
Shorter double-authentication preventing
signatures for small address spaces?

Bertram Poettering
bertram.poettering@rhul.ac.uk

Information Security Group
Royal Holloway, University of London

Abstract. A recent paper by Derler, Ramacher, and Slamanig (IEEE
EuroS&P 2018) constructs double-authentication preventing signatures
(“DAP signatures”, a specific self-enforcement enabled variant of signa-
tures where messages consist of an address and a payload) that have—if
the supported address space is not too large—keys and signatures that
are considerably more compact than those of prior work. We embark
on their approach to restrict attention to small address spaces and con-
struct novel DAP schemes that beat their signature size by a factor of
five and reduce the signing key size from linear to constant (the verifica-
tion key size remains almost the same). We construct our DAP signatures
generically from identification protocols, using a transform similar to but
crucially different from that of Fiat and Shamir. We use random oracles.
We don’t use pairings.

Keywords: Signature schemes, self-enforcement, identification protocols, prov-
able security

1 Introduction

Digital signatures. Digital signature schemes are a ubiquitous cryptographic
primitive. They are extensively used for message and entity authentication and
find widespread application in real-world protocols. The basic functionality of a
signature scheme is as follows: A signer first runs the key generation algorithm to
create a key pair consisting of a (secret) signing key and a (public) verification
key. The signing key can then be used with the signing algorithm to create
signatures on messages. Such a signature is a short bitstring that serves as an
authenticator for a message: Given an authentic copy of the verification key,
anybody can invoke the verification algorithm together with a message and the
signature to check for the latter’s validity. The output of this algorithm is binary:
either “accept”, interpreted as indicating that the message is authentic in the
sense that it was fed by the signer into its signing algorithm, or “reject”, which
means it is not. Signature schemes were first proposed about four decades ago,
? The full version is available in the IACR eprint archive as article 2018/223 [16].

and gazillions of constructions are known today. Among the standardized ones,
and these are the fewest, are RSA-PSS, RSA-PKCS#1 v1.5, DSA, ECDSA, and
EdDSA.

Digital signatures with self-enforcement. According to the classic understanding
of a signature scheme, signers can, in principle, sign any message they want.
Applications, however, might require that specific relations hold between signed
messages. For instance, in a public-key infrastructure (PKI), a certificate author-
ity (CA) is expected not to generate certificates on the same identity for different
public keys (as this could lead to impersonation attacks), and in cryptographic
“currencies” like Bitcoin users shall not double-spend (sign two transactions that
transfer the same coins to different recipients). While a regular signature scheme
offers no means to enforce specific configurations of signed messages, signature
schemes with self-enforcement do. We describe e-cash and double-authentication-
preventing signatures as two examples for the latter.

E-Cash. In electronic cash [6], users can transfer virtual coins to each other,
and they have a guarantee of anonymity: Nobody, including any central issu-
ing authority, can trace their payments. However, if double-spending happens
(this is very explicitly forbidden in e-cash systems) then the spending user’s
anonymity is automatically revoked in that the user can be identified given the
two transactions. This allows for penalizing misbehaving users, for instance by
freezing their account.

Double-Authentication Preventing Signatures. A signature scheme
is double authentication preventing [17], or “has the DAP property”, if messages
consist of an address and a payload field, and the scheme is such that the signer
is penalized if it signs any address twice with different payloads. In this setting
the penalty is more drastic than in the e-cash setting: misbehaving signers don’t
have their anonymity revoked, but instead a verbatim copy of their signing key
is leaked to the public. A natural application is in the PKI setting: If domain
names are used as addresses, and public keys as payloads, then the DAP prop-
erty means that the certification authority is penalized if it issues different-key
certificates for the same domain. A different application is related to crypto-
graphic currencies: users that double-spend make necessarily also their signing
key public, i.e., give everybody access to their funds. Further applications have
been proposed in [17,18,19,5,3,7], for instance in the context of secure contract
signing (and enforcing).

A brief history of double-authentication preventing signatures. The first DAP
scheme is by Poettering and Stebila [17,18]. Their construction is in the RSA
setting. More precisely, it builds on the number-theoretic fact that if one has
two square roots of an element modulo a Blum integer, then one also has the
factorization of this number.1 Signatures of the DAP scheme use the factoriza-
tion as signing key, and signatures consist of a vector of square roots of RSA
1 It is further required that these square roots are not additive inverses of each other.

elements such that the decision about which specific square root is the valid one
is a function of the payload. Signing different payloads means releasing different
square roots means revealing the signing key. The signatures of this scheme are
very large: If a 128 bit security level shall be reached then their size is at least
256 times 2048 bit.

