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Abstract 

Bumblebees provide crucial pollination services to crops and wild plants. They also 

play host to a variety of parasites. It is not known whether such parasites impact 

upon the pollination services that bees are providing. Commercially-reared 

bumblebee colonies, which are used around the globe to supplement crop 

pollination, have been shown to harbour high levels of parasites, which can spread 

to wild-bee populations. Despite such negative impacts, commercial bees are 

widely used on many different crop species. However, for many of these crops, the 

benefit commercial colonies provide has not been assessed. Furthermore, we do 

not have a full understanding of the role that commercial colonies play in the 

parasite epidemiology of wild bee populations. In this thesis I begin to fill these 

knowledge gaps. 

My results show that the common bumblebee parasite Crithidia bombi did not 

affect the olfactory learning ability and foraging activity of the bumblebee Bombus 

terrestris. However, I was unable to conclude whether this parasite impacts upon 

pollination services. In addition, I demonstrated that commercial colonies improve 

the quality and value of a strawberry crop on a farm setting, but that this benefit is 

only observed at certain times of the year. These same colonies became infected 

with parasites likely to have been acquired from wild-bee populations, and the 

prevalence of these parasites was also found to vary temporally. Finally, I showed 

that altering the concentration and availability of the commercial bumblebees’ 

nectar reservoir can significantly affect their foraging activity. 

The results have important implications for the use and management of 

commercial bumblebees and could help reduce environmental damage caused by 

commercial colony use. I have also further increased our knowledge on the impacts 

of C. bombi on B. terrestris, and gained novel insights of the parasite prevalence in 

commercial colonies in a farm setting. 
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Introduction 

Ecosystem services and animal behaviour 

Ecosystem services are the benefits humans obtain from ecosystems and their 

functioning (Costanza et al. 1997, 2017; Millennium Ecosystem Assessment (MA) 

2005). Examples of such services include the provision of clean drinking water, flood 

regulation and pollination (Costanza et al. 1997, 2017; MA 2005). Recognition that 

the environment can provide human society with goods and services can be traced 

as far back as the ancient Greeks, who realised that forest cover plays an important 

role in the retention of soil (Fisher et al. 2009). However, it was only relatively 

recently, during the 1970/80s, that attempts began to be made to quantify the 

economic importance of these services (DeLorme et al. 1974; Westman 1977; 

Costanza et al. 1989). The modern concept of ecosystem services is now well 

established and they were a primary focus of the Millennium Ecosystem 

Assessment (MA 2005). Since then, the popularity of the concept has grown rapidly, 

with the number of journal articles addressing ecosystem services and attempting 

to place monetary value on them rising exponentially (Fisher et al. 2009). Today, 

ecosystem services are a major tool in global environmental policy, with the 

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services 

(IPBES) being the latest global scale assessment of ecosystem services currently 

ongoing (IPBES 2012; Costanza et al. 2017). 

The provision of ecosystem services is based on ecosystem functioning, i.e., biotic 

and abiotic interactions (Naeem et al. 1994; Dobson et al. 2006; Tylianakis et al. 

2010; Chapin et al. 2011; Valiente-Banuet et al. 2015). The nature of such biotic 

interactions is dependent on the functional traits displayed by the species involved 

(Hooper et al. 2005; Díaz et al. 2013; Cadotte 2017). A behavioural trait is one of 

many characteristics of a species that can be classified as a functional trait, and thus 

can impact upon ecosystem functioning (de Bello et al. 2010; Díaz et al. 2013). For 

example, herbivore foraging behaviour can alter plant abundances, which could 

have far-reaching effects on many trophic levels, ultimately altering ecosystem 

function. However, behavioural traits are not fixed and there can be much plasticity 

around behavioural traits between individuals of the same species (Dall et al. 2004), 

and the behavioural traits of one species can be manipulated by another (Moore 
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2013). This variation in behavioural traits can influence the properties and 

functioning of an ecosystem (Sih et al. 2012), and subsequently the ecosystem 

services supplied.  

In addition, the regularity at which a behaviour is performed could also influence 

ecosystem function.  This is dependent on how frequently individuals perform a 

particular behaviour, and on the total abundance of individuals that can perform 

the behaviour. Thus, if the abundance of a particular species falls to a low level, the 

interactions that it was involved in may become extinct, which will have impacts on 

ecosystem functioning and the subsequent services derived (Valiente-Banuet et al. 

2015).  

A classic example of an ecosystem service is animal-mediated pollination. This 

interaction between plant and pollinator is crucial for the maintenance of 

biodiversity, with an estimated 87.5% of flowering plants reliant to some extent on 

animal pollination for reproduction (Ollerton et al. 2011), and of vital importance 

for human food production and well-being (Klein et al. 2007; Eilers et al. 2011; Kleijn 

et al. 2015; Rader et al. 2016). This service can be provided by a wide variety of 

species including mammals (Fleming et al. 2009), birds (Stiles 1978) and reptiles 

(Traveset & Sáez 1997), but in most circumstances, it is carried out by insects 

(Ollerton 2017). Within insects, bees are considered one of the most important 

pollinator groups (Calderone 2012; Kleijn et al. 2015; Rader et al. 2016). This is 

partially down to the global management of relatively few bee species to provide 

pollination in agricultural systems. Honeybees (Apis mellifera) are the dominant 

managed pollinator globally (Klein et al. 2007; Calderone 2012), but commercially 

reared bumblebee colonies are becoming increasingly important and they are 

particularly effective pollinators of certain crop types (Stanghellini et al. 1997, 1998; 

Velthuis & van Doorn 2006; Zhang et al. 2015; Aizen et al. 2018). 

Given how important insects, both wild and managed, are as pollinators, any 

alteration to their foraging behaviour could have major implications for the 

pollination services that they provide, consequently impacting upon plant 

reproduction and crop yields. Therefore, it is of key importance that we understand 

the drivers of insect foraging behaviour and how they might be influencing 

interactions between plant and pollinator. 
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Mechanisms by which parasites may alter ecosystem 

functioning 

One such factor that can alter the behaviour of insects and many other organisms 

is parasitism. Parasites are ubiquitous in nature, with approximately 50% of all 

animal species thought to be parasitic (Poulin & Morand 2000; Dobson et al. 2008). 

There are numerous documented examples of parasitic infections altering the 

behaviour of their hosts (reviewed in Moore 2002, 2013; Lafferty & Shaw 2013), 

and these vary widely in the particular behaviour that is manipulated, and the 

extremity of the behavioural alteration (reviewed in Moore 2002, 2013). Such 

changes can alter ecosystem functioning as in Sato et al., (2012) where crickets 

(Diestrammena spp.) were manipulated by a nematomorph parasite to enter 

streams, in which the parasite can reproduce. The crickets entering the streams 

provided predatory fish with a significant alternative food source, which then lead 

to a cascading effect through numerous trophic levels and a subsequent change in 

ecosystem functioning. Given that parasites are able to alter ecosystem 

functioning, it is likely that they can also change the provision of ecosystem 

services, however this has not yet been demonstrated. 

In addition to inducing behavioural change, parasites may also alter ecosystem 

functioning by inducing mortality in their host organisms. It is well established that 

parasites can increase the mortality of their hosts (Anderson & May 1978; Gulland 

2008), and in some cases parasites have been associated with severe population 

declines and extinctions (Warner 1968; Daszak et al. 2000; Cameron et al. 2011). 

Such declines in species abundance lead to the reduction and even extinction of 

ecological interactions that the declining species was involved in, and subsequent 

alteration to ecosystem function and the ecosystem services provided (Valiente-

Banuet et al. 2015). Thus, we may expect parasite-induced mortality, in addition to 

parasite-induced behavioural change, to have an impact upon ecosystem services. 

Pollinating insects, as well as providing important ecosystem services, are known 

to play host to a variety of parasites (Schmid-Hempel 1998), and both behavioural 

change (reviewed in Gómez-Moracho et al. 2017) and increased mortality have 

been observed upon infection with these parasites (Altizer & Oberhauser 1999; 

Brown et al. 2000; Brown, Schmid-Hempel, et al. 2003; Higes et al. 2007; Otti & 

Schmid-Hempel 2007; Graystock, Meeus, et al. 2016). Thus, both potential 
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mechanisms by which parasitism may alter ecosystem function and services are 

active in pollinator populations. Parasite-induced behavioural changes that have 

been observed in pollinators that could impact upon pollination services include: 

reduced navigational ability, altered flower choices, impaired olfactory learning, 

impaired flight ability, impaired visual and motor learning skills, and precocious 

onset of foraging activity (Gómez-Moracho et al. 2017). For example, early work in 

this research area by Schmid-Hempel & Schmid-Hempel (1990) found that 

bumblebees infected with a conopid fly larva (Conopidae) were preferentially 

visiting a flower species with less complex morphology than uninfected bees. The 

authors suggest that if such parasites were present at a high prevalence, they could 

be affecting the plant community structure by increasing the reproductive success 

of the simpler species (Schmid-Hempel & Schmid-Hempel 1990). However, thus far 

it has only been speculated as to how such changes might affect pollination, and to 

my knowledge no experiments have attempted to address this knowledge gap. 

For parasite-induced mortality the picture is clearer, as reduced pollinator 

abundance is likely to lead to fewer mutualistic plant-pollinator interactions 

occurring, and thus, reduced pollination. However, mortality effects vary widely 

depending on the parasite species and whether it is in combination with other 

stressors (Brown et al. 2000; Brown, Schmid-Hempel, et al. 2003; Rutrecht & Brown 

2008; Nazzi et al. 2012; Aufauvre et al. 2012), meaning that predicting the extent 

to which a plant-pollinator interaction might decrease will be a complex task. 

To the best of my knowledge, the only studies to have investigated the effects that 

parasites of pollinators may have on pollination services, have not found a causal 

link between the two. Gillespie and Adler (2013) observed a negative relationship 

between a common bumblebee parasite, Nosema bombi, and the pollination of 

bumblebee dependent plants, however, no clear trend was seen in the other 

bumblebee parasites that they detected. Another study found there was no 

relationship between pollination services and Crithidia bombi (another common 

bumblebee parasite) prevalence in a bumblebee population (Theodorou et al. 

2016). A potential confounding factor here was that C. bombi prevalence was 

positively associated with bumblebee abundance, which itself was mediating the 

pollination success of plants (Theodorou et al. 2016). Thus, neither study can 

conclude whether or not parasitism was directly altering plant pollination. 
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The two studies mentioned used bumblebees as their focal species, and indeed 

most research on disease in pollinators has focussed on bees. This is partly due to 

their importance as wild and managed pollinators, as previously stated, and partly 

as they have been observed to be in decline and/or suffering from elevated levels 

of mortality (Williams 1982; Grixti et al. 2009; vanEngelsdorp & Meixner 2010; 

Cameron et al. 2011; Dupont et al. 2011; van der Zee et al. 2012). Parasites have 

been implicated as a potential cause of bumblebee declines in some areas of the 

world (Cameron et al. 2011; Meeus et al. 2011; Schmid-Hempel et al. 2014), yet 

despite this, no causal link has been made between the presence of parasites in 

bees and an alteration in the important pollination services that bees provide. 

 

Commercial bumblebees 

A major factor thought to be contributing to wild bumblebee decline in many areas, 

is the international trade in commercial bumblebee colonies (Colla et al. 2006; 

Meeus et al. 2011; Schmid-Hempel et al. 2014). This trade, started in the 1980s, 

involves the production of bumblebee colonies in rearing facilities, the colonies are 

then exported around the world including into areas where the commercial species 

is not native (Velthuis & van Doorn 2006). The colonies are then placed into 

glasshouse, polytunnel and open field crops with the purpose of supplementing 

pollination services to the crops to improve yield and quality (Stubbs & Drummond 

2001; Morandin et al. 2001a, 2001b; Velthuis & van Doorn 2006; Zhang et al. 2015). 

However, it is common for commercial bumblebees to leave their target crop and 

forage elsewhere, and for wild bees to come onto crops where commercial bees 

are placed (Murray et al. 2013; Foulis & Goulson 2014). It is when this happens that 

problems may arise. 

Three mechanisms have been identified by which the commercial trade of 

bumblebees may be contributing to wild bee declines. Firstly, it is possible for 

commercial bumblebees to mate with wild bumblebee species (Ings et al. 2005; 

Kanbe et al. 2008). If this process leads to the production of viable eggs and 

offspring, as may be the case when different subspecies of the same species mate, 

then it could be contributing to biodiversity homogenisation, as it may reduce the 

chance of future speciation between subspecies. As of yet there is no empirical 

evidence to support this. However, if the eggs produced from such mating events 
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are not viable, as has been observed in one case (Kondo et al. 2009), then the 

mating represents a serious threat to wild bumblebee populations as queens 

usually only mate once (Schmid-Hempel & Schmid-Hempel 2000). 

Secondly, commercial bumblebees may be able to outcompete native species. 

When placed out in the field, commercial colonies foraged more efficiently and 

produced a greater number of gynes than native wild colonies (Ings et al. 2006), 

and in Japan, an invasive commercial Bombus terrestris population is thought to 

displace a native species via competition for nest sites (Inoue et al. 2008). 

The third and most well studied negative impact that the trade in commercial 

bumblebees has on wild bee populations is pathogen transmission. Commercial 

colonies have repeatedly been shown to harbour pathogens (Whittington & 

Winston 2003; Otterstatter et al. 2005; Goka et al. 2006; Murray et al. 2013; 

Graystock et al. 2013), and when the colonies are placed into crops, these 

pathogens may spread to wild bee populations via shared use of flowers (Durrer & 

Schmid-Hempel 1994; Graystock et al. 2015). This process is known as pathogen 

‘spill-over’ and there is strong evidence of it occurring in bumblebee populations 

(Colla et al. 2006; Murray et al. 2013; Graystock et al. 2014). Spill-over can be 

particularly damaging if the wild bee community has not encountered or coevolved 

with the pathogen species or strains that the commercial colonies are carrying. In 

such cases the pathogen may be more virulent than in coevolved populations 

(Imhoof & Schmid-Hempel 1998a; Thompson 2005). In other systems, spill-over of 

novel pathogens from managed populations to wild populations has been highly 

destructive (Daszak et al. 2000), for example, imported Asian cattle (Bos indicus) 

transmitted the rinderpest virus to African buffalo (Syncerus caffer), resulting in the 

loss of 90% of the buffalo population (Mack 1970). 

A case study from South America illustrates well the negative impacts of the trade 

in commercial bumblebees (Schmid-Hempel et al. 2014). Here, B. terrestris was 

imported into Chile, where it is not a native species, for greenhouse pollination. It 

subsequently escaped from greenhouses and became established in the wild, 

where it has quickly spread into and across Argentina (Torretta et al. 2009; 

Montalva et al. 2011; Schmid-Hempel et al. 2014). Wherever B. terrestris spreads, 

the native bumblebee Bombus dahlbomii becomes locally extinct or persists at a 

greatly reduced abundance (Morales et al. 2013; Schmid-Hempel et al. 2014), 
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causing B. dahlbomii to now be considered an endangered species (Morales et al. 

2016). The reasons for the severe decline of the native species have not yet been 

elucidated, but it is currently thought to be caused by a combination of competition 

with B. terrestris, and B. terrestris having brought with it novel pathogens which 

may have spread to the native bee species (Arbetman et al. 2013; Schmid-Hempel 

et al. 2014). 

A final threat posed by commercial colonies to wild bee populations is pathogen 

‘spill-back’. This is closely related to spill-over and could occur when commercial 

colonies on crops acquire pathogens from the wild bee populations. The pathogens 

could then proliferate within commercial colonies, potentially aided by the high 

densities at which commercial colonies are deployed, eventually reaching 

sufficiently high prevalences where they may be a threat to wild bee populations 

by spilling back to them. The spill-back process has been observed in other systems 

and is thought to be a threat to native wildlife (Kelly et al. 2009; Nugent 2011). 

However, it has received little attention in commercial and wild bee populations, 

despite this system having all the necessary properties for the process to occur. 

Regardless of whether spill-back does occur in this system, there is lots of evidence 

that commercial bumblebee colonies host a wide variety of parasites (Otterstatter 

et al. 2005; Colla et al. 2006; Whitehorn et al. 2013; Murray et al. 2013; Graystock 

et al. 2013). The gut trypanosome, Crithidia bombi, is among the most common of 

parasite species found in commercial colonies (Otterstatter et al. 2005; Whitehorn 

et al. 2013; Murray et al. 2013). In addition, infection with this parasite has been 

shown to reduce flower visitation rate and motor learning abilities in bumblebees 

(Gegear et al. 2005, 2006; Otterstatter et al. 2005); behaviours which could impact 

upon the pollination services bees provide. Given that commercial bumblebees are 

reared specifically for the provision of pollination services, it would be of great 

worth to the industry to gain an insight into whether these parasites are affecting 

the pollination services the colonies provide. Potentially parasites could be 

impairing the quality of the product that commercial rearing companies sell. 
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Are commercial bumblebees necessary? 

Given the negative impacts of the trade in commercial bumblebees, it begs the 

questions of whether they are necessary, and if so, whether they can be used in a 

less environmentally damaging manner. Commercial bumblebees were first 

developed for use on greenhouse tomato crops, where they dramatically reduced 

labour costs, as people no longer had to hand pollinate the flowers (Velthuis & van 

Doorn 2006). Greenhouses are also difficult for wild pollinating insects to gain 

access to, meaning that commercial bumblebees are the only pollinator in this 

system. In scenarios such as this, commercial bumblebees are likely to be hugely 

beneficial to crop production. However, colonies are now regularly used in crops 

that are grown in open-ended and open-sided polytunnels, and in open fields 

(Velthuis & van Doorn 2006). In such cases wild pollinators, including bumblebees, 

can access the crop and provide pollination services, and wind pollination can also 

contribute. While there is no doubt that bumblebees are very good pollinators, it is 

not clear if commercial colonies provide a benefit to the crop in these cases, or if 

adequate pollination services are already being provided by the wild pollinator 

species assemblage. Assessments of whether commercial colonies are providing a 

beneficial pollination service to the various crop types in which they are used is 

necessary. This would allow for reasoned management decisions to be made that 

consider both the positive and negative aspects of commercial bumblebee colony 

use. 

A mechanism that could potentially reduce the environmental damage caused by 

commercial colonies, and increase agricultural efficiency, is if the foraging 

workforce could be increased in size or encouraged to perform more regular 

foraging trips. This has been demonstrated to be possible, with the application of 

an artificial bumblebee foraging recruitment pheromone shown to increase nest 

traffic in commercial bumblebee colonies (Molet et al. 2009). Based on previous 

research (Dornhaus & Chittka 2005; Molet et al. 2008), there is the potential for 

similar increases in nest traffic to be achieved by altering the levels of nutrition that 

are directly available within commercial colony boxes. It is possible to alter nectar 

availability in commercial bumblebee colonies relatively simply, as they are shipped 

with a large supply of high sugar concentration nectar in a container directly 

underneath the colony box. Bees can access this nectar source without leaving the 
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nest. Removal of nectar stored in natural honey-pots within bumblebee colonies 

has been shown to increase foraging activity (Cartar 1992; Dornhaus & Chittka 

2005; Molet et al. 2008), thus, dilution or removal of this nectar source may 

encourage increased foraging outside of the colony box and on the target crop. If a 

single colony were to forage more regularly, then fewer colonies may be necessary 

within a crop, potentially reducing both the environmental damage caused by 

commercial colonies, and the costs to the farmer. 

Progress is being made within the commercial bumblebee industry to reduce the 

environmental impact of colonies. For example, some commercial suppliers now 

irradiate the pollen that they feed the colonies with during the rearing process 

(Graystock, Jones, et al. 2016), as this was previously shown to be a source of 

parasitic infection (Graystock et al. 2013). Furthermore, efforts are being made to 

commercially rear species that are local to the areas they are exported to, e.g., 

Bombus atratus is being reared for use in Argentina (Biobest 2012). Changes in 

legislation also reflect the growing realisation of the environmental damage that 

can be caused by the introduction of non-native species, with the UK now only 

allowing the importation of the native subspecies B. terrestris audax (DEFRA 2017). 

All of these measures represent progress in the industry, however, as I have 

highlighted, there are still many areas where improvements could be made. 

 

Summary 

Insects and especially bees provide crucial pollination services to wild plants and 

crops, but they also harbour a wide variety of parasites. We currently do not know 

how such parasites might be affecting the pollination services pollinators provide, 

even though such effects could have major implications for biodiversity 

maintenance and food security. Managed pollinator populations contribute 

significantly to such pollination services, but also play a large role in local parasite 

epidemiology, potentially contributing to wild pollinator decline. Given this, it is 

important that the use of managed pollinators is fully justified, with costs and 

benefits being fully analysed. However, we currently only know that commercial 

pollinators can be beneficial in greenhouse-based crops systems that are difficult 

for wild pollinators to access (Morandin et al. 2001a, 2001b; Roldán Serrano & 

Guerra-Sanz 2006). In open ended and open sided polytunnels, and open field 
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systems, which wild pollinators can access, the benefits that commercial pollinators 

provide is not well understood. In such systems, our knowledge of the role that 

commercial colonies play in crop pollination and in parasite epidemiology of wild 

bee populations is incomplete. 

Whether parasites of pollinators affect their pollination services, is a question that 

could have implications for the commercial pollinator industry, and the use and 

management of commercial pollinators plays a large role in parasite impacts in wild 

bee populations. Thus, an integrated research approach to both of these aspects 

could prove particularly useful. In this thesis I bring together these research areas 

through a series of experiments, the results of which could have implications for 

the pollination of both wild flowers and crops, for wild bee health, and for 

commercial bee health and management. 

 

Study system 

The study system used throughout the experiments that make up this thesis 

consisted of: the pollinator Bombus terrestris, its gut parasite Crithidia bombi, and 

the crop plant strawberry (Fragaria x ananassa DUCH). In the following paragraphs, 

I explain why this system is highly relevant to the questions I wanted to answer to 

fill the knowledge gaps outlined in the Introduction. 

Crithidia bombi 

Crithidia bombi is a gut trypanosome and probably one of the most common 

parasites of bumblebees worldwide. C. bombi has been observed at prevalences of 

anywhere between 0-100% in wild populations, depending on the location and the 

time of year (Shykoff & Schmid-Hempel 1991; Korner & Schmid-Hempel 2005; 

Rutrecht & Brown 2008; Gillespie 2010; Whitehorn et al. 2011, 2013; Goulson et al. 

2012; Popp et al. 2012; Jones & Brown 2014; Graystock et al. 2014). It is typically 

found at its lowest prevalence (0-25%) at the start of the year when queen 

bumblebees first emerge from hibernation (Rutrecht & Brown 2008; Jones & Brown 

2014), then as colonies are established and bumblebee population density 

increases, greater rates of parasite transmission are enabled and thus prevalence 

increases. A peak prevalence is typically reached in the summer months, and 

although observations vary greatly, this normally lies within the range of 40-80% 
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(Shykoff & Schmid-Hempel 1991; Korner & Schmid-Hempel 2005; Gillespie 2010; 

Popp et al. 2012; Whitehorn et al. 2013). Importantly, it has also been found at high 

prevalences within commercial colonies, and there is evidence to suggest that it 

spills-over to wild bumblebee populations (Murray et al. 2013). 

Regarding its fitness effects, C. bombi is known to significantly increase mortality in 

bees that are placed under starvation conditions and can reduce colony fitness by 

40%, being particularly virulent during the most energetically stressful stages of the 

host’s lifecycle (Brown et al. 2000; Brown, Schmid-Hempel, et al. 2003). 

C. bombi has also been shown to impact upon the behaviour of its host, by impairing 

motor and visual learning ability and slowing foraging rate (Gegear et al. 2005, 

2006; Otterstatter et al. 2005). These behavioural alterations have the potential to 

affect the pollination services infected bees provide. However, such effects have 

only been observed in Bombus impatiens, a common wild and managed bumblebee 

in North America. It is unknown whether B. terrestris is affected in the same way. 

The combination of its high prevalence in wild and commercial bumblebees, and its 

mortality and behavioural effects, make C. bombi an ideal study species to examine 

if parasitism can alter the pollination services that bumblebees can provide. 

Figure 1. Scanning electron microscopy image of Crithidia bombi. 
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Bombus terrestris 

Bombus terrestris is a very common bumblebee species in the West Palaearctic 

(Williams et al. 2012), where it is also commercially reared on a large scale for crop 

pollination purposes (Velthuis & van Doorn 2006). Its large range and commercial 

use make it a very important pollinator, however, this has also facilitated its 

invasion into several countries where it is not native, including New Zealand, Chile, 

Argentina, Japan, and Tasmania, Australia (Semmens et al. 1993; Matsumura et al. 

2004; Schmid-Hempel et al. 2014). 

B. terrestris has an annual life-cycle (Figure 2), with mated queens emerging from 

hibernation and establishing colonies in the spring. The queen will forage and 

provision the first batch of brood, but once the first workers emerge, she will no 

longer leave the nest. The queen continues to lay eggs while the workers collect 

nectar and pollen and tend to the brood. During summer, the colony will enter a 

sexual production phase, where males and new queens (gynes) are produced. The 

males and gynes mate, and then the mated gynes will find a suitable site to 

hibernate over the winter to come (Sladen 1912). 

Fragaria x ananassa DUCH (strawberry) 

Strawberry is a hybrid species that is cultivated around the world for its fruit 

(FAOSTATS, 2018). Hundreds of commercial varieties exist that differ in size, shape, 

flavour and many other parameters. Strawberry flowers are hermaphroditic and 

self-fertile, and are thus able to set fruit without animal mediated pollination. 

However, bee pollination makes flowers more likely to be fully pollinated, i.e., it 

increase the likelihood of each pistil receiving a pollen grain from the stamens, 

which results in increased fruit yields and quality (Dimou et al. 2008; Klatt et al. 

2014). Successful pollination leads to the development of fertilised achenes, which 

are then thought to release the phytohormone auxin which causes development of 

the receptacle (the strawberry fruit) (Wietzke et al. 2018). If the flower is not fully 

pollinated, i.e., not all pistils receive a pollen grain, it can lead to the development 

of deformed fruit, which have a reduced market value (European Commission 2011; 

Klatt et al. 2014). It is for this reason that commercial bumblebee colonies are 

regularly used to provide pollination services to strawberry crops. 
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Figure 2. Life cycle of Bombus terrestris. Figure has been adapted from Prŷs-Jones 

and Corbet (2011). 

 

Figure 3. Bombus terrestris foraging on strawberry flower. 
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Summary of research chapters 

In the following five research chapters that make up this thesis, I aim to address the 

knowledge gaps highlighted in this introduction. A brief summary of the content of 

each chapter is given below: 

Chapter One investigates whether the learning ability of Bombus terrestris (a 

common bumblebee species in the wild and also reared-extensively for commercial 

use) is affected by Crithidia bombi (a common parasite of both wild and commercial 

bumblebees around the globe). Learning is assessed using the proboscis extension 

reflex experimental methodology. 

Chapter Two tests whether commercial B. terrestris colonies provide beneficial 

pollination services to two strawberry crops. Commercial colonies were placed into 

the crops and strawberries were picked and quality assessed. 

Chapter Three examines the parasite diversity and prevalence within commercial 

colonies placed in two strawberry crops (the same commercial colonies as used in 

Chapter two), and assesses whether the parasite prevalence in these commercial 

colonies could pose a threat to wild bee health via spill-back.   

