007), and that recovery 

67 time after fire may take up to 350 years. Therefore, an important additional information for studying local 

68 environmental changes is the type of burnt material that can give an idea of the extent and the location of past 

69 fires. The importance of charcoal morphotypes for the interpretation of fire data have been shown in previous 

70 studies (Umbanhowar and McGrath, 1998; Colombaroli et al., 2014; Feurdean et al., 2017).

71 The change in the vegetation composition on the peatland surface and dust deposition have an influence on 

72 microbial communities, mainly testate amoebae (Fiałkiewicz-Kozieł et al., 2015; Payne et al., 2016); however, 
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73 microbial response to fire is not well recognized. Out of different groups of microbes inhabiting peatlands, 

74 testate amoebae (TA) are especially important as they are top predators in the microbial food web indicating 

75 changes in lower food web levels (Jassey et al., 2013). So far, few studies focused on the relationship between 

76 TA and fire looking at a long-term response of TA communities to fire (Marcisz et al., 2015), TA functional 

77 and morphological traits response to fire (Marcisz et al., 2016), and a short-term TA response to wildfire (Qin 

78 et al., 2017). However, more studies are needed to recognize those relationships accurately.

79 Given the irrelevance of fire today, past fire activity in central European lowlands is under-investigated and, 

80 so far, only one study provided high-resolution, contiguous macroscopic charcoal record from peat sediments 

81 from Poland and neighbouring countries (Marcisz et al., 2015). Additionally, the analysis of charcoal 

82 morphotypes have only been performed on lake sediments (Feurdean et al., 2017). Moreover, there is no 

83 palaeoecological study from this area of Poland using numerical analyses to identify fire frequency and the 

84 background and peak components of a charcoal record (Higuera et al., 2010). Likewise, no studies so far have 

85 used the fire transfer functions based on the European-scale training set for palaeofire reconstructions (Adolf 

86 et al., 2018b). As the influence of fire on peatlands in this part of the world is still not well known (Gałka et 

87 al., 2013; Marcisz et al., 2015; Marcisz et al., 2016; Marcisz et al., 2017), these are crucial analyses that help 

88 to understand the nature and effects of fire-regimes in this and similar systems. 

89 Here, we aim to investigate the effects of fire disturbance on wetland vegetation and testate amoebae diversity. 

90 To reach this goal we analysed microscopic and macroscopic charcoal and its morphotypes, and used 

91 previously analysed pollen, plant macrofossil and testate amoeba data from Gałka et al. (2014) to understand 

92 the impact of fire on the peatland ecosystem. We aimed to (1) provide first evidence of statistically significant 

93 fire events in Poland (over the last 650 years) by additionally applying novel fire transfer functions; and (2) 

94 define the response of local vegetation and testate amoebae (TA) to local fire events. We hypothesized, that 

95 fire on the peatland leads to (1) changes in surface vegetation cover favouring vascular vegetation, and (2) 

96 change in TA functional diversity – a loss of mixotrophs due to drying and lower light availability, and increase 

97 of xenosomes as those possess shells more resistant to mechanical damage.

98

99 2. MATERIALS AND METHODS

100 2.1. Study site and sediment sub-sampling
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101 Bagno Kusowo is an ombrotrophic bog located in northern Poland, central European lowlands (53°48’59’’N, 

102 16°35’20’’E, Fig. 1) (Gałka et al., 2014). Covering an area of 318.82 ha, it is one of the biggest peatlands in 

103 Poland. Environmental history of the bog was studied before, focusing on vegetation changes, hydrological 

104 dynamics, non-contiguous examination of microscopic charcoal, and investigation of volcanic tephra (Gałka 

105 et al., 2014; Lamentowicz et al., 2015; Gałka et al., 2017a; Marcisz et al., 2017; Watson et al., 2017). 

106 A one meter-long peat monolith was collected from the northern part of the peat bog in 2010 and sub-sampled 

107 every two cm for pollen (sample volume: 1 cm3), and contiguously every cm for testate amoebae (6 cm3) and 

108 plant macrofossils (25 cm3) analyses (Gałka et al., 2014). For this study, we sub-sampled contiguously every 

109 cm for microscopic charcoal (100 samples, 1 cm3) and macroscopic charcoal (100 samples, 1 cm3) analyses.

110

111 Figure 1. Location of Bagno Kusowo and coring spot. Map of Europe source: 
112 http://pl.wikipedia.org/w/index.php?title=Plik:Europe_topography_map.png&filetimestamp=20080612084
113 157, Author: San Jose; modified.
114

115 2.2. Laboratory analyses of charcoal

116 Samples for microscopic charcoal were prepared following standard procedures for pollen slides preparation 

117 (Berglund and Ralska-Jasiewiczowa, 1986). One Lycopodium tablet (9,666 spores) was added to every sample 

118 for calculations of charcoal concentrations (Stockmarr, 1971). Microscopic charcoal (particles >10 µm) was 

119 analysed using a light microscope at 400× magnification until the sum of 200 was reached (Tinner and Hu, 

120 2003; Finsinger and Tinner, 2005). 
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121 Samples for macroscopic charcoal were prepared following Whitlock and Larsen (2001). Macroscopic 