A DAP scheme in the DLP setting was proposed by Ruffing, Kate, and
Schröder [19, Appendix A], based on Merkle trees based on Chameleon hash
functions [13]. The addresses are associated with the leaves of these trees, and
signatures consist of vectors of ‘openings’ of the Chameleon hashes leading to
the root. While their signatures are shorter than those of [17,18] (if implemented
over elliptic curves), the signature size is linear in the bit-length of the address
space, and thus still prohibitively large for many applications.

The work by Bellare, Poettering, and Stebila [3] improves on the work of
[17,18] by compressing DAP signatures, still in the RSA setting and targeting
the 128 bit security level, down to the size of 2048 bit. The trick is to evaluate the
square root function iteratively, instead of in parallel. While this requires more
algebraic properties than [17,18], the Blum integer setting fulfills these. We note
that the DAP scheme of [3] is, so far, the only one with tight reductions.

The work of Boneh, Kim, and Nikolaenko [5] constructs DAP signatures
based on lattice assumptions. The focus is on finding a solution for the post-
quantum setting, not to beat the signature size of [3] (which they don’t).

The very recent work of Derler, Ramacher, and Slamanig [7] reports the
smallest DAP signature size so far: 1280 bit at the 128 bit security level, in the
DLP-setting. Their scheme, however, can only be used in a restricted setting:
As the sizes of signing and verification keys grow linearly in the cardinality of
the address space, the scheme is not practical unless the latter is small. Note
that all prior works (in particular [17,18,19,5,3]) support address spaces of expo-
nential size. This drawback is acknowledged in [7], but the authors also report
on specific applications where a small address space is just naturally occur-
ring. Technically, the scheme of [7] builds on regular DLP-based signatures like
Schnorr and DSA, and achieves the DAP property by including in each signa-
ture a payload-dependent share of the signing key, created with a secret-sharing
scheme such that from any two shares associated with an address the signing
key can be recovered. To show that the shares are well-formed, i.e., indeed allow
for key recovery, the DAP signatures also contain a corresponding NIZK proof.

Contribution. In this article we embark on the approach of Derler et al. [7]
and study DAP signatures for small address spaces. Also we work in the DLP
setting, and build on (EC)DSA or Schnorr signatures. However, we improve
drastically on signature and key sizes: Our signatures are five times shorter
(namely only 256 bits) and our signing keys are constant size (instead of linear
in the cardinality of the address space). While our and their verification keys are
roughly the same size, our signing and verification times are better.

In a nutshell, our approach is to draw on the special-soundness property of the
identification schemes underlying Schnorr and (EC)DSA signatures, assigning to
each address one particular commitment. As these commitments are included in

the verification key, the size of the latter is linear in the cardinality of the address
space. Note that this linear blow-up is also the case in [7], but in contrast to their
scheme we do not build on further primitives (e.g., secret sharing), which overall
leads to more robustness, an easier analysis, more compact keys and signatures,
and faster algorithms.

2 Notation

We write Z for the set of integers, and T and F for the Boolean constants true
and false, respectively.

Parts of this article involve the specification of program code. In such code
we use assignment operator ‘←’ when the assigned value results from a constant
expression (including from the output of a deterministic algorithm), and we
write ‘←$’ when the value is either sampled uniformly at random from a finite
set or is the output of a randomized algorithm. For a randomized algorithm A
we write y ←$ A(x1, x2, . . .) to denote the operation of running A with inputs
x1, x2, . . . (and fresh coins) and assigning the output to variable y. Further, we
write [A(x1, x2, . . .)] for the set of values that A outputs with positive probability.

Our security definitions are based on games played between a challenger and
an adversary. These games are expressed using program code and terminate
when the main code block executes a ‘Stop with . . . ’ command; the argument
of the latter is the output of the game. We write Pr[G ⇒ T] or just Pr[G]
for the probability that game G terminates by running into a ‘Stop with T’
instruction. Further, if E is some game-internal event, we similarly write Pr[E]
for the probability that this event occurs. (Note the game is implicit in this
notation.)

We use bracket notation to denote associative arrays (a data structure that
implements a ‘dictionary’). For instance, for an associative array A the instruc-
tion A[7]← 3 assigns value 3 to memory position 7, and the expression A[2] = 5
tests whether the value at position 2 is equal to 5. Associative arrays can be
indexed with elements from arbitrary sets. We use expressions like A[·] ← x to
indicate that A is initialized with default value x. (That is, for any y, unless A[y]
is explicitly overwritten with a different value, A[y] evaluates to x.) When as-
signing lists to each other, with ‘ ’ we mark “don’t-care” positions. For instance,
(a,)← (9, 4) is equivalent to a← 9 (value 4 is discarded).