Chapter Four investigates whether C. bombi effects the foraging activity and 

pollination ability of B. terrestris on strawberry plants. Parasitised and unparasitised 

colonies were paced into polytunnels. Foraging activity was observed and 

strawberries were picked and quality assessed. 

Chapter Five tests if the presence and concentration of a nectar source available 

within commercial bumblebee colony boxes affected the number of bees entering 

and leaving the colony. Commercial colonies were placed out in the field, with a 

specific manipulation applied to their nectar source, and nest traffic was observed. 
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Chapter 1 

Bumblebee olfactory learning affected by task 

allocation but not by a trypanosome parasite 

 

This chapter was published in Scientific Reports in April 2018: 

Martin CD, Fountain MT, Brown MJF (2018) Bumblebee olfactory learning 

affected by task allocation but not by a trypanosome parasite. Scientific Reports 

5809. 
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Abstract 

Parasites can induce behavioural changes in their host organisms. Several parasite 

species are known to infect bumblebees, an important group of pollinators. Task 

allocation within bumblebee colonies can also cause differences in behaviour. Thus, 

task allocation may lead to context-dependent impacts of parasites on host 

behaviour. This study uses Bombus terrestris and its gut trypanosome Crithidia 

bombi, to investigate the effects of parasitism, task allocation (foraging or nest-

work) and their interactions, on olfactory learning. Prior to undergoing the olfactory 

learning task, bees were orally infected with a field-realistic dose of C. bombi, and 

observed to determine task allocation. Parasitism did not significantly affect 

olfactory learning, but task allocation did, with foragers being significantly more 

likely to learn than nest bees. There was no significant interaction between 

parasitism and task. These results suggest that C. bombi is unlikely to affect 

pollination services via changes in olfactory learning of its host if bees are under no 

environmental or nutritional stress. However, wild and commercial colonies are 

likely to face such stressors. Future studies in the field are needed to extrapolate 

the results to real world effects. 

 

Introduction 

Parasites are highly prevalent in ecosystems with approximately 50% of all animal 

species thought to be parasitic (Poulin & Morand 2000; Dobson et al. 2008). One 

way that parasites can impact hosts is through behavioural alteration (Moore 2002, 

2013; Lafferty & Shaw 2013). Such parasite-induced behavioural changes may be 

manipulative and enhance the fitness or transmission of the parasite, but they can 

also be non-manipulative, benefitting host rather than parasite fitness (Moore 

2013). Understanding such manipulations is increasingly important, as parasites 

have also been implicated in population declines of numerous taxa (Berger et al. 

1998; Krkosek et al. 2007; Potts et al. 2010; Schmid-Hempel et al. 2014). 

Bumblebees are one such group; they host a wide variety of parasite species, and 

parasitic infections are thought to be one of the key drivers of their declines in 

Europe and the Americas (Schmid-Hempel 1998; Cameron et al. 2011, 2016; Meeus 

et al. 2011; Fürst et al. 2014; Schmid-Hempel et al. 2014). 



31 
 

A common parasite in many bumblebee species is the gut trypanosome Crithidia 

bombi (Lipa and Triggiani, 1980). This parasite is often found at prevalences of 10-

30% in bumblebee populations, and has been recorded at prevalences as high as 

80% at specific sites (Shykoff & Schmid-Hempel 1991; Gillespie 2010; Kissinger et 

al. 2011; Jones & Brown 2014; Malfi & Roulston 2014). C. bombi has also been 

introduced to South America via its host Bombus terrestris. Here, the parasite has 

spread rapidly, and is one of several potential causes for the decline of the native 

Bombus dahlbomii (Schmid-Hempel et al. 2014). C. bombi has been shown to affect 

host behaviour in several ways (Shykoff & Schmid-Hempel 1991; Gegear et al. 2005, 

2006; Otterstatter et al. 2005). Experiments using artificial flowers have found 

motor-learning rate, learning based on colour cues, and foraging rate to be reduced 

in infected bumblebees (Gegear et al. 2005, 2006; Otterstatter et al. 2005). In 

addition, previous work observed a correlation between parasitism and a lower 

likelihood of pollen collection in the field (Shykoff & Schmid-Hempel 1991). 

While the mechanism behind these changes is unknown, one potential explanation 

is that parasites activate the immune system of their hosts, which can subsequently 

interact with the nervous system (Mallon et al. 2003; Riddell & Mallon 2006; 

Alghamdi et al. 2008). C. bombi is known to activate the bumblebee immune system 

(Brown, Moret, et al. 2003; Riddell et al. 2011; Brunner et al. 2013; Deshwal & 

Mallon 2014), and both bumblebees and honeybees have been shown to display 

impaired olfactory learning when their immune systems are artificially activated 

(Mallon et al. 2003; Riddell & Mallon 2006). Thus, C. bombi infection may alter host 

behavior via activation of the immune system. 

Context is key for understanding parasite impacts on host behaviour, and as C. 

bombi displays context-dependent virulence, with virulence increasing during 

periods of food stress or during energetically demanding stages of the host’s life 

cycle (Brown et al. 2000; Brown, Schmid-Hempel, et al. 2003), behavioural impacts 

may also be modified by host context. Task allocation within bumblebee colonies 

provides differing contexts, with individual workers more regularly performing 

either energetically demanding foraging tasks outside the nest, or less energetically 

demanding tasks based inside the nest, such as brood care (Casey & Ellington 1989; 

Pouvreau 1989; Ellington et al. 1990). Furthermore, foraging activity has been 

shown to reduce immunocompetence in bumblebees (König & Schmid-Hempel 

1995). The differing energy demands associated with performing these tasks, and 
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their trade-offs with immunocompetence, could be sufficient for context-

dependent behavioural impacts to be induced by the parasite. 

This study investigated the effect of C. bombi infection, task allocation, and their 

interactions on the olfactory learning of the common European bumblebee species 

Bombus terrestris L. (1758). I hypothesised that C. bombi would alter olfactory 

learning ability, potentially via interactions between the immune and nervous 

systems. I further predicted that this alteration would be dependent on task 

allocation within the bumblebee colony. Olfactory learning was assessed using the 

proboscis extension reflex (PER) experimental methodology, a classical 

conditioning procedure (Bitterman et al. 1983). During PER experimentation, bees 

undergo a series of trials where they can learn to associate an odour (conditioned 

stimulus) with a sugar solution reward (unconditioned stimulus) (Bitterman et al. 

1983). During each trial whether or not a bee displayed a conditioned response was 

recorded. 

 

Methodology 

Queen collection 

Wild B. terrestris queens were collected from Windsor Great Park, Surrey, UK 

(Latitude: 51.417677, longitude: -0.604263). Queens were collected between the 

11th March and 7th April 2015. Collected bees had their faeces screened under a 

microscope at x400 magnification for the presence of C. bombi. Those individuals 

that did harbour the parasite (n=32) were placed into individual plastic nest boxes 

(W = 6.7, L = 12.7, D = 5cm) and provisioned with ad libitum pollen and nectar. 

When the first workers began to emerge, the colonies were transferred to larger 

plastic nest boxes (W = 22.5, L = 29, D = 13cm) where they were kept for the 

remainder of the experiment. These colonies did not forage outside of their colony 

box at any point during their life cycle, and they were not subjected to a regular 

light cycle. These colonies were then used as a source of parasitic cells for the 

inoculation of commercial colonies during experiments. The infectiveness of a 

parasite to its host can vary between different host populations (Imhoof & Schmid-

Hempel 1998a; Yourth & Schmid-Hempel 2006). Thus, having several infected wild 

bees meant that there was a variety of different parasite strains, which increased 
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the likelihood that strains were present that could successfully infect commercial 

colonies. Furthermore, I used multiple strains to maximise the chances of observing 

broad impacts of the parasite in bumblebees, rather than strain specific effects. 

Commercial colonies 

Four commercial B. terrestris audax colonies were imported from Biobest (between 

November 2015 and January 2016) onto the Royal Holloway, University of London 

campus to be used for experimentation. Upon arrival 15 workers were removed 

from each colony and their faeces screened for the presence of parasites (Rutrecht 

& Brown 2008). All four colonies were uninfected and thus kept for the experiment. 

The queen was removed from each commercial colony, then each colony was split 

into four sub-colonies. Two of these sub-colonies consisted of 40 workers and half 

of the original brood each, these were the ‘experimental’ colonies and they were 

assigned a treatment (control or parasite) and placed into wooden nest boxes (W = 

14, L = 24, D = 10cm). The remaining two sub-colonies were the ‘stock’ colonies. 

These were made up by splitting the bees remaining from the original commercial 

colonies after the set-up of the ‘experimental’ colonies. One of these sub-colonies 

was inoculated with C. bombi collected from faeces of bees from all of the wild 

colonies. The other colony was left uninfected as control stock. These stock colonies 

were used for any subsequent inoculations of their corresponding experimental 

colony (see figure 1 for overview of colony splitting process). This process allowed 

for filtration of all the C. bombi strains, so that only those strains infective to a 

particular commercial colony were used for subsequent infections. 

In total, I had 8 experimental sub-colonies, 4 with the parasite treatment and 4 with 

control treatment, and I also had 8 stock sub-colonies, each one corresponding to 

an experimental sub-colony. This split colony design helped account for the large 

intercolony variation in learning ability that exists (Raine & Chittka 2008). 

The wooden nest boxes containing the experimental sub-colonies were then 

connected to flight arenas (W =75, L = 100, D = 50cm) via a gated tunnel. Gravity 

feeders filled with 40% sugar solution were placed within the arenas to allow the 

bees to forage, and ad libitum pollen was provided to each colony directly into the 

nest box. The stock colonies were placed into plastic nest boxes and stored in a dark 

room with ad libitum pollen and nectar. 
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Figure 1. Overview of the creation of ‘experimental’ and ‘stock’ colonies from a 

single commercial colony. The same process was repeated for 4 commercial 

colonies. 

Crithidia bombi purification and inoculation 

Inocula were made by taking a minimum of 10 bees from the parasite or control 

stock colonies. The faeces of these bees were collected and then purified following 

the method used by Baron et al. (2014) modified from Cole (1970). The faeces were 

diluted with 0.9% Ringer’s solution to make 1ml of total solution (dilution 1). The 

solution was centrifuged at 0.8G for two minutes, the supernatant was then 

removed and placed into another centrifuge tube (dilution 2), whilst the remaining 

pellet was diluted and re-suspended with another 1ml of Ringer’s solution. This 

process was repeated until 8 dilutions had been prepared. Dilutions 4, 5, and 6 were 

taken and centrifuged at 8G for 1 minute, the supernatant removed, and the pellets 

mixed with 100µl of Ringer’s solution. A small amount of the resulting solution was 

placed in a Neubauer chamber, allowing for the C. bombi cells to be counted and 

the concentration of the parasite in the solution to be calculated. The amount of 

solution that contained 10,000 parasite cells was calculated and this dose was 

diluted with 40% sugar solution to make a 20µl solution which was fed to individual 

bees. The same protocol was followed to make a control inoculum using the faeces 
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of bees from the control stock colonies. Any bee that did not consume the inoculum 

was not used for further experimentation. 

Callow marking 

Experimental sub-colonies that had been connected to flight arenas were observed 

every day for the emergence of callow workers. Workers were individually marked 

with uniquely numbered Opalith tags on the day they emerged, so the age of each 

marked bee was known. Marked bees were inoculated between the ages of 3 to 5 

days using the method previously described. Bees were then left to harbour the 

parasite for a further 7 to 10 days post-inoculation. This time period was chosen as 

it has previously been shown that the parasite load 7 to 10 days post-inoculation is 

relatively high and remains stable (Logan et al. 2005). During the bee marking 

process, the flight arenas were observed in both the morning and afternoon. Bees 

could forage in flight arenas at all times, and any marked bee that was observed 

foraging on a nectar feeder was judged to be a forager, whilst bees never observed 

to forage were judged to be nest bees. 

Olfactory learning 

Olfactory learning was assessed using the proboscis extension reflex (PER) 

experimental methodology, where bees learn to associate an odour (conditioned 

stimulus) with a sugar solution reward (unconditioned stimulus) (Bitterman et al. 

1983). This method has been used for over 50 years to test learning and memory in 

honeybees (Apis mellifera) with great success (Giurfa & Sandoz 2012), and has more 

recently been used successfully on bumblebees (Riveros & Gronenberg 2009; Smith 

& Raine 2014). 

Between 13:00 and 15:00 on the afternoon before the PER experiment, marked 

workers 6-9 days post-inoculation (7-10 days on the following day of 

experimentation) were taken from the nest box and flight arena, placed on ice for 

approximately 5 minutes until quiescent, and then harnessed. The harness 

prevented the bee from flying and crawling, but allowed the bee to move its head. 

All workers were fed to satiety with 40% sugar solution two hours after harnessing, 

and were left upright in a container overnight. 

The following morning between 08:00-09:00, bee responsiveness was tested by 

touching their antennae with a droplet of nectar solution. Those bees responding 
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with a proboscis extension were deemed to be sufficiently motivated to be used for 

behavioural assays, and were fed a small droplet of nectar solution to maintain 

motivation 15 minutes before the experiment. Those bees not responding were 

judged to be unmotivated, and were not used for behavioural assays. 

The PER experiment itself was carried out between 09:00-12:30. During the 

experiment each harnessed bee was individually placed in an odour extraction 

hood. Air flow into the hood was controlled by a programmable logic controller 

computer. The air flow was directed onto the bee via an odour tube placed 3cm 

away from the bee. A piece of filter paper soaked in 4µl of lemon scented oil was 

placed inside the odour tube, and this filter paper was replaced every 20 trials to 

keep the intensity of the odour constant. The bees were exposed to 15 seconds of 

air flow in total, the first 5 seconds being clean air and the final 10 seconds being 

the odour. The reward was presented to the bee 6 seconds into the odour stimulus 

by touching its antenna with a 0.8µl droplet of 40% nectar solution using a Gilmont 

syringe. If presentation of the reward elicited a proboscis extension response then 

the bee was fed the nectar droplet, but if the bee did not respond to the reward 

then it did not receive any nectar. A conditioned response occurred when the bee 

extended its proboscis on exposure to the odour stimulus without needing 

presentation of the nectar solution on its antennae. In this case, the bee was fed 

the nectar droplet. Each bee underwent 15 odour exposures with a 12-minute 

interval between each exposure. 

Three control trials were interspersed randomly within the final 10 odour 

exposures. During a control trial an unscented airflow was directed onto the bee 

for the duration of the trial, and no reward presentation occurred. These control 

trials were performed to check that bees were not becoming conditioned to the 

airflow rather than the scent. Any individual that appeared to be conditioned to the 

airflow, i.e., showed a conditioned response during a control trial, was removed 

from the analysis. Bees were also deemed unmotivated and excluded from the 

analysis if they did not respond to the nectar stimulus for 3 consecutive trials. 

After completing the PER trials, bees were placed into a freezer at -20°C. The thorax 

width of each bee was recorded as a measure of bee body size, which in some cases 

has been shown to affect learning ability (Worden et al. 2005; Sommerlandt et al. 

2014). 
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Parasite infection intensity 

The parasite intensity was quantified for all bees from the parasite treatment 

following a similar methodology to Baer and Schmid-Hempel (Baer & Schmid-

Hempel 2001). This was done by combining the hind-gut of a bee with 100µl of 0.9% 

ringers solution. The mixture was then ground-up in a 500µl reaction tube and 

mixed in a vortex mixer for 5 seconds. A C. bombi cell count was performed on 

0.02µl of the gut solution using a Neubauer haemocytometer. 

Data Analysis 

All statistical analyses were carried out using ‘R’ programming software (R Core 

Team 2018). The total number of conditioned responses was analysed using a 

negative binomial generalised linear mixed effects models in the ‘glmmADMB’ 

package (Fournier et al. 2012; Skaug et al. 2016). Mixed effects Cox proportional 

hazards models, in the package ‘coxme’ (Cox 1972; Therneau 2015), were used to 

analyse the learning rate and final proportion of bees that displayed one or more 

conditioned responses. Mixed modelling techniques were used to allow for the 

colony each bee came from to be accounted for as a random effect. Co-variables 

used in the models included ‘treatment’, ‘task (forager or nest)’, ‘thorax width’, 

‘age’, ‘infection intensity’, and the interaction term between ‘treatment’ and ‘task’. 

These variables were chosen as I had a priori reasons to believe that they could 

affect learning or interact with the treatment to affect learning. There was no 

correlation between variables and models were not overdispersed. Validation of 

the Cox model was carried out to check it was not violating the proportional hazards 

assumption. Mixed effects models were validated by visual inspection of plots of 

the model residuals plotted against the fitted values.  

 

Results 

150 bees from 4 colonies were deemed motivated enough to undergo PER trials, 

with 80 of these being from the control treatment and 70 from the parasite 

treatment. 39 of the 150 were judged to be unmotivated (26 control bees and 13 

parasite bees) during the trials after showing 3 consecutive non-responses to the 

sucrose solution. These bees were not included in further analyses. Of the 111 

motivated bees, 57 were from the parasite treatment group and 54 from the 
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control group. 55 of the 111 (49.5%) bees showed at least one conditioned 

response. No bees responded to the control trials. 

While a greater percentage of parasitized bees (54.4%) showed a conditioned 

response than control bees (44.4%) (Figure 2), treatment was not a significant 

covariate in the Cox regression analysis (Cox proportional hazards model: Hazard 

ratio (HR) = 1.13, P = 0.79). Similarly, although parasitised bees displayed, on 

average, a greater number of conditioned responses during the full duration of the 

trials, this was not significant (GLMM: z = 0.69, P = 0.49). 

 

Figure 2. Cumulative proportion of parasitised and control bees to have shown at 

least one conditioned response throughout the duration of the trials. Grey shaded 

area around lines represents ± the standard error of the mean. 

Infection intensity was also not a significant explanatory variable for either the 

likelihood of a bee showing one or more conditioned responses (Cox proportional 

hazards model: HR = 1.10, P = 0.25), or for the total number of conditioned 

responses a bee displayed (GLMM: z = 1.88, P = 0.06). 

Of the 111 motivated bees, 31 were categorised as foragers, while the remaining 

80 bees were categorised as nest bees. 64.5% of forager bees showed at least one 

conditioned response, whereas only 43.8% of the nest bees did (Figure 3), and the 
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task of the bee (forager or nest) was a significant predictor of learning in the Cox 

regression model (Cox proportional hazards model: HR = 2.50, P = 0.029). 

 

Figure 3. Cumulative proportion of forager and nest bees to have shown at least 

one conditioned response throughout the duration of the trials. Grey shaded area 

around lines represents ± the standard error of the mean. 

Forager bees also displayed, on average, a greater number of conditioned 

responses than nest bees throughout the PER trials, but this was not a significant 

difference (GLMM: z = 1.55, P = 0.12). 

The difference in the likelihood of a bee showing one or more conditioned 

responses was greater between the foragers and nest bees in the control group 

than in the parasitised group (Figure 4). In the control group 73.3% (11 out of 15) 

of the foragers showed at least one conditioned response, compared to 33.3% (13 

out of 39) of the nest bees. In the parasitised group 56.3% (9 out of 16) of foragers 

and 53.7% (22 out of 41) of nest bees showed one or more conditioned responses. 

However, the hypothesised interaction between the treatment and the task that 

the bee performs (foraging or nest tasks) was not a significant explanatory variable 

in the Cox model output (Cox proportional hazards model: HR = 0.43, P = 0.14). 
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Figure 4. Visualisation of the non-significant interaction (see results for statistics) 

between treatment and task, with proportion of bees that showed one or more 

conditioned responses as the response variable. Error bars represent ± standard 

error of the mean. 

The interaction term between treatment and task was also not a significant 

explanatory variable (GLMM:  z = -0.98, P = 0.33) of the total number of conditioned 

responses that bees displayed. Here, the control and parasitised bees showed a 

very similar relationship for foragers and nest bees. 

 

Discussion 

In this experiment, infection with the parasite C. bombi had no significant effect on 

the olfactory learning ability of B. terrestris. However, the task the individual was 

allocated within the colony did affect the likelihood of the bee showing at least one 

conditioned response, with forager bees more likely to learn than nest bees. 

Interactions between task allocation and treatment were non-significant, 

contrasting with my initial hypothesis that task-dependent parasite-induced 

learning alterations could occur in this system.  
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It is surprising that I do not observe a significant effect in the parasite treatment 

group given that C. bombi is known to activate the immune system of B. terrestris 

(Brown, Moret, et al. 2003), and that activated bumblebee and honeybee immune 

systems can interact with the nervous system to cause impairments in cognitive 

function (Mallon et al. 2003; Riddell & Mallon 2006). However, in bumblebees, 

reduced learning ability as measured by PER methodologies was only observed in 

bees that were starved of pollen (Riddell & Mallon 2006), and pollen is crucial for 

proper functioning of the immune system (Brunner et al. 2014). During my 

experiment, bees had an ad libitum supply of pollen directly into the nest, so they 

were not in a state of nutritional stress. This could explain why parasitic infection 

had no effect on olfactory learning in this experiment, since bees may have had 

sufficient nutrition to support both functioning immune systems, and other 

physiological functions. However, it should be noted that C. bombi has been shown 

to impair learning ability in non-nutritionally stressed bees (Gegear et al. 2005, 

2006; Otterstatter et al. 2005), although these studies did not use PER 

methodologies. Further work with nutritionally stressed bees is needed to clarify 

this relationship. 

I found the infection intensity of C. bombi to have no significant effect on learning 

ability. This is contrary to other experiments that have found increasing C. bombi 

infection intensity to negatively impact learning ability (Gegear et al. 2005, 2006). 

These experiments did, however, use different experimental set-ups to test 

learning (i.e. not PER) and were performed on a different bumblebee species 

(Bombus impatiens), which could have contributed to the differing results. 

Furthermore, the number of cells in the C. bombi inoculum and the infection 

intensities observed in Gegear et al. (2006), one of the previously 

cited experiments, were much higher than in my experiment. This may further 

explain why, in contrast to the Gegear et al. (2006) study, no effect of infection 

intensity was observed in my experiment. 

In this study foragers were more likely to show one or more conditioned responses 

than nest bees. Foraging is a complex task, requiring the individual to differentiate 

between the quality and quantity of a wide variety of potential forage resources. 

Given this, one might expect foragers to have increased cognitive function, and 

indeed in both ants and honeybees, individuals that forage have been shown to 

perform better at learning tasks than individuals based in the nest (Ray & 
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Ferneyhough 1999; Perez et al. 2013). Similar patterns have been observed in B. 

terrestris colonies when the queen is present, however, in contrast to my 

experiment, these patterns were no longer observed upon removal of the queen 

(Evans et al. 2016). In the bumblebee Bombus occidentalis, bees with more foraging 

experience were found to be better learners, and the foraging activity caused an 

increase in the size of the mushroom bodies, an area of the brain associated with 

learning and memory (Riveros & Gronenberg 2009, 2010). It is also possible that 

differential gene expression between task allocated bees could enhance the 

learning ability of foragers (Tobback et al. 2011). The results presented here on B. 

terrestris add further evidence to this pattern, strongly suggesting that task 

allocation can alter learning ability in social insects, and at least across bumblebee 

species.  

The superior learning ability of foragers could alternatively be explained by the size 

of the individual. Bumblebees that more regularly perform foraging tasks are 

generally larger than their nest based counterparts (Goulson et al. 2002), and larger 

body size has been associated with increased learning ability (Worden et al. 2005; 

Riveros & Gronenberg 2009). However, in my experiment foragers did not have a 

larger body size, and body size was not a significant predictor of learning ability in 

any of the models. 

Interaction terms between treatment and task were not significant predictors of 

either of the response variables analysed, suggesting that task-dependent parasite-

induced learning alterations do not occur in this host-parasite system, or that I 

lacked sufficient power to detect such an effect. However, this result should be 

interpreted with caution as in my experimental set up bees could only forage in the 

flight arena (100 x 75 x 50cm), whereas in the wild foragers may travel hundreds or 

even thousands of metres in a single foraging bout (Darvill et al. 2004; Knight et al. 

2005; Osborne et al. 2008; Redhead et al. 2016). This means that the energy 

demands of foraging in this experiment are greatly reduced compared to those of 

wild foragers, which subsequently could decrease the likelihood of observing any 

context dependent effects, as any trade-off between energy consumption for flight 

and for immune system upregulation is much less severe. 

Further differences exist between the foraging arena and the wild environment in 

the prior conditioning that bees experience. In the foraging arena, it is necessary to 
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ensure that bees have not associated any odour with a reward prior to the PER 

protocol, but in the wild, foragers will have made associations between particular 

flower odours and the rewards that they can provide. Foraging from nectar feeders 

in the arena does, however, still require that bees use visual cues and learning in 

order to locate food, which does replicate the behaviour of wild foragers, albeit at 

a lower level of complexity. 

It is possible that my observation and definition of forager and nest bees, led to the 

results being conservative, and the difference in learning ability between foragers 

and nest bees could in fact be greater. The observation protocol allowed me to be 

sure that the animals I labelled foragers had indeed foraged, but it is possible that 

a proportion of the bees that were judged to be nest bees left the nest and foraged 

at a time when there was no ongoing observation of the flight arenas. If this did 

occur, these individuals would have been included in the nest bee category, but 

they may have displayed the enhanced learning ability of a forager, which could 

dampen the effect of task allocation on learning that is being observed. 

The results presented here provide evidence that C. bombi has no meaningful effect 

on B. terrestris olfactory learning, and that the task that the bee performs is a more 

important factor in predicting learning ability. It can be concluded that C. bombi is 

unlikely to affect pollination services via changes in olfactory learning of its host, at 

least in an environment where food is abundant, but it could still impair pollination 

services through previously described impacts on mortality and motor learning 

(Brown et al. 2000; Brown, Schmid-Hempel, et al. 2003; Gegear et al. 2005; 

Otterstatter et al. 2005). This experiment does not support the existence of task-

dependent parasite-induced learning alterations, however their presence cannot 

be ruled out given the restricted foraging environment that bees were constrained 

to. Future research should focus on investigating cognitive function of parasitised 

bees in stressful conditions, or in a more field realistic situation where foraging is 

more energetically demanding and where food supply is not ad libitum.  
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Chapter 2 

Seasonal differences in the effects of commercial 

bumblebees on fruit quality in strawberry crops 

 

This chapter is currently under review at the journal Agriculture, Ecosystems and 

Environment. 

