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We analyze quantum phase transitions in a system of optical lattice bosons coupled to an array
of atomic quantum dots. Atomic quantum dots are represented by hard-core bosons of different
hyperfine species and therefore can be mapped onto pseudospins-1/2. The system parallels the
Bose-Hubbard model with an additional assisted tunneling via coupling to the atomic quantum
dots. We calculate the phase diagram of the combined system, numerically within the Gutzwiller
ansatz and analytically using the mean-field decoupling approximation. The result of the assisted
Bose-Hubbard model is that the Mott-superfluid transition still takes place, however, the Mott lobes
strongly depend on the system parameters such as the detuning. One can even reverse the usual
hierarchy of the lobes with the first lobe becoming the smallest. The phase transition in the bosonic
subsystem is accompanied by a magnetization rotation in the pseudospin subsystem with the tilting
angle being an effective order parameter. When direct tunneling is taken into account, the Mott
lobes can be made disappear and the bosonic subsystem becomes superfluid throughout.

PACS numbers: 05.30.Jp, 05.30.Rt

I. INTRODUCTION

The celebrated Bose-Hubbard model (BHM) describes
a system of interacting bosons with hopping between
nearest neighbor sites1. This model exhibits a quantum
phase transition from the incompressible Mott insulator
state to the compressible superfluid state as a result of the
competition between the kinetic energy and the on-site
repulsion. Once it was understood that such model could
be realized in optical lattices of cold bosons in a con-
trolled way2 it did not take much time to experimentally
observe the Mott-superfluid quantum phase transition3,4.

After the experimental realization in optical lattices,
the model became extremely popular, having been ex-
plored and studied under various conditions and modifi-
cations. The topic of non-standard Bose-Hubbard mod-
els became a separate research branch motivated by fur-
ther experimental advances5. Various additional terms
(e.g. density-induced tunneling, three-body interactions,
dipolar interactions, interactions with fermions) and fea-
tures of bosons (e.g. spin) were taken into account. Un-
surprisingly, these resulted in modifications of the typical
Bose-Hubbard model phase diagram, with new phases
appearing and Mott lobes being modified in size and
shape5.

In this work we study another non-standard Bose-
Hubbard model where the usual, direct tunneling be-
tween the sites is suppressed and instead an assisted
tunneling due to the coupling to atomic quantum dots
(AQDs), which are described as pseudospin-1/2, is taken
into account. Assisted tunneling, hopping, coupling via
different excitations or particles are not rare in solid
state physics and condensed matter with many examples
ranging from, for instance, phonon-assisted tunneling in
semiconductors6 and electron chains7 to the celebrated
Anderson model where conduction electrons of a metal
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FIG. 1: (a) One- and (b) two-dimensional schematic setup of
the system: an optical lattice of spinless bosons (blue/light-
grey circles) is coupled to an array of atomic quantum dots
represented by bosons of a different atomic species (red/dark-
gray circles). J is hopping between the spinless boson optical
lattice sites, T is the coupling of the lattice bosons to AQDs
due to Raman transitions (see text).

hybridize with d-electrons of magnetic impurities8,9.
In our setup AQDs are represented by hard-core bosons

coupled to repulsive bosons of different atomic species
in the optical lattice by laser-induced Raman transitions
(Fig. 1). Two AQDs coupled via one bosonic reservoir
were considered previously and it was shown how entan-
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glement could be generated between two AQDs, or two
pseudospins due to the induced effective interaction10,11.
On the other hand, an AQD can induce Josephson tun-
neling between two condensates coupled only through
the artificial impurity12. A quantum order-disorder
phase transition was shown to take place in a system
of independent AQDs coupled to a single Bose-Einstein
condensate13. Raman-assisted hopping was also used to
realize the so-called anyon Hubbard model with a rich
ground state physics14. The studies point towards a pos-
sibility of quantum phase transitions within our coupled
system.

