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Abstract

Fix a Pareto optimal, strategy proof, and non-bossy deterministic

matching mechanism and define a random matching mechanism by

assigning agents to the roles in the mechanism via a uniform lottery.

Given a profile of preferences, the lottery over outcomes that arises

under the random matching mechanism is identical to the lottery that

arises under random serial dictatorship, where the order of dictators

is uniformly distributed. This result extends the celebrated equiva-

lence between the core from random endowments and random serial

dictatorship to the grand set of all Pareto optimal, strategy proof and

non-bossy matching mechanisms.

1 Introduction

A matching problem consists of a finite set of agents, a finite set of indivisi-

ble objects, henceforth called houses, and a profile of all agents’ preferences
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over all houses. A matching is a maximal set of agent-house pairs (with

no agent or house taking part in more than one pair). Each agent’s prefer-

ence over matchings only depends on the houses he is matched with. Each

agent strictly ranks any two houses and considers any house better than be-

ing homeless. Mechanisms map preference profiles to matchings, with serial

dictatorship and Gale’s top trading cycles (GTTC) the two most prominent

examples. Serial dictatorship matches one agent - the first dictator - to his

most preferred house among all houses. A next agent - the second dictator -

is matched with his most preferred remaining house, and so forth. A GTTC

starts with an initial matching called the endowment and requires that there

are equally many agents and houses. In a first round each agent points to

his most preferred house and each house points to the agent it was endowed

to. At least one pointing cycle forms. Each agent in such a cycle is matched

with the house he points to. As long as some agents remain unmatched this

procedure is repeated with all unmatched agents and houses.

Serial dictatorship and GTTC satisfy three central properties. Both are

Pareto optimal : they map each profile of preferences to a matching that

is Pareto optimal at that profile. Both are strategy proof : at no profile of

preferences does any agent benefit from reporting a false preference, keeping

the reports of all other agents fixed. Both are non-bossy : if an agent at

some profile of preference changes his report in a way to change someone

else’s match, then his own match must also change. Call any mechanism

that satisfies these three properties good.

No good mechanism treats equals equally: when two different agents sub-

mit the same preference they end up with different houses. Randomization

fixes this flaw. Consider drawing the sequence in which agents become dicta-

tors in a serial dictatorship from a uniform distribution on all such sequences.

The resulting random matching mechanism is known as random serial dicta-

torship or random priority. Any two agents who submit the same preferences

in random serial dictatorship face the same lottery over houses. So random

serial dictatorship does treat equals equally.

The same method can be used to symmetrize any good mechanism. In-

stead of assigning one agent, say Anton, to assume the role of agent 1 in a

mechanism, and assigning Betty to the role of agent 2, and so forth, the sym-

2



metrization of the mechanism uses a uniform lottery over all possible such

assignments. To better understand such symmetrizations, fix a mechanism,

a profile of preferences and a matching. The probability of the matching un-

der the symmetrization of the mechanism at the given profile of preferences,

equals the probability of the assignments (of agents to roles) with which the

mechanism maps the profile to the matching.

The set of all good mechanisms is large. So this method would seem to

generate many different random matching mechanisms, viewed as mappings

from profiles of preferences to lotteries over matchings. This is not the case:

Theorem 1 shows that the symmetrization of any good mechanism coincides

with random serial dictatorship.

The first observations of this sort relate to GTTC: Abdulkadiroglu and

Sönmez [1] and Knuth [9] independently proved the identity of random se-

rial dictatorship and the symmetrization of GTTC, known as the core from

random endowments. Both their proofs start by fixing an arbitrary profile of

preferences. They then construct a bijection between the set of all sequences

of agents as dictators and the set of initial endowments such that the out-

come of the serial dictatorship with a given sequence equals the outcome of

GTTC with the image of this given sequence. The bijection ensures that the

number of sequences with which serial dictatorship yields some fixed match-

ing equals the number of initial endowments with which GTTC yields the

same matching. To see that this equality implies the result fix an arbitrary

matching. Under random serial dictatorship and the core from random en-

dowments the probability of this matching respectively equals proportion of

sequences with which serial dictatorship yields this matching and the pro-

portion of initial endowments with which GTTC yields the matching. This

result has been extended to increasingly larger sets of good mechanisms by

Pathak and Sethuraman [12], Caroll [5], and Lee and Sethuraman [10].

There are three differences between Theorem 1 and the preceding results.

First, I show the equivalence for all good mechanisms. Second, Theorem 1

holds whether there are equally many agents and houses or not; in fact my

proof does not distinguish between these cases. These two differences are

made possible by the third innovation: a new simple strategy of proof.

This strategy relies on the construction of a sequence of good mecha-
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nisms M0,M1, · · · ,MK from an arbitrary good mechanism M0 to a serial

dictatorship MK , such that any two consecutive mechanisms Mk,Mk+1 differ

minimally and have identical symmetrizations. I follow the bijective strat-

egy pioneered by Abdulkadiroglu and Sönmez [1] and Knuth [9] to estab-

lish the identity of the symmetrizations of any two consecutive mechanisms

Mk,Mk+1. The minimal difference between any two consecutive mechanisms

makes this step as straightforward as possible.

To prove Theorem 1 I characterize the set of all good mechanisms as

trading and braiding mechanisms in Theorem 2. Like GTTC, trading and

braiding mechanisms use rounds of trade in pointing cycles to determine

matchings. In any trading round, houses point to their owners and owners

point to their most preferred houses. Matchings are obtained through the

consecutive elimination of trading cycles. Trading and braiding mechanisms

generalize GTTC in three dimensions. One agent might own multiple houses,

a feature introduced by Papai [11]. There is a second form of control called

brokerage, introduced by Pycia and Unver [13]. Finally, if there are only three

houses left a trading and braiding mechanism might terminate in a braid.

Theorem 2 and its proof owe a large debt to Pycia and Unver [13], which, in

light of corrections implied by the present proof, provided a characterization

of all good mechanisms when there are strictly more houses than agents.

My paper is concerned with a fully symmetric treatment of all agents.

It does not speak to existing results on random matching mechanisms that

treat different agents differently. Ekici [6], for example, considers two differ-

ent matching mechanisms that both respect initial (private) allocations. He

shows that a uniform randomization of any additional “social” endowment of

houses in the two mechanisms yields the same random matching mechanism.

Similarly Carroll [5] and Lee and Sethuraman [10] provide equivalence results

for the case in which agents are treated symmetrically only within some fixed

groups.

2 A sketch of the proof: GTTC

To illustrate the new strategy of proof, let M0 be the GTTC where each agent

i is endowed with house hi. Construct a sequence of mechanisms M1, . . . ,MK
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such that each mechanism is derived from its predecessor by consolidating

the ownership of exactly two agents. The sequence terminates with a serial

dictatorship MK when all ownership has been maximally consolidated. M1

is identical to GTTC except that agent 1 owns h1 and h2. Once agent 1 is

matched with a house, he exits and agent 2 inherits the unmatched house in

{h1, h2}.
To show that the symmetrizations of M0 (GTTC) and M1 are identical I

fix an arbitrary profile of preferences and construct a bijection on the set of

all assignments (of agents to roles). This bijection maps any assignment to

a new assignment such that (at the given profile of preferences) the outcome

of M0 for the original assignment equals the outcome of M1 for the new

assignment. The existence of such a bijection implies that the proportions

of assignments for which M0 and M1 (at the given profile of preferences)

yield some particular fixed outcome are identical, implying in turn that their

symmetrizations are identical.

To gain some insight into the construction of this bijection, consider the

assignment of agents to roles where i owns hi (so each agent assumes the

role he is assigned to in the endowment). Consider two different profiles of

preferences for which exactly one cycle forms at the first round of M0. If

agent 1 but not 2 takes part in this cycle, then the same cycle forms at the

start of M1. Once this cycle is matched, M0 and M1 continue identically as

agent 2 inherits house h2 under M1. So M0 and M1 yield the same outcome

at the given profile of preferences and assignment of agents to roles.

Now consider a profile of preferences such that M0 starts with a single

cycle involving agent 2 but not 1. Say this cycle is 2→ h3 → 3→ h2 → 2 and

assume that agent 1 prefers h3 to all other houses. Under M1, 1 owns h2, the

cycle 1→ h3 → 3→ h2 → 1 forms in the first round. So M0 and M1 match

h3 with two different agents. If we switch the roles of agents 1 and 2 in M1,

agent 2 owns h1 and h2 at the start of M1. The cycle 2→ h3 → 3→ h2 → 2

which forms in the first round of M0 also forms in the first round of M1

with this new assignment; the fact that 2 additionally owns h1 is irrelevant.

Once this cycle is matched, M1 with the new assignment continues identically

to M0 with the original assignment (given that 1 inherits house h1). So M0

with the original assignment and M1 with the new assignment yield the same
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outcome at the given profile of preferences.

To generalize the above observations, fix any assignment of agents to roles

and define its permuted assignment such that the agent who originally plays

the role of agent 2 gets the role of agent 1 and vice versa, keeping all else

equal. Now fix any profile of preferences. If M0 and M1 with the given

assignment map the given profile to two different matchings, then M1 with

the permuted assignment maps the profile to the same matching as does M0

with the original assignment. So the required bijection is easy to construct:

any assignment that is not mapped onto itself is mapped to its permuted

assignment.

The remaining mechanisms in the sequence M2, · · · ,MK are constructed

via the further consolidation of ownership. At the start of M2 agent 1 owns

h1, h2 and h3, at the start of M3 he also owns h4. The process of consolidation

terminates once M0 has been transformed into a serial dictatorship MK . The

proof that M0 and M1 have identical symmetrizations is easily amended to

any pair Mk, Mk+1 in this sequence.

To apply the consolidation strategy to any good mechanism M0 the above

arguments have to be extended to the case where agents may own multiple

houses. A somewhat different approach is needed to absorb brokers and to

replace braids with serial dictatorships. One feature that all these cases share

with the simple case of M0 and M1 is that the bijections between assignments

of roles which show that the symmetrization of two consecutive mechanisms

Mk and Mk+1 are identical, switch the roles of at most three agents.

3 Definitions

A housing problem consists of a set of agents N : = {1, · · · , n}, a finite set

of houses H and a profile of preferences R = (Ri)
n
i=1. The option to stay

homeless ∅ is always available: ∅ ∈ H. Preferences Ri are linear orders1 on

H and each agent prefers any house to homelessness, so hRi∅ holds for all

1So hRih
′ and h′Rih together imply h = h′.
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i ∈ N, h ∈ H.2 The notation hRiH
′ means that agent i prefers h to each

house in H ′. If hRiH holds I also write Ri : h and similarly Ri : h, e, g

means that Ri ranks h, e, and g respectively in first, second and third place.