Martin CD, Fountain MT, Brown MJF. Seasonal differences in the effects of 

commercial bumblebees on fruit quality in strawberry crops. Agriculture, 

Ecosystems & Environment. 
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Abstract 

Colonies of commercially-reared honey bees and bumblebees, along with wild 

pollinators, significantly contribute to global food production by providing 

pollination services to crops. Commercial bumblebees are increasingly used on soft 

fruit crops, such as strawberry, an economically important crop globally. Despite 

the use of commercial bumblebees in strawberry crops, there is little quantitative 

evidence that they provide a benefit to farmers. Given the negative impacts that 

the importation of commercial colonies can have on wild bee populations, it is vital 

that the benefits of commercial bumblebees are quantified, so reasoned 

management decisions can be made that provide maximum benefit to both farmers 

and wild bees. In this study, commercial Bombus terrestris audax colonies were 

placed into June-bearer (flowering March-April) and everbearer (flowering May-

June) strawberry polytunnels on a soft-fruit farm in the south east of England, and 

the colonies were opened and closed at weekly intervals. The flower-visiting 

assemblage inside polytunnels was quantified, and fruit was harvested and quality 

assessed. In the June-bearer crop, the presence of commercial bumblebees 

increased the amount of high commercial grade fruit by 17.5%. In contrast, no 

benefit of commercial bees on pollination or fruit quality was observed in the 

everbearer crop. The increase in quality of fruit in the June-bearer crop may be 

driven by the higher B. terrestris audax flower visitation rates seen in this crop. The 

number of flower visits by wild pollinators was not a well-supported predictor of 

strawberry quality, thus the benefit they provide in this system remains to be 

elucidated. The results presented here suggest that commercial bumblebees can 

greatly increase the quality and value of a strawberry crop. The improvements in 

quality of the June-bearer crop are estimated to be worth approximately £16 

million to the total value of the UK strawberry crop. However, interactions between 

commercial bees, farm management practices and environmental factors may 

reduce their efficacy at certain times of the year. Furthermore, such factors may be 

different at other farm locations. Thus, careful consideration should be given 

before using commercial bumblebees on a crop. 
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Introduction 

Entomophilous crop pollination is a valuable ecosystem service that contributes to 

human health, wellbeing, and global food security (Klein et al. 2007; Aizen et al. 

2009). 75% of the 115 major global crop species depend to some degree on insect 

pollination that is provided by both wild and managed pollinators, and many of the 

most insect-dependent crops provide humans with valuable sources of 

micronutrients (Klein et al. 2007; Eilers et al. 2011; Wang & Ding 2012). Bees are 

one of the most important pollinator groups (Klein et al. 2007; Calderone 2012), 

partially due to their large scale management in order to support crop pollination. 

Globally, honeybees are the dominant managed pollinator (Klein et al. 2007; 

Calderone 2012), but managed bumblebees are of increasing importance, being 

superior pollinators in some crop types and possessing the ability to forage in 

cooler, windier weather (Berger et al., 1988; Goodell and Thomson, 2007; 

Stanghellini et al., 1998, 1997; Thomson and Goodell, 2002). 

Bumblebees were first commercially produced in the mid 1980’s, and colonies were 

used primarily in greenhouse tomato crops (Velthuis & van Doorn 2006). Prior to 

the introduction of commercial bumblebees, tomatoes had to be mechanically 

pollinated, so the use of bees drove down labour costs and also improved yield and 

quality of the fruit (van Ravestijn and Nederpel 1988; Velthuis and Van Doorn 2006). 

This success, combined with reports of pollinator declines and subsequent fears of 

pollen limitation in crops, has led to growth in the trade of commercial bumblebees 

(Potts et al. 2010, Lye et al. 2011). Colonies are now mass produced in several 

rearing facilities, and in 2006 it was reported that over 1 million colonies were 

shipped worldwide (Velthuis and van Doorn 2006). They are increasingly being used 

in crops other than tomatoes, some of which are grown in polytunnels and open 

fields (Velthuis and van Doorn 2006). In the UK, for example, around 15,000 

colonies per year are used on soft fruit farms (Goulson 2009). 

Despite the beneficial pollination services commercial bumblebees can provide, 

there are negative impacts associated with the trade in commercial bumblebees. 

Among these are competition with local species (Ings et al. 2006; Inoue et al. 2008) 

and disease spread (Colla et al. 2006; Goka et al. 2006; Graystock et al. 2013; 

Schmid-Hempel et al. 2014). Indeed, strong evidence of pathogen spill-over from 

commercial to wild bumblebee populations has been observed in both Europe and 
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the Americas (Colla et al. 2006; Murray et al. 2013), and in South America is thought 

to be a leading cause in the severe decline of a native bumblebee species (Schmid-

Hempel et al. 2014).  

Given the negative impacts associated with the commercial bumblebee trade, it is 

important that bumblebees are used responsibly, and only on crops for which there 

is supporting evidence of beneficial pollination services. Experiments investigating 

bumblebee pollination are often done in greenhouse crops, where wild pollinators 

have very limited or no access to the crop, and where wind pollination is minimal 

(Shipp et al. 1994; Dogterom et al. 1998; Zhang et al. 2015). Other studies have 

been done on a small scale, investigating pollen deposition during one or more 

flower visits, and it is unclear how the results extrapolate to the much larger scale 

of a farm (Thomson & Goodell 2002; Javorek et al. 2002). Some field trials have 

been done at a larger scale in polytunnel or open field crops, and have shown the 

addition of commercial bumblebees to increase yield and fruit set in blueberry 

(Stubbs & Drummond 2001; Desjardins & De Oliveira 2006), and increase yield in 

raspberry (Lye et al. 2011). A study on apple orchards in Israel suggested that not 

only does the addition of bumblebees directly increase the pollination of the crop, 

but that it can also alter the foraging behaviour of other pollinators on the crop, 

which then causes further alterations to pollination services (Sapir et al. 2017). 

However, there are many more polytunnel and open field crops in which 

commercial bumblebees are used, where their effectiveness has not been tested. 

An example of this is strawberry (Fragaria x ananassa DUCH); this is a major soft 

fruit crop, worth £284 million in the UK in 2015 (DEFRA 2015). Several bee species, 

both managed and wild, have been shown to be effective pollinators of strawberry 

(Dimou et al. 2008; Klatt et al. 2014; Connelly et al. 2015). The proportion of the 

strawberry pollinator community that is made up of bumblebees varies. In some 

cases they only make up a small proportion of the community (Klatt et al. 2014; 

Ahrenfeldt et al. 2015), but in others, they are the dominant pollinator group 

(Wietzke et al. 2018), including in cases when commercial bumblebees are 

deployed (Feltham et al. 2015). The use of commercial bumblebees on strawberry 

farms in the UK is widespread, but the contribution of both commercial 

bumblebees and wild pollinators to strawberry pollination has not been 

investigated. Given how effective wild bees can be as pollinators of strawberry, it is 

possible that the addition of commercial bumblebees is providing little or no 
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benefit to the crop. In this case, the costs (both financial and environmental) of 

applying commercial bumblebees would outweigh the benefits. However, if wild 

pollinator populations are low at a particular time or location, and if certain very 

effective wild pollinators are not present in an area, then commercial colonies may 

provide an important pollination service to the crop justifying their use. 

This study examined the contribution to crop pollination and fruit quality made by 

commercial bumblebees on a strawberry farm in the south east of England. 

Commercial colonies were placed into the crop and were or were not allowed to 

forage on the crop during specific time periods. Fruits that were pollinated during 

these time periods were picked and quality assessed to examine the impact 

commercial bees were having on fruit quality. The wild pollinator community was 

also surveyed to assess its potential for providing pollination services to the crop. 

 

Methodology 

Study species 

Fragaria x ananassa DUCH (strawberry) 

Strawberry is a hybrid species that is cultivated around the world for its fruit 

(FAOSTATS). Strawberry flowers are hermaphroditic and self-fertile, and are thus 

able to set fruit without animal mediated pollination. However, bee pollination 

increases the likelihood of each pistil receiving a pollen grain from the stamens, 

which results in increased fruit yields and quality (Dimou et al. 2008; Klatt et al. 

2014). If the flower is not fully pollinated, i.e., not all pistils receive a pollen grain, 

it can lead to the development of deformed fruit, which have a reduced market 

value (European Commission 2011; Klatt et al. 2014). It is for this reason that 

commercial bumblebee colonies are regularly used to provide pollination services 

to strawberry crops. 

In a polytunnel environment in the south of England, the lifespan of a strawberry 

flower is approximately 3-5 days (Whitehouse pers. comm.). After this time the 

petals begin to senesce and drop and the receptacle begins to form a fruit. 
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Bombus terrestris audax 

The commercial bumblebees placed into the strawberry crop on the farm were 

Bombus terrestris audax. This B. terrestris subspecies is native to the British Isles 

(Rasmont et al. 2008), and is currently the only commercially produced bumblebee 

species used in the United Kingdom. Commercial colonies are typically placed into 

a crop when they reach a size of 50-100 individuals, although this can vary 

depending on the supplier. They are then estimated to be able to provide 

pollination services for the next 6-8 weeks. 

Field site 

The fieldwork was carried out at Kelsey Farms, an 80-hectare soft fruit farm in Kent 

in the South East of England (latitude: 51.288694, longitude: 1.183766). The 

landscape surrounding the farm is dominated by pasture and arable crops 

(predominantly cereal crops), with some small villages and patches of mixed 

deciduous woodland (see supplementary figure S1 and supplementary tables S1 

and S2 for land use map and further details of the area surrounding the farm). 

Two experiments were done on the farm, the first ran for 6 weeks from 21st March 

to 29th April 2016 and was done in two varieties (‘Malling Centenary’ and ‘Flair’) of 

June-bearing strawberries. The second ran for 8 weeks from 9th May to 1st July 2016 

and was done in a single variety of everbearing strawberry. Due to proprietor 

constraints, the name of the everbearing variety cannot be released, thus from here 

on it is referred to as ‘Proprietary variety 1’. June-bearing strawberries flower 

earlier in the season and have a shorter flowering period than everbearers, which 

can flower throughout the summer months. The strawberries were grown in 

irrigated coir grow bags on a table-top system in polytunnels. During the June-

bearer experiment, the polythene at either end of each polytunnel was rolled up, 

meaning that the ends of the tunnels were open, allowing insects to enter and leave 

the tunnels. However, the polythene on the sides of the polytunnels was rolled 

down. During the everbearer experiment, both the ends and sides of the 

polytunnels were open. This setup was used for the entire strawberry crop on the 

study farm and is common practice for other UK grown polytunnel strawberry 

crops. 
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In the June-bearer experiment, 9 B. terrestris audax colonies were obtained from 

Biobest. The supplier states that these colonies arrive with approximately 60-80 

bees. These colonies were spread across 3 fields (3 colonies in each field) on the 

farm. The 3 fields were 0.94, 1.41, and 1.26 hectares in size, and contained plants 

at a density of 47,000 plants/ha. The closest colonies in separate fields were 

separated by approximately 125m. Fruit were sampled from a sampling area 

around each colony (see supplementary material figure S2 for layout of sampling 

areas). Each sampling area consisted of the tunnel with the colony inside, and the 

two tunnels either side which did not contain colonies (see ‘Strawberry marking 

and collection’ for further details on fruit collection). Ideally, all sampling areas 

would have been the same size, but this was not possible as the polytunnels in the 

3 fields varied in size. In the June-bearer experiment, the size of the sampling areas 

were between 0.16-0.21 ha, with the majority being between 0.16-0.19 ha. Thus, 

within each sampling area of 3 polytunnels, the colony densities were between 

4.76-6.25 colonies/ha, with the majority being between 5.3-6.25 colonies/ha (see 

supplementary table S3 for colony densities in each sampling area). This is close to 

the 6 colonies/ha density recommended by the supplier, and similar to the densities 

used on other strawberry farms. In two of the sampling areas (sampling areas 3 and 

6 on supplementary figure S2), only 2 tunnels were sampled, the tunnel containing 

the colony and one adjacent tunnel. This was done because these tunnels were 

much longer, and so to keep the colony density within the sampling area as close 

to 6 colonies/ha as possible, one fewer tunnel was sampled. 

In the everbearer experiment 12 colonies were placed in 4 fields (3 colonies in each 

field). The 4 fields were 3.94, 1.64, 2.44, and 1.90 ha, and contained plants at a 

density of 53,000 plants/ha. In the everbearer experiment the size of the sampling 

areas were between 0.16-0.20 ha (see supplementary figure S3 for layout of 

sampling areas). The closest colonies in separate fields were separated by 

approximately 95m. 9 of the 12 sampling areas were between 0.160-0.165 ha and 

had colony density of 6.00-6.25 colonies/ha, however, one field had slightly longer 

polytunnels meaning that the 3 remaining sampling areas were 0.20 ha with a 

colony density of 5 colonies/ha (see supplementary table S3 for colony densities in 

each sampling area). Across June- and everbearers, colonies were placed in the 

centre of the polytunnels. 
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The fields were separated by >5m high alder hedge rows, which act as wind breaks 

to reduce damage to the crop and polytunnels. In order to have strawberries that 

were and were not pollinated by commercial bumblebees, the colonies were 

opened and closed on a weekly cycle for the duration of the experiment. When the 

colonies were open, both the commercial bees and wild pollinators were able to 

forage on and pollinate the strawberry crop, but when closed the bees had to 

remain in the nest, and the crop could only be pollinated by wild pollinators. This 

meant I had two groups of fruit at the end of the field experiment, one group which 

could have been pollinated by commercial bumblebees and another group which 

could not. Within fields, all colonies were kept on the same opening and closing 

cycle, but between fields colonies were on opposing cycles (i.e. in one field all the 

colonies would be closed, whilst at the same time in another field they would be 

open). When colonies transitioned from being open to closed, they were closed at 

nightfall to reduce the chance of trapping any workers outside the colony. Bees had 

access to sugar solution from a reservoir beneath the nest at all times, as this is 

standard practice used by commercial growers. During the weeks when colonies 

were closed, they were supplemented with approximately 20g of pollen (Biobest 

UK Ltd) to allow continued growth of the colony. 

Strawberry marking and collection 

10 recently opened strawberry flowers were marked in the sampling area around 

each colony every week. Flowers were marked two days into the treatment periods, 

so they could not have been visited the previous week as they were still closed. 

Flowers were judged to have recently opened if their anthers contained large 

amounts of bright yellow/orange pollen, there was no darkening or discolouration 

of the pollen or the petals, and the receptacle showed no signs of fruit formation 

(see Figure 1 for example of a recently opened flower). Marking flowers in this state 

meant they would be receptive during the time that commercial bumblebees were 

either able or not able to forage on them, but ensured they would not be receptive 

the following week when the state of the colony was reversed. 5 of the 10 marked 

flowers in each sampling area were evenly spaced along the same polytunnel as the 

commercial colony, and a further 5 were in the two tunnels either side of the tunnel 

containing the colony (3 marked in one tunnel and 2 in another). In the case of the 

two longer polytunnels in the June-bearer experiment (sampling areas 3 and 6 on 

supplementary figure S2) 5 flowers were marked in the same tunnel as the 
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commercial colony, and the other 5 were marked in one adjacent polytunnel. The 

flowers were marked with a small twist of coloured wire, different colours were 

used to represent different weeks of the experiment, and different weeks of the 

experiment were associated with times when colonies were open or closed. 

 

 

 

 

 

 

 

Figure 1. Recently opened strawberry flower with silver tag attached. 

Marked berries were picked just before they fully ripened to reduce the chance of 

farm employees harvesting them. Upon picking, the growth position (primary, 

secondary, tertiary, quaternary) of each fruit was noted following Darrow (1929). 

Noting the growth position is important because fruits from later growth positions 

are usually smaller in size. The distance of each fruit from the closest end of the 

polytunnel was also noted. 

At the end of the experiment, there were a group of berries from times when 

colonies were open that could have been pollinated by commercial bees and wild 

pollinators, and a group of berries that could only have been pollinated by wild 

pollinators. Totals of 382 (207 and 175 from when colonies were open and closed 

respectively) and 826 (416 and 410 from when colonies were open and closed 

respectively) tagged fruit were picked from the June-bearer and everbearer 

experiment respectively. The growth positions of all berries were known. All fruits 

were stored at -20°C for later quality assessment (see ‘Strawberry quality 

assessment’ for details).  

Recording flower visitation rate 

Every week 30 minute transects were walked along the centre of each polytunnel 

that contained a colony, but not along the adjacent tunnels in the same sampling 
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area. Every individual insect that was observed visiting strawberry flowers within 1 

metre either side of the transect line was recorded and identified into one of the 

categories defined in Table 1. If it was necessary to take a collection of an insect, 

the transect time was paused whilst the collection was done. Workers of B. 

terrestris audax, B. lucorum, B. magnus and B. cryptarum were grouped together 

due to the difficulty of reliably separating them in the field. A flower visit was 

defined as an individual being present on any part of the flower. The flower 

visitation rate was reported as visits hour-1. 

Table 1. Taxonomic groups that all flower visitors were placed into. When possible, 

individuals were identified to lower levels within each category. 

Category Description 

Andrenidae Hymenoptera the Andrenidae family 

Apidae 

Hymenoptera of the Apidae family. All 
bumblebees were identified to species level 
apart from workers of B. terrestris and B. 
lucorum 

Coleoptera (other) Coleoptera that were not be assigned to a family 

Diptera (other) Diptera that were not be assigned to a family 

Formicidae Hymenoptera of the Formicidae family 

Lepidoptera Individuals of the Lepidoptera order 

Muscidae Individuals of the Muscidae family 

 Anthomyiidae 
Individuals of the Anthomyiidae subfamily of 
Muscidae 

Nitidulidae Coleoptera of the Nitidulidae family 

Oedemeridae Coleoptera of the Oedemeridae family 

Stratiomyidae Diptera of the Stratiomyidae family 

Syrphidae Diptera of the Syrphidae family 

Unknown Identity unknown 

 

Dye dispensing boxes were attached to the entrance/exit of every commercial 

colony to make commercial B. terrestris audax and wild B. terrestris audax visually 

distinguishable. The design was adapted from Martin et al (2006). The dye 

dispensers worked by dispensing a small amount of non-toxic coloured powder dye 

onto the dorsal surface of the thorax of every bee that exited the colony. The 

coloured dye served to identify bees from commercial colonies during transect 

walks. The dye dispensing method was only used for the June-bearing experiment 

for two reasons. Firstly, it proved to be an unreliable method for distinguishing 



55 
 

between commercial and wild B. terrestris audax. Secondly, deposits of dye were 

found on the surface of a fruit, meaning I could not use this method in a commercial 

farm setting. Hence, I do not report results from this part of the experiment. 

Colony activity and mass measures 

Colony activity surveys were done during periods when the colonies were open 

(once every 2 weeks). The entrance/exit of the nest was observed for 15 minutes 

and every instance of a bee entering or exiting was recorded. 

The mass of each colony was measured at the start of the experiment and during 

the time periods when they were closed (once every 2 weeks) when all the bees 

were present in the colony.  

Strawberry quality assessment 

Each fruit was assigned a classification (“extra class”, “class 1”, “class 2”, or “class 

3”) based on deformations and areas of tightly clustered achenes (see Figure 2 for 

examples of strawberries from each commercial grade classification), and following 

EU marketing guidelines (European Commission 2011). Fruits are placed into ‘extra 

class’ if they are highly symmetrical and possess no deformations or clusters of 

achenes and are greater than 25mm in diameter. Class 3 fruits are highly 

asymmetrical and deformed, and have tightly clustered achenes. Classes 1 and 2 

fall in between these two extremes, and must have a diameter of at least 18mm. 

Extra class and class 1 fruits are the highest commercial grades and consequently 

of the greatest market value, class 2 fruits have a reduced market value, and class 

3 fruits are unmarketable. Although extra class and class 1 fruit can be separated 

as mentioned above, in practice they are often combined (Klatt et al. 2014). 

The diameter of each fruit was measured to the nearest hundredth of a millimetre 

at its widest point with digital calipers (Mitutoyo Digimatic Caliper), and the mass 

of each fruit was measured to the nearest hundredth of a gram. 

Finally, the fruit was placed in a food processor (Tefal Minipro 500W) and blended 

for 10-15 seconds with 100ml distilled water. Fertilised achenes are heavier than 

water and so sink to the bottom. In contrast, unfertilised achenes float at the 

surface (Klatt et al. 2014). This separation allows for a very direct measure of 

pollination success. A further 100-200ml of distilled water was added to the 

solution in order to create a greater degree of separation between the unfertilised 
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and fertilised achenes, and any achenes that were stuck to the lid, blades or sides 

of the food processor were washed back into the mixture. The unfertilised seeds 

were removed from the surface and counted. The water was then very slowly 

drained into another container, leaving the sunken fertilised seeds to be counted. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Examples of strawberries from each commercial grade classification. 

Strawberry colour was not taken into account in the quality assessment, as berries 

often had to be harvested before fully ripened. 

Estimating fruit value 

The value of the strawberries was calculated from the UK strawberry market value 

index for 2016, which gives approximations of the values of strawberries within 

each quality class. These values were applied to the proportions of strawberries 

from each quality class that were collected from the farm. A percentage change 

between the value of strawberries when colonies were open compared to when 

colonies were closed was calculated. This percentage increase was then applied to 

total value of the UK strawberry crop in 2015, which was £284.1 million (figures 

from 2016 are still listed as ‘provisional’ by DEFRA, and thus were not used). Of the 

total strawberry value, it was estimated that 55% (£156.26 million) of this value was 

from June-bearer varieties and 45% (£127.84 million) from everbearer varieties 

Extra Class Class 1 Class 2 Class 3 
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(Richard Harnden pers comms.). The percentage changes in values for both 

everbearers and June-bearers were then subtracted from their respective total 

values to provide an estimate of the value that commercial bumblebees were 

providing to the crop. 

This method to estimate the value does assume that all farmers in the UK are using 

commercial bumblebees on their crop, which is known not to be the case. However, 

the majority of farmers do use commercial bees in strawberry crops. It should also 

be noted that individual retailers have their own exact specifications for strawberry 

quality meaning that the boundaries between classifications could be slightly 

different from one retailer to the next. The monetary value calculated based on this 

method of estimation will also fluctuate from year to year based on the total value 

of the UK strawberry crop. 

Bumblebee sampling and parasite screening (see Chapter 3 methodology page 

101 for detailed description of bumblebee sampling and dissection protocol) 

A sample of bumblebees were removed from each commercial colony during every 

week that they were in the strawberry crop for. All bee samples were then frozen 

and later dissected for the presence of parasites. 

Statistical analyses 

Bombus terrestris audax flower visitation 

All statistical analyses were done using ‘R’ programming software (R Core Team 

2018). Generalised linear mixed effects models from the package ‘lme4’ (Bates et 

al. 2017), were used to analyse the number of B. terrestris audax flower visits in the 

June-bearer crop. Poisson error structures were used as the data were counts. In 

the everbearer crop, negative binomial generalised linear mixed effects models, 

from the package ‘glmmADMB’ (Skaug et al. 2016), were used to account for 

overdispersion. The covariables included in the models were ‘colony status’ 

(whether the colony was open or closed), and temperature. Humidity was 

measured and considered as a covariable, but it was omitted due to its high degree 

of collinearity with temperature. The random effects included the identity of the 

colony nested within the identity of the field, and both of these were crossed with 

the sampling week, to reflect that each field was repeatedly sampled each week. 
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All pollinator flower visitation 

Negative binomial generalised linear mixed effects models, from the package 

‘glmmADMB’ (Skaug et al. 2016), were used to analyse the number of wild 

pollinator visitation events and to investigate whether commercial B. terrestris 

audax presence or visitation abundance was influencing wild pollinator visitation. 

Negative binomial models were used to account for overdispersion. The covariables 

included in the models were ‘colony status’, ‘number of B. terrestris audax flower 

visits’ and temperature. The random effects structure was the same as in the B. 

terrestris audax flower visitation models. 

Strawberry quality 

Linear mixed effects models, from the package ‘lme4’ (Bates et al. 2017), were used 

to analyse the proportion of fertilised achenes per fruit, fruit mass and fruit 

diameter. Cumulative link mixed models, from the package ‘Ordinal’ (Christensen 

2017), were used to analyse the strawberry classification variable, these models are 

suitable for handling ordinal response variables. 

The covariables included in the models were ‘colony status’, the ‘growth position’ 

of the fruit (primary, secondary, tertiary or quaternary), the distance of the fruit 

from the end of the polytunnel, the Nitidulidae beetle abundance recorded from 

transects, and the wild pollinator abundance recorded from transects. Nitidulidae 

abundance was initially part of the wild pollinator abundance variable, but the 

beetles were so numerous that I treated them as a separate variable to investigate 

what, if any, effect they were having on strawberry quality. For the analysis of the 

June-bearing strawberries, the strawberry variety was also included as a covariable 

since two varieties were sampled. This was not necessary when analysing the 

everbearing strawberries as only one variety was sampled. 

The random effects structures of all the strawberry quality models were the same. 

They all included the identity of the colony nested within the identity of the field, 

and both of these were crossed with the sampling week. For the June-bearer 

strawberry quality models, fitting a random slope and intercept for the strawberry 

variety was tested. This allowed for each variety of strawberry to respond 

differently to the presence of commercial bees. However, these models fitted less 
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well (ΔAICc > 2) than models with the simpler random effects structure, thus they 

were not used for further analyses.  

For all response variables, candidate models were compared using an information 

theoretic approach. Candidate models included all possible combinations of 

covariables. A ‘null model’, which only included the intercept as a predictor, was 

also included in model comparison. The Akaike Information Criterion corrected for 

small sample sizes (AICc) was used to compare models, those with the lowest AICc 

were judged to be the best fitting (Johnson & Omland 2004). If several models were 

within two AICc units of the optimal model (model with lowest AICc), then 

parameter estimates were obtained by model averaging the best set of models 

(Δ2AICc set) using the ‘MuMIn’ package (Johnson & Omland 2004; Bartoń 2017). 

Models were validated by visual inspection of plots of the residuals plotted against 

the fitted values. Overdispersion and underdispersion were assessed by examining 

the ratio of the residual deviance to the residual degrees of freedom. 

Overdispersion was also tested using the R function ‘overdisp_fun()’. Models were 

not over-dispersed and there was no collinearity between variables used. 

The effects of parasitism 

To assess whether parasitism of the commercial bumblebees had any effects on B. 

terrestris flower visitation and strawberry quality, separate analyses were 

performed on a subset of the data, only when colonies were open. When colonies 

were closed, commercial bumblebees were not visiting strawberry flowers or 

pollinating fruit regardless of their infection status, so this data was excluded. The 

models for B. terrestris visitation and strawberry quality measures took the same 

structures as those specified above, only with the prevalence of Crithidia bombi and 

Apicystis bombi included as covariables, and ‘colony status’ removed as the 

colonies were always open for the data used in these analyses. Model selection and 

validation was also performed in the same manner as specified above. 

Colony mass and activity 

The mass and foraging activity levels of colonies from the June- and everbearing 

experiments were aggregated for each experiment and compared using Wilcoxon-

Mann-Whitney tests. 
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Results 

In the June-bearer experiment, 27 hours of transect walks were completed during 

which 574 strawberry flower visits were observed. A total of 382 tagged fruit were 

recovered for quality assessment, 207 from when colonies were open and 175 from 

when colonies were closed. For the everbearer experiment, 48 hours of transect 

walks were completed during which 5176 flowers visits were observed. 826 tagged 

fruits were picked, 416 from when colonies were open and 410 from when colonies 

were closed. 

Bombus terrestris audax flower visitation 

In the June-bearing strawberry crop, the optimal model included only the colony 

status variable and no model averaging was required (Table 2), indicating that 

colony status was a good predictor of B. terrestris audax flower visitation. When 

colonies were open, B. terrestris audax visitation rate to strawberry flowers was 

higher than when colonies were closed (Figure 3; estimate = 1.43; 95% confidence 

intervals = 0.99 – 1.92). Models including temperature were not well supported, 

indicating that this variable was not an important predictor of strawberry flower 

visitation. However, this trend was not evident in the everbearing crop (Figure 4). 