122 charcoal (particles >100 µm) was analysed under a stereoscopic microscope at 40× magnification; additionally, 

123 macroscopic charcoal morphotypes – wood, leaf, and grass – were determined following the approach by 

124 (Colombaroli et al., 2014) and available literature (Umbanhowar and McGrath, 1998; Jensen et al., 2007). We 

125 considered charcoal particles originating from grass as possessing a length to width ratio ≥4:1 and stomata 

126 within the rows of epidermal cells (Jensen et al., 2007; Colombaroli et al., 2014), whereas wood charcoal was 

127 identified as particles with a length to width ratio ≤4:1 and thicker structure (Umbanhowar and McGrath, 

128 1998). The characteristics to classify particles into leaf charcoal were the visibility of leaf veins (Jensen et al., 

129 2007) and the presence of a divergence of the branches from the node (Umbanhowar and McGrath, 1998). 

130

131 2.3. Statistical analyses

132 We established a new chronology on the basis of eight AMS (Accelerator Mass Spectroscopy) radiocarbon 

133 dates (Gałka et al., 2014). The IntCal13 (Reimer et al., 2013) calibration curve was applied for calibration of 

134 radiocarbon dates and Bayesian approaches to establish an age-depth model (OxCal v.4.2, Bronk Ramsey 

135 (2008); Fig. 2). For the calculation of the age-depth model, the P_Sequence command with k parameter equal 

136 to 0.9 cm-1 was applied. 

137
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138

139 Figure 2. Age-depth model for KB1 core.

140

141 Microscopic and macroscopic charcoal influx or accumulation rates (MIC and MAC, particles/cm2/yr) were 

142 calculated using charcoal concentrations (particles/cm3) and the peat accumulation rate, which was inferred 

143 from the radiocarbon chronology. Microscopic charcoal is a proxy for regional fire activity (Tinner et al., 

144 1998), while macroscopic charcoal is usually interpreted as a proxy for local fires (Clark et al., 1998; Conedera 

145 et al., 2009). The first continental-scale calibration study, however, suggests that microscopic and macroscopic 

146 charcoal have similar regional proveniences for particles <600 µm (Adolf et al., 2018b), while larger particles 

147 may indeed come from local fires. To bypass this issue, we applied a conservative peak recognition approach, 

148 assuming that the likelihood of identifying local fires increases with increasing MAC. The reconstruction of 

149 statistically significant fire peaks/episodes and fire frequency was done using MAC in CharAnalysis (Higuera 

150 et al., 2009; Higuera et al., 2010). Moreover, based on MAC we reconstructed fire number (FN), total fire 

151 radiative power (tFRP; MW) and burned area (BA; km2) using fire transfer functions (Adolf et al., 2018a; 
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152 Adolf et al., 2018b) that reflect extra-local fires in a 40 km (180 km for burned area) radius from the study site. 

153 For better comparison, we standardised transfer function results to reflect FN, tFRP and BA within an area of 

154 1000 km2. Microscopic charcoal is mostly linked to regional fire activity up to 40 and more km from the coring 

155 location in Europe, specifically fire frequency and intensity and to lesser degree also burned area (Adolf et al., 

156 2018b). Results of charcoal statistical analyses are presented in the Figs 3-5 and S1.1.

157 Relationships between local components (vegetation, testate amoebae, local fires) were explored using cross-

158 correlations on contiguously analysed local proxies (Fig. 6, S1.2, one lag=7 years). We tested correlations 

159 between MAC and plant macrofossil data (Sphagnum species and sum of vascular plants) to assess if fire 

160 influenced vegetation cover, and testate amoeba-based depth-to-water table reconstruction (DWT) to assess if 

161 fires influenced local hydrology (Fig. 6, S1.2). Correlation between DWT and plant macrofossils was tested 

162 to investigate water-table effect on wetland vegetation (Fig. 6, S1.2). Moreover, we tested correlations between 

163 MAC and selected traits of testate amoebae (TA) to evaluate if fire had an impact on microbial communities, 

164 as an influence of fire on TA communities and trait composition has been shown before (Marcisz et al., 2015; 

165 Marcisz et al., 2016; Qin et al., 2017) (Fig. 6, S1.2). We looked at the sum of mixotrophic species (wet 

166 indicators), as they are related to Sphagnum photosynthesis and thus C assimilation in peatlands (Jassey et al., 

167 2015; Marcisz et al., 2016), and shell types present in the communities as this trait may be important for TA 

168 survival during fire (Qin et al., 2017). Species were divided into four groups according to shell type, following 

169 Mitchell et al. (2008): idiosomes – shells made of secreted biosilica plates, idiosomes with thick organic 

170 coating, proteinaceous shells, and xenosomes – shells built from recycled organic or mineral particles (Table 

171 1).

