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Abstract

We show that the number of prefix normal binary words of length n is 2n−Θ((logn)2).
We also show that the maximum number of binary words of length n with a given fixed
prefix normal form is 2n−O(

√
n logn).
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1 Introduction

Given a binary word w = (wi)
n
i=1 ∈ {0, 1}n of length n, denote by w[j, k] the subword of

length k−j+1 starting at position j and ending at position k, that is, w[j, k] = wjwj+1 . . . wk.
Let |w|1 be the number of 1s in the word w. We define the profile fw : {0, . . . , n} → {0, . . . , n}
of w by

fw(k) = max
0≤j≤n−k

|w[j + 1, j + k]|1,

so that fw(k) is the maximum number of 1s in any subword of w of length k. The word w
is called prefix normal if for all 0 ≤ k ≤ n this number is maximized at j = 0, so that

|w[1, k]|1 ≥ |w[j + 1, j + k]|1 for 0 ≤ j ≤ n− k.
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In other words, a word w is called prefix normal if the number of 1s in any subword is at
most the number of 1s in the prefix of the same length.

If j < k then we can remove the common subword w[j + 1, k] of w[1, k] and w[j + 1, j + k],
so that |w[1, k]|1 ≥ |w[j + 1, k + j]|1 iff |w[1, j]|1 ≥ |w[k + 1, k + j]|1. Thus to show that w
is prefix normal it is enough to check that

|w[1, k]|1 ≥ |w[j + 1, j + k]|1 for k ≤ j ≤ n− k. (1)

Prefix normal words were introduced by G. Fici and Z. Lipták in [4] because of their con-
nection to binary jumbled pattern matching. Recently, prefix normal words have been used
because of their connection to trees with a prescribed number of vertices and leaves in
caterpillar graphs [6].

The number of prefix normal words of length n is listed as sequence A194850 in The On-Line
Encyclopedia of Integer Sequences (OEIS) [7]. We prove the following result, conjectured
in [2] (Conjecture 2) where also weaker upper and lower bounds were shown, see also [3].

Theorem 1. The number of prefix normal words of length n is 2n−Θ((logn)2).

Given an arbitrary binary word w of length n, the prefix normal form w̃ of w is the unique
binary word of length n that satisfies

|w̃[1, k]|1 = fw(k).

Note that for any w, fw(k) ≤ fw(k+ 1) ≤ fw(k) + 1, so w̃ is well-defined. Moreover, we can
define an equivalence relation ∼ on binary words of length n by

w ∼ v ⇐⇒ fw = fv ⇐⇒ w̃ = ṽ.

Indeed, w̃ is just the lexicographically maximal element of the equivalence class [w] of w
under this equivalence relation.

In [4] it is asked how large can an equivalence class [w] be. In other words, what is the
maximum number of words of length n that have the same fixed prefix normal form. This
maximum number is listed in the OEIS as sequence A238110 [7]. From Theorem 1 it is clear
that it must be at least 2Θ((logn)2). However, we show that it is much larger.

Theorem 2. For each n there exists a prefix normal word w such that the number of binary
words of length n with prefix normal form w is 2n−O(

√
n logn).
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2 Proofs

Proof of the lower bound of Theorem 1. To prove the lower bound we will need to construct
2n−Θ((logn)2) prefix normal words of length n. We will do so by giving a random construction
and showing that this construction almost always produces a prefix normal word.

Fix a constant c >
√

2 and define

pk =

{
1
2

+ c
√

logn
k
, for k > 16c2 log n;

1, for k ≤ 16c2 log n.

Write k0 := b16c2 log nc so pk = 1 if k ≤ k0, and pk ∈ [1
2
, 3

4
] for k > k0. Let w be a

random word with each letter wk chosen to be 1 with probability pk, independently for each
k = 1, . . . , n. Clearly (1) holds for all k ≤ k0, so assume k > k0. By comparing the integral∫
c
√

logn
k
dk = 2c

√
k log n+ C with the corresponding Riemann sum, we note that

k∑
i=1

pi = k
2

+ 2c
√
k log n+O(1)

uniformly for k > k0 (and uniformly in c). Indeed, the approximation of the integral by
the Riemann sum has error at most the maximum term, due to the monotonicity of the
integrand, and the additive constant is also O(1) by considering the case k = k0. From this
we estimate the expected difference

|w[1, k]|1 − |w[j + 1, j + k]|1 =
k∑
i=1

wi +

k+j∑
i=j+1

(1− wi)− k (2)

as

µ := E
(
|w[1, k]|1 − |w[j + 1, j + k]|1

)
= 2c

√
k log n− 2c

√
(j + k) log n+ 2c

√
j log n+O(1).