Here, colony status was not a good predictor of flower visitation (ΔAICc to best 

model = 2.27), but temperature was (0.065; 0.0088 - 0.12), with more visits 

occurring at higher temperatures. 
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Table 2. Candidate models used to investigate the effect of colony status and 

temperature on B. terrestris strawberry flower visitation in the June-bearer and 

everbearer crops. The null model included only the intercept as a predictor, but 

included the same random effects structure as all other candidate models. Models 

are presented from the optimal model with the lowest AICc to the model with the 

highest AICc at the bottom. The optimal model and those within <2ΔAICc are 

highlighted in bold. When more than 1 model is highlighted, model-averaging was 

performed to obtain estimates. 

Model AICc ΔAICc 

June-bearers     

colony status 237.50 0.00 

colony status + temperature 240.03 2.53 

null 280.49 42.99 

temperature 281.02 43.52 

Everbearers     

temperature 360.70 0.00 

colony status + temperature 362.97 2.27 

null 363.33 2.63 

colony status 365.53 4.83 
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Figure 3. The flower visitation rate (visits hour-1) of B. terrestris on strawberry 

flowers in the June-bearing crop. The median (central horizontal line), quartiles 

(box), non-outlier ranges (vertical lines) and raw data (dots) are presented on the 

plot. 
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Figure 4. The flower visitation rate (visits hour-1) of B. terrestris on strawberry 

flowers in the everbearing crop. The median (central horizontal line), quartiles (box), 

non-outlier ranges (vertical lines) and raw data (dots) are presented on the plot. 

 

All pollinator visitation 

In the June-bearers, a total of 574 strawberry flower visits were observed over the 

course of 27 hours of transects walks. Coleoptera of the family Nitidulidae were the 

most abundant flower visitors (n=325), followed by Muscoidea Anthomyiidae 

(n=103), and Apidae (n=94). Syrphidae (n=26) and ‘other Diptera’ (n=22) were 

scarcer. ‘Other Muscidae’ (n=2), Dermaptera (n=1), and Aphididae (n=1) were the 

least abundant flower visitors. The mean (± S.E.) wild pollinator visitation rate was 

(no. of wild pollinator visits = all flower visits – B. terrestris audax visits) 18.08 (± 

2.66) visits/hour. 

In the everbearers, 5176 flower visits were observed over 48 hours of transect 

walks. Again, Nitidulidae were by far the most abundant flower visitors (n=4378), 
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followed by Diptera (other) (n=231), Muscoidea Anthomyiidae (n=222), Apidae 

(n=135), Syrphidae (n=76), Empididae (n=63), Coleoptera (other) (n=45), 

Stratiomyidae (n=10), Formicidae (n=6), Lepidoptera (n=4), Muscidae (n=3), 

Andrenidae (n=1), Oedemeridae (n=1), and unknown (n=1). The mean (± S.E.) wild 

pollinator visitation rate was 105.92 (± 26.02) visits/hour. 

B. terrestris audax visitation was not a good predictor of wild pollinator visitation 

in both the June- and everbearing crops, not featuring in the Δ2AICc model sets 

(June-bearer: ΔAICc to best model = 2.60, everbearer: ΔAICc to best model = 2.30). 

Colony status did feature in the Δ2AICc model sets as a predictor of wild pollinator 

visitation, but its effect was not strongly supported in either the June- or 

everbearing crops as parameter estimate confidence intervals crossed zero (June-

bearer: 0.66; -0.41 – 1.73, everbearer: 0.15; -0.11 – 0.40). 

Strawberry quality 

Berry mass and diameter 

In the June-bearer crop, model-averaged parameter estimates indicated that 

colony status was not a strong predictor of fruit mass or diameter (mass: ΔAICc to 

best model = 2.10, diameter: -0.12; -0.41 – 0.17). The growth position of the fruit 

received strong support as a predictor of both fruit mass and diameter. This variable 

appeared in all five of the Δ2AICc set of models. As expected, berries from 

secondary and tertiary growth positions were lighter and smaller than those from 

primary growth positions (secondary: mass: -0.21; -0.25 – -0.16, diameter: -1.00; -

1.21 – -0.79, tertiary: mass: -0.39; -0.46 – -0.33, diameter: -1.98; -2.30 – -1.66). The 

variety of the fruit was also a strong predictor of mass and diameter (mass: -0.13; -

0.23 – -0.037, diameter: -0.61; -0.91 – -0.30). 

In the everbearer crop, colony status was not a good predictor of mass (mass: -

0.034; -0.19 – 0.12), or diameter (ΔAICc to best model = 2.04). Growth position 

featured in all of the Δ2AICc models indicating that it was a good predictor of both 

fruit mass and size. Berries from secondary and tertiary growth positions were 

lighter and smaller (secondary: mass: -1.02; -1.20 – -0.84, diameter: -0.10; -0.13 – 

-0.071, tertiary: mass: -2.44; -2.79 – -2.08, diameter: -0.45; -0.51 – -0.38). 

Surprisingly, wild pollinator abundance had a negative effect on fruit mass and 

diameter (mass: -0.028; -0.047 – -0.0089, diameter: -0.0045; -0.0078 – -0.0011). 
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Pollen beetle abundance also had a negative effect on fruit mass (mass: -0.0016; -

0.0030 –  -0.00011). 

Achene ratio 

Colony status was not a strong predictor of the proportion of fertilised achenes on 

a fruit in the June-bearer crop (0.068; -0.016 – 0.15). Distance to the edge of the 

polytunnel was a well-supported predictor (-0.0041; -0.0068 – -0.0015), with the 

proportion of fertilised achenes increasing on fruits that were closer to the ends of 

the polytunnels. The variety of the fruit was also a good predictor (0.096; 0.011 – 

0.18). In the everbearer crop, colony status was also not a well-supported predictor 

of the proportion of fertilised achenes (ΔAICc to best model = 2.03). 

Strawberry Class 

In the June-bearer crop, colony status was a well-supported predictor of fruit 

quality classification (-0.93; -1.64 – -0.21). Greater proportions of fruit of the 

highest commercial grades were found during periods when colonies were open 

(Figure 5). 17.5% more extra class and class 1 fruit were harvested from the open 

colony periods than from the closed. Variety was also a good predictor of 

strawberry class (1.51; 0.73 – 2.29). However, in the everbearer crop, colony status 

was not a well-supported predictor of strawberry quality (Figure 6), featuring in 

none of the model averaged Δ2AICc models (Table 3; ΔAICc to best model = 2.03). 

The only well-supported predictor was the growth position of the fruit, with fruit 

from secondary growth positions being of lower quality (-1.57; -2.00 – -1.13). 
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Table 3. Model-averaged models (the optimal model and those models within 

<2ΔAICc) used to investigate the best predictors of fruit commercial grade in the 

June-bearer and everbearer crops. Each line of the table represents a unique model. 

+ symbols indicate the inclusion of that covariate in the model. Models including all 

the predictor variables were tested. The null model included only the intercept as a 

predictor, but included the same random effects structure as all other candidate 

models. The covariable ‘variety’ was not included in everbearer models because only 

one variety of strawberry was sampled. 

colony 
status 

growth 
position 

distance 
to edge 

beetle 
abundance 

wild 
pollinator 

abundance 
variety AICc ΔAICc 

June-bearers               

+  +   + 509.60 0 

+  + +  + 509.98 0.38 

+  +    511.55 1.95 

+     + 511.57 1.97 

Everbearers               

 +    na 817.80 0 

 + +   na 818.36 0.56 

 +   + na 818.92 1.12 

 + +  + na 819.35 1.55 

  +   +   na 819.56 1.76 
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Figure 5. Proportion of fruits within each commercial grade from each treatment in 

the June-bearing crop. Error bars represent ± standard error of the mean. 

Figure 6. Proportion of fruits within each commercial grade from each treatment in 

the everbearing crop. Error bars represent ± standard error of the mean. 
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Colony mass and activity 

Colony mass and activity did not differ between the colonies used in the June- and 

everbearer experiments (mass: p = 0.81, activity: p = 0.53). 

Parasitism of colonies (see Chapter 3 for more detailed assessment of colony 

parasitism) 

In the colonies placed into the June-bearing crop, Apicystis bombi was the only 

parasite detected. It was found in two bees from a single colony from the final 

sampling time point of the experiment. Parasites were more prevalent in the 

colonies in the everbearing strawberry crop. All 12 colonies became infected with 

at least one of A. bombi, Crithidia bombi, Nosema bombi or Conopid fly larvae 

(Conopidae) at some point during the experiment. A. bombi and C. bombi were by 

far the most prevalent, thus, the prevalence of each of these species was included 

in the everbearer strawberry quality and B. terrestris visitation models. Neither A. 

bombi nor C. bombi prevalence were well-supported predictors of any strawberry 

quality measure or B. terrestris visitation rate. 

 

Discussion 

To the best of my knowledge, this is the first study investigating the effect of 

commercial bumblebees on strawberry crop quality in a commercial farm setting. 

With commercial bumblebees being used on a variety of crop types, studies like this 

are essential to verify the assumed benefits that bees provide to the crop. The 

results indicate that the addition of commercial B. terrestris audax colonies to a 

June-bearing strawberry crop increases the percentage of high commercial grade 

(extra class and class 1) fruits by 17.5%. This improvement in quality is estimated to 

be worth approximately £16 million to the total value of the UK strawberry crop, 

based on the value of the crop during 2015 (Harnden pers. comm., 2018). However, 

in an everbearing strawberry crop, commercial bees provide no additional benefit 

to any aspect of fruit quality or yield. 

One of the main drivers behind the observed difference in the effectiveness of 

commercial bumblebees in June- and everbearing strawberry crops, is likely to be 

the differing visitation rates of B. terrestris audax on strawberry flowers in these 
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two crops. In the June-bearer crop, there were considerably more B. terrestris 

audax visits when colonies were open, which suggests that these visits were being 

made by the commercial bees. This is important because previous studies have 

suggested that commercial bees may predominantly forage on alternative flowers 

to the target crop (Lye et al. 2011; Murray et al. 2013; Foulis & Goulson 2014). 

During the time periods when the colonies were closed, very few B. terrestris audax 

visits were observed in the June-bearers. Wild bumblebees are still establishing 

nests and in the early stages of colony development at this time of year, indeed 

35.3% of the total flower visits made by wild bumblebees in this experiment were 

made by newly emerged queens. Consequently, it was not surprising to observe 

low numbers of wild B. terrestris audax in the June-bearer polytunnels.   

In the everbearing crop, there was very little difference in the B. terrestris audax 

visitation rate between when colonies were open and closed. Even when colonies 

were open, the B. terrestris audax visitation rate to the crop was much lower (1.88 

± 0.34 visits/hour) than the equivalent periods in the June-bearer crop (5.26 ± 0.85 

visits/hour). This could be because bees were leaving the crop to forage on other 

resources, which are likely to have been more abundant during the time of the 

everbearer experiment (May-June), than the June-bearer experiment (March-

April). In addition, different strawberry varieties can vary in the sugar concentration 

of their nectar, and in the floral volatiles they produce, both of which could alter 

their attractiveness to pollinators (Abrol 1992; Klatt et al. 2013). Thus, it is possible 

that the everbearing variety used in this experiment was not highly attractive to 

bumblebees both wild and commercial. Furthermore, the wild B. terrestris audax 

population is likely to have been higher during the time of the everbearer 

experiment, as this time period coincides with when wild colonies are reaching their 

peak. This is likely to have contributed to the lack of difference seen between 

visitation rates when colonies were open and closed in the everbearer crop. This, 

in turn, could have contributed to commercial colonies having no impact on fruit 

quality in this crop. It is possible that deploying commercial bumblebees at a higher 

density in everbearing strawberry crops could increase the B. terrestris visitation 

rate and subsequent quality of the crop, but this remains to be tested. 

Another factor that could have affected the results is that commercial bumblebees 

may have foraged on strawberry fields outside of the one in which the colony was 

placed i.e. bumblebees could have left a field in which all the colonies were open, 
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and foraged in a field in which the commercial colonies were closed, as some of the 

fields were within B. terrestris audax foraging range of each other. However, B. 

terrestris audax mainly fly at <3m above the ground (Osborne et al. 1999) and the 

windbreaking hedges separating all fields were >5m, which would have deterred 

bumblebees from crossing to adjacent fields. It is also not clear if B. terrestris audax 

would travel a greater distance (e.g. into a different field) to collect the same quality 

resource (strawberry). I believe that these factors reduce the likelihood that 

bumblebees will have foraged regularly in other strawberry fields. The results from 

the June-bearer experiment further support this, as I would not expect to see 

significant differences in visitation rate and strawberry quality between the open 

and closed colony treatments if commercial bumblebees were foraging in adjacent 

fields in large numbers. 

The polytunnel architecture itself may also have influenced the results. Following 

standard practice, during the June-bearer experiment, the polythene on the sides 

of the tunnels was rolled down and only the ends of the tunnels were open, but in 

the everbearer polytunnels both the sides and ends were open. This may have had 

a large impact on the effectiveness of the commercial bumblebee colonies. For 

example, the June-bearer crop may have been more difficult both for wild 

pollinators to access and for commercial bees to leave (Ellis et al. 2017). If this were 

the case, the commercial bees may have been more likely to forage on the 

strawberry crop than on alternative foraging resources, thus providing a better 

pollination service to the crop. This situation could have been reversed in the 

everbearing crop, where the more open polytunnels may have allowed commercial 

bees to leave and wild pollinators to enter the crop more easily. This could have 

contributed to the commercial bees’ apparent lack of effect in the everbearing 

crop, and suggests that it may be the interaction between crop management 

practices and commercial bumblebees, rather than the provision of commercial 

bumblebees alone, that drive potential pollination benefits. 

A final factor that could have contributed to the colonies used in the June-bearer 

experiment being more beneficial to the crop could be the health of the colonies 

themselves. While colonies were parasite-free on arrival, parasite prevalence at the 

end of the experiment was much higher in the colonies from the everbearer 

experiment than those from the June-bearer experiment (Martin et al. unpublished 

data Chapter 3). Such parasitism could potentially have reduced the bees’ 
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pollination ability by increasing host mortality (Brown et al. 2000; Otti & Schmid-

Hempel 2007) or altering host behaviour (Gegear et al. 2006). 

Despite the observed benefits provided by the commercial bees in the June-bearer 

crop, the B. terrestris audax visitation rate was low even when colonies were open 

(5.26 ± 0.85 visits/hour). Habitat management schemes have been shown to 

increase pollinator visitation on or around crops (Kleijn & Sutherland 2003; Blaauw 

& Isaacs 2014; Feltham et al. 2015; Campbell et al. 2017; Venturini et al. 2017), and 

it is possible that such schemes could reduce the need for commercial bumblebees, 

particularly if wild bumblebees benefitted from the management. However, 

evidence of habitat management schemes increasing the pollination services 

provided to a crop are rare (Blaauw & Isaacs 2014; Venturini et al. 2017), and the 

results presented here do not clarify the role that wild pollinators have in 

strawberry pollination on a farm setting. Thus, further research would be required 

to investigate the efficacy of habitat management schemes in improving pollination 

services to a strawberry crop, before this could be recommended as an alternative 

strategy to commercial bee use in June-bearing crops. 

Our results provide no evidence that wild pollinators are improving the crop, which 

is in contrast to other studies (Greenleaf & Kremen 2006; Holzschuh et al. 2012; 

Garibaldi et al. 2013; Blaauw & Isaacs 2014). Wild pollinator flower visitation was 

not a well-supported predictor of fruit quality in the June-bearer crop. This could 

be explained by the relatively low numbers of wild pollinators present during this 

time of the year not being sufficient to impact any fruit pollination measures. In the 

everbearer crop, there was even a negative effect of wild pollinator flower 

visitation on fruit mass and diameter, despite there being much greater wild 

pollinator flower visitation rates than in the June-bearer crop. A factor contributing 

to this could be that the crop was not pollen limited for the duration of the 

everbearer experiment, even at times when wild pollinator abundances were at 

their lowest. If this was the case, then additional visits would not be providing any 

benefit to the crop, and could potentially even be decreasing the quality of the crop 

by overpollination (Velthuis and van Doorn 2006; Mommaerts, Put, and Smagghe 

2011). Another possibility could be that the everbearer variety used in this 

experiment was not dependent on insect pollination to achieve good quality fruits 

and high yield. However, previous research suggests that even though strawberry 

varieties do differ in their levels of self-compatibility, the majority do depend on 
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insect pollination to maximise fruit yield and quality (Nye & Anderson 1974; 

Zebrowska 1998; Klatt et al. 2014; Hodgkiss et al. 2018). Thus, I believe that this 

explanation is unlikely to be a major contributor to the results I observed. 

Of all the strawberry flower visitors, Coleoptera of the family Nitidulidae were by 

far the most abundant in the June-bearing and everbearing crops. Given their 

dominance in the system, I treated them as a separate covariable, to investigate 

whether their abundance was a predictor of strawberry pollination. The majority, 

if not all of these, were of the genus Meligethes. These are pollen and nectar 

feeding beetles, and there is contrasting evidence as to whether Meligethes aeneus 

provides pollination services or not on oilseed rape plants (Åhman et al. 2009; 

Chifflet et al. 2011). In this experiment, pollen beetle visitation did not positively 

affect any strawberry quality measure, suggesting they do not provide any 

pollination service to the crop. 

It should be noted that my definition of flower visitor does not necessarily mean 

that the visitor was a pollinator of strawberry, and it does not take into account 

that different species are not equally effective at pollinating strawberry. These 

factors may have contributed to the apparent lack of effect that wild flower visitors 

were having on strawberry pollination and quality. However, the main focus of the 

study was to test the effectiveness of commercial bumblebees. 

The lack of effect of commercial bumblebees on strawberry quality in the 

everbearer crop raises questions about commercial bumblebee utility in this crop 

system, especially considering the negative impacts associated with commercial 

colony importation. However, this experiment did not cover the entire flowering 

period of the everbearer crop, which can continue into the late summer months 

(September/October). It is possible that commercial bumblebees may become of 

more use later in the season, as wild pollinator abundance and alternate foraging 

resources decrease (Hallmann et al. 2017). Furthermore, other locations may have 

more depauperate pollinator communities than my selected study farm, and 

studies have shown that pollinator communities can drastically change from year 

to year (Kremen et al. 2002). In such cases, commercial bumblebees may be of use 

as an insurance policy for crop pollination. Further studies are required to 

investigate whether the effects observed here vary over space and time, but this 

study provides a detailed baseline from which to build further studies. 
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The weekly opening and closing of colonies could itself have impacted upon the 

foraging behaviour of the commercial bumblebees and their subsequent 

effectiveness at pollinating the crop. When colonies were closed, bumblebees may 

have become accustomed to feeding from the internal nectar reservoir that is 

supplied with all commercial colonies. Then when colonies were reopened, bees 

may have carried on preferentially foraging on the nectar reservoir rather than the 

crop, potentially reducing their effectiveness at pollinating the crop. However, 

another study that used the same opening and closing technique, also observed a 

positive impact of commercial bumblebee presence (Lye et al. 2011), which 

suggests that this technique does not disturb the foraging choices of commercial 

bumblebees. Furthermore, during periods of cold weather bumblebees may 

naturally remain within the colony regardless of whether it is open or closed, and 

thus, still have periods of time when they are solely foraging from the nectar 

reservoir.  

The positive effect of commercial bumblebees on fruit quality in the June-bearing 

crop is comparable to studies demonstrating benefits of commercial bees in other 

soft fruit crops (Stubbs & Drummond 2001; Lye et al. 2011). I believe the results 

observed in the June-bearer crop to be broadly generalisable across UK and 

Northern European strawberry crops grown in polytunnels. Most locations in these 

areas are unlikely to have strong wild pollinator populations during March and April 

when polytunnel-grown June-bearers are flowering (Hallmann et al. 2017), 

meaning that the addition of commercial bees to the crop during this time is likely 

to provide a similar benefit to that which was observed here. Given the clear utility 

of commercial bumblebees, greater emphasis should be placed on reducing the 

negative impacts associated with the trade in commercial colonies, so that they can 

be used with minimal risk to environmental health. 

Conclusion 

As commercial bumblebees are increasingly marketed for a broad range of crop 

types, studies like this one are essential to prove the bees are having a beneficial 

effect, and to inform growers of how to use commercial bumblebees in an 

environmentally responsible and cost-effective manner. A 17.5% increase in high 

commercial grade fruit represents a significant increase in the value of the 

strawberries produced, estimated to be worth approximately £16 million to the 
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total value of the UK strawberry crop in 2015. Thus, the results support the 

widespread use of commercial bumblebees in June-bearer crops on strawberry 

farms. Similar benefits are likely to be seen in other countries where similar growing 

systems are implemented. However, commercial bees placed in an everbearing 

crop appear to be providing no benefit to fruit quality, indicating that it may not be 

worth using them in this crop type. In the June-bearers, the increase in fruit quality 

is provided by a small number of commercial bumblebee flower visits; this raises 

the possibility that habitat management measures that increase wild bumblebee 

abundances could create a similar benefit to the crop. However, until such 

measures have been further researched and are proven to work, the results 

presented here suggest that commercial bumblebees are a valuable resource to 

strawberry growers, but that interactions between commercial bees, farm 

management practices and environmental factors should be carefully considered 

before deploying commercial bumblebees on a crop. 
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Supplementary material 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S1. Land use classification of the area surrounding the 

farm. The circular classified area has a diameter of 2.75km with the centre point 

being in the middle of the farm. This diameter was chosen as it included the land 

use up to 1km away from all the commercial bumblebee colonies. Definitions of 

each land use class and the area they occupy can be found in supplementary 

tables S2 and S1 respectively. 
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Supplementary Table S1. The area covered (m2) by each land use in a 2.75km 

diameter circle centred on the farm. This diameter was chosen as it includes the 

land cover within a 1km radius of every commercial bumblebee colony that was 

placed on the farm. Definitions of each land use class can be found in 

supplementary table S2. 

 

 

 

 

 

 

 

Supplementary Table S2. Definitions of each land use classification. 

 

 

 

 

 

 

Land use Description 

Cereal Cereal crops (wheat, maize) 

Experimental strawberry fields 
Strawberry fields into which commercial 
colonies were placed 

Fruit 
Fruit crops (apple, blackcurrant, strawberry, 
raspberry) 

Garden Residential gardens 

Legumes Legume crops (field bean) 

Man made Roads and buildings 

Other arable Arable crops that were not identified 

Pasture/grass 
Grazing pasture and grassland areas that were 
not residential gardens 

Water Areas of water 

Wood Woodland (predominantly mixed deciduous) 

Land use Area covered (m2) 

cereal 1473075 

experimental strawberry fields 140113 

fruit 313824 

garden 216126 

legumes 104329 

man made 232891 

other arable 1333681 

pasture/grass 1544499 

water 230598 

wood 342082 
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Supplementary Figure S2. Layout of colonies and fields in the June-bearer 

experiment. The fields sampled are shaded in blue. The green blocks indicate 

sampling areas; the polytunnels from which strawberries were sampled. Each 

green block consists of three tunnels: one central tunnel which contained the 

commercial bumblebee colony, and the two tunnels either side of this central 

tunnel. The northernmost sampling areas in the southernmost field and in the 

central field, only consist only of 2 polytunnels. This was done to take into account 

the differing sizes of the polytunnels (see Methodology for details). 
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Supplementary Figure S3. Layout of colonies and fields in the everbearer 

experiment. The fields sampled are shaded in red. The green blocks indicate 

sampling areas; the polytunnels from which strawberries were sampled. Each 

green block consists of three tunnels: one central tunnel which contained the 

commercial bumblebee colony, and the two tunnels either side of this central 

tunnel. 
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Supplementary Table S3. The strawberry variety grown, the size, and the 

commercial bumblebee colony density within each sampling area from which fruit 

were picked. The position of each sampling area can be seen in supplementary 

figures 2 and 3. Fields prefixed with ‘JB’ were sampled in the June-bearer 

experiment, and those prefixed with ‘EV’ are from the everbearer experiment. 

Sampling 
area 

Field 
Strawberry 

variety 

Sampling 
area size 

(hectares) 

Colony density 
within sampling 

area (colonies/ha) 

1 JB1 Malling Centenary 0.16 6.25 

2 JB1 Malling Centenary 0.185 5.405 

3 JB1 Malling Centenary 0.168 5.952 

4 JB2 Flair 0.167 5.988 

5 JB2 Flair 0.21 4.762 

6 JB2 Flair 0.188 5.319 

7 JB3 Malling Centenary 0.181 5.525 

8 JB3 Malling Centenary 0.18 5.556 

9 JB3 Malling Centenary 0.178 5.618 

10 EV1 Proprietary variety 1 0.165 6.061 

11 EV1 Proprietary variety 1 0.16 6.25 

12 EV1 Proprietary variety 1 0.16 6.25 

13 EV2 Proprietary variety 1 0.165 6.061 

14 EV2 Proprietary variety 1 0.164 6.105 

15 EV2 Proprietary variety 1 0.164 6.105 

16 EV3 Proprietary variety 1 0.163 6.154 

17 EV3 Proprietary variety 1 0.163 6.154 

18 EV3 Proprietary variety 1 0.163 6.154 

19 EV4 Proprietary variety 1 0.2 5 

20 EV4 Proprietary variety 1 0.2 5 

21 EV4 Proprietary variety 1 0.2 5 
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Supplementary Table S4. Model-averaged models (the optimal model and those 

models within <2ΔAICc) used to investigate the best predictors of strawberry mass, 

strawberry diameter, proportion of fertilised achenes, and strawberry class in the 

June-bearer strawberry crop. + symbols indicate the inclusion of that covariate in 

the model. Models including all combinations of the predictor variables were 

tested. The null model included only the intercept as a predictor, but included the 

same random effects structure as all other candidate models. 

beetle 
abundance 

colony 
status 

distance 
to edge 

growth 
position 

variety 
wild 

pollinator 
abundance 

AICc ΔAICc 

     strawberry mass             

   + +  2489.50 0.00 

   + + + 2490.03 0.53 

+   + +  2490.60 1.10 

   +   2491.04 1.54 

 +     + +  + 2491.40 1.90 

     strawberry diameter           

   + +  2316.80 0.00 

   + + + 2317.73 0.93 

+   + +  2317.82 1.02 

 +  + +  2318.64 1.84 

+ +   + +   2318.72 1.92 

     achene ratio             

 
 + + +  1592.90 0.00 

 
 +  +  1593.55 0.65 

 + + + +  1594.27 1.37 

 
 + +   1594.49 1.59 

 +   + + +   1594.78 1.88 

     strawberry class             

 + +  +  509.60 0.00 

+ + +  +  509.98 0.38 

 + +    511.55 1.95 

  +     +   511.57 1.97 

 

 

 

 

 



81 
 

Supplementary Table S5. Model-averaged models (the optimal model and those 

models within <2ΔAICc) used to investigate the best predictors of strawberry mass, 

strawberry diameter, proportion of fertilised achenes, and strawberry class in the 

everbearer strawberry crop. + symbols indicate the inclusion of that covariate in 

the model. Models including all combinations of the predictor variables were 

tested. The null model included only the intercept as a predictor, but included the 

same random effects structure as all other candidate models. 

beetle  
abundance 

colony 
status 

distance 
 to edge 

growth 
position 

wild 
pollinator 

abundance AICc ΔAICc 

     strawberry mass           

+  + + + 5826.90 0.00 

+   + + 5827.01 0.11 

   + + 5828.52 1.62 

  + + + 5828.55 1.65 

+ + + + + 5828.57 1.67 

+ +   + + 5828.66 1.76 

     strawberry diameter         

+   + + 5294.10 0.00 

   + + 5295.05 0.95 

+   + + + 5295.42 1.32 

     achene ratio           

+   +  3142.90 0.00 

+   + + 3144.60 1.70 

+   + +   3144.62 1.72 

     strawberry class           
 

  +  817.80 0.00 
 

 + +  818.36 0.56 
 

  + + 818.92 1.12 

   + + + 819.35 1.55 

+     +   819.56 1.76 
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Chapter 3 

The potential for parasite spill-back from 

commercial bumblebee colonies: a neglected 

threat to wild bees? 