172

173 Table 1. Groups of testate amoebae based on their traits.
Trait List of species included in a group
Mixotrophs Archerella flavum, Amphitrema wrightianum, Heleopera sphagni, Hyalosphenia 

papilio
Shell types
Idiosomes Corythion dubium, Euglypha ciliata, Euglypha rotunda, Euglypha compressa, 

Euglypha tuberculata, Euglypha strigosa, Euglypha sp., Trinema lineare
Idiosomes with 
organic coating

Assulina muscorum, Assulina scandinavica, Assulina seminulum

Proteinaceous Archerella flavum, Arcella artocrea, Arcella catinus, Arcella discoides, Arcella 
sp., Hyalosphenia elegans, Hyalosphenia papilio, Hyalosphenia subflava

Xenosomes Alabasta (Nebela) militaris, Amphitrema stenostoma, Amphitrema 
wrightianum, Bullinularia indica, Centropyxis aerophila, Cyclopyxis arcelloides, 
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Cryptodifflugia oviformis, Difflugia leidyi, Difflugia sp., Heleopera petricola, 
Heleopera sphagni, Heleopera sylvatica, Nebela bohemica, Nebela collaris, 
Physochila griseola, Nebela parvula, Nebela tincta s.l., Nebela sp., Trigonopyxis 
arcula

174

175 To highlight the patterns between studied proxies, non-metric multidimensional scaling (NMDS) ordination 

176 was computed for all analysed proxies as well as separately for local (MAC, plant macrofossils, TA traits) and 

177 regional (MIC and pollen) proxies (S1.3). For regional analyses, anthropogenic and open land pollen-indicators 

178 were used (S1.5). We chose Bray–Curtis distance measure, six starting axes and 100 random starting 

179 configurations. Cross-correlations and ordinations were conducted with R 3.0.1 (R Development Core Team, 

180 2011) using the vegan (Oksanen et al., 2017) and astsa (Stoffer, 2016) packages.

181

182 3. RESULTS

183 3.1. Microscopic and macroscopic charcoal

184 Microscopic charcoal (Fig. 5, S1.1) was abundant along the sequence, showing fluctuations with increases 

185 around ca. 1480 CE, 1630-1770 CE, 1835-1935 CE and ca. 2003-present. 

186 Macroscopic charcoal (Figs 4-5, S1.1) was less abundant but more variable: we observed higher influx (MAC) 

187 and high background charcoal (BCHAR) values between ca. 1350-1720 CE, low values between ca. 1720-

188 2003 CE, and a rise from ca. 2003 CE-present. Highest MAC occurred at ca. 1650-1720 CE, with a distinct 

189 charcoal layer at ca. 1650 CE). Only in the three highest charcoal peaks recorded in this layer we found 

190 charcoal pieces larger than 500 µm. In this period, three peaks were identified as statistically significant by 

191 CharAnalysis in the conservative reconstruction. The local reconstruction registered five more peaks in other 

192 phases. Inferred fire frequency (IFF, peaks/1000 years) was low, varying between 0-2, with highest values 

193 recorded at ca. 1450-1490 CE and ca. 1610-1720 CE. 

194 Wood charcoal was dominant among the three morphological types and its amount was higher than 50% in 

195 almost all samples (Fig. 5). Up to ca. 1900 CE leaf charcoal was also numerous (10-35%). Since ca. 1900 CE 

196 the amount of leaf charcoal dropped, whereas wood charcoal was highly dominant. Grass charcoal was not 

197 numerous but in stable values (10-20%). High MAC values (statistically significant charcoal peaks 

198 representing local fire episodes) are connected with a higher abundance of vascular plants and an increased 

199 amount of wood charcoal. Wood charcoal may be an evidence of burning of trees located around the mire. We 
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200 did not find charcoal pieces larger than 1 mm in the peat, which would be a more definite prove of local burning 

201 of trees, e.g. on the peatland surface (Adolf et al., 2018b). However, the amount of charcoal found during the 

202 three fire episodes is considerable, including few charcoal pieces larger than 500 µm, and suggests fires in 

203 close proximity.

204 Quantitative reconstructions of fire number (FN), burned area (BA) and total fire radiative power (tFRP) at 

205 ca.1450-1600 CE follow similar trends to MIC and resulted in mean annual values per 1000km2 of 118 fires, 

206 69 km2 and 17559 MW, respectively. Extraordinarily high fire activity is reconstructed between ca. 1630-1730 

207 CE (mean per 1000 km2: FN=10’365, BA=23’962 km2, tFRP=34’371’477 MW, Fig. 3, S1.1), which is also 

208 when MAC particles >500 µm were found, possibly indicating local fire occurrence. Since ca. 2003-present 

209 reconstructions resulted in mean values per 1000 km2 of FN=79, BA=46.6 km2 and tFRP=12’322 MW. 

210 Transfer functions should be applied carefully to influx values that are clearly out of the range of the 

211 calibration-dataset values (Adolf et al., 2018a). 