The set of all profiles R is denoted by R. The restriction of R to some

N ′ ⊂ N and H ′ ⊂ H is a profile of preferences R (defined for N ′ and H ′)

with hRig ⇔ hRig for all h, g ∈ H ′ and i ∈ N ′.
A match is a pair (i, h) of one agent i and a house h. A submatching

ν is a set of such matches where no agent or house takes part in more than

one match, so (i, h) ∈ ν, i′ 6= i, and h′ 6= h imply (i, h′), (i′, h) /∈ ν. If

(i, h) ∈ ν then I write ν(i) for h, if agent i is not matched under ν, (so

(i, h) ∈ ν for no h ∈ H), then I write ν(i) = ∅. The sets of agents and houses

matched under ν are Nν : = {i : (i, h) ∈ ν for some h ∈ H} and Hν : = {h :

(i, h) ∈ ν for some i ∈ N}; the complementary sets of unmatched agents

and houses are N ν : = N \ Nν and Hν : = H \ Hν . If Nν ∩ Nν′ = ∅ =

Hν ∩ Hν′ holds for two submatchings ν and ν ′,then ν ∪ ν ′ is a well-defined

submatching. A submatching ν is considered maximal (minimal) in a set

of submatchings if there exists no ν ′ in the set such that ν ( ν ′ (ν ′ ( ν).

Any maximal submatching (in the set of all submatchings) is a matching,

so µ is a matching if and only if Hµ = H or Nµ = N (or both) hold. The

sets of all matchings and of all lotteries over matchings are denoted M and

∆M respectively.

A (deterministic) mechanism is a function M : R → M where i is

matched with M(R)(i) under M at R. A mechanism M is Pareto optimal

if for no R there exists a matching µ 6= M(R) such that µ(i)RiM(R)(i) for

all i.3 A mechanism M is strategy proof if M(R)(i)RiM(R′i, R−i)(i) holds

for all triples R,R′i, i: declaring one’s true preference is a weakly dominant

strategy. A mechanism M is non-bossy if M(R)(i) = M(R′i, R−i)(i) implies

2The assumption that agents never rank homelessness above a house is not without

loss of generality: Erdil [7], for example, shows that random serial dictatorship is ex-ante

Pareto dominated by other strategyproof, non-bossy and fair mechanisms if agents may

opt to stay unmatched. Similarly Kesten and Kurino [8] argue that the trade-off between

the welfare and incentive properties of optimal school matching mechanisms depends on

the existence of outside options.
3Since all Ri are linear some i∗ must strictly prefer µ(i∗) to M(R)(i∗) for µ to differ

from M(R) and for µ(i)RiM(R)(i) to hold for all i.
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M(R) = M(R′i, R−i) for all triples R,R′i, i, so an agent can only change

someone else’s match if he also changes his own match. A mechanism M is

good if it is Pareto optimal, strategy proof and non-bossy.

The set of all permutations p : N → N is denoted P , and pi,j is the permu-

tation involving only agents i and j, so pi,j(i) = j, pi,j(j) = i, and pi,j(i
′) = i′,

for i′ ∈ N \ {i, j}. For any mechanism M and any permutation p define the

permuted mechanism p � M : R → M via (p(i), h) ∈ (p � M)(R) if

and only if (i, h) ∈ M(Rp(1), · · · , Rp(n)) for all i ∈ N .4 The permutation p

assigns each agent in N to a “role” in the mechanism, such that agent p(i)

under p�M assumes the role that agent i plays under M . If S : R →M is

the serial dictatorship with agent i as the ith dictator, then p(i) is the i-th

dictator under p � S. To calculate (p � S)(R) we need to substitute p(i)’s

preference for agent i’s preference to obtain the new profile of preferences

(Rp(1), · · · , Rp(n)). Under S(Rp(1), · · · , Rp(n)) agent 1 is matched p(1)’s most

preferred house. Under (p� S)(R) this house is matched with p(1).

A (random matching) mechanism is a function that maps the set

of preference profiles R to the set of all lotteries over matchings ∆M: The

symmetrization of a mechanism M : R →M is a random matching mech-

anism ∆M : R → ∆M that calculates the probability of matching µ at the

profile R as the probability of a permutation p with µ = (p�M)(R) under

the uniform distribution on P . So we have

∆M(R)(µ) : =
|{p ∈ P : (p�M)(R) = µ}|

n!
.

Abdulkadiroglu and Sönmez [1] call ∆M a random serial dictatorship if

M is a serial dictatorship and the core from random endowments if M

is GTTC.

Definition 1 Two (deterministic) mechanisms M and M ′ are s-equivalent5

if ∆M = ∆M ′.

4The symbol � is chosen as a reminder that p � M arises out of a non-standard

composition of the permutation p and the mapping M : � is similar to but different

from ◦, the standard operator for compositions. Any such non-standard composition of a

permutation with another object is denoted by the operator �.
5The letter “s” is a reminder that symmetrizations are the base of s-equivalence.
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4 The Result

Theorem 1 Any good mechanism is s-equivalent to serial dictatorship.

For the proof fix an arbitrary good mechanism M0 and construct a se-

quence of mechanisms M1, · · · ,MK , with MK a serial dictatorship and such

that ∆Mk = ∆Mk+1 holds for 0 ≤ k < K. The s-equivalence of any two

adjacent Mk, Mk+1 implies the s-equivalence of M0 and MK . The mini-

mal difference between Mk and Mk+1 is crucial. It simplifies the task to

find a bijection f : P → P with (p �Mk)(R) = (f(p) �Mk+1)(R) for all

p ∈ P . Such a bijection exists if and only if |{p : (p � Mk)(R) = µ}| =

|{p : (p�Mk+1)(R) = µ}| holds for all R and all matchings µ. The equality

|{p : (p�Mk)(R) = µ}| = |{p : (p�Mk+1)(R) = µ}| is, in turn, equivalent

to ∆Mk(R)(µ) = ∆Mk+1(R)(µ), implying that a bijection f exists if and

only if Mk and Mk+1 are s-equivalent.

5 Trading and braiding mechanisms

My construction of marginally different good mechanisms Mk,Mk+1 relies on

the characterization of the set of all good mechanisms as trading and braid-

ing mechanisms. Just like GTTC, trading and braiding mechanisms use

sequential trading rounds to determine matchings. In such trading rounds

owned houses point to their owners, and owners point to their most preferred

houses. Agents in cycles are matched with the houses they point to. If a

matching results the mechanism terminates, if not a new round ensues. There

are three differences between GTTC and trading and braiding mechanisms.

Following Papai’s [11] hierarchical exchange mechanisms trading and braid-

ing mechanisms permit the ownership of multiple houses. Following Pycia

and Unver’s [13] trading cycles mechanisms there is a second form of control

in trading and braiding mechanisms: houses might be “brokered”. At any

given trading round there is at most one broker and he brokers exactly one

house. This house points to the broker and the broker points to his most

preferred house among the owned ones. Finally when there are only three

houses left a trading and braiding mechanism might terminate as a braid.

Braids are good mechanisms that match three houses to three agents with the
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aim to obtain a matching that maximally differs from some fixed “avoidance

matching”. Braids can be thought of as mechanisms with three houses and

three brokers: the definition of brokerage makes it unlikely for any broker

to be matched with the house he brokers. When there are more houses, it

turns out to be impossible to align Pareto optimality, strategyproofness and

non-bossiness with the goal to avoid one particular matching.

The braid Bω : R →M is a mechanism for a problem with exactly three

houses and at least as many agents. It is fully defined by the avoidance

matching ω. Outcomes Bω(R) are chosen to avoid any match (i, ω(i)),

while matching the same agents as does ω. For any R let PO(R) be the set

of Pareto optima µ with Nω = Nµ. Let Mini(R) be the subset of PO(R) of

matchings that minimally coincide with ω, so µ ∈ Mini(R) if µ ∈ PO(R)

and there does not exist any µ′ ∈ PO(R) with µ′ ∩ ω ( µ ∩ ω. If Mini(R)

contains a single matching µ let Bω(R) : = µ. If not, at least two agents in

Nω must rank some house ω(i) at the top. If only one agent j 6= i ranks ω(i)

at the top then B(R) is the unique element in Mini(R) that matches j to

ω(i). If both agents j 6= i rank ω(i) at the top, then Bω(R) is i’s preferred

matching in Mini(R).

Example 1 Let H = {e, f, g} and N = {1, 2, 3}. Since any matching µ

satisfies the condition Nω = Nµ it can be ignored. For convenience denote

matchings as vectors with the understanding that the i-th component repre-

sents agent i’s match. Let ω : = (e, f, g). There are exactly two matchings

that maximally avoid ω: ω′ ∩ ω = ∅ = ω′′ ∩ ω holds for ω′ : = (g, e, f), and

ω′′ : = (f, g, e). If all three agents rank e at the top and g at the bottom

under R then Mini(R) = {ω′, ω′′}. Since 2 and 3 both rank ω(1) = e at the

top, agent 1’s preference of f = ω′′(1) over g = ω′(1) implies Bω(R) = ω′′.

Under (R′2, R−2) where R′2 ranks f at the top and e at the bottom there are

four Pareto optima: ω, (e, g, f), (g, f, e) and ω′′. So Mini(R) = {ω′′} and

Bω(R) equals ω′′.

To formally define trading and braiding mechanisms I use Pycia and

Unver’s [13] notational system for trading algorithms. In this parsimonious

system mechanisms are defined via sets of control rights functions. A control

rights function cν : Hν → Nν×{o, b} at some submatching ν assigns control
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rights over any unmatched house to some unmatched agent and specifies a

type of control. If cν(h) = (i, x), then agent i controls house h at ν. If

x = o, then i owns h; if x = b he brokers h. Control rights functions must

satisfy the following three criteria:

(C1) If more than one house is brokered, then there are exactly three houses

and they are brokered by three different agents.

(C2) If exactly one house is brokered then there is at least one owner.

(C3) No broker owns a house.

In order to obtain a unique representation of good mechanisms I also

consider control rights functions that satisfy the stronger condition (C2’)

instead of (C2):

(C2’) If exactly one house is brokered then there are at least two owners.

The following algorithm uses a set of control rights functions c to map

any profile of preferences R to a matching.6 For now assume that the set c

contains all control rights functions cν used in the upcoming algorithm.

Initialize with r = 1, ν1 = ∅

Round r: only consider the remaining houses and agents Hνr and Nνr .

Braiding: If more than one house is brokered under cνr , terminate the

process with M(R) = νr ∪Bω(R) where the avoidance matching ω is defined

via cνr(ω(i)) = (i, b) and R is the restriction of R to Hνr and N νr . If not, go

on to the next step.

Pointing: Each house points to the agent who controls it, so h ∈ Hνr points

to i ∈ N νr with cνr(h) = (i, ·). Each owner points to his most preferred house,

6Without any further conditions, the algorithm may map someR to multiple matchings.

Consider the problem H = {e, g}, N = {1, 2, 3}, c∅(e) = (1, o), c∅(g) = (2, o), c{(1,e)}(g) =

c{(2,g)}(e) = (3, o) and R such that 1 and 2 respectively rank e and g highest. In the

first round two cycles form. Removing both at once the matching {(1, e), (2, g)} results.

Removing only {(1, e)}, the cycle involving g and 3 forms in the next round yielding the

matching {(1, e), (3, g)}. Conditions (C4), (C5), and (C6) below ensure that the set c

together with the algorithm define a mechanism. Section 4 of the online appendix proves

this claim.
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so owner i ∈ Nνr points to house h ∈ Hνr if hRiHνr . Each broker points

to his most preferred owned house, so broker ib ∈ Nνr with cνr(hb) = (ib, b)

points to house h ∈ Hνr \ {hb} if hRibHνr \ {hb}.