This expression is minimized when j is as small as possible, i.e., j = k. Thus

µ ≥ 2(2−
√

2)c
√
k log n+O(1) > c

√
k log n

for sufficiently large n. By (2), |w[1, k]|1− |w[j + 1, j + k]|1 can be considered as the sum of
2k independent Bernoulli random variables (with an offset of −k).
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We recall the Hoeffding bound [5] that states that if X is the sum of n independent random
variables in the interval [0, 1] then for all x ≥ 0,

P
(
X − E(X) ≥ x

)
≤ exp{−2x2/n} and P

(
X − E(X) ≤ −x

)
≤ exp{−2x2/n}. (3)

(Note that these two bounds are essentially the same bound as the second can be easily
derived from the first by exchanging the roles of the 0s and 1s but we state them both here
for convenience.)

Let µ∗ = E
(∑k

i=1 wi +
∑k+j

i=j+1(1− wi)
)
. Note that µ∗ = µ+ k. We have

P
(
|w[1, k]|1 < |w[j + 1, j + k]|1

) (2)
= P

(
k∑
i=1

wi +

k+j∑
i=j+1

(1− wi) < k

)

≤ P

(
k∑
i=1

wi +

k+j∑
i=j+1

(1− wi)− µ∗ < k − µ∗
)

≤ P

(
k∑
i=1

wi +

k+j∑
i=j+1

(1− wi)− µ∗ < −µ

)
(3)

≤ exp
{
− 2µ2/(2k)

}
≤ exp

{
− c2 log n

}
Hence if c is large enough (c >

√
2) then P(|w[1, k]|1 < |w[j + 1, j + k]|1) = o(n−2). Taking

a union bound over all possible values of k and j, we deduce that w is prefix normal with
probability 1− o(1).

It remains to count the number of such w. For any discrete random variable X, define the
entropy of the distribution of X as

H(X) :=
∑
x

−P(X = x) log2 P(X = x),

where the sum is over all possible values x of X and the logarithm is to base 2. If the random
variable is a Bernoulli random variable, we call H(Be(p)) the binary entropy function Hb(p).
We use the following well-known (and easily verified) facts about the entropy.

H1) If X1, . . . , Xn are independent discrete random variables and X = (X1, . . . , Xn), then
H(X) =

∑n
i=1H(Xi).
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H2) If X takes on at most N possible values with positive probability then H(X) ≤ log2N .

H3) The Taylor series of the binary entropy function in a neighbourhood of 1/2 is

Hb(p) = 1− 1

2 ln 2

∞∑
n=1

(1− 2p)2n

n(2n− 1)
.

In particular, for a Bernoulli random variable with P(X = 1) = 1
2

+ x, H(X) =
1−Θ(x2).

H4) If B is subset of possible values of X we have

H(X) = H(X | X ∈ B)P(X ∈ B) +H(X | X /∈ B)P(X /∈ B) +H(1X∈B),

where X | E denotes the distribution of X conditioned on the event E and 1E denotes
the indicator function of E .

Applying these results to our random word w we have

H(w) =
n∑

k>k0

H(wk) = n− k0 −Θ

(
n∑

k=k0

c2 logn
k

)
= n−Θ((log n)2).

On the other hand, if B is the set of prefix normal words, then

H(w) = H(w | w ∈ B)P(w ∈ B) +H(w | w /∈ B)P(w /∈ B) +H(1w∈B)

≤ log2(|B|)P(w ∈ B) + nP(w /∈ B) + 1

= n+ 1− (n− log2 |B|)(1− o(1)).

We deduce that n− log2 |B| ≤ Θ((log n)2) and hence |B| ≥ 2n−Θ((logn)2).