212

213 Figure 3. Output of the fire transfer function by Adolf et al. (2018b), including the reconstruction of fire 
214 number (FN), total fire radiative power (tFRP; MW) and burned area (BA; km2) per 1000km2. Due to large 
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215 differences in the calibrated values we used CONISS to infer the zonation and plotted the diagram on a base-
216 10 logarithmic scale. The mean untransformed values (x) for each of the zones are indicated on the diagram.  
217

218

219 Figure 4. Summary of the fire reconstructions using CharAnalysis. [A] Macroscopic charcoal influx (MAC) and 
220 background component of the MAC series (BCHAR). [B] Positive residuals of the Bagno Kusowo MAC after 
221 subtracting the BCHAR from the MAC series. Fire episodes identified using a local threshold are show, 
222 together with the inferred fire frequency (IFF) per millennium. [C] Signal to noise index. [D] Results of the 
223 conservative reconstruction (fire episodes and IFF). 
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224
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225 Figure 5. Palaeoecological summary diagram, including historical events and local and extra-local proxies. 
226 Local proxies include macroscopic charcoal influx and output of fire reconstruction (background charcoal, 
227 significant charcoal peaks, and inferred fire frequency) based on CharAnalysis (Higuera et al., 2010) plant 
228 macrofossils, depth to water table reconstruction and testate amoebae traits. The red bars of macroscopic 
229 charcoal indicate samples where large charcoal particles >500 µm were found. Extra-local proxies include 
230 microscopic charcoal influx, fire transfer function based on Adolf et al. (2018b) (base-10 logarithmic axes, 
231 values per 1000 km2) and pollen. Historical events include wars in the region (black stars) and fires in 
232 Szczecinek city (red stars), based on Szczecinek Historical Portal (2019).
233

234 3.2. Relationship between proxies

235 3.2.1. Phase I: High background charcoal and stable hydrological conditions (ca. 1350-1620 CE)

236 From ca. 1350 CE until the beginning of 17th century pollen data show forested landscape around Bagno 

237 Kusowo (Fig. 5). Forests were dominated by Pinus and Betula species, with some amount of Fagus, Quercus, 

238 Alnus and Corylus. Human impact, as indicated by pollen, was low with the sum of human indicators reaching 

239 a maximum of 4%. Fagopyrum or Triticum-type pollen was recorded but in low amounts and not in every 

240 analysed sample (see Fig. 3 in Gałka et al. (2014). Historical sources confirm that the area was not densely 

241 populated until the 16th century (Gaziński, 2010). Local vegetation on the peatland was highly dominated by 

242 Sphagnum species from sect. Acutifolia, sect. Cuspidata and sect. Sphagnum (Fig. 5). The reconstructed depth-

243 to-water table (DWT) oscillating between 8 and 13 cm suggests relatively wet conditions. Mixotrophic species 

244 and those possessing proteinaceous shells were dominant in testate amoeba (TA) communities (Fig. 5).

245 After ca. 1560 CE the pollen record suggests substantial vegetation changes. Betula became dominant in the 

246 forest composition for a short time and Pinus abundance decreased. Afterwards, pollen indicative of open land 

247 and human activities increased (e.g. Secale). Three local fires occurred and from the beginning of the phase 

248 wood charcoal was dominant, but later leaf charcoal got more abundant. The amount of grass charcoal 

249 decreased by the end of the phase and the local fires were associated with the dominance (peaks) of wood 

250 charcoal, suggesting burning of tree wood in the local forests.

251

252 3.2.2. Phase II: Vascular plants expansion, fires and dry shift (ca. 1620-1720 CE)

253 In Phase II, arboreal pollen (AP) decreases slightly and Betula declines, while Pinus becomes dominant, 

254 suggesting that forests became more open and heliophilous (Fig. 5, see details in Fig. 3 in Gałka et al. (2014). 

255 Other tree species declined, while the amount of cultivated land and open land indicators slightly increased. 

256 NMDS (S1.3) and Pearson correlations (S1.4) confirm that pollen was not correlated to MIC, but MIC was 
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257 connected with low water tables. Local proxies suggest significant changes (Fig. 5), such as a sudden decrease 

258 of Sphagnum species and the spread of vascular plants on the surface of the peatland. Subsequently, TA 

259 possessing idiosomic shells with organic coating increased. This group was composed of the dry indicator 

260 Assulina species (see Fig. 5 in Gałka et al. (2014), that seem to be fast pioneers migrating quickly to dry 

261 habitats (Lamentowicz and Mitchell, 2005).

262 In this phase three significant fire events occurred (ca. 1650 CE, 1680 CE and 1720 CE, conservative and local 

263 reconstructions). Those peaks were the most distinct in the sequence and the first of them was the highest of 

264 the entire record (364.6 particles/cm2/year). Moreover, wood charcoal was the most abundant charcoal 

265 morphotype, suggesting burning of the forest in the mire area. Fire events (lag0 in cross-correlations, Fig. 6, 

266 S1.2) were significantly positively correlated with vascular plants, testate amoebae possessing proteinaceous 

267 shells and mixotrophs, whereas S. sect. Acutifolia, xenosomes and idiosomes were significantly negatively 

268 correlated. Positive relations between MAC and vascular plants are also visible in the NMDS (S1.3). This first 

269 fire event led to a decrease in abundance of mixotrophs, species that have been shown to be very responsive 

270 to shading by vegetation, e.g. vascular plants (Marcisz et al., 2014; Payne et al., 2016; Creevy et al., 2018) or 

271 dust deposition (Fiałkiewicz-Kozieł et al., 2015) as those disturbances may have a negative influence on their 

272 endosymbionts. A drop of the water table (from 15 cm to 24 cm) was simultaneous with another charcoal peak. 