We refer to our model as assisted Bose-Hubbard model
(ABHM) and treat it within the Gutzwiller ansatz15,
which allows calculation of the superfluid order param-
eter and pseudospin components, depending on chosen
chemical potential and interaction. We also perform an
analytical calculation of the phase boundary based on
the mean-field decoupling approximation16. Both ap-
proaches are in perfect agreement with each other. We
find that the Mott-superfluid transition does take place
in the bosonic subsystem. However, the Mott-superfluid
phase boundary strongly depends on the system param-
eters to the extent that the usual Mott lobe hierarchy
with the first lobe being the largest can be reversed. If
direct hopping is included, we show it contributes to the
reduction of the lobes with their disappearance for large
enough values of the direct hopping. The Mott - super-
fluid transition is accompanied by the pseudospin rota-
tion from z- to x-axis, so that the tilting angle with z-axis
becomes finite, once the bosonic subsystem is superfluid.
We study in detail how the phase transitions can be mod-
ified and manipulated in our model. Although mean-field
approaches are known to be exact only when the spatial
dimension is infinite, they provide a good qualitative de-
scription of the quantum phase transition and are well
suited for our purposes of describing drastic changes due
to parameter manipulations. For exact phase diagram of
the system, one should invoke methods such as Quantum
Monte Carlo, for example17.

II. THE MODEL

We consider spinless bosons coupled to an array of
atomic quantum dots as shown in Fig. 1. Fig. 1 exem-
plifies a one-dimensional system, whereas the extension
to higher dimensions is trivial. The general Hamiltonian
of the system is the following

H = − J
∑
〈i,j〉

â†i âj +
U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i

+ T

[∑
i

(â†i σ̂
i
− + h.c.) +

∑
i

(â†i+1σ̂
i
− + h.c.)

]

− (δ + µ)
∑
i

1 + σ̂iz
2
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FIG. 2: Phase diagram for the BHM (T=0), and assisted
Bose Hubbard model (J = 0 and detuning δ = 0), described
by Hamiltonian (1). The first two panels show the super-
fluid order parameter ϕ while the lowest panel shows the x-
component of the pseudospin sx. All energies are expressed
in units of U : µ̃ = µ

U
, T̃ = T

U
, and J̃ = J

U
. The dashed line

is the visual guide marking the area on the diagram where sx
has a value of 1/2 or is very close to it.
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The first three terms constitute the standard Bose-
Hubbard model. Here â†i , âi are creation and annihila-
tion operators of bosons on site i, n̂i = â†i âi, J is the
direct hopping between nearest neighbors, U is repulsive
interaction and µ is chemical potential.

The terms proportional to T describe the laser-induced
hopping between the lattice sites and the atomic quan-
tum dots. The quantum dots are described by operators
b̂†, b̂ which represent bosons of another hyperfine species
than the bosons in the optical lattice, trapped in a nar-
row potential with an effective on-site repulsion Ub →∞.
Laser-induced Raman transitions can couple the atomic
quantum dots to the lattice bosons. T is then propor-
tional to the Rabi frequency ΩR of the Raman transition
between the internal atomic states of atoms in the lattice
and the AQD

T = ~ΩR

∫
d3rψi(r)ψkb (r), k ∈ i, i− 1. (2)

This kind of coupling was first introduced in Ref.18.
In the limit of Ub →∞ we can map the bosonic opera-

tors on the dots onto pseudospin-1/2 operators b̂ → σ̂−,
b̂† → σ̂+ and b̂†b̂ = (1 + σ̂z)/2 as it was originally done
in Ref.19. Here σ̂+ = (σ̂x + iσ̂y)/2, σ̂− = (σ̂x − iσ̂y)/2,
where σ̂x, σ̂y, σ̂z are Pauli matrices. The wave function
ψi(r) describes bosons on the i-site of the optical lat-
tice, and ψkb is the wave function of the boson in the
atomic quantum dot. We assume that the quantum dot
wave-function overlaps only with wave-functions ψi(r) of
the nearest neighbor sites. In this way, there is no di-
rect interaction between the pseudospin sites, but only
an induced one. The parameter δ describes the detuning
necessary to suppress spontaneous emission at the AQD
sites.