Proof of the upper bound in Theorem 1. We will prove the upper bound in two parts. Firstly
we will show that most prefix normal words have to contain a good number of 1s in any
prefix of reasonable size as we cannot extend a prefix with too few 1s to a prefix normal word
in many ways. Secondly, we will show that there are at most 2n−Θ(log2 n) ways to construct
a word which has sufficiently many 1s in all reasonably sized prefixes.

Assume log n ≤ k ≤
√
n and consider the first b

√
nc blocks of size k of w. If |w[1, k]|1 =

d then the number of choices for the second and subsequent blocks is at most 2k(1 −
P(Bin(k, 1

2
) > d)), and hence the number of choices for w is at most

2n
(
1− P

(
Bin(k, 1

2
) > d

))b√nc−1 ≤ 2n−Ω(
√
nP(Bin(k,1/2)>d)).
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If P(Bin(k, 1
2
) > d) > n−1/3, say, then there are far fewer than 2n−Θ((logn)2) choices of such

prefix normal words, even allowing for summation over all such k and d.

Using Stirling’s formula one can show that for 1/2 < λ < 1 and λk integral,

P
(
Bin(k, 1

2
) ≥ λk) =

k∑
i=λk

(
k

i

)
2−k ≥ 2kHb(λ)−k√

8kλ(1− λ)
≥ 2kHb(λ)−k

√
2k

,

see for example [1] for a detailed proof.

Thus, by H3), we have

P
(
Bin(k, 1

2
) > k

2
+ x
)
≥ 1√

2k
2−Θ(x2/k),

provided x < k/2. Thus if log n ≤ k ≤
√
n and P(Bin(k, 1

2
) > d) ≤ n−1/3 we can deduce that

d ≥ k
2

+ c
√
k log n for some small universal constant c > 0. Thus, without loss of generality,

we can restrict to prefix normal words with the property that

|w[1, k]|1 ≥ k
2

+ c
√
k log n for all k with log n ≤ k ≤

√
n. (4)

Define d0 = c
√

log n, which for simplicity we shall assume is an integer. (One can reduce c
slightly to ensure this is the case.) Define Et to be the event that (4) holds with k = 4t, i.e.,
that |w[1, 4t]|1 ≥ 22t−1 + 2td0. Let t0 be the smallest t such that 4t ≥ log n and let t1 be the
largest t such that 4t ≤

√
n. We bound the probability that a uniformly chosen w ∈ {0, 1}n

satisfies Et0 ∩ Et0+1 ∩ · · · ∩ Et1 .

Write Et,j for the event that |w[1, 4t]|1 = 22t−1 + 2td0 + j and Et,≥j for the event that
|w[1, 4t]|1 ≥ 22t−1 + 2td0 + j. Thus Et is just Et,≥0. Write E≤t for the intersection Et0 ∩Et0+1∩
· · · ∩ Et.

Claim: For t ∈ [t0, t1] and j ≥ 0,

P
(
E≤t−1 ∩ Et,≥j

)
≤ n−2c2(t−t0+1)/3βjt /(1− βt),

where βt := exp{−23−td0/3}. Note that βt < 1 for all t ∈ [t0, t1]. For the case t = t0 we
simply use the Hoeffding bound (3) to obtain

P(Et0,≥j) = P
(
Bin(4t0 , 1

2
) ≥ 22t0−1 + 2t0d0 + j

)
≤ exp

{
− 2(2t0d0 + j)2/4t0

}
≤ exp

{
− 2d2

0 − 4jd0/2
t0
}

= n−2c2β
3j/2
t0 < n−2c2/3βjt0/(1− βt0)
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as required.

Now assume the claim is true for t. We first want to give a bound on P(E≤t ∩Et+1,≥j). Note
that if E≤t−1∩Et,i holds then in particular Et,i holds and thus for Et+1,≥j to hold we still need
at least

22(t+1)−1 + 2t+1d0 + j − 22t−1 − 2td0 − i = 3 · 22t−1 + 2td0 + j − i

1s in the interval [4t + 1, 4t+1]. Thus we get

P
(
E≤t ∩ Et+1,≥j

)
≤
∑
i≥0

P(E≤t−1 ∩ Et,i)P
(
|w[4t + 1, 4t+1]|1 ≥ 3 · 22t−1 + 2td0 + j − i

)
.