Cycles: Select at least one cycle. Define ν such that (i, h) ∈ ν if i points to

h in one of the selected cycles.

Continuation: Let νr+1 : = νr ∪ ν. If νr+1 is a matching terminate the

process with M(R) = νr+1. If not, continue with round r + 1.

A submatching ν is reachable under c at R if one can choose to match

cycles in the above algorithm (for the given c and R) such that some round r

starts with ν = νr. A submatching ν is c-relevant if it is reachable under c

at some R.7 A submatching ν is a direct c-successor of some c-relevant ν◦

if there exists a profile of preferences R such that ν◦ is reachable under c at R

and ν arises out of matching a single cycle at ν◦. The following requirements

(C4), (C5), and (C6) link control rights functions for different submatchings.

Fix a c-relevant ν◦ and a direct c-successor ν to ν◦.

(C4) If i /∈ Nν owns h at ν◦ then i owns h at ν.

(C5) If at least two owners at ν◦ remain unmatched at ν and if ib /∈ Nν

brokers hb at ν◦ then ib brokers hb at ν.

(C6) If i owns h at ν◦ and ν and if ib /∈ Nν brokers hb at ν◦ but not at ν,

then i owns hb at ν and ib owns h at ν ∪ {(i, hb)}.

A set of control rights functions c is a control rights structure if it

satisfies (C1), (C2), (C3), (C4), (C5), and (C6). If c additionally satisfies

(C2’), then c is a tight (control rights) structure. Any tight structure

defines a trading and braiding mechanism M c : R →M, where M c(R)

is calculated via the above algorithm. Using the same algorithm a control

7Consider a control rights structure c with three agents {1, 2, 3} and 4 houses {e, f, g, h},
where agent 1 starts out owning house e and agent 2 starts out owning the remainder.

Let R be such that 1 and 2 respectively rank e, and f at the top. The submatchings

{(1, e)}, {(2, f)} and {(1, e), (2, f)} are reachable under c at R; {(2, g)} is c-relevant since

2 could appropriate house g, but it is not reachable under c at R given that 2 prefers f to

g; {(3, h)} is not c-relevant since 3 does not own h at ∅. Note that ∅ is c-relevant for any

control rights structure c.
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rights structure c defines a lax (trading and braiding) mechanism. Since

(C2’) is strictly stronger than (C2) any trading and braiding mechanism is

also a lax mechanism, and any tight structure is a control rights structure.

Example 2 Fix a matching problem with 7 agents {1, . . . , 7} and 6 houses

H : = {h1, . . . , h6}. Define the following control rights functions cν for the

submatchings ∅, {(6, h)} for all h ∈ H, {(6, h5), (1, h1)}, {(6, h6)(5, h5)} and

{(6, h5), (5, h6), (4, h4)}

c∅(h) = (6, o) if h ∈ H

c{(6,h)}(h
′) = (5, o) if h ∈ H \ {h5} and h′ ∈ H \ {h}

c{(6,h5)}(hi) = (i, o) if i ∈ {1, 2, 4}
c{(6,h5)}(h3) = (1, o), c{(6,h5)}(h6) = (7, b)

c{(6,h5),(1,h1)}(hi) = (i, o) if i ∈ {2, 4}
c{(6,h5),(1,h1)}(h3) = (5, o), c{(6,h5),(1,h1)}(h6) = (7, b)

c{(6,h6),(5,h5)}(h) = (4, o) if h ∈ H \ {h5, h6}

c{(6,h6),(5,h5),(4,h4)}(hi) = (i, b) if i ∈ {1, 2, 3}.

To get a sense for conditions (C1)-(C6), note that none of the above

control rights functions assigns brokerage rights to more than three agents.

At {(6, h6), (5, h5), (4, h4)} three different agents broker three different houses

as required by (C1) and (C3). If this submatching is reached, then a braid

matches the remaining agents and houses. At {(6, h5)} exactly one house,

namely h6, is brokered and there are at least two owners as required by (C2’).

Consistently with (C3), agent 7, the broker of h6, does not own a house at

{(6, h5)}.
The conditions (C4), (C5), and (C6) are satisfied by ν◦ = {(6, h5)} and

ν = {(6, h5), (1, h1)}: At ν◦ = {(6, h5)} agents 2 and 4 respectively own
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houses h2 and h4. Since they remain unmatched at ν = {(6, h5), (1, h1)}
they must by (C4) continue to own these houses. Since two agents, namely

2 and 4, are owners at ν◦ and ν and since agent 7 the broker of h6 at ν◦,

remains unmatched at ν, agent 7 must by (C5) continue to broker h6 at ν.

Since no broker looses control from ν◦ to ν, (C6) is trivially satisfied.

Now assume that c is a tight structure that is consistent with the above

control rights functions. Conditions (C4), (C5), and (C6) restrict the free-

dom with which cν can be defined on c-relevant submatchings not mentioned

above. The submatching {(6, h5), (1, h2), (2, h1)}, for example, is a direct c-

successor to {(6, h5)}: It can be reached since agents 1 and 2 respectively

own houses h1 and h2 at {(6, h5)}. By (C4) agent 4, the owner of h4 at

{(6, h5)} must continue to own h4 at {(6, h5), (1, h2), (2, h1)}. However, since

agent 4 is the only owner at both {(6, h5)} and {(6, h5), (1, h2), (2, h1)}, (C5)

does not require agent 7’s brokerage to continue. If agent 4 owns h6 at

{(6, h5), (1, h2), (2, h1)}, then agent 7 must by (C6) own h4 at {(6, h5), (1, h2), (2, h1), (4, h6)}.
To see that an unmatched broker may have to lose control, consider

ν ′ : = {(6, h5), (2, h4), (4, h2)}. The submatching ν ′ is reached via agent

6 first appropriating house h5 and then agents 2 and 4 swapping houses h4
and h2. By (C4) agent 1, the owner of h1 and h3 at {(6, h5)}, must continue

to own these houses at ν ′. Since agent 1 owns all houses but h6, (C2’) im-

plies that agent 7 cannot continue to broker h6 at ν ′. If we only require (C2)

instead of (C2’), then agent 7 may continue to broker h6 at ν ′.

To see the algorithm at work consider a profile R∗ with

R∗1 : h1, h2, R∗2 : h1, h3, R∗3 : h5, h6, R∗4 : h2, h1, h4,

R∗5 : h5, h6, h1, h2, R∗6 : h5, h1, R∗7 : h1, h2, h3.

According to the algorithm, agent 6 appropriates house h5, his most pre-

ferred house at ∅. At {(6, h5)} agent 1 owns h1, his top ranked house, so

that {(6, h5), (1, h1)} is reached next. At {(6, h5), (1, h1)} agents 2, 5, and

7 form a cycle and the submatching {(6, h5), (1, h1), (2, h3), (5, h6), (7, h2)} is

reached. Finally agent 4 is matched with house h4 and we obtain M c(R∗) =

{(6, h5), (1, h1), (2, h3), (5, h6), (7, h2), (4, h4)}.

If one strengthens (C1) to require that at most one house is brokered, one
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obtains the set of Pycia and Unver [13] trading cycles mechanisms. Following

on the characterization in the present paper, Pycia and Unver [14] weakened

(C1) to cover all good mechanisms. The mechanism in Example 2 is trading

cycles mechanism according to Pycia and Unver [14] but not according to

Pycia and Unver [13].

Theorem 2 Any lax trading and braiding mechanism is good. Any good

mechanism has a unique representation as a trading and braiding mechanism.

The proof of Theorem 2 is in the online appendix. It starts by showing

that braids are good. The remainder is proved by induction over the number

of agents n. With only one agent Theorem 2 obviously holds. The next step

is to show that lax mechanisms are well-defined: the order of the elimination

of trading cycles does not matter. This flexibility together with the inductive

hypothesis that any submechanism with fewer than n agents is good shortens

the proof that any lax mechanism is good to a page. Pycia and Unver [13]

broke the path for converse direction of the proof (any good mechanism

can be represented as a trading and braiding mechanism). While my proof

builds on the groundwork laid in Pycia and Unver [13], it ultimately deviates

to show that more than one house might be brokered at some round of the

mechanism and that any such round is a braid.

6 Tools for Trading and Braiding Mechanisms

Fix a control rights structure c and ν either a matching or a c-relevant

submatching. A c-path (towards ν) is a set of c-relevant submatchings

ν0, . . . , νL−1 such that ν0 = ∅, νL = ν and νl+1 is for each l < L a direct

c-successor of νl. If a single agent i owns all remaining houses Hν at some

relevant submatching ν, so i = cν(Hν), then ν as well as cν are c-dictatorial

and i is the c-dictator at ν. A c-path ν0, . . . , νL−1 towards ν = νL is a

c-dictatorial path towards ν if each νl on the path is c-dictatorial. A

submatching ν is c-dictatorially chosen if either ν = ∅ or if there exists a

c-dictatorial path towards ν. The control rights structure c starts with a

dictator if the submatching ∅ is c-dictatorial.
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Lemma 1 Fix a control rights structure structure c and a c-dictatorially

chosen submatching ν. Then there is exactly one c-path towards ν.

Proof If ν = ∅ we are done. If not, then ∅ = ν0 must be on any path

towards ν. Since some c-dictatorial path towards ν exists, ν0 must be c-

dictatorial. So the next submatching on any c-path towards ν must be of the

form {(i0, h)} where i0 is the dictator at ν0. Since {(i0, h)} is on a c-path

towards ν, h must equal ν(i0). So ν1 = {(i0, ν(i0))} is on any c-path towards

ν. If ν1 = ν we are done. If not repeat the above argument replacing ν0 and

i0 with ν1 and i1. Inductively applying this argument to all submatchings νl

on any c-path towards ν, we see that there is a unique c-path (ν0, . . . , νL−1)

towards ν = νL. �

Example 3 To illustrate Lemma 1 consider the tight structure c defined

in Example 2 together with the c-dictatorially chosen submatching ν : =

{(6, h6), (5, h5), (4, h4)}. To see that
(
∅, {(6, h6)}, {(6, h6), (5, h5)}

)
is the

unique c-path towards ν, note that agent 6, the dictator at ∅, must appro-

priate house ν(6) = h6 at ∅ under any c-path towards ν. If not, ν cannot be

reached. By the same token agent 5 the dictator at {(6, h6)} must appropri-

ate ν(5) = h5 for ν to be reached. Submatchings that are not c-dictatorially

chosen may be reached via multiple c-paths: ν ′ : = {(6, h5), (1, h1), (2, h2)},
for example is reached via the c-paths

(
∅, {(6, h5)}, {(6, h5), (1, h1)}

)
and(

∅, {(6, h5)}, {(6, h5), (2, h2)}
)
.

A control rights structure c defines a path dependent dictatorship if

any c-relevant submatching is c-dictatorial. A path dependent dictatorship

M c is a serial dictatorship if the dictator at any c-relevant ν depends only

on the size of ν.