A. Gutzwiller ansatz approach

We now aim to describe the quantum phase transitions
in the ABHM for various detunings using the Gutzwiller
ansatz. The version of Gutzwiller ansatz for a system of
bosons in a lattice20 is a product of Fock states

|Ψ〉BH =

N∏
j

∞∑
n=0

f (j)n |n〉j , (3)

where N is the total number of lattice sites and f (j)n are
coefficients of a site j with a n number of bosons. Since
just two states describe the state of a quantum dot, we
can assign spin-up (occupied dot) and spin-down (empty
dot) notations for them, so that one AQD is described
by the state

a1 |↑〉+ a0 |↓〉 . (4)

The state of the coupled system is then

|Ψ〉 =

N∏
i

[ ∞∑
n=0

f (i)n |n〉i ⊗ (a
(i)
1 |↑〉i + a

(i)
0 |↓〉i)

]
, (5)

where i numbers the lattice sites (see Fig. 1). All the
coefficients are normalized:∑

n

|f (i)n |2 = 1, |a(i)0 |2 + |a(i)1 |2 = 1. (6)

We assume that the coefficients fn are real, however, we
need a0 and a1 to be complex. We can now approximate
the lattice sites with as many as seven states, depending
on the chemical potential. Evaluating the Hamiltonian
locally we get

〈Ψ|H|Ψ〉 = −zJ

[
n0+2∑
n=0

√
n+ 1fnfn+1

]2

+
U

2

[
n0+3∑
n=0

f2n(n2 − n)

]

+ zT [a∗1a0 + a1a
∗
0]

[
n0+2∑
n=0

√
n+ 1fnfn+1

]

− µ

[
|a1|2 +

n0+3∑
n=0

nf2n

]
− δ|a1|2. (7)

Here we introduced z = 2d the number of nearest neigh-
bors in terms of the spatial dimension d, n0 is the average
occupation of optical lattice site per lobe. In this way we
got the local energy in terms of the coefficients of the
Gutzwiller ansatz. In order to reduce the number of pa-
rameters, we divide everything through U and introduce
µ̃ = µ/U , δ̃ = δ/U , T̃ = T/U and J̃ = J/U . The lo-
cal order parameters can be expressed in terms of the
coefficients as follows

ϕ = 〈âi〉 =

n0+2∑
n=0

√
n+ 1fnfn+1,

sx =
1

2
〈σ̂ix〉 =

1

2
(a∗0a1 + a∗1a0),

sy =
1

2
〈σ̂iy〉 =

i

2
(a∗0a1 − a∗1a0),

sz =
1

2
〈σ̂iz〉 =

1

2
(|a1|2 − |a0|2). (8)

The phase diagram will be obtained by numerical min-
imization of the local energy w.r.t. the normalized coef-
ficients for fixed values of δ̃, µ̃, T̃ and J̃ , from which the
order parameters will follow. sy turns out to always be
zero as a result of these calculations and is therefore not
shown anywhere.

B. Mean field description

We can also calculate the phase boundary using a sim-
ple decoupling approximation16. Namely, we assume the
mean-field decoupling in the terms proportional to T and
J

â†i σ̂
i
− ≈ sxâ

†
i + ϕσ̂i− − ϕsx,

â†i âj ≈ ϕ(â†i + âj)− ϕ2, (9)
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FIG. 3: First five lobes of the Bose-Hubbard model phase
boundary with assisted hopping only (direct hopping J = 0)
for different detuning δ. Inside the lobes the system is in the
Mott state (ϕ = 0 and sx = 0), outside the lobes the system
is superfluid so that ϕ 6= 0 and sx 6= 0.

which amounts to first order contributions in fluctuations
in the order parameters. This kind of decoupling allows
us to deal with the effective single site Hamiltonian

Hi = U
2 n̂i(n̂i − 1)− µn̂i − (δ + µ)

1+σ̂i
z

2 + zJϕ2

+ (zTsx − zJϕ)(â†i + âi) + zTϕσ̂ix − 2zTϕsx.(10)

Treating the single site Hamiltonian with second-order
perturbation theory, we expand the ground state energy
per site to second order in ϕ and sx (in the following we
will omit the site index i).

Minimising the unperturbed single site Hamiltonian
gives the ground state energy as

E(0)
n =

{
U
2 n(n− 1)− µn− (µ+ δ) if µ+ δ ≥ 0,
U
2 n(n− 1)− µn if µ+ δ ≤ 0.