 

This chapter is currently in preparation for submission to Biological Conservation: 

Martin CD, Fountain MT, Brown MJF. The potential for parasite spill-back from 

commercial bumblebee colonies: a neglected threat to wild bees? Biological 

Conservation. 
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Abstract 

Commercially-reared bumblebee colonies provide pollination services to numerous 

crop species globally. However, these colonies have been shown to harbour 

parasites which can spill-over to, and potentially have negative impacts on, wild 

bee species. In contrast, the potential for parasites to spread from wild to 

commercial bumblebees, and the subsequent dynamics of these infections in 

commercial populations on a crop are not well known, despite possible implications 

for potential pathogen ‘spill-back’ to wild bumblebees and for crop pollination. To 

investigate this, I placed 9 commercial Bombus terrestris audax colonies into a June-

bearing strawberry crop during March and April 2016, and a further 12 colonies into 

an everbearing strawberry crop during May and June 2016. Bumblebees were 

removed from each colony every week for their duration on the strawberry crops. 

These bees were dissected for the presence of parasites. No infection was detected 

in any of the colonies before they were placed on the crop. In the June-bearing 

crop, the only parasite detected was Apicystis bombi at a low prevalence (0.46%) at 

the end of the experimental period. Parasites were far more prevalent in colonies 

from the everbearing crop, with all colonies becoming infected at some point over 

the 8-week period. A. bombi, Crithidia bombi, Nosema bombi and conopid fly larvae 

were all detected. C. bombi and A. bombi were the most prevalent across all 

samples, at 10.44% and 4.21% respectively, and they reached their peak 

prevalences of 39.39% and 18.18% at the end of the experimental period. The A. 

bombi prevalence observed is greater than most other UK records, suggesting that 

commercial colonies could act as a source of A. bombi infection to wild bees. This 

is of concern as there is evidence that A. bombi is highly virulent. This is the first 

study to observe the dynamics of parasite infection in commercial colonies 

throughout their time on a crop. It clearly demonstrates that such colonies do 

acquire parasites from their environment, and that these infections can build-up to 

high levels, which subsequently could be a threat to wild bee populations via 

parasite spill-back. 
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Introduction 

Commercial bumblebees have been produced and used for crop pollination since 

the 1980’s (Velthuis & van Doorn 2006). They were first commercialised for the 

pollination of greenhouse tomato plants and the success of this has led to them 

being used on a wide variety of crop types (Velthuis & van Doorn 2006). The trade 

in commercial colonies is now a global industry with over 1 million colonies shipped 

around the world, and 40-50 colonies thousand imported to the UK on an annual 

basis (Velthuis & van Doorn 2006; Natural England 2009, 2012). 

While commercial bumblebees provide significant pollination services to 

commercial crops (Morandin et al. 2001a, 2001b; Roldán Serrano & Guerra-Sanz 

2006; Martin et al. unpublished data (Chapter 2)), there are, however, several 

drawbacks to their use. Firstly, commercial bumblebee species can breed with 

native species (Kanbe et al. 2008; Kondo et al. 2009), which could potentially 

contribute to biodiversity homogenisation (Meeus et al. 2011), although there is no 

evidence to support this. Secondly, commercial bumblebees are able to 

outcompete native species for resources (Ings et al. 2006; Inoue et al. 2008). Finally, 

commercial colonies have been shown to harbour high pathogen loads, and there 

is strong evidence that when commercial colonies are placed out in crops, these 

pathogens can spill-over to wild bee populations (Colla et al. 2006; Goka et al. 2006; 

Murray et al. 2013; Graystock et al. 2013). The most likely mechanisms of 

transmission are via the flowers of the target crop which both commercial and wild 

bees may visit, and via the well-documented occurrence of commercial 

bumblebees leaving the target crop and foraging on alternative resources where 

wild bees also forage (Murray et al. 2013; Foulis & Goulson 2014). Such pathogen 

spill-over is thought to be one of the contributing factors to declines in bumblebee 

species that have been observed in several areas around the world (Cameron et al. 

2011, 2016; Meeus et al. 2011; Schmid-Hempel et al. 2014). 

Pathogen spill-over from commercial bumblebee colonies to wild bees has been 

relatively well studied (see references above), but little consideration has been 

given to pathogen transmission in the other direction in this system. Commercial 

bumblebee colonies can occur at high densities on farms (Whitehorn et al. 2013). 

If these colonies then become infected with a parasite from an external source, 

subsequent transmission of the parasite between colonies could occur rapidly, 
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leading to high parasite prevalences in commercial bee populations on farms. These 

populations could then act as sources for further infection of wild bees. This process 

is known as ‘spill-back’ (Kelly et al. 2009). Such spill-back has been documented in 

other systems and is thought to have the potential to negatively impact upon 

indigenous wildlife populations (Kelly et al. 2009; Nugent 2011). The potential for 

spill-back to occur in a commercial bumblebee-wild bee system is not known. Given 

that several bumblebee parasites are known to reduce the fitness and alter the 

behaviour of their hosts (Brown et al. 2000; Brown, Schmid-Hempel, et al. 2003; 

Gegear et al. 2006; Otti & Schmid-Hempel 2007; Graystock, Meeus, et al. 2016), not 

only could spill-back be harmful to native bee populations, but it could also 

negatively impact upon commercial colonies with subsequent implications for crop 

pollination and agricultural outputs. 

In addition to their high density, another factor that might enhance the 

susceptibility of commercial bumblebees to spill-back is the large geographic scale 

over which this trade occurs. Colonies are often shipped hundreds or thousands of 

miles to reach their target crop (Velthuis & van Doorn 2006), meaning that they 

may not have previously encountered the parasite species and strains that the local 

bee populations are carrying. Novel strains from different geographical areas can 

induce higher mortality than strains that the population has co-evolved with 

(Imhoof & Schmid-Hempel 1998a), resulting in higher impacts on commercial 

colonies than those faced by the native bee population. 

The time of year in which commercial bumblebees are deployed on a crop is also 

likely to have a major effect on the likelihood of colonies spreading parasites to, or 

picking up parasites from, wild bee populations. Crops grown in polytunnels and 

greenhouses can have extended flowering periods, including at times when wild 

bumblebees are not abundant. Commercial bumblebees deployed at these times 

are less likely to come into contact with wild bees or flowers recently visited by wild 

bees, and are thus less likely to transmit or become infected with pathogens. 

In order to assess the potential for pathogen spill-back to occur in commercial bees, 

we first need to know the pathogen dynamics in these colonies when they are 

placed into crop systems. Studies have shown that commercial colonies can carry 

parasites (Whitehorn et al. 2013; Murray et al. 2013; Graystock et al. 2013; 

Sachman-Ruiz et al. 2015), but we currently know little about the dynamics of 
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parasite prevalence in commercial colonies during their full time on a crop. Some 

evidence suggested that parasite prevalences can become very high in these 

systems (Whitehorn et al. 2013), in which case commercial colonies could pose a 

threat to wild bees. However, it is not known if commercial colonies regularly pick 

up parasitic infection from wild bees, and whether these parasites are able to 

develop high prevalences in commercial bumblebee populations in a commercial 

setting. 

In this study, I screened commercial bumblebees from colonies on a strawberry 

farm for parasites throughout a 4-month period of the growing season to address 

the following questions: 1) do commercial bumblebee colonies acquire parasites 

from wild populations? 2) If so, do these infections develop to prevalences that 

could pose a risk to wild bees via spill-back? 3) And does the time of year that 

commercial bumblebees are deployed affect their likelihood of acquiring a parasitic 

infection and developing high prevalence infections? 

 

Methodology 

The colonies sampled during this experiment were the same as those used in 

Chapter 2. Thus, the location of fieldwork, the spatial arrangement of the colonies, 

and the time periods they were in the strawberry crop for, were the same as stated 

in the methodology of the previous chapter. The colonies were also subject to the 

same cycle of opening and closing as in Chapter 2. The mean density of the colonies 

was however different, due to differences in the sampling protocol between the 

experiments. The sampling areas from which strawberries were sampled in Chapter 

2 were not relevant for this chapter, thus the colony densities were taken over 

whole fields. In the June-bearing strawberry crop, the mean density of colonies 

across the 3 fields was 2.83 colonies hectare-1, and in the everbearing strawberry 

crop the mean density across the 4 fields was 1.52 colonies hectare-1. The colonies 

in the June-bearing crop remained there for 6 weeks, and the colonies in the 

everbearing crop for 8 weeks. These durations are both within the time frame for 

commercial colony use as recommended by the supplier (6-8 weeks). 
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Bumblebee sampling 

Bumblebees were removed from commercial colonies using metallic forceps. The 

forceps were submerged in alcohol and flamed between sampling from different 

colonies to avoid transmission of pathogens via this route. 10 bees were removed 

from each colony immediately after colonies were delivered to the field site, and 

before colonies were opened, so there was no possibility that an infection could 

have been picked up from an external source at this sampling time point. After this 

initial sample, bees were positioned in the strawberry crop and sampled at the end 

of each week of the experiment. Initially, 10 bees from each colony were to be 

removed each week, but after the first week of the June-bearer experiment this 

was reduced to 5. This was done as the colonies I was sampling from were also 

being used in a pollination experiment, so I did not want to remove a large 

proportion of their workforce. Upon removal from the colonies, all bees were 

placed into plastic vials and temporarily stored, for between one to four days, in a 

freezer at approximately -15°C, before being transferred to a -80°C freezer for 

longer term storage. At the end of the final week of both experiments, colonies 

were closed at nightfall, to ensure almost all workers were inside, and placed into 

a -20°C freezer. Once the bees were freeze killed, a further 10 bees from each 

colony were collected and placed into the -80°C freezer for later dissection. During 

certain weeks of both experiments, the planned number of bees could not be 

sampled from some of the colonies, this was particularly evident towards the end 

of the everbearer experiment and was due to colonies beginning to naturally 

expire. 

Dissection 

The abdomens of all sampled bumblebees were dissected and examined for the 

presence of conopid fly larvae (Conopidae) and tracheal mites (Locustacarus 

buchneri). The hind gut, Malpighian tubules and fat body were removed from the 

abdomen and individually examined under a phase-contrast microscope at x400 

magnification for the presence of the parasites Crithidia bombi, Nosema bombi and 

Apicystis bombi (Rutrecht & Brown 2008). 
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Statistical analyses 

Statistical analyses were performed using R programming software (R Core Team 

2018). Overall parasite prevalence (the prevalence of all parasite species), C. bombi 

prevalence and A. bombi prevalence were all analysed using binomial generalised 

linear mixed effects models in the package ‘lme4’ (Bates et al. 2017). Calendar week 

was fitted as a fixed effect, and colony identity was fitted as a random effect. For 

the overall parasite prevalence model ‘sampling event’ was fitted as an 

observation-level random effect to account for overdispersion (Harrison 2015). The 

proportion of colonies infected with all parasites, and individually with C. bombi 

and A. bombi were analysed using binomial generalised linear models, with 

calendar week as the only fixed effect. Models were validated by visual inspection 

of the residuals plotted against the fitted values. Models were not overdispersed. 

The overall parasite prevalences in the colonies from the June- and everbearing 

crops were compared using a two-sample z-test for equality of proportions. 

95% binomial proportion confidence intervals were calculated around all 

prevalence estimates using the Clopper-Pearson ‘exact’ method (Clopper & 

Pearson 1934), and these intervals are presented in Figures 1, 2 and 3 of this 

chapter. 

 

Results 

Parasite prevalence 

A total of 438 bumblebees were dissected from the nine colonies placed in the 

June-bearing strawberry crop (see table 1A for number of bees dissected each 

week) and the overall parasite prevalence (prevalence of all parasite species 

combined) in these colonies for the duration of the experiment was 0.46% (95% 

confidence interval (CI): 0.055 – 1.64%). The only parasite observed was A. bombi, 

which was detected in two bees from a single colony from the final sampling time 

point of the experiment. 

594 bumblebees were dissected from the twelve colonies placed in the everbearing 

crop. Towards the end of the sampling period the planned number of bees could 

not be sampled due to colonies beginning to naturally expire (see Table 1B for 
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number of bees dissected each week). During week 25, colony EV3 was not sampled 

due to a sampling error made by the experimenter. The overall parasite prevalence 

for the duration of the experiment was 14.14% (95% CI: 11.44 – 17.21%), which was 

significantly higher than the overall prevalence from the June-bearer colonies (z-

test for equality of proportions: X2 = 60.03, p < 0.05). C. bombi was the most 

prevalent parasite throughout the experiment at 10.44% (95% CI: 8.10 – 13.18%), 

followed by A. bombi at 4.21% (95% CI: 2.74 – 6.15%). Eleven colonies became 

infected with C. bombi at some point during the experiment with six of these 

colonies also acquiring A. bombi. Only one colony was solely infected with A. bombi 

(Table 1B). Conopid fly larvae (Conopidae) were only detected in three bees from 

three colonies from the final week of the experiment. Nosema bombi was detected 

in only one bee from calendar week 19. Conopid fly larvae and N. bombi were not 

analysed further because of these low prevalences. 
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Table 1. Infection dynamics of Crithidia bombi and Apicystis bombi in each colony 

used in the (A) June-bearing strawberry crop and (B) everbearing strawberry crop. 

Small numbers indicate the number of bees that were dissected from each colony 

at each time point. The black boxes, indicating that no bees were sampled, were 

caused by the colonies having expired (week 17 and 26) or by experimental error 

(week 25). 
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      Calendar week   

Colony 11 12 13 14 15 16 17 

JB1 10 10 5 5 5 5 10 

JB2 10 10 5 5 5 5 10 

JB3 10 10 5 5 5 5 10 

JB4 10 10 5 5 5 5   

JB5 8 10 5 5 5 5 10 

JB6 10 10 5 5 5 5 10 

JB7 10 10 5 5 5 5 10 

JB8 10 10 5 5 5 5 10 

JB9 10 10 5 5 5 5 10 

Total 88 90 45 45 45 45 90 

      Calendar week       

Colony 18 19 20 21 22 23 24 25 26 

EV1 10 5 5 4 5 5 5 2 1 

EV2 10 5 5 5 5 5 5 5 10 

EV3 10 5 5 5 5 5 5   4 

EV4 10 5 5 5 5 5 5 5 1 

EV5 10 5 5 5 5 5 5 5 10 

EV6 10 5 5 5 5 5 5 5 10 

EV7 10 5 5 5 5 5 5 5 2 

EV8 10 5 5 5 5 5 5 5   

EV9 10 5 5 5 5 5 5 5 7 

EV10 10 5 5 5 5 5 5 5 1 

EV11 10 5 5 5 5 5 5 5 10 

EV12 10 5 2 5 5 5 5 5 10 

Total 120 60 57 59 60 60 60 52 66 

 Infection status 

  Crithidia bombi 

  Apicystis bombi 

  Co-infection 

  No A. bombi or C. bombi detected 

  No data 

B 
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Overall parasite prevalence increased during the everbearer experiment and a 

particularly large increase in prevalence occurred during the final week of the 

experiment (Figure 1A), where a peak prevalence of 56.06% (95% CI: 43.30 – 

68.26%) was reached. The proportion of colonies infected by a parasite also 

increased throughout the experiment, and by the final week 90.91% (95% CI: 58.72 

– 99.77%) of colonies were infected by at least one parasite species (Figure 1B). The 

calendar week was a significant predictor of overall parasite prevalence (GLMM: z 

= 6.40, p < 0.05), as well as the proportion of colonies infected by a parasite (GLM: 

z = 4.42, p < 0.05) in the everbearing crop. 
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Figure 1. (A) The proportion of B. terrestris from the commercial colonies placed in 

the everbearing strawberry crop that were infected with at least one parasite 

species. The numbers next to the points indicate the number of bees dissected. (B) 

The proportion of colonies placed in the everbearing strawberry crop that were 

infected with at least one parasite species. The numbers next to the points indicate 

the number of colonies sampled. On both figures the bars represent ± 95% binomial 

proportion confidence intervals. 

C. bombi prevalence across all samples was 10.44% (95% CI: 8.10 – 13.18%), but it 

had a pronounced temporal dynamic, and reached a high of 39.39% (95% CI: 27.58 

– 52.19%) during the final week of the experiment, after displaying a general trend 

of increasing prevalence during the experiment (Figure 2A). The proportion of 

colonies infected by C. bombi also increased throughout the experiment (Figure 

2B). By the final week 72.73% (95% CI: 39.03 – 93.98%) of colonies were infected 

with the parasite. The calendar week was a significant predictor of both C. bombi 

prevalence (GLMM: z = 7.37, p < 0.05) and the proportion of colonies infected by C. 

bombi (GLM: z = 4.30, p < 0.05). 
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Figure 2. (A) The proportion of B. terrestris from the commercial colonies placed in 

the everbearing strawberry crop that were infected with C. bombi. The numbers 

next to the points indicate the number of bees dissected. (B) The proportion of 

colonies placed in the everbearing strawberry crop that were infected with C. 

bombi. The numbers next to the points indicate the number of colonies sampled. On 

both figures the bars represent ± 95% binomial proportion confidence intervals. 

 

A. bombi was detected at a prevalence of 4.21% (95% CI: 2.74 – 6.15%) across all 

samples from the colonies placed in the everbearing crop. It reached a peak 

prevalence of 18.18% (95% CI: 9.76 – 29.61%) in the final week of the experiment 

(Figure 3A). The proportion of colonies infected with A. bombi displayed a trend for 

increasing throughout the experiment, with a peak of 36.36% (95% CI: 10.93 – 

69.21%) colonies being infected by the end of the experiment (Figure 3B). The 

calendar week was again a significant predictor of A. bombi prevalence (GLMM: z = 

3.87, p < 0.05) but not of the proportion of colonies infected by A. bombi (GLM: z = 

1.92, p > 0.05).  
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Figure 3. (A) The proportion of B. terrestris from the commercial colonies placed in 

the everbearing strawberry crop that were infected with A. bombi. The numbers 

next to the points indicate the number of bees dissected. (B) The proportion of 

colonies placed in the everbearing strawberry crop that were infected with A. 

bombi. The numbers next to the points indicate the number of colonies sampled. On 

both figures the bars represent ± 95% binomial proportion confidence intervals. 

 

Discussion 

In this study, I demonstrated that commercial Bombus terrestris audax colonies 

placed into a strawberry crop became infected with parasites that were likely to 

have been acquired from wild bee populations, and that these parasites increased 

in prevalence in the commercial bee population through May and June. In the case 

of A. bombi, the peak prevalence reached could pose a hazard to wild bee 

populations if it were to spill-back to these populations. However, the presence and 

prevalence of parasites were highly dependent on the time of year that the 

commercial colonies were deployed, with colonies that were deployed earlier in 

the growing season (March) being significantly less likely to become infected.  
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Of the colonies deployed in March on the June-bearing strawberry crop, none were 

found to harbour any parasites before they were placed into the crop. The same 

pattern was found in the colonies deployed in May on the everbearer crop. This 

suggests that commercial production companies have been successful in 

eliminating a range of micro- and macro-parasites from their colonies (Graystock et 

al. 2013), reducing the potential for parasite spill-over into wild bees (Daszak et al. 

2000). The initial parasite screening of commercial colonies from Chapters 1 and 4 

also support this suggestion, as no infections were found. 

The only parasite observed in the June-bearer colonies was A. bombi, which was 

detected in two bumblebees from a single colony at the final sampling time point. 

These very low observed parasite prevalences are most likely due to the time of 

year that these colonies were deployed. In the south east of England during March 

and April, queen bumblebees are still emerging from hibernation and if colonies 

have been established, they are in the early stages of development with only very 

small numbers of foraging workers (Sladen 1912). This means bee abundance in the 

environment is low, and thus, the chances of parasite transmission between bees 

is greatly reduced. Furthermore, C. bombi prevalences are generally much lower in 

the early stages of the colony life cycle, usually reaching peak levels in the summer 

months (Imhoof & Schmid-Hempel 1999; Gillespie 2010; Popp et al. 2012). Thus, in 

addition to reduced contact with other bees, there is less chance that any bees that 

are contacted are carrying an infection. Together, these biological patterns are 

likely to explain the almost zero levels of parasitism I observed in the commercial 

colonies placed in the crop during March and April, and are indicative of an almost 

complete lack of parasite spill-back. Therefore, commercial bumblebees deployed 

in the UK during this time period are unlikely to acquire parasites from wild bees 

and are subsequently unlikely to pose a threat to wild bees via parasite spill-back. 

However, I observed much higher parasite prevalences in the colonies placed into 

the everbearing strawberry crop during the months of May and June. Parasites 

were detected in all twelve colonies from at least one sampling time point of the 

experiment. The demonstrated absence of parasites before they were placed in the 

field suggests that all the parasites they did pick up are highly likely to be from wild 

bees. The calendar week was a strong predictor of parasite prevalence with a clear 

increase in prevalence during the time that the colonies were in the crop. A peak 

parasite prevalence of 56.06% was reached at the final sampling time point, with 
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10 out of 11 colonies (one colony could not be sampled at the final time point, but 

this colony had been infected with C. bombi for the previous 4 weeks) being 

infected with either C. bombi or A. bombi. Individually, C. bombi and A. bombi both 

reached their peak prevalences during the final week too. For C. bombi the general 

increase in prevalence during the late spring and early summer is comparable to 

patterns in wild bumblebee populations, which are thought to be due to the growth 

in bumblebee populations causing an increase in the rate of transmission of the 

parasite (Imhoof & Schmid-Hempel 1999; Gillespie 2010; Popp et al. 2012). During 

the final week of the experiment, C. bombi displayed a marked increase in 

prevalence of 27.86% reaching its peak prevalence of 39.39% and infecting 8 out of 

11 colonies. Although dramatic, such an increase in a short space of time is not 

unprecedented, an even greater increase over a similar length of time (10 days) has 

been recorded in another C. bombi infected bumblebee population (Korner & 

Schmid-Hempel 2005). A study by Whitehorn et al. (2013) observed a similar 

pattern of C. bombi prevalence in B. terrestris populations on soft fruit farms that 

deployed commercial bumblebees. They also observed a marked increase in 

prevalence late in the season, however, they could not be sure whether the bees 

they sampled were commercial or wild, which is essential for assessing the 

potential for parasite spill-back. The prevalence of C. bombi recorded for the whole 

everbearer experiment was 10.44%; this is lower than most C. bombi prevalences 

recorded in wild UK bumblebee populations (Whitehorn et al. 2011, 2013; Goulson 

et al. 2012; Graystock et al. 2014) and in populations from Europe and North 

America (Shykoff & Schmid-Hempel 1991; Gillespie 2010; Popp et al. 2012). Some 

studies have found prevalences similar to or lower than those found here, but these 

studies sampled newly emerged queens in spring (Rutrecht & Brown 2008; Jones & 

Brown 2014), a time when C. bombi is normally at its lowest prevalence. The peak 

prevalence of 39.39% is closer to the prevalences previously recorded for C. bombi 

in summer, but still lower than many. Thus, at these commercial colony densities, 

C. bombi transmission from commercial bumblebees is unlikely to pose an 

additional risk to wild populations through spill-back, as artificially high levels of 

prevalence were not reached. 

However, the prevalence of A. bombi at the final sampling point may be more of a 

cause for concern. At 18.18%, its prevalence was higher than most other records 

from wild populations in the UK and Ireland (Rutrecht & Brown 2008; Goulson et 
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al. 2012; Jones & Brown 2014). One study from the UK did find higher prevalences 

than 18.18% (Graystock et al. 2014), but this study only used molecular screening 

to detect parasites and thus cannot be certain that all detected parasites were true 

infections rather than parasite vectoring. In my study, on the other hand, I can be 

sure of the infection status of individual bees. As there is evidence that A. bombi 

may be highly virulent (Rutrecht & Brown 2008; Jones & Brown 2014; Graystock, 

Meeus, et al. 2016), it is of concern that this parasite can be acquired by commercial 

colonies and proliferate to a high prevalence within them. Subsequent spill-back of 

A. bombi to wild bumblebees could pose a threat to their populations, and future 

studies should assess this potential threat. 

Within individual colonies, A. bombi was detected sporadically; after its first 

detection in a colony it was often not detected again for several weeks or at all. 

One explanation for this is that the colonies are acquiring the infection and then 

quickly clearing it, however, not enough is known about the epidemiology of A. 

bombi infections in bumblebee colonies to comment on the likelihood of such an 

occurrence. Another possible explanation is that A. bombi is generally found at low 

prevalences in the UK (see previous references), meaning that I was unlikely to 

detect it within a colony every week given the sample sizes available. C. bombi was 

also detected sporadically within colonies, although not to the same extent as A. 

bombi. Bumblebees can clear C. bombi infections, albeit under artificial conditions 

(Imhoof & Schmid-Hempel 1998b), but it is likely that the number of bees being 

sampled was the major contributor to this detection pattern, particularly in the 

weeks preceding the final week, where its population prevalence rarely exceeded 

20%. That the more prevalent parasite was less sporadic in its detection also 

supports the idea that A. bombi was not cleared, and remained present in colonies 

after its initial detection. 

As well as posing a risk to wild bee populations, the parasite prevalence observed 

in the commercial colonies could be reducing their effectiveness at pollinating 

crops. Both C. bombi and A. bombi are known to have negative effects on B. 

terrestris fitness (Brown et al. 2000; Brown, Schmid-Hempel, et al. 2003; Rutrecht 

& Brown 2008; Jones & Brown 2014; Graystock, Meeus, et al. 2016), which could 

cause the commercial colonies infected with them to be smaller in size, resulting in 

fewer foraging bees and consequently a possible reduction in the pollination 

services that colonies provide. There is also evidence that C. bombi infection can 
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alter the behaviour of bumblebees in ways that would further reduce the 

pollinating ability of the bees (Gegear et al. 2005, 2006; Otterstatter et al. 2005; but 

see Martin et al. 2018). Thus, the infection levels that I observed could potentially 

have a negative effect on crop pollination, but this remains to be tested. 