Any control rights structure c together with a c-relevant submatching ν∗

define a submechanism M c[ν∗] that maps restrictions R (of R ∈ R to Nν∗

and Hν∗) to submatchings ν with the feature that ν∗∪ν is a matching in the

original problem. The control rights structure c[ν∗] is such that ν = ν∗ ∪ ν ′
is c-relevant if and only if ν ′ is c[ν∗]-relevant. For any such pair ν, ν ′ we have

c[ν∗]ν′ = cν . Fixing R such that ν∗ is reachable under c at R, the definition

of the trading-cycles algorithm implies M c(R) = ν∗ ∪M c[ν∗](R) where R is
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the restriction of R to N ν∗ and Hν∗ . If c is tight, then so is c[ν∗], if c defines

a path dependent or a serial dictatorship then c[ν∗] does too.

Example 4 Reconsidering Example 2 let ν∗ : = {(6, h5), (1, h1)}. The sub-

mechanism M c[ν∗] maps the preferences of agents 2, 3, 4, 5, 7 over houses h2,

h3, h4, h6 to matchings for this restricted problem. Since c[ν∗]∅(hi) equals

cν∗(hi) for all hi that remain unmatched at ν∗ we obtain c[ν∗]∅(h2) = (2, o),

c[ν∗]∅(h3) = (5, o), c[ν∗]∅(h4) = (4, o), and c[ν∗]∅(h6) = (7, b). The submatch-

ing ν∗ is reached under M c(R∗), where R∗ is the profile defined in Example

2. So M c(R∗) equals ν∗ ∪M c[ν∗](R
∗
), with

R
∗
2 : h3 R

∗
3 : h6 R

∗
4 : h2, h4 R

∗
5 : h6, h2 R

∗
7 : h2, h3.

Agents 2, 5, and 7 form a cycle at the start ofM c[ν∗](R
∗
) and {(2, h3), (5, h6), (7, h2)}

is reached. Agent 4 continues to own h4 at {(2, h3), (5, h6), (7, h2)}. Since

agent 4 prefers to be matched with any house, to not being matched we ob-

tain M c[ν∗](R) = {(2, h3), (5, h6), (7, h2), (4, h4)}. Consistently with Example

2 we obtain M c(R∗) = ν∗ ∪M c[ν∗](R).

The next Lemma applies to any R and any two tight structures c and

c′ that only differ following some submatching ν∗. If at least one match

(i, ν∗(i)) does not form under M c at some R, then the mechanisms induced

by c and c′ have identical outcomes at R.

Lemma 2 Fix two tight structures c and c′, a submatching ν∗, and a profile

of preferences R. If cν = c′ν holds for all c-relevant ν with ν∗ 6⊂ ν and if

ν∗ 6⊂M c(R), then M c′(R) = M c(R).

Proof Since ν∗ 6⊂ M c(R) and since cν = c′ν holds for all c-relevant ν with

ν∗ 6⊂ ν, cν equals c′ν for all submatchings ν that are reachable under M c(R).

This in turn implies that the same cycles form under M c′(R) and M c(R) at

each ν that is reachable under M c′(R) and M c′(R) = M c(R) holds. �

Example 5 Reconsidering c and R∗ defined in Example 2 define a tight

structure c′ with cν = c′ν for all ν with {(6, h5), (1, h1), (2, h2)} 6⊂ ν. By

Example 2 we have {(6, h5), (1, h1), (2, h2)} /∈ M c(R∗). So M c′(R∗) equals
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M c(R∗) no matter how we define c′ on c′-relevant submatchings ν with

{(6, h5), (1, h1), (2, h2)} ⊂ ν.

By Theorem 2 any lax trading and braiding mechanism is good and any

good mechanism has a unique representation as a trading and braiding mech-

anism. So for any control rights structure c there must exist a tight structure

c such that M c and M c define the same mechanism viewed as a mapping from

preference profiles to matchings. The next lemma explains how to construct

such alternative representations.

Lemma 3 Fix any control rights structure c. For any c-relevant ν that

satisfies (C2’) let cν = cν. For any c-relevant ν with cν(hb) = (ib, b) and

cν(h) = (i∗, o) for some ib, i
∗ ∈ N ν, hb ∈ Hν and all h ∈ Hν \ {hb} let

cν(h) = (i∗, o) for all h ∈ Hν and cν∪{(i∗,hb)}(h) = (ib, o) for all h ∈ Hν \{hb}.
Then c is a tight structure and M c(R) = M c(R) holds for all R ∈ R.

The proof of Lemma 3 is in the online appendix.

Example 6 To illustrate Lemma 3 recall the tight structure c defined in

Example 2. Say that c is a control rights structure, such that c and c coincide

on all c-relevant submatchings with ν∗ 6⊂ ν for ν∗ : = {(6, h5), (2, h4), (4, h2)}
consistently with Example 2 define control rights for the c- and c-successors

to ν∗ as follows:

cν∗(hi) = cν∗(hi) = (1, o) for hi ∈ {h1, h3}
cν∗(h6) = (1, o) 6= (7, b) = cν∗(h6)

cν∗∪{(1,h6)}(hi) = (7, o) for hi ∈ {h1, h3}
cν = cν for all c− relevant ν with ν∗ ( ν.

The application of the Lemma 3 to the control rights structure c yields the

tight structure c: ν∗ = {(6, h5), (2, h4), (4, h2)} is the only c-relevant sub-

matching that does not satisfy (C2’). Letting ib : = 7, hb : = h6, i
∗ : = 1 we

obtain the control rights prescribed by c for ν∗ and its direct c-successors.

To see that M c(R) = M c(R) holds for all R ∈ R fix an arbitrary R. If

ν∗ 6⊂ M c(R) then M c(R) = M c(R) holds by Lemma 2. So suppose that

18



ν∗ ⊂ M c(R). For concreteness consider R6 : h5, R2 : h2, and R4 : h4 where

agents 2 and 4 swap houses after agent 6 has appropriated h5.

At ν∗ agent 1 owns h1 and h3 according to both control rights struc-

tures. If he appropriates either one, both control rights structures continue

identically and we have M c(R) = M c(R). Only one case remains to be con-

sidered: if R1 ranks h6 above h1 and h3 then agent 1 appropriates h6 at

ν∗ if he owns it. So ν∗ ∪ {(1, h6)} is reached under M c(R). Agent 7 then

becomes the owner of h1 and h3. Assuming that h∗ is the R7-preferred house

among h1 and h3 the submatching ν∗ ∪ {(1, h6), (7, h∗)} is reached next un-

der M c(R). Under M c(R) agent 1 and 7 respectively point to h6 and h∗

at ν∗ and ν∗ ∪ {(1, h6), (7, h∗)} is reached immediately. Both c and c then

prescribe the same control rights for the sole house that remains unmatched

at ν∗ ∪ {(1, h6), (7, h∗)} and M c(R) equals M c(R) in all possible cases.

The permutation of any lax mechanism p�M c (and therefore and trading

and braiding mechanism) can now be defined by applying the permutation p

directly to the control rights structure c that defines the mechanism. To do so,

permutations of submatchings have to be defined first: For any submatching

ν and permutation p on the set of agents N define p�ν so that (p(i), h) ∈ p�ν
holds if and only if (i, h) ∈ ν. So p � ν matches agent p(i) with house h

wherever ν matches agent i with this house h. The control rights structure

p � c is defined by (p � c)p�ν(h) = (p(i), x) if and only if cν(h) = (i, x) for

any c-relevant ν, i ∈ N ν , h ∈ Hν and x ∈ {b, o}. Since a submatching p� ν
is (p� c)-relevant if and only if ν is c-relevant properties (C1), (C2), (C2’),

(C3), (C4), (C5), and (C6) hold for p�c if and only if they hold for c. So p�c
is a (tight) control rights structure if and only if c is a (tight) control rights

structure. The permuted control right structure p� c defines the mechanism

p�M c in the sense that p�M c(R) = Mp�c(R) for all R.

Example 7 Reconsidering the tight structure c in Example 2, define a new

tight structure p � c where p is the permutation on N for which p(1) = 6,

p(2) = 1, p(6) = 2, and p(i) = i otherwise. So agents 1, 2, and 6 exchange

roles when applying p to the mechanism M c; the others keep their roles.

Since agent 2 = p(6) assumes the role of agent 6 who in turn is the dictator

at ∅ according to c, we have (p� c)∅(h) = (2, o) for all h ∈ H. If agent 2 ap-
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propriates house h5 the submatching {(2, h5)} = {(p(6), h5)} = p� {(6, h5)}
is reached. Since c{(6,h5)}(h1) = (1, o) and c{(6,h5)}(h2) = (2, o) we obtain

(p�c){(2,h5)}(h1) = (p(1), o) = (6, o) as well as (p�c){(2,h5)}(h2) = (p(2), o) =

(1, o). Since p(i) = i holds for each agent i ∈ {3, 4, 5, 7}, (p � c){(2,h5)}(h)

equals c{(6,h5)}(h) whenever c{(6,h5)}(h) = (i, ·) for i ∈ {3, 4, 5, 7}. Agent 7, for

example, brokers house h6 at {(6, h5)} given c and at p�{(6, h5)} = {(2, h5)}
given p� c.

If two control rights structures c and c′ define s-equivalent mechanisms

M c and M c′ then I say that c and c′ are s-equivalent.

7 Proof of Theorem 1: Overview

Using the characterization of all good mechanisms the outline of the proof

of Theorem 1 can be fleshed out further. To do so, fix an arbitrary good

mechanism represented by some tight structure c0. This arbitrary mechanism

is s-equivalent to serial dictatorship if there is a sequence of s-equivalent

control rights structures c0, c1, . . . , cK where cK defines a serial dictatorship.

To construct such a sequence assume that c0 does not define a path

dependent dictatorship, so that some c0-relevant submatchings are not c0-

dictatorial. Fix a minimal such submatching ν∗. I first show that c0[ν∗] has

a s-equivalent tight structure c1[ν∗] that starts with a dictator. In Section

8 I show that the ownership in any tight structure that starts with m own-

ers can be consolidated to find a s-equivalent control rights structure that

starts with m − 1 owners. By Lemma 3 such a control rights structure can

w.l.o.g be replaced by a tight structure that starts with m− 1 owners.8 The

inductive application of these arguments shows that any tight structure that

starts with m owners is s-equivalent to a tight structure that starts with a

8Instead of defining both control rights structures and tight structures, I could have

directly transformed tight structures starting with m owners into s-equivalent tight struc-

tures with m−1 owners. The simple approach to consolidate ownership in Section 8 would

then have to be replaced with a more involved approach, that not only consolidates own-

ership but also guarantees that there newly constructed control rights allow for brokers

only when there are at least two owners. The definition of both types of control rights is

useful to disentangle the consolidation of ownership from the absorption of brokers.
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dictator. If the initial tight structure starts with a broker then the last step

of the above process transforms a control rights structure that starts with

one owner and a broker to a tight structure that starts with a dictator and

represents the same mechanism. Section 9 covers the case when c0 does not

start with any owner: If c0[ν∗] defines a braid, then c0[ν∗] is s-equivalent to

some c1[ν∗] that defines a serial dictatorship.