(11)
The chemical potential should also satisfy the inequality
U(n−1) < µ < Un. For µ+δ > 0 all AQDs are occupied,
whereas for µ+ δ < 0 all AQDs are empty in the ground
state. For µ + δ = 0 the two energies coincide as the
AQD is in the superposition state of being occupied and
empty, we refer to this condition as the "degeneracy line"
in our plots.

Each ground state energy generates an equation for the
phase boundary, above and below the degeneracy line.
Both cases are accounted for with the absolute value of
|µ+ δ|.

First order corrections to the energy are zero, as ex-
pected, whereas the second-order correction contains the

following contributions

E(2)
n = z2T 2Fs2x − 2zT (1 + zJF )ϕsx

+z

(
J(1 + zJF )− zT 2

|µ+ δ|

)
ϕ2, (12)

where

F =
n+ 1

µ− Un
+

n

U(n− 1)− µ
. (13)

The first derivative test of (12) gives the critical point
being (ϕ, sx) = (0, 0) as expected. The Hessian matrix
of second derivatives reads(

2z2T 2F −2zT (1 + zJF )

−2zT (1 + zJF ) 2z(J(1 + zJF )− zT 2

|µ+δ| )

)
. (14)

The phase boundary is defined by the condition re-
quiring the determinant of the Hessian matrix to be zero
for a zero eigenvalue since this is where the determinant
changes sign. For T = 0 the boundary condition for the
BHM follows

J̃BH = − 1

zF̃
=

1

z

(µ̃− n)(n− 1− µ̃)

(µ̃+ 1)
. (15)

where F̃ = UF . For J = 0 we get the condition for the
ABHM

T̃ABH =
1

z

√
−|µ̃+ δ̃|

F̃
=

1

z

(
|µ̃+ δ̃|(µ̃− n)(n− 1− µ̃)

µ̃+ 1

) 1
2

.

(16)
The general phase boundary condition can be written

as

T̃ =
1

z

√
−|µ̃+ δ̃|(1 + zF̃ J̃)

F̃
, (17)

or, equivalently, as

J̃ = − 1

zF̃
− zT̃ 2

|µ̃+ δ̃|
(18)

which reduces to (16) for J = 0 and to (15) for T = 0.
In the limit of large µ̃, J̃BH → 0 while T̃ABH → ((µ̃ −
n)(n− 1− µ̃))1/2/z identical to the case of δ̃ = 1 shown
in Fig. 3. The square root is a second order polynomial
with periodic boundary conditions and a maximum value
of 1/2. For the one-dimensional case plotted, the Mott
lobes tend towards becoming symmetric with a maximum
value of T̃c = 1/4 in the large µ̃ limit (also need µ̃ +

δ̃ > 0). Furthermore one should take into account that
for large occupancies the Bose-Einstein condensation will
take place, hence the numerical and analytical results are
not valid in this regime.
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FIG. 4: Phase diagram of the ABHM for negative detuning
(δ̃ = −1 and δ̃ = −1.5). Inside the lobes the superfluid order
parameter ϕ = 0, whereas outside the lobes ϕ is finite.

III. RESULTS

A. Phase diagrams for different detuning δ

All results presented in the section are for z = 2, i.e.
for one-dimensional case. For higher dimensions the re-
sults are trivially rescalable (see Table I). We start with
comparing the standard phase diagram for BHM with the
phase diagram for our model with J = 0 and δ = 0, so
that only assisted hopping is present in the system. The
results are shown in Fig. 2. We notice several interest-
ing features. First of all, the Mott-superfluid transition
does take place in our model with the Mott lobes being
in general larger than the BHM ones, which is expected
since the assisted hopping is effectively weaker than di-
rect hopping J . Secondly, the usual lobe hierarchy, at
least for the first several lobes, is reversed, with the first
lobe being the smallest. Thirdly in the large µ limit, the
lobes tend towards a fixed value of Tc = 1/4 while in
BHM due to the costly onsite interaction for large den-
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FIG. 5: Phase diagram of the AQD subsystem for negative
detuning δ̃ = −1 and δ̃ = −1.5. The size of sx is shown for
µ̃ = µ/U versus T̃ = T/U . Violet indicates zero sx inside the
Mott lobes. sx is maximum along the energy degeneracy line
µ + δ = 0. The lowest panel shows sz which changes sign as
it crosses the "degeneracy line". sz has its maximum value
|sz| = 0.5 inside the Mott lobes. The dashed line is the visual
guide marking the area on the diagram where sx = 1/2 or is
very close to it.
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FIG. 6: The z-component of the pseudospin sz versus µ̃ =
µ/U for various values of T and fixed δ̃ = −1.5. In terms of
occupation numbers of AQDs, sz = −0.5 corresponds to an
unoccupied dot, whereas sz = 0.5 to singly-occupied AQD.