3 Signature schemes and key extractability

We first reproduce standard definitions associated with signature schemes, and
then consider a less common property that signature schemes might have: key
extractability.

3.1 Regular signature schemes
We recall the definition of digital signatures and their essential security property:
unforgeability.

Digital Signature Schemes. A digital signature scheme (DS) for a mes-
sage space M consists of algorithms gen, sgn, vfy together with a signing key
space SK, a verification key space VK, and a signature space S. The key gen-
eration algorithm gen outputs a signing key sk ∈ SK and a verification key
vk ∈ VK. The signing algorithm sgn takes a signing key sk ∈ SK and a message
m ∈ M, and outputs a signature σ ∈ S. The verification algorithm vfy takes a
verification key vk ∈ VK, a message m ∈M, and a (candidate) signature σ ∈ S,
and outputs either T or F to indicate acceptance or rejection, respectively. A
shortcut notation for these syntactical definitions is

gen→ SK × VK SK ×M→ sgn→ S VK ×M×S → vfy→ {T, F} .

For a verification key vk ∈ VK we denote with V(vk) the set of message-signature
pairs that are valid with respect to vk:

V(vk) := {(m,σ) ∈M× S : vfy(vk,m, σ) = T} .

A signature scheme is correct if for all (sk, vk) ∈ [gen] and m ∈ M and σ ∈
[sgn(sk,m)] we have (m,σ) ∈ V(vk).

Unforgeability. For reference we reproduce the definition of the standard
security notion for signature schemes: (existential) unforgeability (under chosen-
message attacks). For a signature scheme Σ, associate with any adversary F
its forging advantage Advuf

Σ (F) := Pr[UF(F)], where the game is in Fig. 1.
Intuitively, a signature scheme provides unforgeability if all practical adversaries
have a negligible forging advantage.

Game UF(F)
00 L← ∅
01 (sk, vk)←$ gen
02 (m∗, σ∗)←$ F(vk)
03 Require (m∗, σ∗) ∈ V(vk)
04 Require m∗ /∈ L
05 Stop with T

Oracle Sign(m)
06 σ ←$ sgn(sk,m)
07 L← L ∪ {m}
08 Return σ

Fig. 1. Security experiment UF modeling the unforgeability of signatures. Adversary F
has access to oracle Sign. We write ‘Require C’ for a condition C as an abbreviation
for ‘If not C: Stop with F’.

3.2 Key-extractable signature schemes

We are interested in subclasses of signature schemes where the signing key can
be reconstructed from (valid) signatures on specific message configurations. We
formalize such extractability properties for strictly one-time (SOT) and double-
authentication preventing (DAP) signatures. In a nutshell, a signature scheme

is strictly one-time if the signing key can be recovered from signatures on any
two different messages, and it is double-authentication preventing if messages
consist of two components, the address and the payload, and the signing key can
be recovered if two messages are signed that have the same address but different
payloads. While the DAP definition was first developed in [17,18] we are not
aware of a prior formalization of the SOT notion.

Key Extractability. Let gen, sgn, vfy,SK,VK,S be the algorithms and
spaces of a digital signature scheme for a message space M. We say that the
scheme is key-extractable if there exists an auxiliary extraction algorithm ext
that takes a verification key vk ∈ VK and two message-signature pairs (m1, σ1),
(m2, σ2) ∈ M × S, and outputs either a signing key sk ∈ SK or the failure
symbol ⊥ /∈ SK. A shortcut notation for this syntactical definition is

VK × (M×S)× (M×S)→ ext→ SK /⊥ .

We formulate two notions of correctness (of extraction):

SOT. The signature scheme is strictly one-time if algorithm ext is such that for
all (sk, vk) ∈ [gen] and (m1, σ1), (m2, σ2) ∈M× S we have

(m1, σ1), (m2, σ2) ∈ V(vk) ∧ m1 6= m2 =⇒ ext(vk,m1, σ1,m2, σ2) = sk .

DAP. The signature scheme is double-authentication preventing if there exist
an address space A and a payload space P such that M = A × P, and
algorithm ext is such that for all (sk, vk) ∈ [gen] and (m1, σ1), (m2, σ2) ∈
M× S, if we write mi = (ai, pi) and have (m1, σ1), (m2, σ2) ∈ V(vk) then

a1 = a2 ∧ p1 6= p2 =⇒ ext(vk,m1, σ1,m2, σ2) = sk .