Section 10 then defines a new tight structure c1 by using c1[ν∗] following

on ν∗ and setting c1ν to c0ν on all c0-relevant ν with ν∗ 6⊂ ν. This new tight

structure c1 is s-equivalent to c0. While any direct c1-successor to ν∗ is c1-

dictatorially chosen, no direct c0-successor to ν∗ is c0-dictatorially chosen. So

the set of c0-dictatorially chosen submatchings is a strict subset of the set of

c1-dictatorially chosen submatchings.

Inductively repeating the step outlined in the above paragraph we ob-

tain a sequence c0, c1, . . . , cK
′

of s-equivalent tight structures where the set

of ck-dictatorially chosen submatchings increases with each step. Since there

are only finitely many submatchings this sequence must reach a tight struc-

ture cK
′

where each cK
′
-relevant submatching if cK

′
-dictatorial, so that cK

′

defines a path dependent dictatorship. The tools developed in Section 10

suffice to then show that dictators can be reordered to construct some fur-

ther s-equivalent tight structures cK
′
, cK

′+1, . . . , cK where cK defines a serial

dictatorship, completing the proof.

8 Consolidation of Ownership

In this Section I show that any tight structure that starts with at least two

owners is s-equivalent to a tight structure that starts with a dictator.

Lemma 4 Fix a tight structure c with m ≥ 2 owners at ∅. Then there exists

a s-equivalent tight structure c̃ that starts with a dictator.

The proof of this Lemma is broken into three steps. For any fixed arbi-

trary tight structure c that starts with m ≥ 2 owners Lemma 5 constructs

a similar control rights structure c that starts with m − 1 owners. Lemma

6 then shows that this similar control rights structure is s-equivalent to the

control rights structure it was derived from. By Lemma 3 the mechanism
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represented by the similar control right structure can be represented by a

tight structure that starts with equally many owners. So any tight structure

that starts with at least two owners has a s-equivalent tight structure that

starts with one fewer owner. Iteratively applying this last observation to the

original tight structure we obtain a sequence of s-equivalent tight structures

that start with fewer and fewer owners. This sequence terminates with a

tight structure that starts with a dictator and is s-equivalent to the original

tight structure c, proving Lemma 4.

To state Lemma 5 say that a c-path {ν0, ν1, · · · , νL−1} towards ν = νL

matches agent i before agent j if some submatching νl with l ∈ {1, . . . , L}
matches i but not j so i ∈ Nνl and j /∈ Nνl .

Lemma 5 Fix a tight structure c such that agents 1 and 2 are owners at ∅.
Then c, defined as follows, is a control rights structure.

If ν is c-relevant, 1, 2 /∈ Nν and h ∈ Hν , let

cν(h) =

{
(1, o) if cν(h) = (1, o) or cν(h) = (2, o)

cν(h) otherwise.

If 1 ∈ Nν , let

cν =

{
cν if a c-path towards ν matches 1 before 2

(p1,2 � c)ν if a p1,2 � c-path towards ν matches 1 before 2

Proof Fix an arbitrary tight structure c. To see that the Lemma defines

control rights cν for each c-relevant ν, firstly note that c∅ is uniquely defined

since 1, 2 /∈ N∅ = ∅. So suppose there exists some c-relevant ν◦ such that

cν′ is well-defined for all c-relevant ν ′ ⊂ ν◦ and suppose that ν is a direct

c-successor to ν◦. If 1, 2 /∈ Nν then ν is c-relevant if and only if it is c-relevant

and cν is uniquely defined. If 1, 2 /∈ Nν◦ but {1, 2} ∩ Nν 6= ∅, say σ is such

that ν◦ ∪ σ = ν. Since agent 2 does not control any houses according to

cν◦ , agent 1 must be matched by σ. Say h is the unique house in Hσ owned

by agent 1 according to cν◦ . If cν◦(h) = (1, o), then ν is c-relevant so that

cν equals cν . If not, then the definition of c implies cν◦(h) = (2, o) and ν is

p1,2 � c-relevant, so that cν equals (p1,2 � c)ν . Finally consider the case that

{1, 2}∩Nν◦ 6= ∅: If ν◦ is c-relevant then ν is too and cν equals cν . If ν◦ is not
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c-relevant, then ν◦ and ν are both p1,2� c-relevant and cν equals (p1,2� c)ν .9

To see that c is a control rights structure, first fix an arbitrary c-relevant

ν with 1 ∈ Nν . For any such ν c[ν] either equals c[ν] or (p1,2�c)[ν], implying

that c[ν] is a tight structure. So it only remains to be seen that (C1)- (C6)

hold for c-relevant ν with 1 /∈ Nν . Since cν for any such ν is defined via the

consolidation of ownership of two owners it satisfies (C1), (C2), and (C3).

To see (C4), (C5), and (C6) fix a pair ν◦, ν such that ν◦ is c-relevant, ν is a

direct c-successor to ν◦ and 1 /∈ Nν◦ . Fix any h ∈ Hν and i ∈ N ν .

Case 1: 1 /∈ Nν , so that ν is c-relevant. If cν◦(h) = (i, o) and i 6= 1, then

cν◦(h) = cν◦(h) = cν(h) = cν(h) holds by the definition of c and the fact that

c satisfies (C4). If i = 1, the same arguments yield

cν◦(h) = (1, o)⇒ cν◦(h) ∈ {(1, o), (2, o)}
⇒ cν(h) ∈ {(1, o), (2, o)} ⇒ cν(h) = (1, o).

Since agents 1 and 2 are owners according to cν◦ and cν and since c satisfies

(C5) and (C6), cν◦(h) = cν◦(h) = cν(h) = cν(h) also holds if cν◦(h) = (i, b) .

So cν◦(h) = cν(h) holds for any h ∈ Hν and c satisfies (C4), (C5), and (C6)

at ν◦, ν.

Case 2: 1 ∈ Nν and ν is c-relevant. To see that c satisfies (C4) at ν◦, ν

assume cν◦(h) = (i, o). Since 1 is matched under ν and since 2 is not an

9To see that cν is uniquely defined when 1 ∈ Nν◦ , suppose a c-path and a p1,2� c-path

both, of which match 1 before 2 reach ν. As long as agents 1 and 2 remain unmatched, c

and p1,2�c prescribe the same control rights for all agents other than 1 and 2. The unique

maximal c-relevant submatching ν∗ in the set of all ν′ ⊂ ν with 1, 2 /∈ Nν′ is therefore

also the unique maximal p1,2 � c-relevant submatching in this set. Since trading cycles

may be matched in any order we can without loss of generality assume that ν∗ is on both

paths. Say that ν∗ ∪ σ′ and ν∗ ∪ σ′′ directly succeed ν∗ on the two paths, so we have

1 ∈ Nσ′ ∩ Nσ′′ , 2 /∈ Nσ′ ∪ Nσ′′ , ν∗ ∪ σ′ ⊂ ν and ν∗ ∪ σ′′ ⊂ ν. Since σ′ ⊂ ν and σ′′ ⊂ ν,

σ′(1) and σ′′(1) must both equal ν(1). Since there exists no house h with cν∗(h) = (1, ·)
and (p1,2 � c)ν∗(h) = (1, ·), an agent i ∈ Nσ′ \ {1} must control the house ν(1) at cν∗ .

Since 2 /∈ Nσ′ we have i 6= 2. Since cν∗ and p1,2 � c prescribe the same control rights for

all agents (Nσ′ ∪ Nσ′′) \ {1, 2} house ν(1) must be controlled by the same agent i at ν∗

under p1,2 � c. Since ν∗ ∪ σ′ ⊂ ν and ν∗ ∪ σ′′ ⊂ ν we must have σ′(i) = σ′′(i) = ν(i). By

the same argument as above, this house ν(i) must be controlled by an agent other than

agent 1. Proceeding inductively we see that no agent in either Nσ′ and Nσ′′ is matched

with a house controlled by agent 1 at ν∗, a contradiction to 1 ∈ Nσ′ ∩Nσ′′ .
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owner under cν◦ , i neither equals 1 nor 2. Since c satisfies (C4) the definition

of c then implies cν◦(h) = cν◦(h) = cν(h) = cν(h) and c satisfies (C4) at

ν◦, ν. To see that c satisfies (C5) and (C6) at ν◦, ν assume cν◦(h) = (i, b)

and cν(h) 6= (i, b). By the definition of c, cν◦(h) = (i, b) and cν(h) 6= (i, b)

must hold. Since c satisfies (C5) and since 2 is an owner according to cν◦ and

cν , no agent j 6= 2 is an owner according to both cν◦ and cν . The definition

of c then implies that no agent is an owner according to both cν◦ and cν ,

implying that c satisfies (C5) and (C6) at ν◦, ν.

Case 3: 1 ∈ Nν and ν is not c-relevant. Switch agents 1 and 2 in the

arguments covering Case 2, including the replacement of ν by p1,2 � ν. �

Example 8 To see Lemma 5 at work consider tight structure c[{(6, h5)}] for

agents {1, 2, 3, 4, 5, 7} and houses {h1, h2, h3, h4, h6} derived from c defined

in Example 2. At the start agent 1 owns h1 and h3 while agent 2 owns

h2. Use the construction in Lemma 5 to define a control rights structure c

that consolidates the ownership of agents 1 and 2: According to c∅ agent

1 owns all houses owned by 1 and 2 according to c[{(6, h5)}]∅, so we have

c∅(h) = (1, o) for h ∈ {h1, h2, h3}. All other control rights are chosen to

minimize the difference between c and c[{(6, h5)}] subject to the constraint

that c is a tight structure.

There are two reasons why cν cannot be set to c{(6,h5)}∪ν for all c-relevant

ν 6= ∅: Agent 1’s ownership must by (C4) continue and cν must be defined

if ν is c- but not c[{(6, h5)}]-relevant. The continuity of ownership (C4)

together with c∅(h2) = (1, o), for example, forces c{(4,h4)}(h2) = (1, o) even

though c[{(6, h5)}]{(4,h4)}(h2) = (2, o). To avoid this problem, the ownership

of agents 1 and 2 is “fully” consolidated in the sense that, agent 1 - as long as

he remains unmatched - owns all houses that would otherwise be owned by

agents 1 or 2. To understand the second problem consider the submatching

ν = {(1, h6), (7, h2)}. Since this submatching is is c- but not c[{(6, h5)}]-
relevant, we cannot equate cν with c[{(6, h5)}]ν which is not defined. To

keep the distance between c[{(6, h5)}] and c minimal, cν is set to (p1,2 �
c[{(6, h5)}])ν , which is possible since ν is p1,2 � c[{(6, h5)}]-relevant. Once ν

is reached c continues as if agent 1 had always played the role of agent 2 in

c[{(6, h5)}].
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The control rights structure c need not be tight: at some c-relevant ν,

there may be exactly one broker and one owner, a violation of (C2’). In the

present case agents 1 and 2 are owners while agent 7 is a broker according

to c[{(6, h5)}]{(4,h4)}. Since c consolidates the ownership of agents 1 and 2

into the hands of agent 1, there is a broker (agent 7) and exactly one owner

(agent 1) according to c{(4,h4)}.

Lemma 6 Fix a tight structure c with m ≥ 2 owners at ∅. Then there exists

a s-equivalent control rights structure c with m− 1 owners at ∅.