Lobe d=1 d=2 d=3
1. 0.150 (0.086) 0.075 (0.043) 0.050 (0.029)
2. 0.194 (0.051) 0.097 (0.025) 0.065 (0.017)
3. 0.211 (0.036) 0.106 (0.018) 0.070 (0.012)

TABLE I: Table showing values for the tips of the first three
Mott lobes in the ABHM for dimensions d = 1, d = 2 and
d = 3. In brackets, Mott lobe tips for Bose-Hubbard model
are shown for comparison. The results are from mean-field.
Parameters J = 0 and δ = 0.

sities Jc = 0. Lobes are broader in our case and the first
lobe is slanted upwards. With increasing dimension, the
lobes decrease but remain larger than those in BHM (see
Table I).

To understand what is going on in the pseudospin sub-
system we plot sx versus µ̃ and T̃ in Fig. 2, lower panel.
We see that pseudospin behavior is correlated with the
superfluid order parameter. Inside the Mott lobes sx = 0
and sz = 1/2, whereas outside the lobes sz is always
smaller than 1/2, and sx acquires a nonzero value. It
means that when superfluidity in the bosonic subsystem
is established, it effectively rotates the pseudospin from
being aligned along the z-axis to being aligned along the
x-axis. Hence, the tilting angle of the spin with the z-
axis plays the role of an effective order parameter in the
pseudospin subsystem.

In terms of the occupation of the AQDs, inside the
Mott lobes all dots are occupied, indicated by sz = 1/2,
while outside of the lobes the decreasing sz indicates a
decrease in the occupation of AQDs. sz = 0, or sx = 1/2
means the dots are in the equally weighted superposition
of empty and occupied states (this area is marked by the
dashed line in Fig. 2).

We now explore how the detuning δ influences this be-
havior. In Fig. 3 we show the first five lobes of the

Lobe d=1 d=2 d=3
1. 0.669 0.334 0.223
2. 0.538 0.269 0.179
3. 0.473 0.237 0.158

TABLE II: Table showing values for the tips of the first three
Mott lobes in the ABHM for dimensions d = 1, d = 2 and
d = 3. Parameters J = 0 and δ = 10.

ABHM phase diagram for various values of δ. For small
detuning δ̃ < 1 the first lobe is the smallest. For δ̃ = 1
the lobes are of the same size as follows from (16). With
increasing δ the usual Mott lobe hierarchy is restored, al-
though lobes are much larger compared to those in BHM
in Fig. 2 and moreover for large µ they do not vanish
(see Table II for higher dimensions).

When detuning is negative, the "degeneracy line" µ+
δ = 0 is shifted upwards to positive µ̃-s revealing the
following effect: if the degeneracy falls in between the
lobes, it will "push" them apart resulting in their slanting
(see Fig. 4, upper panel). When the degeneracy is inside
a lobe, it will split it into two smaller lobes (see Fig. 4,
lower panel) each lobe has a different AQD state due to
different ground state energy.

In the pseudospin subsystem sx component of the pseu-
dospin will have a maximum value along the degeneracy
line, because sz = 0 for µ + δ = 0 (see also Fig. 6).
This explains the red (gray inside dashed lines) "cones"
in Fig. 5 and a part of such a cone in the phase diagram
for sx in Fig. 2 (lowest panel). The dashed lines in Fig.
5 mark the areas inside which sx is 1/2 or very close to
it corresponding to the equally weighted superposition of
occupied and unoccupied states (the lines are guides to
the eye). The lowest panel of Fig. 5 displays sz, which
changes its sign, effectively flips while crossing the "de-
generacy line". In Fig. 6 we reveal how it happens with
increasing T̃ . The flat regions in Fig. 6 correspond to the
Mott lobes when sz is exactly 1/2 or −1/2 depending on
the value of chemical potential.