Note that there are 4t+1−4t = 3 ·4t elements in the interval [4t+ 1, 4t+1] and that we expect

3 · 4t

2
= 3 · 22t−1

1s in this interval. Hence by Hoeffding

P
(
|w[4t + 1, 4t+1]|1 ≥ 3 · 22t−1 + 2td0 + j

)
≤ exp

{
− 2(2td0 + j)2/(3 · 4t)

}
≤ exp

{
− 2d2

0/3− 4jd0/(3 · 2t)
}

= n−2c2/3βjt+1.

Note that the final inequality is even true for negative j: for j ≥ −2td0 Hoeffding’s bound
holds, and for j ≤ −2td0 the bound on the probability is larger than 1. If we let pi =
P(E≤t−1 ∩ Et,≥i) then we have

P(E≤t ∩ Et+1,≥j) ≤
∑
i≥0

(pi − pi+1)n−2c2/3βj−it+1

≤ n−2c2/3βjt+1

(
p0 + (1− βt+1)(β−1

t+1p1 + β−2
t+1p2 + . . . )

)
.

Now by induction, pi ≤ n−2c2(t−t0+1)/3βit/(1− βt). As βt = β2
t+1 we have

P(E≤t ∩ Et+1,≥j) ≤ n−2c2(t−t0+2)/3βjt+1(1 + (1− βt+1)(βt+1 + β2
t+1 + . . . ))/(1− β2

t+1)

= n−2c2(t−t0+2)/3βjt+1(1 + βt+1)/(1− β2
t+1)

= n−2c2(t−t0+2)/3βjt+1/(1− βt+1),

as required. Thus the claim is proved.
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Now we take t = t1 and j = 0 to deduce that P(E≤t1) ≤ n−2c2(t1−t0+1)/3/(1 − βt1). Recall
βt1 = exp(−23−t1d0/3), d0 = c

√
log n, and that t1 was chosen so

√
n/4 < 4t1 ≤

√
n. Thus,

for large n, n−1/4 < 23−t1d0/3 < 1. Using the inequality e−x ≤ 1 − x/2, which holds for
0 ≤ x ≤ 1, we deduce that 1− βt1 ≥ n−1/4/2, and so 1/(1− βt1) = O(n1/4). Also, we have
t1 − t0 + 1 = Θ(log n) as n→∞ and thus P(E≤t1) ≤ 2−Ω((logn)2). As the probability that a
uniformly chosen word w satisfies E≤t1 is at most 2−Ω((logn)2), we deduce that the number of
prefix normal words is at most 2n−Θ((logn)2).

Proof of Theorem 2. Fix an integer t ≈
√
n log n and assume for simplicity that n is a

multiple of 2t. Define w = (10)t12tc1c2 . . . c(n−4t)/2t, where ci are arbitrary Catalan sequences
of length 2t. Here a Catalan sequence is a binary sequence c of length 2t such that |c[1, i]|1 ≤
i/2 for all i = 1, . . . , 2t and |c|1 = t. It is well-known that the number of choices for ci is the
Catalan number

Ct =
1

t+ 1

(
2t

t

)
∼ 22t

√
πt3/2

.

It is easy to see that the prefix normal form of any w of this form is

w̃ = 12t(01)(n−2t)/2. (5)

Indeed, there is a subword 1k of w for all k ≤ 2t. For k > 2t, if we write k = 2tq + r with
0 ≤ r < 2t then we have a subword (10)r/212tc1 . . . cq−1 or 0(10)(r−1)/212tc1 . . . cq−1 which is
of length t and has the requisite number t+ bk/2c of 1s. On the other hand, the definition
of a Catalan sequence implies no other subword of length k containing the 12t subword can
possibly have more 1s. Any substring intersecting the 12t and of length greater than 2t can
be replaced by one containing the 12t with at least as many ones. And finally, any subword
of w length k > 2t not intersecting the 12t subword (so contained within the c1 . . . c(n−4t)/2t

subword) can have at most t+ bk/2c 1s as an end-word of ci contains at most t 1s and there
are at most bk/2c 1s in the initial subword of ci+1ci+2 . . . of length k.

It remains to count the number of possible w’s. This is just

C
(n−4t)/(2t)
t = 2n−4t−(log t)3n/4t+O(n/t).

Taking t ∼
√
n log n gives 2n−O(

√
n logn) words w satisfying (5).
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