Proof Assume without loss of generality that agents 1 and 2 are owners

according to c∅. Use Lemma 5 to define a control rights structure c. To

see that c and c are s-equivalent fix a profile of preferences R. In the next

paragraph I define a function f : P → P . Reasoning by cases I then show

that Mp�c(R) = M f(p)�c(R) holds for all p ∈ P . Finally in the last paragraph

of the proof I show that f is a bijection so that c and c are indeed s-equivalent.

To define the function f : P → P fix a permutation p ∈ P . Say that

p�ν is the maximal reachable submatching under Mp�c(R) matching neither

p(1) nor p(2).10 Consequently any cycle that forms at p� ν under Mp�c(R)

involves agent p(1) or p(2) (or both). If there are two such cycles, choose the

one involving p(1), otherwise choose the unique such cycle. Say the chosen

cycle results in the submatching p�σ. Index the houses in Hσ such that agent

p(i) controls house hi at p � ν, so cν(h
i) = (i, ·) holds for each i ∈ Nσ and

hi ∈ Hσ. If 1 ∈ Nσ let f(p) = p, otherwise let f(p)(1) = p(2), f(p)(2) = p(1)

and f(p)(i) = p(i) for all i 6= 1, 2.

Since 1, 2 /∈ Nν the submatching p�ν is also reachable under M f(p)�c(R).

At p�ν all agents and all houses in the cycle p�σ except possibly h1 and h2

point into the same direction under Mp�c(R) and M f(p)�c(R): The pointing

of agents remains constant, as it only depends on their preferences and the set

of unmatched houses. The pointing of any house hi with i /∈ {1, 2} remains

constant, since any such hi is controlled by the same agent according to

p� c and f(p)� c. The houses h1 and h2 point to either p(2) or p(1) under

10The fact that the order in which trading cycles are matched is irrelevant ensures the

uniqueness of p� ν.
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M f(p)�c(R). To show that p �M c(R) equals f(p) �M c(R) for all p ∈ P , I

reason by cases.

Case 1: 1 ∈ Nσ, 2 /∈ Nσ. By the definition of c house h1 points to p(1)

at p � ν under (p �M c)(R). So the cycle yielding p � σ also forms under

(p�M c)(R) at p�ν and p�(ν∪σ) is reached. Since 1 ∈ Nν∪σ, the definition

of c implies M c[ν ∪ σ] = M c[ν ∪ σ]. Since f(p) = p holds in Case 1, we have

(f(p)�M c)(R) = (p�M c)(R) = (p�M c)(R).

Case 2: 2 ∈ Nσ, 1 /∈ Nσ. By the definition of c and f(p) house h2 points

to f(p)(1) = p(2) at p � ν under (f(p) � M c)(R). So the cycle yielding

p � σ also forms under (f(p) � M c)(R) at p � ν, so that p � (ν ∪ σ) is

reached under (f(p) � M c)(R). Since 2 ∈ Nν∪σ and 1 /∈ Nν∪σ, c[ν ∪ σ]

equals p1,2 ◦ c[ν ∪ σ]. The application of f to the permutation p then yields

f(p)� c[ν ∪ σ] = f(p)� p1,2 � c[ν ∪ σ]. Since f(p)(1) = p(2) and f(p)(2) =

p(1) the two swaps via p1,2 and f(p) neutralize each other and we obtain

f(p)�c[ν∪σ] = p�c[ν∪σ]. In sum we have (p�M c)(R) = (f(p)�M c)(R).

Case 3: 1, 2 ∈ Nσ. By the definition of c houses h1 and h2 point to p(1)

at p � ν under (p �M c)(R) so that the cycle p(1) → σ(1) → . . . h2 → p(1)

forms. This cycle yields a submatching p � σ′ ⊂ p � σ. Since ν ∪ σ′ is

not c-relevant (as it matches agent 1 but no house controlled by agent 1

according to cν), the definition of c implies cν∪σ′(h
1) = p1,2�cp1,2�(ν∪σ′)(h1) =

(p1,2(1), o) = (2, o). So p(2) owns h1 at p� (ν ∪ σ′) according to p� c.
Case 3a) Each house in Hσ \ (Hσ′ ∪ {h1}) points to the same agent at

p�(ν∪σ′) and at p�ν. So the cycle p(2)→ σ(2)→ · · · → h1 → p(2) yielding

p�σ′′ with σ′′ = σ \σ′ forms at p� (ν∪σ′) and p� (ν∪σ′∪σ′′) = p� (ν∪σ)

is reached under p�M c(R).

Case 3b) at least one house hib ∈ Hσ \ (Hσ′ ∪ {h1}) points to different

agents at p � ν and p � (ν ∪ σ′) according to p � c. By (C4) all ownership

continues and agent p(ib) must broker house hib given (p � c)p�ν . By (C5)

then, at most one agent is an owner given cν and cν∪σ′ . Since agent 2 does

own houses given cν and cν∪σ′ and since there can never be more than one

broker at any submatching, agents 2 and agent ib are the only two agents

matched by σ but not by σ′. So the cycle yielding p � σ at p � ν under

p�M c(R) is such that p(1)→ σ(1)→ . . . p(2)→ hib → p(ib)→ h1. By (C6)

agent 2 owns hib at ν ∪ σ′. Since p(2) prefers hib to all houses Hν , he points
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to hib at p� (ν ∪ σ′) and the cycle p(2)→ hib → p(2) forms. By (C6) agent

ib must inherit house h2 at ν ∪ σ′ ∪ {(2, hib)} given c. Another short cycle

p(ib) → h2 → p(ib) forms at p � (ν ∪ σ′ ∪ {(2, hib)}) under p �M c(R) and

p � (ν ∪ σ) is reached. The following figure shows the cycles yielding p � σ
under p�M c(R) and under p�M c(R) in Cases 3a) and 3b).

Original cycle in Case 3

p(1)→ σ(1)→ · · · → h2 → p(2)→ σ(2)→ . . .→ h1 → p(1)

Cycles in Case 3a)

p(1)→ σ(1)→ · · · → h2 → p(1)

p(2)→ σ(2)→ . . .→ h1 → p(2)

Cycles in Case 3b)

p(1)→ σ(1)→ · · · → h2 → p(1)

p(2)→ σ(2) = hib → p(2)

p(ib)→ h2 → p(ib)

In either case, the submechanisms defined by c[ν ∪ σ] and c[ν ∪ σ] are

identical, since 1, 2 ∈ Nν∪σ and since p1,2(i) = i holds for all i /∈ Nν∪σ. In

sum we have (p�M c)(R) = (p�M c)(R) = (f(p)�M c)(R).

To see that f is a bijection define P 0 : = {p ∈ P : f(p) = p}. Since

f restricted to P 0 is a bijection and since f(p) 6= f(p′) holds for any two

different p, p′ ∈ P \P 0, it suffices to show that f(p) /∈ P 0 holds for any p /∈ P 0.

Fix any p /∈ P 0 and define ν and σ as above. Noting that f(p)(1) = p(2) and

f(p)(2) = p(1) and f(p)(i) = p(i) for all i /∈ {1, 2}, we see that Mp�c(R) and

M f(p)�c(R) proceed identically as long as p(1) and p(2) remain unmatched.

So p� ν = f(p)� ν is also the maximal submatching with f(p)(1), f(p)(2) /∈
p� ν that is reachable under M f(p)�c(R). Since p /∈ P 0 we have that 2 ∈ Nσ

and 1 /∈ Nσ, so that there is a pointing cycle p(2) → σ(2) → . . . h2 → p(2)

(yielding p�σ) and a pointing chain p(1)→ h∗ → · · · → p(2) under Mp�c(R)

at p � ν. Conversely under M f(p)�c(R) at p � ν, the pointing cycle p(1) =

f(p)(2) → h∗ → · · · → h2 → f(p)(2) = p(1) forms since h2 is controlled by

f(p)(2) = p(1) given (f(p) � c)p�ν . By the same token there is a pointing
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chain f(p)(1) = p(2) → σ(2) → . . . h2 → p(1) = f(p)(2) under M f(p)�c(R)

at p � ν. Since p(1) = f(p)(2) → h∗ → · · · → h2 → f(p)(2) = p(1) is the

only cycle at p � ν under f(p) � c at R and since this cycle involves agent

f(p)(2) but not agent f(p)(1) we have f(p) /∈ P 0 as required. �

Example 9 To see that the tight structure c[{(6, h5)}] and the control rights

structure c, as constructed in Example 8 are s-equivalent fix a profile or

preferences R for agents {1, 2, 3, 4, 5, 7} and houses {h1, h2, h3, h4, h6} with

R1 : h2, h3 R2 : h4, h2, h6 R3 : h2, h4, h1 Ri : h1 for i = 4, 5, 7.

To understand the definition of f for all permutations first consider id, the

identity. Since the only cycle that forms at ∅ given M c[{(6,h5)}](R) yields the

submatching {(1, h2), (2, h4), (4, h1)}, f maps id onto itself. Under M c(R) a

cycle yielding {(1, h2)} forms at ∅. At {(1, h2)} under M c(R) agent 2 owns

h1 and a cycle yielding {(2, h4), (4, h1)} forms. Once {(1, h2), (2, h4), (4, h1)}
is reached M c[{(6,h5)}](R) and M c(R) continue identically. So M c[{(6,h5)}](R)

equals M c(R) and we obtain M c[{(6,h5)}](R) = (id�M c[{(6,h5)}])(R) = (f(id)�
M c)(R) = M c(R) as required.

Next consider the permutation p2,3 for which only agents 2 and 3 swap

roles. The only cycle that forms at ∅ given (p2,3 �M)c[{(6,h5)}](R) yields the

submatching {(p2,3(2), h2)} = {(3, h2)} which involves agent p2,3(2) = 3 but

not agent p2,3(1) = 1. We therefore have f(p2,3)(1) = p2,3(2) = 3, f(p2,3)(2) =

p2,3(1) = 1, and f(p2,3)(i) = p2,3(i) for all i 6= 1, 2. Under (f(p2,3)� c)∅ agent

p2,3(2) = 3 owns all houses owned by agents 1 and 2 under c[(6, h5)]∅, in

particular house h2. So the cycle yielding the submatching {f(p2,3(1), h2)} =

{(p2,3(2), h2)} = {(3, h2)} forms at ∅ under (f(p2,3) � M c)(R). Once this

submatching is reached (p2,3 � M c[{(6,h5)}])(R) and (f(p2,3) � M c)(R) con-

tinue identically and we obtain (p2,3 �M c[{(6,h5)}])(R) = (f(p2,3) �M c)(R)

as required.

With Lemmas 5 and 6 in place we are now ready to prove Lemma 4.

Proof of Lemma 4. Say there are m ≥ 2 owners at the start of c. By

Lemma 6 there exists an s-equivalent control rights structure c with m − 1

owners. By Lemma 3 the lax mechanism M c can alternatively be represented

28



as a trading and braiding mechanism M c1 such that the tight structure c1

and the control right structure c start with equally many owners. So c has an

s-equivalent structure c1 starting with m− 1 owners. Proceeding inductively

construct a sequence of s-equivalent tight structures c = c0, c1, c2...cm−1 such

that there is one fewer owner at ck+1
∅ than at ck∅ for all 0 ≤ k in the sequence.