273 We assume that due to drought and runoff changes in the area, peatland was more susceptible to fires, which 

274 could spread into the nearby forests, promoting further fires.  

275
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276 Figure 6. Correlograms showing correlation coefficients between macroscopic charcoal influx and local 
277 proxies – plant macrofossils, depth to water table reconstruction (DWT), and testate amoebae (TA) traits at 
278 lag0. Correlation coefficients outside the dashed lines are significant at P = 0.05. Complete cross-correlation 
279 analysis results for each of the groups are available in the Fig. S1.2.
280

281 3.2.3. Phase III: Low background charcoal and wet conditions (ca. 1720-1820 CE)

282 At the beginning of phase III high AP (83%) suggests rather closed forests, while in the middle of the phase 

283 (ca. 1780 CE) forests contracted (AP 69%, Fig. 5). Pinus and Betula declined and herbs such as Poaceae and 

284 Artemisia expanded together with crops (e.g. Secale or Fagopyrum), suggesting increasing arable and pastoral 

285 farming activities, that reached their apex during this phase at around 1750-1800 CE (see Fig. 3 in Gałka et al. 

286 (2014). From ca. 1720 CE, fire activity declined and MIC, MAC and BCHAR values decreased. Sphagnum 

287 was again dominant on the peatland surface, with S. sect. Acutifolia as the main component. Reconstructed 

288 water table rose (values between 7 and 13 cm) and TA communities changed back to the composition from 

289 before the disturbances – mixotrophs and TA possessing proteinaceous shells strongly dominated. 

290

291 3.2.4. Phase IV: Low background charcoal and dry conditions (ca. 1820-2010 CE)

292 In this phase fire activity in the region was high as MIC values increased. In the last 200 years BCHAR is 

293 lowest (Fig. 5), suggesting less fires in the proximity of the bog. Up to 1900 CE water tables were low (<20 

294 cm). A local fire ca. 200 years ago was again related to a decrease of mixotrophs and TA with proteinaceous 

295 shells. Moreover, Sphagnum abundance was at its maximum in this period (95-100%). Afterwards, the 

296 abundance of S. sect. Acutifolia dropped and S. sect. Cuspidata spread on the peatland surface. Among TA, 

297 idiosomes and xenosomes dominated. Forests recovered, open land and pastoral and arable farming declined 

298 during this phase (Fig. 5). The last fire (local reconstruction) occurred at ca. 1900 CE. Mostly wood charcoal 

299 was found in the peat, pointing to fires in the remaining forests and/or burning trees on the peatland. Higher 

300 abundance of vascular plants may be related to drainage and peat extraction, but those practices were not long-

301 lasting. Human pressure was weaker than before and no marked changes occurred in and around the mire. For 

302 instance, oligotrophic Sphagnum species cover maintained on the peatland, mixotrophs got more abundant and 

303 water table started rising in the last 40 years, suggesting recovery of the bog, most likely in response to 

304 decreasing land use activities.

305



16

306 4. DISCUSSION

307 4.1. Regional fire history and vegetation patterns 

308 Bagno Kusowo bog development may be linked with the history of the Szczecinek city (founded in 1310 CE, 

309 located 15 km from the bog) and the region that both witnessed many cataclysms in the last millennium: wars, 

310 invasions, plagues and frequent fires (Fig. 5; Gaziński (2010). Fire activity was rather low until the 16th century, 

311 and human pressure was not intensive. However, fire activity slightly increased at ca. 1450-1500 CE, around 

312 1550 CE and at ca. 1580-1600 CE. Dramatic fires (1537, 1540, 1547 and 1583 CE) and burning of 27 witches 

313 (1581-1592 CE) in Szczecinek are reported in historical sources (Szczecinek Historical Portal, 2019). 

314 Moreover, a 150-year-long military conflict at the border with Poland that started in 1536 CE and influenced 

315 the economy of the city. Increased fire activity in the 16th century was also recorded in other peatlands in 

316 northern Poland, where increased burning was associated with permanent human occupation (Marcisz et al., 

317 2015; Marcisz et al., 2017). Our transfer function reconstructions support this increase in fire occurrence, 

318 where mean fire number per year rise from 35 to 118 fires/1000km2 during ca. 1450-1650 CE. In adjacent 

319 regions, human-induced fires connected with forest clearings were reported in Germany and around the Baltic 

320 (Barber et al., 2004; Sillasoo et al., 2011; Brown and Giesecke, 2014). The subsequent period 1600-1720 CE 

321 was politically very unstable and during the Thirty Years’ War (1618-1648 CE; Wilson (2011) regional fire 

322 activity increased, forests declined and cultivated and open land indicators expanded. It may be that increased 

323 fire activity was at least partly connected to battles and military activities in the region and the city. Because 

324 of further dramatic fires recorded in Szczecinek in 1682, 1696 and 1710 CE, a ban on the construction of 

325 wooden houses in the city was issued in 1711 CE (Szczecinek Historical Portal, 2019). Stable conditions in 

326 the second part of 18th century are reflected in the Bagno Kusowo vegetation record and reconstructed mean 

327 fire numbers per year are below 100. The 19th century began with forest declines and expansions of open land 

328 vegetation such as Poaceae, Artemisia and crops (Secale, Triticum-type and Hordeum, Gałka et al. (2014). 