As the colonies used in this experiment were also part of another experiment (see 

Chapter 2), there are two factors that may be causing these results to be 

conservative. The first of these is that across the June-bearer and everbearer fields, 

the commercial colonies were at densities of 2.83 and 1.52 colonies hectare-1 

respectively, which is lower than the recommendation from the suppliers of at least 

6 colonies hectare-1 for strawberry crops. Given that transmission of C. bombi is 

density-dependent, the lower colony density is likely to reduce parasite 

transmission, meaning that parasites are likely to reach lower prevalences than 

they would in denser bumblebee populations, and take longer to reach peak 

prevalence. The second factor that could cause my results to be conservative is the 

opening and closing schedule that each colony was exposed to. Every colony was 

closed for half of the time that it was in the field. During the closed periods, all the 

bumblebees were contained within their colony and no bee could leave or enter, 

meaning inter-colony parasite transmission was not possible during this time. Intra-

colony transmission may have increased during the time when colonies were 

closed. As foragers were not able to leave the colony at any time, the density of 

bees within the colony will have been higher than when colonies were open, 

leading to possible increased parasite transmission. However, I believe that if there 

was an effect it would have been marginal, because even when colonies were open 

foragers naturally returned to the colony during the night, thus a bee density 

comparable to that when the colonies are closed is achieved for a prolonged period 

of time every night. Based on this, I believe intra-colony transmission is not likely 

to be vastly different between when colonies were open and closed, and that the 

decrease in inter-colony transmission caused by the treatment is likely to have had 

a greater effect on my results than a possible minor increase in intra-colony 

transmission. 

Despite these caveats, I clearly show that commercial bumblebee populations do 

pick up infections, most likely from wild bees, in a commercial farm setting, and 

that these infections can reach prevalences similar to or, in the case of A. bombi, 

greater than those found in the wild. This suggests that there is potential for 
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parasite spill-back to occur from commercial colonies to wild bees, which could 

have detrimental impacts on wild bee populations. I also show the importance of 

time of year on the prevalence of parasites in commercial bee colonies, information 

that is useful for lessening any potential environmental damage from commercial 

colonies. It is also noteworthy that none of the 21 colonies that were used had any 

parasites before they were placed into the crop. Previous research had found 

commercial colonies to contain a wide variety of parasites (Graystock et al. 2013), 

so this result suggests that improvements have been made in the commercial 

rearing facilities to reduce parasite loads, in response to new regulation 

(Department for Environment, Food and Rural Affairs 2018). Further studies on 

farms in different locations, on different crops and with different bee densities are 

necessary to fully understand the potential of commercial colonies as threats to 

wild bees via parasite spill-back, but this study represents an important step in 

gaining this understanding. 
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Chapter 4 

Does Crithidia bombi infection impact upon 

bumblebee pollination ability? 
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Abstract 

Parasites can alter the mortality and behaviour of their host organisms. In doing 

this they can potentially affect interspecific interactions that their host is involved 

in. Pollination is an interaction of crucial importance for the maintenance of 

biodiversity and human well-being. Pollinators are known to host a variety of 

parasites, but whether these parasites can impact upon the pollination services that 

pollinators provide is not known. To test this, commercial Bombus terrestris audax 

colonies were inoculated with the common bumblebee parasite, Crithidia bombi, 

or a control inoculum. Colonies were then placed into polytunnels containing 

strawberry plants. Flower visitation and activity of the bumblebees was observed, 

and fruits pollinated by the bumblebees were picked and quality assessed. No 

differences were found in the foraging rate and colony activity between parasitised 

and unparasitised colonies. This may be because the bumblebees were not 

nutritionally or energetically stressed during the experiment, enabling them to 

compensate for any possible effects of C. bombi. Strawberries pollinated by 

parasitised and control bees were not significantly different from each other, but 

they both were of significantly worse quality and had proportionally fewer fertilised 

seeds than the negative control bagged flower treatment that received no 

bumblebee visitation. One possible cause of this is that the density of bees may 

have been too high in the polytunnels causing the non-bagged strawberry flowers 

to be overpollinated. While C. bombi did not affect the flower visitation rate or the 

activity of commercial bumblebees in a small-scale foraging environment when 

bees were not subject to other stressors, it remains difficult to draw conclusions 

about parasite impacts on pollination services because of the probable 

overpollination that occurred in this experiment. 

 

Introduction 

Parasites are pervasive throughout nature and make up a large proportion of 

biodiversity (Dobson et al. 2008). They can induce mortality and behavioural 

change in their host organisms (Anderson & May 1978; Moore 2002, 2013; Lafferty 

& Shaw 2013), and in doing so they can potentially affect species-species 

interactions that their host is involved in, which can have subsequent effects on 

ecosystem functioning (Lefèvre et al. 2009; Sato et al. 2012). 
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Animal-mediated pollination is an interaction between a pollinator and a plant. This 

interaction plays a crucial role in the maintenance of biodiversity, with an estimated 

87.5% of flowering plants at least partially reliant on animal pollination for 

reproduction (Ollerton et al. 2011). Animal-mediated pollination also significantly 

contributes to global food production (Klein et al. 2007; Kleijn et al. 2015; Rader et 

al. 2016), with crops that are highly dependent on pollination providing humans 

with valuable micronutrients (Eilers et al. 2011). Pollinators are predominantly 

insects and, unsurprisingly, they are known to host a range of parasite species 

(Schmid-Hempel 1998; Evison et al. 2012; Fürst et al. 2014). However, it is not 

known if these pathogens can alter the interaction between plant and pollinator, 

which could have subsequent implications for pollination services. 

There are two mechanisms by which parasites of pollinators could alter plant-

pollinator interactions. The first is via mortality effects of the parasite on its host. If 

a pathogen increases the mortality of its host, then the host population will be 

decreased by the presence of the pathogen and subsequently there would be fewer 

pollinators in the environment. Thus, one would expect fewer plant-pollinator 

interactions to occur, which could potentially have negative impacts upon 

pollination services. In bees, an important group of pollinators (Kleijn et al. 2015; 

Rader et al. 2016), there is certainly the potential for this mechanism to be having 

an effect, as numerous parasites have been shown to increase host mortality levels 

(Brown et al. 2000; Brown, Schmid-Hempel, et al. 2003; Higes et al. 2007; Otti & 

Schmid-Hempel 2007; Rutrecht & Brown 2009; Graystock, Meeus, et al. 2016). 

Furthermore, in social bees, parasitism can also reduce colony growth, resulting in 

a decrease in colony fitness (Brown, Schmid-Hempel, et al. 2003; Rutrecht & Brown 

2009), which in the long-term may decrease the bee population, and thus 

pollination services. 

The second mechanism is via parasite induced behavioural change in the host 

organism. Again, in pollinators there are many examples of this occurring (Schmid-

Hempel & Schmid-Hempel 1990; Gómez-Moracho et al. 2017) and reported change 

to behaviours such as foraging and learning could directly affect plant-pollinator 

interactions and impact pollination services. Together, these two mechanisms may 

have contributed to the negative relationship observed between Nosema bombi 

parasitism and pollination of bumblebee dependent plants (Gillespie & Adler 2013). 

In contrast, another observational study found no correlation between Crithidia 
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bombi prevalence and pollination services, but here C. bombi prevalence was 

positively associated with bumblebee abundance, which made detecting an effect 

of C. bombi on pollination difficult (Theodorou et al. 2016). To my knowledge, no 

study has yet detected a pollinator pathogen having a causal effect on a plant-

pollinator interaction and subsequently impacting upon pollination services. 

To fill this important gap in our knowledge, I conducted an experiment using the 

host-parasite-plant system of Bombus terrestris audax, Crithidia bombi and 

strawberry (Fragaria x ananassa DUCH). This system is well suited to answering this 

question for several reasons. The pollinator B. terrestris is a common bumblebee 

species in the wild in Europe and Asia (Williams et al. 2012), where it is also 

commercially reared and used for crop pollination (Velthuis & van Doorn 2006). It 

also plays host to several parasite species, the most common of which is C. bombi. 

This parasite is regularly found in the wild at prevalences between 10-30% and can 

reach prevalences as high as 70-100% in some populations (Shykoff & Schmid-

Hempel 1991; Gillespie 2010; Whitehorn et al. 2011; Goulson et al. 2012; Popp et 

al. 2012). It is also known to regularly infect commercial bumblebee colonies, either 

pre- or post-placement in agricultural systems (Whitehorn et al. 2013; Graystock et 

al. 2013; Martin et al. unpublished data Chapter 3). Furthermore, C. bombi 

increases B. terrestris mortality under stressful conditions (Brown et al. 2000) and 

has been shown to reduce foraging rate and motor and colour learning in another 

bumblebee species (Gegear et al. 2005, 2006; Otterstatter et al. 2005), behaviours 

that are highly relevant for the delivery of pollination services. Strawberry is an 

important soft fruit crop grown in many countries (FAOSTATS). Pollination by 

honeybees, solitary bees and bumblebees has been shown to improve crop yield 

and quality (Dimou et al. 2008; Klatt et al. 2014; Martin et al. unpublished data), 

and commercial bumblebee colonies are widely used on this crop (Velthuis & van 

Doorn 2006). 

I hypothesised that C. bombi would alter interactions between B. terrestris and 

strawberry plants with subsequent impacts on the pollination of the fruit. Given the 

ubiquity of this host-parasite system, if C. bombi was found to influence the 

pollination services bumblebees are providing, the implications would be far 

reaching for both wild and agricultural ecosystems. 
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Methodology 

The fieldwork was carried out at NIAB EMR horticultural research station located in 

Kent in the South East of England. 10 small polytunnels (12 x 1.5 m) were each 

planted with 200 strawberry plants (variety ‘Flamenco’) in April 2017. The plants 

were planted in 1 m peat grow bags (Agrii), at a density of 10 plants per bag. The 

polytunnels were surrounded by insect netting so no pollinators from the external 

environment could gain access to the strawberry plants. The polytunnels were all 

situated in one field (latitude: 51.172087, longitude: 0.271804) and exposed to the 

same environmental conditions. Before bee observations began each polytunnel 

was assigned to a treatment (parasite or control), and each tunnel remained in the 

same treatment group for the duration of the experiment to reduce contamination 

risk between parasite and control treatments. 

Queen collection 

The B. terrestris queen collection, parasite screening and colony rearing were done 

by a similar methodology as outlined in the ‘queen collection’ section of the 

methodology of Chapter 1 (page 42). The only differences were that during this 

experiment the queens were collected during February and March of 2017, and the 

total number of C. bombi infected colonies that were reared for inoculations was 

14. 

Commercial colony inoculation 

40 B. terrestris audax colonies were ordered from Biobest over the course of 5 

weeks (10 colonies per week with a 1-week gap in the middle). Upon arrival, the 

colonies were placed into a dark room, and inspected for the presence of a queen 

and healthy brood. The faeces of 5-10 workers from each colony were screened for 

the presence of C. bombi, Apicystis bombi and Nosema bombi. No infections were 

found so all colonies were deemed acceptable for use in the experiment. Colonies 

were then reduced to a size of 40 or 20 workers and the queen. The first 20 colonies 

used during the first two weeks of the experiment were reduced to 40 workers in 

size, but for the final 20 colonies used during the last two weeks the number of 

workers was reduced to 20, because the bee density was observed to be too high 

in the polytunnels.  
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The colonies were inoculated with C. bombi 4 days after arrival. Inocula were made 

by taking a minimum of 14 bees (one bee from each colony) from the wild C. bombi 

infected colonies. The faeces of these bees were collected and then purified 

following the method used by Baron et al. (2014) modified from Cole (1970), and 

outlined in the methodology section of Chapter 1. 

After purification, a quantity of parasite solution containing 400,000 parasite cells 

was combined with 400 µl of 40% sugar solution and placed onto a petri dish. The 

petri dish with the solution was then placed into a plastic box containing 40 worker 

bees that had previously been removed from a commercial colony and starved for 

2-3 hours. When a bee was observed consuming the parasite solution, it was 

allowed to continue for 10 seconds. 10 seconds is approximately the time taken for 

a bee to consume 10 µl of nectar solution (personal observation) which contains 

10,000 parasite cells; this is within the range of what bees are exposed to if they 

consume food contaminated with C. bombi infected faeces (Logan et al. 2005; Ruiz-

González & Brown 2006). The bee then had its thorax marked with paint to indicate 

that it had been inoculated, and it was subsequently returned to its original colony 

box. This process continued until 30-40 bees had drunk from the parasite solution. 

Ideally, the same number of bees from each colony would have been inoculated, 

however not all bees were motivated to drink from the parasite solution. 

Bees in the control treatment went through the same starvation and paint marking 

process, but no control inoculum was produced for them to consume. 

After the inoculation, bees remained in their colony boxes in the dark room for 10 

days with ad libitum nectar and pollen. This time period was selected as peak C. 

bombi levels are observed in bee faeces 11-14 days post inoculation (Logan et al. 

2005). During this time, workers were removed from colonies to maintain the 

number of bees at 40 or 20 bees in each colony. Bees without paint markings (i.e. 

bees that had not been inoculated) were preferentially removed, so that each 

colony was predominantly made up of inoculated bees that had acquired the 

infection at the same time and thus had harboured the parasite for the same 

amount of time. The amount of brood was also equalised between colonies so that 

each colony would have similar food requirements when placed into the 

polytunnels. All removed workers and brood were placed into a freezer at -20°C. 
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Field observations 

Colonies were placed into polytunnels 10 days after inoculation took place, 

meaning colonies would be in the polytunnels during the period where C. bombi 

levels are at their highest (Logan et al. 2005). One polytunnel housed one colony 

for one week, thus 10 colonies could be observed in one week. All 40 colonies were 

observed during a 5-week period from 8th June – 13th July 2017 (during one week 

no observations occurred). 

Transects, flower visitation and colony activity 

Flower visitation observations were taken where the observer stood at a fixed point 

in the polytunnel. The number of receptive flowers was counted in either a 3 m2 or 

4 m2 area and the number of flower visitation events that occurred in this area 

during a 10-minute period was recorded. The size of the area was not always kept 

constant as the visibility of flowers changed with the density of the strawberry plant 

foliage. Recordings were done at least two times a week in each polytunnel, and 

from this, a visitation rate per flower per minute was calculated. 

10-minute transects were walked down each tunnel at least two times a week. 

Every flower visit that took place 1 m either side of the observer was recorded. A 

flower visit was defined as an individual being present on any part of the flower.  

Colony activity surveys were done for each colony at least two times a week. The 

entrance/exit of the colony was observed for 10 minutes and every instance of a 

bee entering or exiting was recorded. 

Strawberry marking and collection 

10 receptive strawberry flowers were marked in each polytunnel each week 

(definition of receptive flower is the same as that given in Chapter 2). The flowers 

were marked with a small twist of coloured wire, different colours were used to 

represent different weeks of the experiment. A further 5 flowers in each polytunnel 

were covered with pollination bags to stop bees from visiting the flowers. 

Pollination bags were made using bridal veil, and were attached to the flower with 

string tied around the stem (Figure 1). 
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Figure 1. Bagged strawberry flowers. 

Marked and bagged berries were picked, once ripe, or occasionally just before 

ripening due to time constraints. Upon picking, the growth position (primary, 

secondary, tertiary, quaternary) of each fruit was noted following Darrow (1929). 

Noting the growth position is important as it can have an impact on the quality of 

the fruit. The berries were then stored at -20°C for further quality analyses. 

Unmarked berries were picked and disposed of before ripening to reduce risk of 

disease outbreak in the polytunnels, and to encourage further flowering of the 

plants. The plants were not treated with any chemical before or during the time 

when the bees were in the tunnels. 

Strawberry quality assessment 

The methods used for strawberry quality assessment were identical to those 

outlined in the ‘strawberry quality assessment’ section of the methodology in 

Chapter 2 (page 68). 

Parasite infection intensity 

The doors to colonies were closed at nightfall on the final day of their week-long 

duration in the polytunnels. Closing them at night ensured that all workers would 

be inside the colony. Colonies were then removed from the tunnels and then frozen 

at -20°C. 10 dead bees were then removed from each of the parasite treatment 

colonies and dissected to quantify parasite infection intensity. The protocol for 

quantifying infection intensity was identical to that used in Chapter 1. 
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Statistical analyses 

Flower visitation and colony activity 

All statistical analyses were carried out using ‘R’ programming software (R Core 

Team 2018). Stationary flower visitation was analysed using linear mixed effects 

models in the ‘nlme’ package (Pinheiro et al. 2017). Heteroscedasticity was present 

in this dataset as the variance in visitation rate increased at higher temperatures. 

Mixed models can be created that account for heteroscedasticity in this package. 

Flower visitation from transects was analysed with a generalised linear mixed 

effects model with Poisson error structure from the ‘lme4’ package (Bates et al. 

2017). Colony activity (the number of bees entering and leaving the colony) was 

analysed with a negative binomial generalised linear mixed effects model from the 

‘glmmADMB’ package (Skaug et al. 2016). 

The visitation and colony activity models all contained ‘treatment’, ‘infection 

intensity’ and ‘temperature’ in their fixed effects structures. ‘Humidity’ was left out 

of the fixed effects component due to its strong collinearity with temperature. The 

random effects structure for these models included the ‘colony ID’ nested within 

‘polytunnel ID’. 

Strawberry quality 

Four different response variables were examined for the strawberry quality 

analysis, these were strawberry mass (g), strawberry diameter (mm), strawberry 

commercial grade classification (extra class – class 3), and fertilised:unfertilised 

achene ratio. The fertilised:unfertilised achene ratio variable was produced by 

dividing the number of fertilised achenes by the number of unfertilised achenes. 

Berries that have a higher proportion of fertilised achenes will have a higher value 

for this variable. A higher proportion of fertilised achenes suggests that the flower 

was more fully pollinated. 

Achene ratio and strawberry mass were analysed with linear mixed effects models 

in the ‘lme4’ package (Bates et al. 2017). The achene ratio variable was Box-Cox 

transformed (ʎ = 0.02) to achieve a normal distribution of the residuals. Strawberry 

diameter was analysed using a generalised linear mixed effects model with negative 

binomial error structure in the ‘glmmADMB’ package (Skaug et al. 2016) to account 

for overdispersion of the data. Strawberry classification was analysed with 
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cumulative link mixed models using the ‘ordinal’ package (Christensen 2017). The 

random effects structure for these models included the ‘colony ID’ nested within 

‘polytunnel ID’. The fixed effects in the strawberry quality models were ‘treatment’ 

(parasitised or unparasitised bee colony), the growth position of the fruit (1-4) and 

the infection intensity. 

Secondary analysis 

Based on the results of the previously outlined data analysis, a secondary analysis 

was conducted on all the strawberry quality measures (mass (g), diameter (mm), 

quality classification (extra class – class 3) and fertilised:unfertilised achene ratio). 

The models used in this analysis had the same random effects structure as those 

previously outlined, only with the additional inclusion of ‘number of bees’ as a fixed 

effect. This either took the value of 20 or 40 depending on how many bees were 

present in the colony. 

The secondary analysis was performed to investigate whether there was any 

evidence for overpollination occurring. Overpollination can happen when flowers 

receive too many visits and become damaged, which can cause fruit to be deformed 

(Velthuis & van Doorn 2006; Mommaerts et al. 2011; Sáez et al. 2014). Results from 

the initial analysis suggested that overpollination might have occurred in this 

experiment. Including the number of bees as a fixed effect in the models helped to 

identify whether overpollination was occurring. If a lower number of bees was 

having a positive effect on fruit quality, it would provide evidence that 

overpollination was occurring. 

 

Results 

Parasite inoculation and infection intensity 

Dissections revealed that all colonies inoculated with C. bombi were still infected at 

the end of their time in the polytunnels. The mean (± S.E.) infection intensity in the 

hind gut was 2779.25 (± 241.47) cells µl-1. 

Flower visitation 

13.5 hours of stationary flower visitation data were collected over the course of 81 

observation periods across the 40 colonies. A flower visitation rate was calculated 
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that took into account the number of flowers in the observed area. The parasite 

treatment did not have a significant effect on the flower visitation rate of colonies 

(LME: t = 0.12, p = 0.91; Figure 2A), and neither did the infection intensity (LME: t = 

-0.41, p = 0.68). Temperature had a significant positive effect on flower visitation 

rate, with higher visitation rates being observed at higher temperatures (LME: t = 

2.87, p = 0.0064). 

Transect flower visitation 

A further 13.5 hours of flower visitation data were collected during 81 transect 

walks. Here, neither the parasite treatment (GLMM: z = 0.23, p = 0.82; Figure 2B), 

the infection intensity (GLMM: z = 0.97, p = 0.33) nor the temperature (GLMM: z = 

1.21, p = 0.23) had significant effects on the number of flower visitation events 

observed. 

Colony activity 

Nest entrances were also observed for 13.5 hours. Parasite treatment (GLMM: z = 

1.40, p = 0.16; Figure 2C) and infection intensity (GLMM: z = -0.96, p = 0.34) both 

had no significant effect on colony activity, while temperature had a significant 

positive effect on colony activity (GLMM: z = 2.26, p = 0.024). 

 

A 
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Figure 2. (A) Strawberry flower visitation rate (visits minute-1) by Bombus terrestris 

audax from control or Crithidia bombi infected colonies in 10-minute observation 

B 

C 
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periods (data from stationary observations); (B) strawberry flower visitation rate 

(visits minute-1) by B. terrestris from control or C. bombi infected colonies in 10-

minute observation periods (data from transect walks); (C) number of B. terrestris 

from control or C. bombi infected colonies observed entering or leaving the colony 

in 10-minute observation periods. The median (central horizontal line), quartiles 

(box), non-outlier ranges (vertical lines) and raw data (dots) are presented on the 

plots. 

 

Strawberry quality 

A total of 534 berries were harvested from the experiment; 175 from the parasite 

treatment, 162 from the control treatment, and 197 from the bagged treatment. 

The planned 600 fruits were not reached as some marked fruits were not 

recovered, and on week 2 of the experiment there were not enough receptive 

flowers in the polytunnels to tag the full quota of flowers. 

Achene ratio 

Berries pollinated by bees from both control (LMER: t = -6.17, p = 1.46e-9) and 

parasitised (LMER: t = -6.63, p = 8.98e-11) colonies had significantly lower 

proportions of fertilised achenes when compared to berries from the bagged flower 

treatment (Figure 3A). The proportion of fertilised achenes was not significantly 

different between the parasite and control treatments (LMER: z = -0.009, p = 0.99) 

and the intensity of infection did not have a significant effect (LMER: t = 0.027, p = 

0.98). 

Strawberry mass 

The mass of strawberries from the control and parasite treatments were not 

significantly different from the bagged treatment (LMER: control: t = 1.24, p = 0.22; 

parasite: t = -1.07, p = 0.28) or from each other (LMER: t = 1.78, p = 0.18; Figure 3B). 

Infection intensity had no effect on mass (LMER: t = 1.77, p = 0.099), but fruits from 

secondary and tertiary growth positions had significantly less mass than those from 

the primary growth position (LMER: secondary growth position: t = -8.82, p = 2e-16; 

tertiary growth position: t = -8.89, p = 2e-16). 
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Strawberry diameter 

The diameter of strawberries from the control and parasite treatments were also 

not significantly different from the bagged treatment (LMER: control: t = 1.16, p = 

0.25; parasite: t = -0.93, p = 0.35) or from each other (LMER: t = 1.61, p = 0.25; 

Figure 3C). Infection intensity had no effect on diameter (LMER: t = 1.70, p = 0.11). 

The growth position of the fruit had a similar effect on diameter as it had on mass, 

with fruits from secondary and tertiary growth positions having significantly smaller 

diameters than those from the primary growth position (LMER: secondary growth 

position: t = -9.93, p = 2e-16; tertiary growth position: t = -10.03, p = 2e-16).  
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Figure 3. (A) Fertilised:unfertilised achene ratio; (B) mass; and (C) diameter of 

strawberries from the three treatment groups. In the bagged treatment, flowers 

were covered with a fine mesh, so they did not receive any insect visitation. In the 

control treatment, flowers were visited solely by unparasitised Bombus terrestris. 

In the parasite treatment, flowers were visited solely by B. terrestris from colonies 

infected with Crithidia bombi. The median (central horizontal line), quartiles (box), 

non-outlier ranges (vertical lines) and raw data (dots) are presented on the plots. 

Strawberry class 

The control and parasite treatment both had a significant negative effect on berry 

class when compared to the bagged treatment (CLMM: control: z = -2.89, p = 3.86e-

3; parasite: z = -5.25, p = 1.52e-7; Figure 4). There was no significant difference 

between control and parasite treatments (CLMM: z = 1.69, p = 0.21) and neither 

growth position of the fruit nor infection intensity had a significant effect (growth 

position: CLMM: z = -1.72, p = 0.086; infection intensity: CLMM: z = 1.36, p = 0.17). 

 

C 
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Figure 4. Proportion of berries from each treatment in each shape classification. 

Error bars represent ± standard error of the mean. In the bagged treatment, flowers 

were covered with a fine mesh, so they did not receive any insect visitation. In the 

control treatment, flowers were visited solely by unparasitised Bombus terrestris. 

In the parasite treatment, flowers were visited solely by B. terrestris from colonies 

infected with Crithidia bombi. Extra and class 1 are the highest quality fruits and 

class 3 are the lowest, with class 2 falling between these two extremes. 

Secondary analysis 

The number of bees did not have a significant effect on any strawberry quality 

measure, but for each measure, there was a trend for an increased number of bees 

to have a negative effect (Table 1).   
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Table 1. Model outputs for the ‘number of bees’ covariable for each strawberry 

measure that was analysed. 

Response variable 
Model coefficient 

for 'number of 
bees' covariate 

Standard 
error 

Z-/T- 
value 

P-
value 

Strawberry mass -2.74E-04 9.04E-03 -0.03 0.98 

Strawberry diameter -0.02 -0.05 -0.45 0.66 

Strawberry achene ratio -2.38E-04 2.29E-04 -1.04 0.31 

Strawberry commercial 
class 

-0.037 0.023 -1.61 0.11 

 

Discussion 

In this experiment, infection with C. bombi had no effect on the flower visitation 

rate or colony activity of commercial B. terrestris colonies. Pollination by both 

infected and uninfected bees had a negative effect on the proportion of fertilised 

achenes on each strawberry, and on fruit quality, when compared to the negative 

control treatment. This result is surprising, as the negative control treatment, which 

involved bagging individual flowers to prevent bee visitation, was expected to 

produce the most poorly pollinated and thus lowest quality fruits. There was no 

difference in the quality, size and proportion of fertilised achenes between fruits 

pollinated by parasitised and unparasitised bees. However, the unexpected result 

of the negative control makes interpretation of this result difficult, meaning that I 

cannot conclude whether C. bombi infection impacts upon the pollination services 

bumblebees provide. 

What can be concluded is that in the environment and the one-week time-frame 

used in this experiment, C. bombi does not affect the colony activity or flower 

visitation rate of B. terrestris. Given that C. bombi is highly prevalent in commercial 

bumblebee systems (Whitehorn et al., 2013; Martin et al. unpublished data Chapter 

3) and wild populations (Shykoff & Schmid-Hempel 1991; Gillespie 2010; Kissinger 

et al. 2011; Jones & Brown 2014; Malfi & Roulston 2014), it is significant that it does 

not appear to affect nest traffic or foraging rate in this experimental set up. These 

results suggest that pollination services may not be heavily impacted by C. bombi 

via reductions in colony activity and flower visitation. There are several possible 

reasons why C. bombi did not affect these measures. Firstly, it is likely that C. bombi 
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was not inducing mortality in its host in this experimental setup, meaning that the 

number of bees available to leave the colony and visit flowers was the same as in 

the control colonies. C. bombi can be highly virulent when hosts are under 

nutritional stress or at an energetically demanding stage of their life cycle (Brown 

et al. 2000; Brown, Schmid-Hempel, et al. 2003), however, the environment in 

which the bees were placed during this experiment is unlikely to have caused 

nutritional stress or excessive energetic expenditure. The polytunnels provided a 

very small foraging environment compared to the wild foraging range of B. 

terrestris (Darvill et al. 2004; Knight et al. 2005; Osborne et al. 2008; Redhead et al. 