Since c starts out with m owners, there is exactly one owner at the start

of cm−1. By (C2’) there is no broker at cm−1∅ , so cm−1∅ is dictatorial. Since

s-equivalence is transitive c is s-equivalent to cm−1. �

Example 10 Once again consider the tight structure the c[{(6, h5)}] for

agents {1, 2, 3, 4, 5, 7} and houses {h1, h2, h3, h4, h6}. Note that agents 1, 2,

and 4 are owners according to c[{6, h5}]. In Example 8 I applied Lemma

6 to construct a s-equivalent control rights structure c which is, as I noted,

not tight. By Lemma 3 the mechanism represented by c can alternatively be

represented by a tight structure c1 that has the same number of owners as

c at any c-relevant submatching. The only owner according to c{(4,h4)}, for

example, is the c1-dictator at {(4, h4)}.
There is one fewer owner at the start of c1 than at the start of c[{(6, h5)}]:

only 1 and 4 are owners according to c1∅. Now consolidate the ownership of

agents 1 and 4 in c1 along the lines of Lemma 6 to obtain a s-equivalent

control rights structure c′. This control rights structure violates (C2’) as

agent 7 brokers house h6 at ∅ even though there is only one owner. By

Lemma 3 there exists a tight structure c2 with 1 as the dictator at ∅ that

represents the same mechanism as the control rights structure c′. So the

tight structure c[{(6, h5)}] that starts with 3 owners is s-equivalent to the

tight structure c2 that starts with a dictator.

9 Transformation of Braids

The strategy of proof requires that any tight structure c has a s-equivalent

tight structure c̃ that starts with a dictator. Lemma 4 shows that such s-

equivalent tight structures exist if c starts with two or more owners. But if

c is a braid then there are no owners to begin with: all houses are brokered.
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Lemma 8 below, shows that even tight structures that start with no owners

are s-equivalent to tight structures that start with a dictator.

Some more concepts are needed to prove Lemma 8. A random matching

mechanism M : R → ∆M is ex post Pareto optimal if M(R) can for each

R be represented as a lottery over matchings that are Pareto optimal at R.

The same mechanism M treats equals equally if two agents who declare

the same preference face the same lottery over houses.

A random matching mechanism M : R → ∆M for three agents and three

houses is ordinally strategyproof if for any agent i, any profile R with

Ri : h, h′, h′′ and deviation R′i, M(R) assigns (weakly) higher respectively

lower probability to the matches (i, h) and (i, h′′) than M(R′i, R−i). So there

is no profile R at which any agent can distort his preference to either increase

the probability of his most preferred house or decrease the probability of his

least preferred house. 11

The proof of Lemma 8 starts with Lemma 7 on random matching mecha-

nism for small matching problems: With only three agents and three houses,

random serial dictatorship is the unique ex post Pareto optimal, ordinally

strategyproof random matching mechanism that treats equals equally. Since

braids involve only three houses, the result applies to braids with three

agents. Braids, in turn are the only trading and braiding mechanisms that

start with no owners.

Lemma 7 Let H = {a, b, c} and N = {1, 2, 3}. Any ex post Pareto optimal

and ordinally strategy proof M : R → ∆M that satisfies equal treatment of

equals, is a random serial dictatorship.

The proof of Lemma 7 directly follows from Lemma 2 and Proposition

2 in Bogomolnaia and Moulin [4]. To keep the present treatment as self-

contained as possible I state an alternative proof in the online appendix.

The main difference between the proofs in Bogomolnaia and Moulin [4] and

the online appendix, is that my proof does not use the concept of ordinal

efficiency. Lemma 8 applies Lemma 7 to show that the symmetrization of

11A random matching mechanism is non-bossy if not agent can alter someone else’s

lottery over matches without altering his own. For a proof that non-bossiness is robust to

randomization when the base mechanism is strategyproof see Bade [3].
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any braid is identical to random serial dictatorship.

Lemma 8 Let |H| = 3, |N | ≥ 3. Any braid is s-equivalent to any serial

dictatorship.

Proof Say c defines a braid where c∅ assigns agents 1, 2, and 3 brokerage

rights. Say c′ defines a serial dictatorship with agents 1, 2, and 3 as the first

three dictators. Fix an arbitrary matching µ and profile of preferences R.

The agents Nµ are matched under (p◦M c)(R) if and only if Nµ = p({1, 2, 3}).
The same holds for c′. So the probability that the agents Nµ are matched

under ∆M c(R) (or respectively ∆M c′(R)) equals 1
|S| , where S is the set of

all three agent subsets of N .

Define R as the restriction of R to Nµ and say that c and c′ respectively

define a braid and a serial dictatorship for Nµ and H. Note that µ is also

a matching in the restricted problem with Nµ and H the sets of agents and

houses. The probabilities of µ under the symmetrizations of M c and M c′ are

∆M c(R)(µ) and ∆M c′(R)(µ). Since the braid defined by c is Pareto optimal

and strategyproof, its symmetrization ∆M c is ex post Pareto optimal, ordi-

nally strategyproof and satisfies equal treatment of equals. Since c defines

a mechanism for three agents and three houses Lemma 7 applies, and ∆M c

equals random serial dictatorship M, which, by definition, equals ∆M c′ . So

we obtain

∆M c(R)(µ) =
∆M c(R)(µ)

|S|
=

∆M c′(R)(µ)

|S|
= ∆M c′(R)(µ).

SinceR and µ were chosen arbitrarily we obtain ∆M c(R)(µ) = ∆M c′(R)(µ)

for all R and µ and c is s-equivalent to c′. �

10 Abstract Transformations

The main result of the present section, Lemma 9 applies to tight structures

that are identical except for their submechanisms following on some dictato-

rially chosen submatching ν∗. Such tight structures are s-equivalent if their
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submechanisms following on ν∗ are s-equivalent. Using Lemmas 4 and 8 to

define s-equivalent submechanisms, Lemma 9 allows me to define a sequence

of s-equivalent tight structures with more and more dictatorially chosen sub-

matchings as is required for the proof of Theorem 1.

Lemma 9 Fix a tight structure c and a c-relevant submatching ν∗ that is

c-dictatorially chosen. Define a set of control rights functions c′ such that

cν = c′ν holds for all c-relevant ν with ν∗ 6⊂ ν and c′[ν∗] a tight structure. If

c[ν∗] and c′[ν∗] are s-equivalent, then c and c′ are s-equivalent tight structures.

The proof of Lemma 9 builds on the preliminary Lemma 10, which shows

that the set of control rights c′ defined in Lemma 9 indeed constitute a tight

structure.

Lemma 10 Fix a tight structure c and a c-relevant submatching ν∗ that is

c-dictatorially chosen. Define a set of control rights functions c′ such that

cν = c′ν holds for all c-relevant ν with ν∗ 6⊂ ν and c′[ν∗] a tight structure.

Then c′ is a tight structure.

Proof Fix an arbitrary submatching ν. If ν∗ 6⊂ ν then ν is c′-relevant if

and only if it is c-relevant and c′ν : = cν is welldefined for any c′-relevant

ν with ν∗ 6⊂ ν. If ν with ν∗ ⊂ ν is c′-relevant then Lemma 1 (on unique

c-paths towards c-dictatorially chosen matchings) implies that there exists a

c′[ν∗]-relevant ν ′ such that ν = ν∗ ∪ ν ′. In this case c′ν is uniquely defined as

c′[ν∗]ν′ . So c′ defines control rights c′ν for each c′-relevant submatching ν.

Since c and c′[ν∗] are both tight structures c′ν satisfies (C1), (C2’) and (C3)

for each c′-relevant ν. Now fix a c′-relevant ν◦ and a direct c′-successor ν to

ν◦. If ν∗ ⊂ ν◦ or ν∗ 6⊂ ν then (C4), (C5), and (C6) hold for the pair of ν◦ and

ν since c′[ν∗] and c are tight structures. So we only need to consider the case

that ν∗ 6⊂ ν◦ and ν∗ ⊂ ν. By Lemma 1 there is a unique c-dictatorial path

towards ν∗. So ν equals ν∗ and ν◦ is the unique c-dictatorial submatching

with ν◦ ∪ {(i, ν∗(i))} = ν∗ where i is the c-dictator at ν◦. Since ν∗ 6⊂ ν◦

we have cν◦ = c′ν◦ , so that ν◦ is c′ dictatorial. Since ν◦ is c′-dictatorial, c′

trivially satisfies (C4), (C5), and (C6) at the pair ν◦, ν∗. �
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Example 11 Reconsider the tight structure c in Example 2 together with

the submatching ν∗ : = {(6, h6), (5, h5), (4, h4)}, which is by Example 3 c-

dictatorially chosen. Use Lemma 10 to generate two tight structures c1 and cG

by respectively replacing the braid following the submatching {(6, h6), (5, h5), (4, h4)}
with a serial dictatorship and Gale’s top trading cycles. Concretely define c1

and cG such that c1[ν∗] defines a serial dictatorship (with any order of agents

as dictators), cG[ν∗] defines Gale’s top trading cycles with cG[ν∗](hi) = i for

i ∈ {1, 2, 3}, and such that c1ν = cGν : = cν holds for each c-relevant ν with

ν∗ 6⊂ ν.

We are now ready to show that the tight structure c′ constructed in

Lemma 9 is indeed s-equivalent to c.

Proof of Lemma 9. By Lemma 10 c′ is a tight structure. Fix an arbitrary

profile of preferences R. To prove the s-equivalence of c and c′ construct a

bijection f : P → P such that (p �M c)(R) = (f(p) �M c′)(R) holds for

all p ∈ P . To do so partition P and, for each cell of this partition, define a

bijection satisfying the preceding equality.

Firstly define P 0 : = {p ∈ P | p � ν∗ 6⊂ (p � M c)(R)}. By Lemma

2 (p � M c′)(R) = (p � M c)(R) holds for all p ∈ P 0. So f 0 : P 0 → P 0

with f 0(p) = p for all p ∈ P 0 is a bijection on P 0 with (p � M c)(R) =

(f 0(p) �M c)(R) for all p ∈ P 0. Partition the remainder P \ P 0 into sets

P 1, . . . PK , so that all permutations p in the same cell P k assign each role

i ∈ Nν∗ to the same agent. Formally, any two permutations p, p′ /∈ P 0 belong

to the same cell P k for some k ∈ {1, . . . , K} if and only if p(i) = p′(i) holds

for all i ∈ Nν∗ .

To define bijections fk : P k → P k fix an arbitrary k ∈ {1, . . . , K} and

pk ∈ P k. Say R is the restriction of R toNpk�ν∗ andHpk�ν∗ , the sets of agents

and houses not matched by pk � ν∗, and P is the set of all permutations on

Npk�ν∗ . There exists a bijection g : P k → P such that g(p)(i) = p(i) for

all i ∈ N ν∗ : Each agent i not matched by pk � ν∗ is assigned the same role

by p and g(p). By assumption c[ν∗] and c′[ν∗] are s-equivalent. In light of

the arguments laid out in Section 4, this s-equivalence implies that there

exists a bijection f : P → P with (q � M c[ν∗])(R) = (f(q) � M c′[ν∗])(R)

for all q ∈ P . To define fk : P k → P k let fk(p)(i) = pk(i) if i ∈ Nν∗ and
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fk(p)(i) = f(g(p))(i) otherwise.