329 Politically stable times and good hydrological conditions enabled more intensive agriculture. Soon after, 

330 regional fires increased and historical sources mention two fires in the city: in 1835 CE and 1861 CE 

331 (Szczecinek Historical Portal, 2019) which might have been connected with droughts in the region. However, 

332 fires in the region did not influence the forest composition around the mire, when forests recovered. The 

333 comparison  of reconstructed fire number (FN) for the topmost peat section (Fig. 3) with fires registered in the 

334 European Forest Fire Information System (EFFIS, 2019) revealed that charcoal-inferred FN values from Bagno 
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335 Kusowo are within the range of observed fire occurrences for the study region (the area of Szczecinek Country; 

336 139.2 fires per 1765.39 km2) during the past 15 years, validating the transfer functions of Adolf et al. (2018b) 

337 for our study site.

338

339 4.2. Influence of fires on local vegetation, hydrology, and testate amoebae morphological traits 

340 Fire reconstruction at Bagno Kusowo suggests that local fires (MAC) occurred regularly during the past 650 

341 years (Figs. 3-5) and were most probably limited to the nearby forests and/or to the bog margin (wood charcoal 

342 reaching >60%, leaf charcoal perhaps reflecting crown fires). No trace of burning peat as described in other 

343 studies (Kuhry, 1994; Sillasoo et al., 2011; Magnan et al., 2012) was found at our site. Major changes in the 

344 local vegetation composition – expansion of vascular vegetation, mainly Eriophorum vaginatum and 

345 Baeothryon cespitosum, on the surface of the mire – occurred ca. 1620 CE, and were followed by a change in 

346 testate amoeba (TA) community composition and increasing local fires. Sphagnum sect. Sphagnum (mostly S. 

347 magellanicum) dominated over the S. sect. Cuspidata (e.g. S. cuspidatum) and this change can be assigned to 

348 cooling and water table lowering to which S. magellanicum is better adapted, due to wider ecological amplitude 

349 (Hölzer, 2010). Similar changes have been observed in other peatlands in the Pomerania region: Stążki 

350 (Lamentowicz et al., 2011) and Słowińskie Błoto (Lamentowicz et al., 2009), where cooling was associated 

351 with a reduction in precipitation which together favoured E. vaginatum expansion. The following hydrological 

352 instability in Bagno Kusowo led to the establishment of E. vaginatum which is mostly forming tussocks and, 

353 therefore, may be regarded as an indicator of water-level instability (Tobolski, 2000; Silvan et al., 2004). We 

354 hypothesized, that fires were the factor triggering change in local vegetation composition, favouring vascular 

355 vegetation. Our results show that the change in peatland vegetation have been possibly initiated by cooling 

356 climate and water table lowering. However, subsequent fires  exacerbated further spread of vascular vegetation 

357 (mainly E. vaginatum) on the surface of the peatland.

358 A rapid, although transient, increase in abundance of idiosomes with organic coating occurred after the 

359 expansion of vascular plants ca. 300 years ago (Fig. 5). This group was composed of TA species belonging to 

360 genus Assulina (Tab. 1), mainly A. muscorum (see Fig. 5 in Gałka et al. (2014)), recognized as dry indicators 

361 found in dry hummocks in different geographical locations (Mazei and Tsyganov, 2006; Amesbury et al., 

362 2016). Next to hydrological preferences, small size of A. muscorum (28-60 µm) may also be of high importance 

363 for the fast spread of this species as small TA are able to migrate quickly to suitable micro-habitats (Fournier 
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364 et al., 2015; Marcisz et al., 2016). Assulina sp. are one of only few TA possessing tests that can survive 

365 acetolysis and are commonly observed in pollen slides (Payne et al., 2012). Hence, in the natural environment 

366 their resistant tests may allow them to survive during unfavourable conditions. Moreover, they tolerate well 

367 low pH (Swindles and Roe, 2007) and it has been underlined that drought-induced acidification of peatlands 

368 can progress quickly after water table lowering (van Haesebroeck et al., 1997). A peak of abundance of 

369 idiosomes with organic coating has been registered soon after the first local fire in ca. 1650 CE. Burning was 

370 most probably connected with forest clearing (dominance of wood charcoal) and the establishment of fields 

371 and meadows by humans as reflected in pollen data (increase in cultural indicators; Fig. 5). Land opening may 

372 have resulted from battles and accompanying fires in the vicinity of the bog or, more likely, field establishment 

373 as a consequence of increased nutrition needs due to population growth. 