B. The effect of direct hopping J

We now explore the effect of J on the phase diagram
of ABHM. One can see from Eq. (17) that J suppresses
T and therefore reduces the Mott lobes. It follows from
Eq. (17) that the minimum value of J for which mot-
tness will be completely suppressed is equal to Jc, the
values for the Mott lobe tips in the standard BHM. The
gradual disappearance of the Mott lobes is demonstrated
in Fig. 7 for δ̃ = 1 and two different values of J̃ : 0.02 and
0.04. The lobes become narrower and eventually disap-
pear starting from higher lying lobes. Interestingly, when
the third lobe completely disappears for J̃ = 0.04, there
is still a "shadow" of it in the system manifested in the
area of a decreased superfluid order parameter.

The behavior of pseudospins remains similar to that in
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FIG. 7: The phase diagram of the ABHM for fixed δ̃ = 1 and
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FIG. 8: Tips of the Mott lobes, Jc, for different values of the
assisted coupling T , δ̃ = 0.1 for all curves.

Figs. 2 and 5, so we do not show it here.

In Fig. 8 we show how the tips of the Mott lobes of
BHM (denoted by Jc) are modified by the coupling T to
AQDs for a fixed δ = 0.1. The effect of the additional
coupling is most pronounced for the first lobe, one can
also see how the general trend of the first lobe being the
largest reverses for larger T . This behavior shows that
direct hopping is effectively enhanced due to the assisted
coupling T and therefore promotes superfluidity.

IV. CONCLUSIONS

We consider an effective hybrid system of coupled
bosons and AQDs or qubits. Bosons can be coupled to
each other via qubits, and vice versa. We show that in
this case the bosonic subsystem still undergoes a Mott-
superfluid quantum phase transition which, unlike the
transition in an optical bosonic lattice alone, can be ma-
nipulated. Two main parameters in the system are the
assisted coupling and the detuning. We show that de-
pending on their values, hierarchy and Mott lobes sizes
can be strongly affected. Specifically, for finite δ the lobes
become even larger, with the system favoring the mot-
tness state. For finite but negative detuning the degen-
eracy line of the ground state energy is shifted upwards
resulting in the splitting of the corresponding Mott lobes
into two smaller ones.

If a sufficiently strong direct coupling between the
bosonic sites is included, the bosonic subsystem becomes
superfluid throughout. It is interesting if similar ideas
could be applied to superconducting systems, although
the task to study such effects becomes much more diffi-
cult.

What about the qubit subsystem? Its behavior can be
described in terms of an order parameter, in particular
the x-component of the pseudospin sx. Our calculation
shows that sy = 0 is irrespective of what happens in the
bosonic subsystem. sx, however, is zero only inside the
Mott lobes and finite outside when the bosonic subsys-
tem is superfluid. It reaches maximum along the energy
degeneracy line, whereas sz component demonstrates a
spin flip while crossing the line. The finite superfluid
parameter serves as an external magnetic field for the
pseudospin subsystem.

The system can be realized experimentally by super-
imposing two optical lattices as it is shown in Fig. 1. The
bosons in the sublattices should be of different hyperfine
species and the Raman transitions between the species
should be induced. Although we used mean-field ap-
proaches, exact calculations should not change the main
conclusions and should confirm them qualitatively. The
Mott-superfluid transitions should still exist or by ap-
propriate tuning of the parameters the Mott state can be
eliminated. All of this should take place for sufficiently
homogeneous optical lattices.

There may be some interesting applications in quan-
tum computation. Recently hybrid systems of magnons
(bosonic spin excitations of ferromagnetic crystal) and
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superconducting transmon qubits were engineered21,22.
These systems are very promising for quantum compu-
tation because they can encode arbitrary qubit states in
magnon nonclassical states. Extending the system to the
set of arranged "pools" of magnons coupled with each
other via qubits one can observe quantum and finite-
temperature superfluid phase transitions which can be

used in spin-based quantum information processing.
In the future, it would be useful to properly consider

spin correlations which are not possible in our single site
approach.
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