To see that (p �M c)(R) = (fk(p) �M c′)(R) holds first note that p as

well as fk(p) are elements of P k implying that p as well as fk(p) assign each

agent i ∈ Nν∗ to the role of pk(i). The definition of c, c′ then implies that

pk � ν∗ is reached under (p�M c)(R) as well as under (fk(p)�M c′)(R). By

the definition of fk and g we have (fk(p)�M c′)(R) = (pk� ν∗)∪
(
f(g(p))�

M c′[ν∗]
)
(R) as well as (p �M c)(R) = (pk � ν∗) ∪

(
g(p) �M c[ν∗]

)
(R). But

f was defined such that (q �M c[ν∗])(R) = (f(q) �M c′[ν∗])(R) holds for all

q ∈ P , in particular for q = g(p). We in sum obtain:

(fk(p)�M c′)(R) = (pk � ν∗) ∪
(
f(g(p))�M c′[ν∗]

)
(R) =

(pk � ν∗) ∪
(
g(p)�M c[ν∗])(R

)
= (p�M c′)(R).

�

Example 12 Reconsider the tight structures c, c1 and cG defined in Exam-

ples 2 and 11 together with ν∗ = {(6, h6), (5, h5), (4, h4)}. Since c1[ν∗] defines

a serial dictatorship it is by Lemma 8 s-equivalent to c[ν∗] which defines a

braid. Since cG[ν∗] defines Gale’s top trading cycles it is by Abdulkadiroglu

and Sonmez [1] as well as by Knuth [9]12 s-equivalent to c1[ν∗] which defines

a serial dictatorship. So c, c1 and cG are by Lemma 9 s-equivalent.

11 Proof of Theorem 1

Following the overview on the proof of Theorem 1 given in Section 7 any

arbitrary tight structure c0 has to be linked via a sequence of s-equivalent

tight structures c1, . . . , cK to a tight structure cK that defines a serial dic-

tatorship. To construct such a sequence for any tight structure c0 use the

following algorithm. To start go to Step (α, 1).

12Some additional arguments similar to the ones given in Lemma 8 are required to

extend these equivalence results to the present case of four owners and three houses
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Step (α, k): If ck−1 defines a serial dictatorship end with K : = k − 1. If

ck−1 does not define a path dependent dictatorship, go to Step (β, k). In all

other cases, go to Step (γ, k).

Step (β, k): Fix a minimal ck−1-relevant but not ck−1-dictatorial submatch-

ing ν∗. Define ck such that ckν : = ck−1ν for any ck−1-relevant ν with ν∗ 6⊂ ν.

Define ck[ν∗] as a tight structure that is s-equivalent to ck−1[ν∗] and starts

with a dictator. Go to Step (α, k + 1).

Step (γ, k): Fix three ck−1-relevant submatchings ν∗ ⊂ ν ′ ⊂ ν ′′, such that

ck−1[ν∗] is a serial dictatorship with i the dictator at ν ′ and j < i the dictator

at ν ′′. Define ckν : = ck−1ν for any ck−1-relevant ν with ν∗ 6⊂ ν. Define

ck[ν∗] = pi,j � ck−1[ν∗]. Go to Step (α, k + 1).

To see that the above algorithm defines a s-equivalent tight structure for

each k, note that c0 is by assumption a tight structure. Now suppose that

the above algorithm generates s-equivalent tight structures ck
′

for all k′ < k

for some fixed k ≥ 1. Step (α, k) prescribes a continuation for any possible

case. The submatching ν∗, defined in either Step (β, k) or (γ, k) is ck−1-

dictatorially chosen. When Step (β, k) is used Lemmas 4 and 8 guarantee

the existence of a tight structure ck[ν∗] that is s-equivalent to ck−1[ν∗] and

starts with a dictator. When Step (γ, k) is used, ck[ν∗] and ck−1[ν∗] both

define serial dictatorships and are therefore s-equivalent. So ck is by Lemma

10 in either case a s-equivalent tight structure.

To see that the sequence terminates with a tight structure cK that defines

a serial dictatorship, consider Step k where Step (α, k) prescribes to follow

Step (β, k) and say that ν∗ is chosen at Step (β, k). So ν∗ is ck−1-dictatorially

chosen, but not ck−1-dictatorial, implying that ν∗ 6⊂ ν ′ holds for any ck−1-

dictatorially chosen ν ′ other than ν∗. Since ckν = ck−1ν holds for all ck−1-

relevant submatchings ν with ν∗ 6⊂ ν, the set of ck−1-dictatorially chosen

submatchings is a subset of the set of ck-dictatorially chosen submatchings.

To see that this subset relation is strict, note that ν∗ ∪ {(i, h)} with i the

ck-dictator at ν∗ and h a house in Hν∗ , is ck- but not ck−1-dictatorially

chosen. So the set of ck-dictatorially chosen submatchings strictly increases

with each Step (β, k). Since there are only finitely many submatchings, there
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exists a number K ′ such that cK
′
defines a path dependent dictatorship. The

reordering prescribed by Steps (γ, k) then achieves a serial dictatorship since

all re-orderings of agents as dictators go into the same direction: for i to

swap with a later dictator j in some branch of a path dependent dictatorship

ck we must have j < i.

Example 13 To illustrate the proof of Theorem 1 let c0 be the tight struc-

ture c defined in Example 2. There exists at least one c0-relevant submatch-

ing that is not c0-dictatorial: c for example prescribes for all three remain-

ing houses at {(6, h6), (5, h5), (4, h4)} to be brokered. So Step (α, 1) deter-

mines that the algorithm should proceed with Step (β, 1). To apply this

step choose a minimal c0-relevant but not c0-dictatorial submatching ν∗, say

ν∗ : = {(6, h6), (5, h5), (4, h4)}. Step (β, 1) then results in a s-equivalent tight

structure c1 as the one defined in Example 12. There are strictly more c1-

dictatorially chosen submatchings than there are c0-dictatorially chosen ones,

{(6, h6), (5, h5), (4, h4), (1, h1)}, for example, is c1- but not c0-dictatorially

chosen.

There exists at least one c1-relevant submatching that is not c1-dictatorial.

According to c1 agents 1 and 2 are both owners at {(6, h5)}. So Step (α, 2)

determines that the algorithm should proceed with Step (β, 2). To apply

this step choose a minimal c1-relevant but not c1-dictatorial submatching,

say ν∗ : = {(6, h5)}. A tight structure c2 is the defined by letting c2ν = c1ν for

all c1-relevant ν with ν∗ 6⊂ ν and c2[ν∗] a tight structure that is s-equivalent

to c1[ν∗] and starts with a dictator. Since there are at least two owners at

the start of c1[ν∗] such a s-equivalent tight structure c2[ν∗] exists by Lemma

4 and was constructed in Example 10.

For an example of a c2- but not c1-dictatorially chosen submatching con-

sider {(6, h5), (1, h1)}. Since this submatching {(6, h5), (1, h1)} is not itself

c2-dictatorial, Step (α, 3) directs the algorithm to Step (β, 3) which could

then, for example, convert {(6, h5), (1, h1)} into a c3-dictatorial submatching.

Steps (α, k) and (β, k) are then applied until some K ′ where any cK
′
-relevant

submatchings is cK
′
-dictatorial, so that cK

′
defines a path dependent dicta-

torship. To further transform this path dependent dictatorship into a serial

dictatorship, the algorithm proceeds by the reordering of agents as dictators.

This reordering stops since Step (γ, k) inverts the order to two agents i, j as
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dictators only if i < j.

12 Conclusion

The main result of the present paper shows that random serial dictatorship

is identical to the symmetrization of any good matching mechanism for sets

of agents and houses of any size. Special cases of this result were already

established by Abdulkadiroglu and Sönmez [1], Knuth [9], Carroll [5], Pathak

and Sethuraman [12], and Lee and Sethuraman [10].

Since Lee and Sethuraman [10] contains the most general results among

the above list, I use Lee and Sethuraman [10] as a benchmark to put the

present results into context. The present paper covers a larger class of mech-

anisms: Lee and Sethuraman [10] show that any hierarchical exchange mech-

anism defined by an inheritance tree following Papai [11] is s-equivalent to

serial dictatorship. Conversely I show that this hypothesis applies to the all

good mechanisms, not just to hierarchical exchange mechanisms.13 Lee and

Sethuraman [10] furthermore considers only matching problems with equally

many agents and houses, whereas the only restriction I impose is that all

agents prefer begin matched to homelessness.14 In a third dimension, Lee

and Sethuraman’s [10] results are more general: While I am only concerned

with the case of full symmetry between all agents, Lee and Sethuraman [10]

also consider the case of partial symmetries. They use the notion of G-

invariance to describe random matching problems in which all agents within

some groups are to be treated symmetrically without the imposition of any

symmetry requirements across groups.

The development of this literature suggests an even more general hy-

pothesis: Is it true that any Pareto optimal and strategyproof mechanisms

is s-equivalent to serial dictatorship? The problem here is that the present

13A trading and braiding mechanism is such a hierarchical exchange mechanism following

Papai [11] if and only if it does not involve and brokers or braids. Papai [11] characterizes

hierarchical exchange mechanisms as the set of reallocation proof good mechanisms.
14While Lee and Sethuraman’s [10] strategy of proof easily extends to the case of more

agents than houses, it is not clear how to apply it to the alternative case of more houses

than agents.
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approach just like the ones by Abdulkadiroglu and Sönmez [1], Knuth [9],

Carroll [5], Pathak and Sethuraman [12], and Lee and Sethuraman [10] all

build on trading algorithms. To extend any of these approaches to the set of

all Pareto optimal and strategyproof mechanisms, we would need a trading

algorithm that characterizes all such mechanisms. But the set of all Pareto

optimal and strategyproof matching mechanisms has yet to be characterized.

Since the symmetrization of any Pareto optimal and strategyproof mecha-

nism is a ex post Pareto optimal and ordinally strategyproof mechanism that

treats equals equally one could also try to directly show that any random

matching mechanism with these three properties is random serial dictator-

ship. Bogomolnaia and Moulin [4] indeed do not refer to a trading algorithm

to prove the uniqueness of random serial dictatorship with three agents and

three objects. The problem with the extension of this approach to larger sets

of agents and houses, is that set of Pareto optima can can be hard to find:

Saban and Sethuraman [15] have shown that finding all house-agent matches

that do not form in any Pareto optimum at some R is an NP-complete prob-

lem.

Some papers, such as Bogomolnaia and Moulin [4] have presented possible

tradeoffs between Pareto optimality and strategy proofness while maintain-

ing equal treatment of equals and non-bossiness. In this context, random

serial dictatorship is typically used as the benchmark of a mechanism that is

best in terms of its incentive properties (ordinally strategy proof) and worst

in terms of its welfare properties (only ex post Pareto optimal). This paper

strengthens the case for using random serial dictatorship as the benchmark.

While initially one could have criticized the choice of a particular good mech-

anism as the base of the symmetrization, I have shown that this choice does

not matter: the symmtrization of any good mechanism leads to random serial

dictatorship.
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