374 Qin et al. (2017) studied short-term responses of TA to wildfire and showed that xenosomes were more 

375 abundant after fire, whereas the amount of idiosomes dropped. The reason for this response might be that 

376 xenosomic shells are hard and more resistant to disturbances than other shell types (Qin et al., 2017). In Bagno 

377 Kusowo, xenosomes peaked just before the fire, while during and after the fire their abundance decreased. 

378 From the four groups of TA shell types, only those possessing proteinaceous shells were significantly 

379 positively correlated with fire incidence (Fig. 6). In contrast to the results of Qin et al. (2017) and our 

380 hypotheses, NMDS and cross-correlations  show that the presence of xenosomes and idiosomes was connected 

381 with low water tables throughout the study period; moreover, these species were negatively correlated to fire 

382 (Fig. 6, S1.3). However, Qin et al. (2017) did not analyse TA assemblages before the fire event, therefore it is 

383 unknown if the shell composition recorded by the authors was an actual response to fire or to some other 

384 factors like changes in local hydrology or trophy connected to fire incidence. Similarly to xenosomic shells, 

385 tests made of biosilica with organic coating are resistant (Payne et al., 2012), therefore, it is possible that 

386 disturbances can trigger higher abundances of species possessing this type of shells. Idiosomes with organic 

387 coating were more abundant during the fire period, but their positive relation to fire events was not statistically 

388 significant (Fig. 6). 

389 Long-term studies on the response of TA to fires in N Poland underlined that fire events, initiated by peatland 

390 droughts, triggered a change in TA communities by promoting small species over big ones and eliminating 

391 mixotrophs (Marcisz et al., 2016). Similarly to previous observations we recorded a drop of mixotrophs after 

392 the first big fire event (Fig. 5) which is in agreement with our hypotheses; however, their abundance was still 
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393 quite high during the fire and, consequently, they were significantly correlated with fire disturbance (Fig. 6, 

394 S1.2). Mixotrophs are lately in the focus of short- and long-term studies as they are promising bioindicators in 

395 paleoecological and ecological studies of peatlands. Because of their sensitivity to light intensity, they may be 

396 used as disturbance (Marcisz et al., 2016) or landscape openness indicators (Payne et al., 2016; Creevy et al., 

397 2018). Mixotrophs are especially important for peatland functioning because, as phototrophs, they contribute 

398 to photosynthetic carbon (C) fixation, and therefore it has been suggested that reduced abundance of 

399 mixotrophs with climate warming may lead to reduced C fixation in peatlands (Jassey et al., 2015). As 

400 predators of decomposers, they influence organic matter decomposition in peatlands (Jassey et al., 2015). High 

401 abundance of mixotrophs is often linked with good hydrological conditions, hence, it is not surprising that this 

402 group of species declined together with the expansion of E. vaginatum and water table lowering. High amount 

403 and density of vascular plants and extended hummocks formation causes increased shading of the wetter 

404 hollows. As mixotrophs’ endosymbionts use light during the photosynthesis process (Jassey et al., 2015), 

405 shading is disadvantageous for their survival. Fires nearby the site and wind erosion from open areas may 

406 cause deposition of dust and mineral particles on the surface of the peatland, but it has been shown that dust 

407 or tephra deposition does not disturb some of the TA, because those possessing agglutinated tests may 

408 incorporate such small particles when building their shells (Fiałkiewicz-Kozieł et al., 2015). Mixotrophs, 

409 however, possess proteinaceous shells and do not use such particles in the process of shell formation. Because 

410 they depend on light availability, dust deposition and shading may have detrimental or even disastrous 

411 consequences for mixotrophs. Additionally, droughts connected with fire occurrence may cause declines of 

412 mixotrophs as observed in response to anthropogenic peatlands drainages in the past 200 years (Fournier et 

413 al., 2015; Lamentowicz et al., 2015; Marcisz et al., 2016).

414 The effect of fire and water table lowering on Bagno Kusowo was short-lasting, and soon after the three largest 

415 fire events at ca. 1730 CE, Sphagnum population recovered and the water table rose. This change triggered an 

416 immediate appearance of TA possessing proteinaceous shells and mixotrophs that reacted to better 

417 hydrological conditions and higher light availability, the latter in response to deforestation (decrease in AP, 

418 Fig. 5). A decline of those TA types occurred after ca. 1820 CE, together with water table lowering, and they 

419 were exchanged by xenosomes. Even though water table fluctuated, Sphagnum still dominated over vascular 

420 plants. In the top peat section, the composition of Sphagnum communities changed compared to before the 

421 fires – S. sect. Acutifolia dominated as opposed to previously abundant sect. Cuspidata and sect. Sphagnum. 
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422 Similar shifts have been observed in other Polish peatlands where, as an effect of human impact, S. fallax 

423 replaced pristine populations with S. magellanicum (Linje mire, Marcisz et al. (2015) and with S. fuscum and 

424 S. rubellum (Gązwa mire, Gałka et al. (2015). The reason for this difference may be that disturbances in Bagno 

425 Kusowo (318 ha) were short-lasting and the bog managed to recover and maintain (at least partly) the initial 

426 Sphagnum composition (Gałka et al., 2017a), whereas long-lasting disturbances in Linje (6 ha) and Gązwa 

427 (204 ha) mires were so pronounced that a return to pre-disturbance vegetation composition was impossible 

428 (Gałka et al., 2015; Marcisz et al., 2015). It has been underlined that the size of the peatland is important for 

429 recovering from disturbances: large peatlands are in general more resistant to disturbances than small ones 

430 (Strack, 2008). 