2016), which means energy expenditure is likely to have been low. Furthermore, 

commercial bumblebee colonies contain an internal artificial nectar reservoir which 

bees can drink from at any time. These reservoirs remained accessible for the 

duration of the experiment to replicate the conditions on commercial farms and 

this meant that bees were unlikely to have been lacking nectar during the 

experiment. Along with nectar, the other key nutritional source for bumblebees is 

pollen (Sladen 1912). Colonies were not supplemented with additional pollen 

during their time in the polytunnels, but they were provided with pollen during the 

period after their arrival from the supplier up until they were placed in the tunnels, 

and once in the tunnels, bumblebees were observed foraging for pollen from the 

strawberry flowers. Pollen is important for bumblebee immune system functioning 

(Brunner et al. 2014), and is thus likely to play a role in moderating the impacts of 

C. bombi infection. The availability of both pollen and nectar, combined with the 

low energy requirements of the foraging environment in my experiment, may have 

reduced the mortality and behavioural deficits that C. bombi can cause to negligible 

levels. Thus, the populations of control and parasite treatment colonies are likely 

to have remained similar throughout the experiment, which would reduce the 

expectation of seeing differences in colony activity and flower visitation rate. 

The other mechanism I hypothesised by which C. bombi could alter plant-

bumblebee interactions was through inducing behavioural change in its host. 

Previous research demonstrated that C. bombi infection slowed flower visitation 

and learning rate in unstressed host bumblebees and that such impairments were 

greater when the parasite was present at a higher intensity (Gegear et al. 2005; 

Otterstatter et al. 2005). However, no evidence of these effects were apparent in 

my results, with the parasite treatment and the infection intensity having no effect 
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on flower visitation rate. The cited experiments used a different bumblebee species 

(Bombus impatiens) on an array of artificial flowers in an indoor laboratory setting, 

and the infection intensities were greater than in my experiment. It is possible that 

these differences caused the contrasting results. 

A final consideration for the lack of difference seen between parasite and control 

treatments is that C. bombi does not affect colony activity and flower visitation rate 

in B. terrestris independent of nutritional and energetic state of the bumblebees. 

However, I believe this to be unlikely considering the research highlighted in the 

previous two paragraphs. 

That bumblebee visitation, both by parasitised and unparasitised colonies, 

negatively affected fruit pollination and quality compared to the negative control 

bagged flower treatment was unexpected. Bagging each flower was designed to 

stop bee visits, with the aim of making these flowers less well pollinated than the 

parasite and control treatments. Hence, fewer fertilised achenes and subsequently 

worse quality fruit were expected from this treatment group. However, this was 

not the case, with the opposite trend being observed and bagged fruits having a 

significantly higher proportion of fertilised achenes and being of significantly higher 

class. The reason behind this result is unclear, but the most likely explanation is that 

the flowers were overpollinated. This typically occurs when the bee density is too 

high for the number of flowers that are available, leading to individual flowers being 

repeatedly visited, and many attempts being made to release pollen and extract 

nectar (Velthuis & van Doorn 2006). In these repeated attempts bumblebees can 

bite the stigma and stamens of flowers. Damage to the stigmas is likely to reduce 

ovule fertilisation, which would then lead to fewer fertilised achenes and 

consequently to the development of deformed fruit. Overpollination is known to 

occur in strawberry and raspberry and it would explain the results observed here 

given the high density of bumblebees present in the tunnels (Velthuis & van Doorn 

2006; Mommaerts et al. 2011; Sáez et al. 2014). 

In this experimental setup, bees were stocked in the polytunnels at a higher rate 

than is recommended by the commercial suppliers. This was done as the colonies 

were only in the tunnels for one week and it can take the bees 2-3 days to settle 

and begin foraging regularly, but it is possible that the bees were still at too high 

density. Even when only 20 bees were present in the colonies the symptoms of 
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overpollination still occurred, although to a lesser degree than when 40 bees were 

present. In addition, there was a negative trend between the number of bees in the 

colony and the size, quality and pollination of the fruit (Table 1). If this experiment 

were to be repeated, there are two strategies that may improve the methodology 

to avoid the overpollination problem occurring again. One would be to reduce the 

number of bumblebees in each colony further, to between 5 and 10 workers per 

colony. Second would be to reduce the amount of time that colonies were present 

in the polytunnel to 4 or 5 days. Both of these should reduce the number of 

visitations that each flower is receiving and thus reduce overpollination. 

Across all the strawberry quality data (fertilised achene ratio, mass, diameter and 

class) there was no significant difference between the parasite and control 

treatments. However, if overpollination did occur in this experiment, then these 

results are difficult to interpret, and no conclusions can be drawn about whether C. 

bombi does affect strawberry quality. Nevertheless, given that foraging rates and 

colony activity were not affected by the parasite treatment, it is possible that 

pollination would also not be affected by C. bombi in a scenario where 

overpollination was not occurring. 

Conclusion 

Given the ubiquity of pollinator parasites and the importance of pollination for both 

biodiversity maintenance and human wellbeing, it is vital that we increase our 

understanding of how and if parasites of pollinators affect pollinator-plant 

interactions and subsequent pollination services. This study represents a first step 

in gaining this understanding. The results presented here suggest that C. bombi 

infection does not affect the flower visitation rate or nest entrance activity of 

commercial B. terrestris colonies. This is suggestive of C. bombi not affecting the 

pollination services, but this cannot be confirmed with the current dataset. 

However, the knowledge that C. bombi does not affect foraging rate and nest 

entrance activity is valuable information, particularly for farmers of crops in which 

commercial colonies are used, where any impairment to foraging could reduce the 

value of each colony. The results I present here may also be useful in guiding future 

experiments that are much needed in this research area. 
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Chapter 5 

Busier bees: increasing nest traffic in commercial 

bumblebee colonies 

 

This chapter has been accepted for publication and is in the final stages of editing 

at the Journal of Pollination Ecology: 

Martin CD, Toner C, Fountain MT, Brown MJF. Busier bees: increasing nest traffic 

in commercial bumblebee colonies. Journal of Pollination Ecology. 
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Abstract 

Commercially-reared bumblebee colonies contribute to the pollination of crops 

globally. If the efficiency of commercial colonies at providing pollination services 

could be increased, it would have implications for agricultural outputs. Commercial 

colonies are sold with an internal nectar reservoir on which bees can forage from 

within the nest. Nectar stores in naturally-produced nectar pots of colonies can 

affect forager recruitment and activity outside the nest. Thus, it is possible that 

artificial nectar reservoirs could impact the foraging activity of colonies. To 

investigate this, commercial Bombus terrestris audax colonies were placed in a 

university parkland campus. Colonies were split into three treatment groups: those 

with (1) access to an unaltered nectar reservoir; (2) access to a diluted reservoir; 

and (3) no reservoir access. Foraging observations were made for all colonies over 

a 19-day period. The mass of each colony was measured and demographic data 

were collected. Colonies with diluted reservoirs had 131% and 39% more bees 

entering and leaving than colonies with no reservoir access and unaltered 

reservoirs respectively. Both treatments with access to a nectar reservoir gained 

more mass, had a higher proportion of pollen foraging bees, and had more workers, 

males, larvae and pupae, than colonies with no access to a reservoir. These results 

demonstrate that manipulating the availability and concentration of internal nectar 

reservoirs of commercial B. terrestris colonies significantly affects the number of 

bees entering and leaving the colony. Dilution of the nectar reservoir could be a 

strategy for increasing the pollination services commercial colonies provide to 

crops. Further research in commercial crops is required before such a strategy could 

be implemented on farms. 

 

Introduction 

Bees are one of the most important pollinator groups, contributing to global food 

production, and human health and wellbeing (Klein et al. 2007; Aizen et al. 2009; 

Kleijn et al. 2015; Rader et al. 2016). A significant proportion of crop pollination 

services are provided by populations of managed honey-bees and commercial 

bumblebees, which increase yield and quality of crops, and provide a buffer against 

the declines of many wild pollinator species (Klein et al. 2007; Calderone 2012; Klatt 
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et al. 2014). Honeybees are the dominant managed pollinator globally, but 

commercially reared bumblebees are increasingly used as they are superior 

pollinators for certain crop types and environments (Willmer et al. 1994; 

Stanghellini et al. 1998; Zhang et al. 2015). 

Despite the widespread use of commercial bumblebees, little research has 

investigated how to optimise their pollination services. One obvious driver of 

pollination services is the number of bees that leave a colony to visit the crop. If the 

rate at which bees leave their colony to forage on the crop could be enhanced, the 

pollination services each colony provides to the crop could potentially be improved. 

In addition to enhancing crop productivity, this could reduce the number of 

commercial colonies that are required in crops, meaning growers could save money 

purchasing fewer colonies, and reduce the negative impacts that commercial 

bumblebee colonies may have on wild bee populations (Inoue et al. 2008; Meeus 

et al. 2011; Schmid-Hempel et al. 2014). 

One area of commercial colony design that could be altered to induce changes in 

foraging is the internal nectar reservoir. All commercial colonies are supplied with 

an internal nectar reservoir filled with an artificial nectar solution located 

underneath the plastic nest box containing the colony. If the cap of the nectar 

reservoir is removed (as is standard practice for colonies placed among crops), then 

bees can access nectar in the reservoir from inside the nest via a cotton wick 

(Biobest 2017). The reservoir was initially introduced to stop commercial 

bumblebees from starving, because they were used predominantly to pollinate 

tomato, whose flowers do not provide nectar (Velthuis & van Doorn 2006). 

However, commercial bumblebees are increasingly being used on a variety of other 

crops, many of which do provide a source of floral nectar (Velthuis & van Doorn 

2006). On such crops, the utility of the commercial colony nectar reservoir is less 

obvious, although when colonies are placed outside, the reservoir may help to 

sustain them during periods of poor weather. However, such nectar reservoirs may 

also act to alter the foraging activity of bees, and thus their effectiveness as 

pollinators. If a source of high quality nectar within the nest alters the motivation 

of bees to forage, this could affect the yield, quality and value of the crop. 

There are several possible mechanisms by which nectar reservoirs in commercial 

colonies could influence foraging activity. Given that the nectar reservoir is 
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accessible at all times, it may be possible for colonies to keep all of their naturally-

constructed wax nectar pots full, meaning that demand for nectar is low, which is 

likely to reduce the foraging activity of the colony (Cartar 1992; Pelletier & McNeil 

2004; Dornhaus & Chittka 2005; Molet et al. 2008). However, if not all the nectar 

pots are full and demand for nectar is high, a sudden influx of nectar to the nectar 

pots from the nectar reservoir could stimulate more foragers to search for nectar 

(Dornhaus & Chittka 2001, 2005). Thus, there are potential mechanisms by which 

the reservoir could both increase and decrease foraging activity of commercial 

bees. 

Furthermore, the concentration of the nectar within the reservoir may also impact 

the number of foragers recruited from the colony. When a forager returns to the 

colony with nectar of a high sugar concentration, it is more likely to perform longer 

excitatory runs and spend more time running quickly around the nest (Dornhaus & 

Chittka 2005; Nguyen & Nieh 2012). This activity, combined with the release of a 

pheromone, alerts nest mates of nectar resources (Dornhaus & Chittka 1999, 2001; 

Dornhaus et al. 2003), and doing it for a longer period, at a higher speed, and over 

a longer distance is thought to recruit a larger number of foragers (Dornhaus & 

Chittka 2005; Nguyen & Nieh 2012). Indeed, studies have shown colony activity to 

increase more when bees return with high quality nectar compared to lower quality 

nectar (Dornhaus & Chittka 2005; Nguyen & Nieh 2012). In addition, if high and low 

quality nectar are injected directly into honeypots, then the high quality nectar 

stimulates more activity from the colony than the low quality nectar (Dornhaus & 

Chittka 2005). This suggests that in order to maximise the number of foragers in a 

colony, higher quality nectar should be used in the reservoir, however it is not 

known how high quality nectar available directly in the nest will influence foraging 

outside the nest. It could be that foraging for high quality nectar from the reservoir 

only stimulates further foraging from the reservoir, rather than stimulating foraging 

outside the nest, and it is foraging outside the nest that is required for crop 

pollination. 

Finally, both nectar and pollen are required by colonies, and their availability has 

been demonstrated to affect colony development (Cartar & Dill 1991; Pelletier & 

McNeil 2003). Thus, the presence and concentration of the nectar reservoir could 

also impact colony development. Access to the nectar reservoir may give workers 

of the colony more energy to enable pollen foraging bouts. In addition, the nectar 
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reservoir may provide all the nectar that a colony requires, meaning that the colony 

is able to increase the proportion of foragers, and thus, collect more pollen. Both 

of these factors could subsequently allow the colony to raise more worker offspring 

and produce larger colonies with more foragers to pollinate a crop. In contrast, the 

opposite may be true for colonies with no access to a nectar reservoir. 

It is clear that there are numerous possibilities for how the nectar reservoir could 

affect commercial bumblebee foraging activity, with different mechanisms acting 

in opposing directions. With the aim of clarifying what affect the nectar reservoir 

has, this study addresses the following questions: 1) does altering the availability 

and concentration of the internal nectar reservoir of commercial Bombus terrestris 

audax colonies affect the number of bees entering and leaving colonies (hereafter 

referred to as ‘nest traffic’)? 2) And do the same nectar reservoir alterations affect 

the maintenance and development of the colony (i.e. the mass of the colony, the 

number of workers, males, pupae and larvae produced by the colony)? Finally, I 

discuss the possible implications of the results for the pollination services provided 

by commercial bumblebees. 

 

Methodology 

Twenty-one B. terrestris audax colonies were purchased from Biobest (Belgium). 

Upon arrival each colony was removed from its outer cardboard box and its mass 

was measured three times to generate a mean mass, and then returned to its box. 

Colonies were randomly assigned to one of three treatments (seven colonies in 

each treatment). In the control treatment, the caps were removed from the nectar 

reservoirs allowing bees access to the nectar, and the content of the reservoirs was 

left unaltered (remaining at 60% w/w sugar concentration), as would be the case 

for standard deployment of commercial colonies in a crop. The sugar water in 

Biobest nectar reservoir consists primarily of fructose, glucose and sucrose with 

potassium sorbate and citric acid added as preservatives (Biobest personal 

communication, 2018). In the diluted treatment, half of the contents (700 ml) of 

each nectar reservoir was removed and then replaced with the same amount of 

distilled water, to make a solution of 40% w/w sugar concentration. The diluted 

reservoir was shaken vigorously to ensure a fully mixed solution, and again the caps 

of the reservoirs were removed. In the final treatment, the nectar reservoirs were 



130 
 

left unaltered and with their caps on, meaning bees could not access the contents 

of the reservoir. After the treatments had been applied, the sugar concentration of 

each reservoir was measured from a 1 ml sample using a hand-held refractometer 

(Bellingham & Stanley), and the mass of each reservoir was measured three times, 

so that consumption of the contents by the colonies could be estimated for the 

duration of the experiment. Reservoirs were then placed underneath their 

associated colonies, as recommended by the supplier. 

On the same day, after treatments had been applied, colonies were placed into field 

boxes (details below) positioned in a clearing on the Royal Holloway University of 

London campus (latitude: 51.424643, longitude: -0.563490). The campus is a mix of 

florally rich borders, meadows, and woodland, surrounded by suburban areas 

containing gardens, habitats which are known to provide significant foraging 

resources for bumblebees (Baldock et al. 2015). The boxes were positioned in 

triplets around the clearing. Within a triplet, one colony from each of the three 

treatments were placed 3-6 metres apart from each other. Triplets were separated 

from other triplets by 10-20 m. The boxes were positioned so the entrances to the 

colonies were all south facing. Field boxes were sturdy plastic boxes (W 67 x L 127 

x D 50 cm; Allied Plastics, Kingston, UK) lined with insulation and pegged to the 

ground. Lids to the boxes were held secure with a ratchet. The boxes protected 

colonies from the rain and disturbance by wildlife. The field boxes were connected 

to the colony boxes with a transparent plastic tube through which bees could enter 

and exit the colony. The end of the tube was wrapped in black tape to make it easier 

for returning bees to find the colony entrance. 

Foraging observations 

A day after colonies were placed outside, foraging observations began. Nineteen 

days of foraging observations were carried out, from 21 July – 8 August 2017, this 

was 34-45% of the 6-8 week time period that colonies are recommended to be used 

for in commercial crops. Seven colonies were observed each day between 09:00 

and 12:30, so all 21 colonies were observed once over a 3-day period. Over the 

whole 19-day sampling period, each colony was observed 6 times. 

To ensure that colonies from a given treatment were not all observed at a similar 

time of day, which could bias the results, colonies from each treatment group were 

observed one after the other, e.g. a colony from the control treatment would be 
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observed, followed by a colony from the diluted treatment, followed by a colony 

from the undiluted treatment. The order of selection of each colony from its 

treatment group was done randomly. 

Each colony observation period lasted 30 minutes. The observer positioned 

themselves so the nest entrance was visible, and every incidence of a bee entering 

or leaving the colony was recorded. It is possible that the same individual bee was 

counted more than once in a single observation, but since bees were not marked I 

cannot quantify this. For returning bees it was also noted if the bee was carrying 

pollen in its corbiculae or not. Temperature was recorded at the start of each 

observation. If it was raining no observations were taken. 

At the end of the 19-day observation period, all colonies were closed at nightfall, 

to ensure that most bees were inside their respective colonies. The colonies were 

then removed from field boxes and placed into a freezer at -20°C. The mass of each 

reservoir was measured three times and its sugar concentration measured to see if 

any changes in mass and concentration occurred during the trial. 

Colony demographics 

After the colonies had been freeze-killed, their masses were measured three times, 

and the numbers of workers, males, gynes (female reproductive offspring), larvae, 

and pupae were counted for each colony. Whether the founding queen was present 

was also noted. 

Statistical analyses 

All statistical analyses were performed using ‘R’ programming software version 

3.5.1 (R Core Team 2018). 

Nest traffic 

Nest traffic (the total number of bees entering and leaving the colony in each 30 

minute observation window) was analysed using a negative binomial generalised 

linear mixed effect model (GLMM), using the R package ‘glmmADMB’ (Fournier et 

al. 2012; Skaug et al. 2016). The covariables included in the model were ‘treatment’ 

and ‘temperature’. The random effects structure contained the 3-day sampling 

period that observations occurred in, and the colony identity nested within the 

triad of colonies. 
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To examine the differences between the treatment groups, post-hoc Tukey 

pairwise comparisons were performed using the package ‘emmeans’ (Lenth 2018). 

The same post-hoc test was applied to all the following models. 

Proportion of pollen foragers 

For each treatment, the proportion of returning bees that were carrying pollen 

loads was analysed. A zero-inflated binomial generalised linear mixed effects model 

(GLMM) was fitted with the package ‘glmmADMB’ (Fournier et al. 2012; Skaug et 

al. 2016) was used to analyse this variable. The covariables and random effects 

structure were identical to those in the nest traffic model, and the same post-hoc 

analysis was performed. 

Colony and reservoir mass change 

The changes in mass of the colonies and nectar reservoirs that occurred during the 

19-day observation period were calculated by subtracting their end mass from their 

start mass. The mass change variables were then analysed using generalised linear 

models (GLM). The response variable ‘colony mass change’ was Box-Cox 

transformed (λ = 0.22͘) to meet the assumptions of the statistical method, and the 

covariables used were ‘treatment’ and ‘colony starting mass’. 

For the ‘reservoir mass change’ variable, no transformation was necessary, and the 

covariables used were ‘treatment’ and ‘nest mass change’. Reservoir mass change 

was used as an approximation of how much reservoir nectar colonies had 

consumed. 

Number of workers, males, larvae and pupae 

The number of workers counted from the frozen colonies after the 19-day 

observation period was analysed using a generalised linear model (GLM) with a 

Poisson error structure. The response variable was Box-Cox transformed (λ = 0.67) 

to meet the assumptions of the statistical method. The covariables used in the 

model were ‘treatment’ and ‘nest starting mass’. 

The number of males, larvae and pupae were all analysed using negative binomial 

generalised linear mixed effects models (GLMM). All these models had ‘treatment’ 

and ‘nest starting mass’ as covariables and included ‘colony identity’ nested within 

‘triad’ as a random effect. 
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Models that were fitted using the glmmADMB package were validated by visual 

inspection of plots of the residuals plotted against the fitted values, and QQ-plots. 

Normality of the residuals was also formally tested using Shapiro-Wilk tests. All 

other models were validated using functions within the ‘DHARMa’ package (Hartig 

2018). Normality of residuals, dispersion and zero-inflation were all formally tested 

for using this package. 

Number of gynes 

The counts for gyne production were low, with many colonies not producing any at 

all, thus no statistical analyses were carried out on these data. 

 

Results 

Over the 19-day observation period each colony was observed 6 times; a total of 

63 hours of colony observations. 

Nest traffic 

The diluted reservoir treatment had 39% more nest traffic than the control colonies 

and 131% more than the closed reservoir colonies (GLMM: control: Z = -4.45, P < 

0.05; closed: Z = 7.58, P < 0.05; Figure 1).  
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Figure 1. Mean nest traffic (number of B. terrestris entering and leaving the colony) 

in the 30-minute colony observation periods for colonies within the three treatment 

groups. Circles indicate back-transformed least square means ± standard error. 

Means sharing the same letter are not significantly different from each other at the 

.05 significance level. Control treatment colonies (n=7) had an unaltered internal 

nectar reservoir (60% sugar concentration), diluted treatment (n=7) had a diluted 

reservoir (40% sugar concentration), and the closed treatment (n=7) had no access 

to an internal nectar reservoir. 

Proportion of pollen foragers 

Colonies from the diluted treatment had a significantly higher proportion of pollen 

foragers than colonies from the closed reservoir treatment (GLMM: Z = 2.65, P < 

0.05; Figure 2). Control colonies did not significantly differ in the proportion of 

pollen foragers compared to diluted and closed reservoir colony treatments 

(GLMM: diluted: Z = -1.62, P > 0.05; closed: Z = 2.26, P > 0.05). 

a 
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Figure 2. Mean proportion of B. terrestris returning to the colony with pollen from 

each treatment group in the 30-minute colony observation periods. Circles indicate 

back-transformed least square means ± standard error. Means sharing the same 

letter are not significantly different from each other at the .05 significance level. 

Control treatment colonies (n=7) had an unaltered internal nectar reservoir (60% 

sugar concentration), diluted treatment (n=7) had a diluted reservoir (40% sugar 

concentration), and the closed treatment (n=7) had no access to an internal nectar 

reservoir. 

Colony and reservoir mass change 

Colonies from all treatments gained mass, however colonies from the closed 

reservoir treatment gained significantly less mass than the control and diluted 

colonies (GLM: control: Z = 5.72, P < 0.05; diluted: Z = 3.39, P < 0.05; Figure 3). The 

starting mass of each colony had a significant positive effect on the colony mass 

change (GLM: T = 2.71, P < 0.05). 

There was no effect of the diluted treatment on the nectar reservoir mass change 

(GLM: T = -0.99, P = 0.35). Colonies that gained the most mass also had the greatest 

reduction in nectar reservoir mass (GLM: T = 2.24, P = 0.047). 
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Figure 3. Mean mass gain of B. terrestris colonies from each treatment group. 

Circles indicate back-transformed least square means ± standard error. Means 

sharing the same letter are not significantly different from each other at the .05 

significance level. Control treatment colonies (n=7) had an unaltered internal nectar 

reservoir (60% sugar concentration), diluted treatment (n=7) had a diluted reservoir 

(40% sugar concentration), and the closed treatment (n=7) had no access to an 

internal nectar reservoir. 

Colony demographics 

Closed reservoir colonies had significantly fewer workers, males, pupae and larvae 

than control colonies (GLM: workers: Z = 8.74, P < 0.05; GLMM: males: Z = 5.31, P < 

0.05; pupae: Z = 7.70, P < 0.05; larvae: Z = 4.53, P < 0.05; Figure 4) and diluted 

colonies (GLM: workers: Z = 8.41, P < 0.05; GLMM: males: Z = 3.11, P < 0.05; pupae: 

Z = 5.11, P < 0.05; larvae: Z = 4.40, P < 0.05; Figure 4) after 19 days in the field. In 

addition, diluted reservoir colonies had significantly fewer workers than control 

colonies (GLM: Z = 8.80, P < 0.05). There were no other significant differences 

between the treatment groups. 

a 
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Figure 4. Mean number of B. terrestris (A) workers, (B) males, (C) pupae, and (D) 

larvae from each treatment group found in colonies after 19 days in the field. Circles 

indicate back-transformed least square means ± standard error. Means sharing the 
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same letter are not significantly different from each other at the .05 significance 

level. Control treatment colonies (n=7) had an unaltered internal nectar reservoir 

(60% sugar concentration), diluted treatment (n=7) had a diluted reservoir (40% 

sugar concentration), and the closed treatment (n=7) had no access to an internal 

nectar reservoir.  

 

Number of gynes 

A mean (± S.E.) of 0.43 (± 0.20) gynes were found in control colonies, 6.14 (± 2.68) 

were found in diluted treatment colonies, and none were found in closed reservoir 

colonies.  

Nectar reservoir concentration 

The sugar concentration of the nectar reservoirs were the same at the end of the 

experiment as they were at the beginning. 

 

Discussion 

The results clearly demonstrate that manipulating both the availability and 

concentration of the internal nectar reservoirs of commercial B. terrestris audax 

colonies can significantly affect the number of bees entering and leaving the colony. 

Colonies with a diluted nectar reservoir had 39% and 131% more nest traffic than 

control and closed reservoir colonies respectively. This suggests that there is 

potential for the pollination services provided by commercial bumblebees to be 

improved with such a dilution. 

The higher levels of nest traffic observed from the diluted reservoir treatment 

colonies compared to the undiluted control treatment may have been caused by 

bumblebees’ preference for higher concentration nectar (Cnaani et al. 2006; Bailes 

et al. 2018). Nectar of 40% sugar concentration, as in the nectar reservoirs of 

colonies from the diluted treatment, is of a higher concentration than the nectar 

provided by a range of floral resources (Wolff 2006; Fowler et al. 2016), but it is still 

possible to find higher concentration nectar in the natural environment (Chalcoff 

et al. 2006). In contrast, it is unlikely that there will be nectar in the environment 

with a higher concentration than 60% (Chalcoff et al. 2006; Knopper et al. 2016; 



140 
 

Fowler et al. 2016). In addition, nectar with sugar concentrations of over 60% starts 

to become highly viscous which slows down the rate at which bumblebees can 

imbibe it, thus slowing the rate of energy intake and potentially making it a less 

attractive nectar source (Nardone et al. 2013; Bailes et al. 2018). Given that 

bumblebee foraging behaviour must have evolved against a background of natural 

diversity in nectar concentrations, it is possible that bumblebees from the diluted 

treatment had more motivation to forage outside the nest than bees from the 

undiluted treatment. Furthermore, the nectar reservoirs from the control 

treatment lost on average more mass than those from the diluted treatment, 

though not significantly so, adding further evidence that the commercial 

bumblebees preferred the 60% over the 40% sugar concentration nectar. In 

addition, both treatments with access to a reservoir had more workers, males, 

larvae and pupae than closed reservoir colonies. Such increases will have further 

increased the nectar demand of the colonies. However, diluted colonies could not 

gain as much nutrition from their reservoirs as undiluted colonies, and so had to 

forage more, potentially outside of the nest to acquire nectar of higher sugar 

concentration. 