431

432 5. CONCLUSIONS

433 We show that peatlands’ vegetation can recover from low-intensity and short-lasting disturbances and, to some 

434 extent, advantage “pristine” vegetation cover with Sphagnum communities over the vascular vegetation. Our 

435 data suggest that microbial communities in peatlands are highly responsive to disturbances. Testate amoeba 

436 trait composition changed substantially, as traits common before disturbance (mixotrophy and proteinaceous 

437 shells) recovered only for a short time to greatly decrease subsequently. This implies that testate amoebae are 

438 good bio-indicators of past and present disturbances, specifically because they appear less resilient than plant 

439 communities. In general, the knowledge about specific traits of testate amoebae and their relationships with 

440 environmental conditions is still scarce and hence more studies are needed to disentangle the linkage between 

441 trait responses and variability in forcing factors, such as vegetation changes, fires, droughts and other 

442 disturbances. Human activity changes under global warming conditions may significantly increase fire risks 

443 in Central Europe, a region that currently does not suffer from severe and frequent fires. Improved knowledge 

444 about the influence of fire on vegetation composition and microbial communities in Sphagnum-dominated 

445 peatlands is, therefore, crucial for sustainable conservation and management plans and policies.

446
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Supplementary Figures

Fig. S1.1 The results of the fire reconstruction from CharAnalysis program based on macroscopic charcoal (MAC). We smoothed MAC values with a robust 
LOWESS (Locally Weighted Scatterplot Smoothing, 100-year smoothing window) to identify background charcoal (BCHAR). BCHAR may reflect regional 
fire activity or reworked charcoal (Long et al., 1998; Whitlock and Larsen, 2001). We chose robust LOWESS smoothing over LOWESS because of higher local 
signal-to-noise index (Higuera et al., 2009). Afterwards, we obtained residuals (charcoal peak series) by subtracting the BCHAR component from the raw CHAR 
record, and separated the noise component from the peaks using both locally and globally defined threshold. This enabled to identify statistically significant 
charcoal peaks that likely reflect local fire episodes. The locally defined threshold is based on the 90th percentile of the noise distribution using a Gaussian 
mixture model (Higuera et al., 2010). A local threshold was used because changes in local vegetation composition and changes in fuel availability may have 
influenced charcoal production (Marlon et al., 2008; Morales-Molino et al., 2015; Tinner et al., 2005). The globally defined threshold value is based on the 99th 
percentile of the noise distribution and is, therefore, a more conservative estimation used to separate the noise component that may be an effect of random 
variability, distant fires, sediment mixing or redeposition (Long et al., 1998; Whitlock and Larsen, 2001). Inferred fire frequency (IFF, fire episodes per 1000 
years) was reconstructed using a global threshold to define trends in biomass burning (Colombaroli et al., 2010; Higuera et al., 2009). We used fire transfer 
functions following Adolf et al. (2018) in order to reconstruct annual fire number (FN), total fire radiative power (tFRP; W/m2) and burned area (BA; km2). The 



results are based on the following regression equations: log10(FN+1)=2.1802*log10(tMACi+1)+0.207; log10(tFRP+1)=3.2172*log10(tMACi+1)+1.1002; 
log10(BA+1)=2.6429*log10(tMACi+1)+0.712. According to the calibration study, the reconstructions estimate those parameters around the study site at the 
radius of 40 km for FN and tFRP (extra-local scale reconstruction) and 180 km for BA (regional-scale reconstruction) (Adolf et al., 2018). Here, the results are 
presented as log(x+1)-transformed values. The red bars of macroscopic charcoal indicate samples where large charcoal particles >500 µm were found.

Fig. S1.2 Cross-correlation diagrams showing relationship between macroscopic charcoal influx and local proxies – plant macrofossils, depth to water table 
reconstruction (DWT), and testate amoebae traits (mixotrophs, idiosomes, idiosomes with organic coating, proteinaceous, xenosomes). Correlation coefficients 
outside the dashed lines are significant at P = 0.05.





Fig. S1.3 Non-metric multidimensional scaling (NMDS) computed for regional (A), local (B) and all 
(C) proxies. Stress values for both diagrams were low (regional = 0.175, local = 0.169, all = 0.172, weak 
ties). 



Fig. S1.4 Pearson’s correlation matrix for regional proxies – microscopic charcoal influx and selected 
pollen types (trees and groups of pollen indicators described in S1.5). 



Supplementary Tables

Tab. S1.5 List of pollen taxa included in the summary diagram of human impact. Classes of land-use 
category follow Poska et al. (2004).

Land-use category Indicator taxa
Cultivated land Centaurea cyanus, Cerealia type, Hordeum type, Fagopyrum esculentum 

type, Juglans, Secale, Triticum type
Dry meadows, 
grasslands

Campanula type, Calluna vulgaris, Juniperus

Grazed forests Pteridium aquilinum
Ruderals (minor) Brassicaceae, Plantago lanceolata, Plantago major, Plantago media, 

Polygonum aviculare type, Rumex acetosa type, Rumex acetosella type, 
Urtica

Ruderals (major) Artemisia, Chenopodiaceae
Wet meadows Cyperaceae, Filipendula 
Meadow Cirsium/Carduus, Potentilla type, Ranunculaceae undiff., Ranunculus acris 

type, Trifolium type
General open land 
indicators

Apiaceae, Aster type, Poaceae undiff.
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