If the potential for better quality foraging resources outside the nest was the only 

factor influencing the activity of the colonies, then I would expect the closed 

reservoir treatment to show the highest activity levels, but this was not the case. 

The control and diluted treatment (i.e. the colonies with access to nectar) both had 

significantly higher nest traffic counts than the closed reservoir treatment. Here, I 

hypothesise some possible mechanisms that may lie behind this result. Firstly, both 

treatments with access to nectar gained significantly more mass and contained 

more workers at the end of the 19-day sampling period than the colonies without 

access. This suggests that these colonies grew to a larger size, and thus were able 

to recruit more foragers, resulting in the elevated levels of nest traffic. Nectar and 

pollen are critical in the development of a bumblebee colony (Sladen 1912), and 

colonies with access to nectar also had a significantly higher proportion of pollen 

foragers, which is likely to have helped enable their growth. This increased pollen 

foraging may itself have been enabled by the nectar reservoir giving bees more 

energy to forage more frequently and for longer periods of time, and by providing 

them with a source of nectar with which to form corbicular pollen loads. In addition, 

higher numbers of males, gynes and pupae were recorded in colonies with access 
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to a reservoir, suggesting that these colonies were better able to maintain the eggs 

and larvae that were present when the colonies were placed in the field. Higher 

larvae numbers were also observed from these colonies, indicating that they had 

enhanced levels of development. This is in agreement with literature showing the 

importance of nectar and pollen for colony development, size, and reproductive 

success (Cartar & Dill 1991; Pelletier & McNeil 2003). 

Secondly, bees from the closed reservoir treatment may have lacked energy to 

perform regular and long foraging trips, reducing the chances of their foraging trips 

being successful. Even colonies with a high demand for nectar have low activity 

levels unless foragers are returning and providing a nectar influx into the nest 

(Dornhaus & Chittka 2005). It has been suggested that this could be a strategy for 

energy conservation, so foraging trips are only initiated if they have a high chance 

of being successful (Dornhaus & Chittka 2005), and it is likely to have contributed 

to closed reservoir treatment colonies having much reduced nest traffic. 

A final possible mechanism is that in the colonies that had nectar reservoir access, 

regular influxes of nectar from the nectar reservoir could have stimulated foraging 

(Dornhaus & Chittka 2005). Since bumblebees do not communicate the location of 

forage resources to other nest mates, the stimulated foraging may have occurred 

outside the nest, rather than on the nectar reservoir, resulting in more nest traffic. 

However, I believe that this mechanism is unlikely, as returning foragers do 

communicate the odour of foraging resources (Dornhaus & Chittka 1999). Thus, it 

is possible that this mechanism could have resulted in more foraging from the 

reservoir. 

The results I present seemingly contrast with other similar studies from the 

literature (Cartar 1992; Pelletier & McNeil 2004). Cartar (1992) found that depletion 

of nectar stores from bumblebee colonies increased nest traffic, however, the 

depletion was immediate and nest traffic was monitored for 1.5 hours very shortly 

after the depletion. If the colony had remained in a nectar depleted state for a 

longer period (1-2 days), nest traffic might have decreased to much lower levels 

similar to those seen in the depletion treatment in Dornhaus and Chittka (2005) 

and in the closed reservoir treatment in this experiment. In a longer-term study, 

Pelletier & McNeil (2004) found that bumblebee colonies provided with ad libitum 

nectar and supplementary pollen within the nest foraged less than those that were 
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not supplemented. In their study, foraging observations only began one month 

after the nutritional manipulations were implemented, meaning there was no 

overlap with the time period of my study. It is possible that I might have seen an 

increase in nest traffic from the closed reservoir colonies had I left them in the field 

for a longer time. However, I think this is very unlikely given that these colonies had 

significantly lower numbers of workers, pupae and larvae than colonies with access 

to a nectar reservoir, and so would be unable to greatly increase their foraging 

workforce. I believe the habitat the colonies were placed in may have been more 

nectar rich in the Pelletier & McNeil (2004) study compared to my study, thus 

allowing non-supplemented colonies to forage and develop well. 

A factor that could have affected the results is nectar robbing between colonies, 

especially given the proximity of colonies to each other. For example, colonies from 

the diluted reservoir treatment may have robbed colonies from the undiluted 

control treatment for their higher quality nectar, resulting in more nest traffic from 

the diluted reservoir colonies. In response to this, more bees from the undiluted 

control colonies may have remained in the nest to defend against robbers. Such an 

effect could explain the differences observed in nest traffic between diluted and 

undiluted reservoir colonies. However, although drifting between bumblebee 

colonies is known to occur (Birmingham & Winston 2004; Zanette et al. 2014), it is 

not known how much of this drifting is for nectar robbing purposes. Thus, I do not 

know the magnitude of the effect that robbing may have had on my results. 

Quantification of nectar robbing would be something to consider in future 

experiments. 

The results presented here suggest that diluting nectar reservoirs of commercial B. 

terrestris audax colonies can increase the number of foragers, which could 

subsequently improve the pollination services provided to a crop. However, a 

potential disadvantage to diluting the nectar reservoir could be a reduction in 

longevity of the nectar, as microorganisms are better able to survive at lower sugar 

concentrations. In this experiment, no fungal growths were observed with the 

naked eye in any of the nectar reservoirs after 19 days in the field. However, 

suppliers recommend that commercial colonies be left out in the target crop for 6-

8 weeks (approximately 2-3 times the length of this experiment). After this length 

of time, it is possible that the reservoirs could be contaminated with fungus, in 

which case such contamination is likely to be more severe in diluted reservoirs with 
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a lower sugar concentration. It is possible that contamination of the reservoir may 

cause bees to become averse to this nectar source, and bees feeding from it may 

suffer negative health consequences leading to a possible reduction in the size of 

the colony, its foraging activity, and subsequently the pollination services it is 

providing. However, nectar contaminated with yeast has been shown to be 

preferentially selected by bumblebees over non-contaminated nectar (Herrera et 

al. 2013; Schaeffer et al. 2017), and no detrimental fitness effects have been 

detected. The preferential selection of yeast contaminated nectar may even 

suggest a positive fitness effect of yeast containing nectar, but this has not been 

demonstrated. What effect microorganism growth in commercial colony nectar 

reservoirs may have on commercial colonies remains to be tested, but it is 

potentially a complex issue. 

Whilst this study clearly demonstrates that manipulations of the nectar reservoir of 

commercial B. terrestris audax can significantly alter nest traffic, further research is 

required to investigate what effect these alterations might have on the pollination 

of crops. An obvious follow-up to this study would be to apply nectar reservoir 

dilution treatments to commercial bumblebee colonies in different cropping 

systems. This would clarify whether the trends observed here are replicated in a 

very different foraging environment, and if they are, whether higher nest traffic 

does translate into better pollination services, crop quality and yield. Effects of 

dilution could vary in different crops depending on the volume and sugar 

concentration of the nectar that they produce. For example, tomato crops produce 

no nectar and can be grown in closed glasshouses from which bees may not be able 

to escape, thus, the nectar reservoir is their only source of nectar. In this case, 

dilution of the reservoir would be reducing the total sugar content of the only 

available nectar source, which could negatively affect the development of the 

colony. However, several other crop types for which commercial bumblebees are 

used do produce nectar. It is on such crops that I would recommend testing the 

effect of reservoir dilution on colony nest traffic and crop pollination. In addition, 

the spatial arrangement of cropping systems is likely to affect the accessibility of 

alternate foraging resources in the surrounding landscape to the commercial 

bumblebees, which could also be a factor in the effect that nectar reservoir dilution 

has on commercial colonies. 

Another factor that should be considered in future experiments is how the effect 
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of the treatments I applied to colonies might vary over longer time periods than 

three weeks. It seems likely that over a longer duration the effects that the 

treatments have on colony demographics and development may play a greater role 

in determining the amount of foraging activity. For example, colonies that have 

more larvae and pupae at 3-weeks, are likely to have more of workers at 6 weeks, 

as the larvae and pupae have developed and emerged as adults. In this experiment, 

diluted and undiluted reservoirs had similar numbers of pupae and larvae, and 

significantly more pupae and larvae than closed reservoir treatments, suggesting 

that the trends seen in this study may have continued. However, a study conducted 

over the recommended pollination lifespan of commercial colonies of 6-8 weeks 

would be required to fully test whether the effect of the treatments changes 

temporally. 

The results of this study could have applied value to the field of bumblebee research 

itself. Commercial colonies are regularly used for research purposes, and 

experimenters may wish to maximise nest traffic from colonies to allow greater 

volumes of data to be collected. Here, I demonstrated a method of increasing such 

nest traffic. Furthermore, studies investigating aspects of commercial colony 

development and reproduction will want to consider what impact use of the 

internal nectar reservoir may have on their results. 

As it stands, this study shows that there is potential for the foraging activity of 

commercial bumblebee colonies to be significantly increased with a simple 

manipulation. If this trend can be replicated across different crop types in 

agricultural settings, then pollination efficiency may increase, and fewer colonies 

may be required to meet pollination demands, making farming more cost efficient 

and reducing the potential for environmental damage caused by commercial 

bumblebee colonies (Inoue et al. 2008; Meeus et al. 2011; Schmid-Hempel et al. 

2014). 

 

 

 

 



145 
 

Chapter 6 

Discussion 

Key findings 

Effects of Crithidia bombi on bumblebee behaviour and pollination 

Bumblebees are important wild and commercial pollinators (Fijen et al. 2018), 

particularly in temperate regions of the world, and they play host to a variety of 

parasites, which have previously been shown to alter their behaviour and survival 

(Schmid-Hempel & Schmid-Hempel 1990; Schmid-Hempel 1998; Brown, Schmid-

Hempel, et al. 2003; Rutrecht & Brown 2008). However, it is currently unknown 

whether such parasites can alter the pollination services that bumblebees provide. 

The experiments reported in Chapters 1 and 4 of this thesis attempted to fill this 

knowledge gap. I found that the common bumblebee parasite Crithidia bombi did 

not alter the olfactory learning behaviour of the important bumblebee pollinator 

Bombus terrestris (Chapter 1). Furthermore, in a polytunnel setting, C. bombi did 

not have any effect on the number of bees entering and exiting the nest, or on the 

flower visitation rate of the bees (Chapter 4). There was no evidence of previously 

reported learning deficits and reduced flower visitation rate displayed by C. bombi-

infected bumblebees (Gegear et al. 2005, 2006; Otterstatter et al. 2005). Together, 

these results suggest that C. bombi may not alter the pollination services that bees 

provide via behavioural changes. However, there are other behavioural facets that 

remain to be tested that could impact upon the pollination services bumblebees 

provide. For example, parasites of honeybees have been shown to impair the host’s 

homing ability (Wolf et al. 2014), potentially resulting in a reduced colony 

workforce. Such effects have not been tested for in bumblebees, but they could be 

impairing colony fitness and subsequent pollination services. 

The lack of difference in the flower visitation and nest traffic between the C. bombi-

infected and control colonies may also be indicative of C. bombi not exerting large 

mortality impacts in the infected colonies. This is possible as bumblebees were 

unlikely to have been nutritionally or energetically stressed in the polytunnel 

environment, which are the conditions required for C. bombi to be most virulent 

(Brown et al. 2000; Brown, Schmid-Hempel, et al. 2003). 
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Despite the lack of evidence for either parasite-induced behavioural alterations or 

mortality, I cannot definitively say whether C. bombi affected pollination services. 

This is because of the possible overpollination that occurred in the experimental 

set up in Chapter 4 that caused the treatments to display an unexpected pattern 

when compared to the negative control. Thus, it remains to be tested what effect 

C. bombi has on bumblebee pollination, but the results from Chapter 4 are valuable 

for informing future methodologies attempting to answer this question (see 

‘Further research’ section of the discussion for more details of such 

methodologies). 

Commercial bumblebee effectiveness and parasite dynamics within colonies 

During the thesis introduction and the introduction of Chapter 2, I highlighted the 

great need to test the effectiveness of commercial bumblebee colonies at providing 

pollination services in crops. I followed this up by testing how effective commercial 

bumblebees are in a strawberry crop in Chapter 2. The results provided valuable 

information as to commercial bumblebee effectiveness and further demonstrated 

why such experiments are necessary. I found that commercial B. terrestris colonies 

can be beneficial by providing pollination services that increase the quality and 

value of a strawberry crop. However, this beneficial effect was only evident during 

the early part of the strawberry growing season (March-April) in the UK. During May 

and June, commercial colonies no longer provided a benefit to the crop. This 

experiment clearly demonstrated that colonies cannot be assumed to improve crop 

yield and quality, and that ecological factors along with farm management practices 

must be considered when deploying colonies. 

As well as being ineffective at increasing the quality of the crop, the colonies used 

in the later flowering everbearer crop harboured parasites at potentially hazardous 

prevalences by the end of their time in the crop (Chapter 3). The parasites were 

likely to have been acquired from wild bees and, at the prevalences observed in the 

commercial colonies, could pose a threat to the same wild bee communities via 

spill-back. 

Finally, in Chapter 5, I suggest a potential manipulation that could increase the 

efficiency of commercial bumblebee colonies. By diluting the internal nectar 

reservoirs that all commercial colonies are shipped with, the nest traffic of colonies 

was significantly increased. An increase in nest traffic is suggestive of a higher rate 
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of foraging trips, which could lead to improved pollination services being provided. 

If individual commercial colonies could be made more effective, fewer may be 

required for agricultural pollination, potentially reducing the environmental 

damage caused by colonies. 

 

Are commercial bumblebees necessary in strawberry and other 

crops? 

Performing and discussing the experiments that make up this thesis, has given me 

new insights into the issues surrounding commercial bumblebee colony use, and so 

I come back to the question initially raised in the introduction of whether 

commercial bumblebees are necessary in strawberry and other non-greenhouse 

crops. 

In one crop system I have demonstrated both positive and negative aspects of their 

use. The positive impact was that commercial colonies improved the quality and 

value of a June-bearing strawberry crop. The negative impacts were that they 

provided no benefit to a later flowering everbearer strawberry crop, and the 

colonies used in this system harboured parasites that reached a prevalence level 

where they could potentially pose a threat to wild bees via spill-back. I provide 

evidence both in support of and against commercial colony use, highlighting the 

complexity of the issue. 

In addition to these negative impacts, there are those which I have highlighted 

previously in this thesis. These include, pathogen spillover from commercial to wild 

bees, and competition between commercial and wild bees (Colla et al. 2006; Ings 

et al. 2006; Murray et al. 2013). However, there are further environmental impacts 

associated with the production and distribution of colonies that are rarely 

considered in the scientific literature. For example, large amounts of resources and 

energy are likely required to mass produce bumblebee colonies. Rearing facilities 

need to be maintained at optimum temperatures, plastic and cardboard must be 

used to house the colonies, and extensive transportation networks are required to 

distribute colonies around the world. Thus, any reduction in commercial 

bumblebee colony use would not only reduce the environmental impact caused by 

the bees themselves, but also the impact of the production process. 
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I believe that in an ideal situation, commercial bumblebee colonies would not be 

necessary outside of closed greenhouse growing systems that wild pollinators 

cannot access. Sufficient pollination services to crops would be provided by a rich 

diversity of wild pollinators. However, the intensive agricultural systems that are 

currently used globally are not good for supporting wild pollinator communities 

(Kremen et al. 2002; Samuelson et al. 2018). Such systems are associated with 

habitat destruction, loss of floral resources, and increased pesticide use, all of which 

are thought to be major causes of pollinator declines (Ollerton et al. 2014; Goulson 

et al. 2015). In the face of increasing food demand from a growing human 

population, the intensity of agricultural systems seems unlikely to reduce. Although 

there is hope that practices may become more pollinator friendly, with bee harming 

pesticides being banned in some areas (e.g., ban on the outdoor use of three major 

neonicotinoid pesticides in The European Union), and increased emphasis placed 

on environmentally friendly farming methods being reflected in policy (e.g., agri-

environment schemes providing funding to farmers that manage their land in a 

manner that supports biodiversity). However, whether such policies increase wild 

pollinator numbers and pollination services to crops to the extent that commercial 

pollinators are no longer required is not known.  

Thus, I believe that commercial bumblebee colonies can play a valuable role in our 

current agricultural systems if the following criteria are met: 

- Commercial colonies are known to benefit the yield and/or quality of the 

crop in which they are used. 

- The pollinating effectiveness of the wild pollinator community and whether 

the crop is pollen limited has been assessed. 

- Colonies can be guaranteed to be pathogen-free upon delivery (my 

experiments show that progress has been made in reducing parasite loads, 

but viruses were not screened for, and these are important to consider). 

- The commercial species that is being used is native to the area. 

- The colonies are efficient and used in the most environmentally friendly 

manner possible (see below for management recommendations). 

Ultimately, other than in closed greenhouse systems or areas where wild 

pollinators are naturally absent, we should strive for all our pollination 

requirements to be met by a diverse wild pollinator community. However, if 
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commercial bumblebees can meet all the above criteria, they can enable 

agriculture to be more efficient in a way that minimises environmental damage. 

More efficient agricultural production will be crucial in providing food security to 

the human population, while also allowing land to be spared for conservation 

purposes. 

 

Commercial bumblebee management recommendations 

Based on the results from Chapters 2 and 3 reported in this thesis, I propose some 

provisional management recommendations that could potentially reduce the 

environmental impact that commercial bumblebee colonies are having. Further 

research is required to confirm whether these suggestions would be useful on a 

large scale. 

My first suggestion is that commercial bumblebee colonies be deployed on crops 

for a period that is less than the currently recommended maximum of 8 weeks. This 

could have several potential benefits. Firstly, it could reduce the number of males 

that escape into the wild. After 8 weeks in the field, commercial B. terrestris 

colonies are well into the sexual production phase of the colony cycle (Martin 

personal observation), and it is highly likely that some males will already have 

escaped into the wild. However, earlier removal of colonies will reduce the 

regularity of this occurrence, lessening the chance of hybridisation between 

commercial and wild bees occurring, and potentially reducing competition between 

commercial and wild species by decreasing the influx of commercial bees into the 

environment. 

Imposing a shorter time limit may also help to reduce parasite spill-back from 

commercial colonies. In Chapter 3, I report that parasite prevalence in the 

commercial colonies dramatically increased between week 7 and 8. Thus, by 

removing them at an earlier time, there is a greater chance that parasite 

prevalences will not yet have built up to potentially hazardous levels, and so the 

threat of spill-back could be significantly reduced. 

A counter argument to a reduction in the time that commercial colonies can spend 

in the field, may be that the colonies could still provide valuable pollination services 

after 6 weeks. Whilst this may be true for some colonies, the data collected for 
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Chapter 3 demonstrated that over 50% (7/12) of colonies had fewer than 10 worker 

bees remaining after 8 weeks in the crop. These colonies had clearly declined 

massively from their peak populations and were close to complete expiry. At such 

a size, these colonies were likely providing only a minimal pollination service, if any 

at all, so removal of colonies one or two weeks earlier is unlikely to result in a large 

loss of pollination services, and could reduce the potential health hazard to wild 

bees. However, it should be noted that the longevity and strength of commercial 

colonies could also be dependent on the crop into which they are placed and the 

nutrition that it provides. 

My second suggestion is that consideration be given to the time of year and the 

wild pollinator community where colonies are deployed. My results demonstrated 

that the time of year can have strong effects on both the effectiveness of 

commercial colonies at providing pollination services (Chapter 2), and on the 

prevalence of parasites within the colonies (Chapter 3). The abundance of wild 

pollinators is also highly seasonal and, despite not being a significant predictor of 

strawberry quality in Chapter 2, has previously been shown to be important for crop 

pollination (Garibaldi et al. 2013).  

Based on an experiment on a single farm, in one crop species, I cannot definitively 

say that commercial colonies should not be used during May and June. However, 

this study clearly highlights that it is not always certain that commercial colonies 

will provide benefits to a crop. Ecological factors and farm management practices, 

that vary with time of year, could be having an impact on the effectiveness of 

commercial bumblebees. Such factors include: 

- The wild pollinator community and the pollination services it can provide 

at different times of year. The wild pollinator community itself may be 

influenced by farm management practices, such as the adoption of agri-

environment schemes. 

- Whether the crop is pollen limited and if pollen limitation displays temporal 

patterns throughout the year. 

- How much the crop relies on insect pollination for fruit/seed set. 

- Whether the crop is attractive to bumblebees. 

- The polytunnel architecture, i.e., whether the sides of polytunnels are 

rolled up may affect pollinator dispersal in the crop. The polytunnel 
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architecture itself depends upon climatic conditions, which display a 

temporal pattern. 

An in depth understanding of such factors is required for more detailed commercial 

bumblebee management recommendations to be determined. 

 

Further research 

Completion of the experiments that make up this thesis has highlighted several 

other research avenues. 

The value of commercial bees in other crop types 

Chapter 2 of this thesis is the first stage of what could be a large research 

undertaking. I have provided a first step in understanding the contribution that 

commercial bumblebees provide in a strawberry crop in the UK. However, 

strawberry is grown around the globe, and differing environmental factors could 

influence the effect that commercial bees are having. Further replication of an 

experiment similar to that which was conducted in Chapter 2 is required to gain a 

full understanding of the contribution that commercial bumblebees provide to the 

crop. 

Additionally, there are many more crop types on which commercial bumblebees 

are used. I would suggest that any crop that uses commercial bumblebees and is 

not grown in a closed system (i.e. the crop can be accessed and pollinated by wild 

pollinators) would be a good target on which to test the effectiveness of 

commercial bumblebees. As I have previously stated, it is essential that we know 

the true value of the pollination services commercial bumblebees provide, both 

from the farmers perspective, to judge whether they are worth the monetary 

expense, and from a management and conservation perspective so their benefits 

can be compared to the environmental risks of using them. 

However, it may be unrealistic to test commercial bumblebees on the diversity of 

crop types and in the various geographical areas in which they are used. A simpler 

and more widely applicable method could be to test pollen limitation in crops, and 

use this as a guideline as to whether commercial bumblebees should be deployed. 

A subset of crop flowers could be exposed to one of three treatments. One 
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treatment (negative control) would cover the flower in a mesh bag to stop it 

receiving any insect pollination. A second treatment would have the flower left 

open and able to receive visits by the wild pollinator community. The final 

treatment would be a hand pollinated flower (positive control), which is assumed 

to be fully pollinated. The seed set and/or fruit quality of the open pollinated 

treatment could then be compared to the negative and positive control, and an 

assessment of pollen limitation made. If a crop is found to be pollen limited, it is 

more likely that the addition of commercial bumblebees would provide a benefit to 

the crop. This method may be more applicable and repeatable at a broader scale, 

compared to that used in Chapter 2. 

Increasing commercial bumblebee effectiveness 

Linked to the research of Chapter 2, the results from Chapter 5, suggest a possible 

mechanism to increase the effectiveness of individual commercial colonies. By 

diluting the internal nectar reservoir of commercial bumblebees, the nest traffic 

and the proportion of bees collecting pollen increased. Both of these factors could 

contribute to increased pollination services provided by colonies. Again, this 

experiment represents the first step in what could potentially be a useful strategy 

to increase commercial colony effectiveness. The next steps would involve using 

the same internal nectar reservoir dilution technique with commercial colonies in 

a commercial crop setting. This would allow us to observe whether the patterns 

seen in Chapter 5 still hold in a completely different foraging environment, and if 

this was the case, whether these patterns lead to increased yield and/or quality of 

the crop to be pollinated. 

A further commercial colony research area, highlighted in Chapter 4, is optimisation 

of the density at which commercial colonies are deployed in commercial crops. This 

chapter highlighted the significant decreases in fruit quality that can be caused by 

there being bumblebees at too high densities in a crop, causing the crop to be 

overpollinated. Commercial suppliers do recommend densities at which to deploy 

bumblebees on certain crops, but realistically the actual pollination requirement 

for the crop will vary depending on environmental factors, such as the wild 

pollinator species assemblage and the relative pollinating ability of each species 

within an assemblage. Greater optimisation of the densities could provide a benefit 

to both growers and wild bee populations. 
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The maximum necessary colony density required for a crop could be estimated by 

deploying commercial colonies, each containing different numbers of bees, in 

separate individual closed polytunnels containing the target crop. The optimum 

number of bees necessary per unit area or per flower could then be estimated by 

examining which polytunnels had the crop with the best yield and/or quality. This 

estimate of the maximum density of commercial bees required could then be 

reduced depending upon wild pollinator visitation to the target crop in a farm 

setting. 

Is pathogen spill-back a threat to wild bees? 

In Chapter 3, I demonstrate that there is potential for commercial colonies to 

acquire parasites from wild bees, and for these parasites to build up to prevalences 

that could pose a threat to wild bees via spill-back. However, I was not able to 

examine whether spill-back actually occurs, and if it does, whether it could be 

damaging to the health and populations of wild bees. It seems likely that spill-back 

is occurring, as the same processes that lead to commercial colonies picking up 

infections from wild bees (e.g. flower sharing), could also lead to transmission in 

the other direction. Whether this is a threat to wild bees is more difficult to 

speculate and would require data on the extent to which spill-back is occurring. 

To test whether spill-back is occurring, commercial colonies inoculated with a 

particular parasite strain could be placed into a crop system. The wild bumblebee 

community in the area could then be sampled and molecularly screened to see 

whether this unique strain is found to be infecting them. Detection of the strain 

would indicate spill-back was occurring. However, on ethical grounds, I would 

advise that such an experiment not be performed, as this may introduce new 

pathogens to wild bee populations. Alternatively, modelling techniques could be 

used to shed light on this issue. 

Does parasitism affect pollination services? 

The experiment reported in Chapter 4 was unable to determine whether C. bombi 

does impact upon the pollination services that B. terrestris provides. Although, 

along with Chapter 1, it provided some evidence that C. bombi may not be affecting 

pollination-relevant behaviours, such as olfactory learning and flower visitation 

rate. However, the knowledge gap of whether parasitism of pollinators can affect 
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pollination services still remains. If I were to repeat the experiment of Chapter 4, 

the bumblebee colonies would contain far fewer workers and they would be left in 

the polytunnels for a shorter period of time, to avoid the problems caused by the 

probable overpollination that was occurring. 

In such an experiment, a stronger effect may be more likely if a different, more 

virulent bumblebee parasite were to be used, such as Nosema bombi or Apicystis 

bombi. However, I believe that answering this question with C. bombi should be a 

priority. Given its high prevalence both in the wild and in commercial colonies, if it 

were found to have an effect, this could have large consequences for ecosystem 

functioning and services. 

 

Concluding remarks 

The experiments highlighted in this discussion would increase our knowledge of the 

pollination services that commercial colonies provide and whether these services 

can be improved. Furthermore, they would provide us with further insight into 

pathogen infection dynamics within commercial bumblebee colonies and 

populations, and importantly allow us to understand what effects such pathogens 

may have on the pollination of crops. Ultimately, this research could help to 

increase agricultural outputs at a lower environmental cost, factors which may be 

critical in providing food security to the human population, and conserving 

biodiversity. Outside of agricultural systems, understanding the role that parasites 

of pollinators play in pollination will provide us with invaluable fundamental 

knowledge of ecosystem functioning. Knowledge which could prove vital in 

protecting such systems.  
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