Unforgeability of Strictly One-Time Signatures. In SOT signatures,
everybody getting hold of two valid message-signature pairs can first recover the
signing key and then create signatures on arbitrary messages. For such signa-
ture schemes the standard notion of unforgeability, where two message-signature
pairs are easily obtained through the signing oracle, is thus not meaningful. We
hence formalize a dedicated (weakened) unforgeability notion: For a signature
scheme Σ, associate with any adversary F its (strictly one-time) forging advan-
tage Advsot

Σ (F) := Pr[SOT(F)], where the game is in Fig. 2.2 Note that the only
difference between the UF and SOT games is the added instruction in line 06 of
game SOT which precisely prevents the adversary from posing a second query
to the Sign oracle. Intuitively, a SOT signature scheme provides unforgeability
if all practical adversaries have a negligible forging advantage.
2 Note that the ‘strictness property’ of SOT signatures involves only their functionality
and is not reflected in the game which formalizes precisely the unforgeability of
(regular) one-time signatures. We use the names SOT for the game and sot for the
notion merely to allow for a clear association between functionality and targeted
security notion.

Game SOT(F)
00 L← ∅
01 (sk, vk)←$ gen
02 (m∗, σ∗)←$ F(vk)
03 Require (m∗, σ∗) ∈ V(vk)
04 Require m∗ /∈ L
05 Stop with T

Oracle Sign(m)
06 Require L = ∅
07 σ ←$ sgn(sk,m)
08 L← L ∪ {m}
09 Return σ

Fig. 2. Security experiment SOT modeling unforgeability for strictly one-time sig-
nature schemes. Adversary F has access to oracle Sign. We write ‘Require C’ for a
condition C as an abbreviation for ‘If not C: Stop with F’.

Unforgeability of Double-Authentication Preventing Signatures.
In DAP signatures, everybody getting hold of two valid message-signature pairs
can create signatures on arbitrary messages if the two messages have the same
address but different payloads. As we did for SOT signatures, also for DAP signa-
tures we use a dedicated unforgeability notion [17,18]: For a signature scheme Σ,
associate with any adversary F its forging advantage Advdap

Σ (F) := Pr[DAP(F)],
where the game is in Fig. 3. In the game, note that we replaced the set L (of
games UF,SOT) that keeps track of signed messages by an associative array
L[·] that manages one such set per address, keeping track of signed payloads.
Intuitively, a DAP signature scheme provides unforgeability if all practical ad-
versaries have a negligible forging advantage.

Game DAP(F)
00 L[·]← ∅
01 (sk, vk)←$ gen
02 (m∗, σ∗)←$ F(vk)
03 (a∗, p∗)← m∗

04 Require (m∗, σ∗) ∈ V(vk)
05 Require p∗ /∈ L[a∗]
06 Stop with T

Oracle Sign(m)
07 (a, p)← m
08 Require L[a] = ∅
09 σ ←$ sgn(sk,m)
10 L[a]← L[a] ∪ {p}
11 Return σ

Fig. 3. Security experiment DAP modeling unforgeability for double-authentication
preventing signature schemes. Adversary F has access to oracle Sign. We write ‘Re-
quire C’ for a condition C as an abbreviation for ‘If not C: Stop with F’.

4 Constructing DAP signatures from SOT signatures

We present a construction of a DAP signature scheme from a SOT signature
scheme that offers exceptional performance but requires that the cardinality
n = |A| of the address space is not too large. The basic idea of our scheme is to
let the DAP key generation algorithm perform n-many SOT key generations in-
dependently of each other, one for each address, and to present the resulting set of

SOT signing (resp. verification) keys as a single DAP signing (resp. verification)
key. To DAP-sign a messagem = (a, p), the SOT signing key sk[a] corresponding
to address a is retrieved and payload p authenticated with it. The DAP verifi-
cation algorithm works analogously. Observe that, without further modification,
this design is unforgeable (in the DAP sense) but not key-extractable. Indeed,
double-signing, i.e., violating the DAP property, reveals only one of the required
n-many SOT signing keys. We apply two tricks to achieve full key extractability:
(1) Instead of generating the n-many SOT signing keys independently of each
other and with individual random coins, we generate them deterministically as
a function of the address they are associated with, using the output of a PRF as
the coins required for key generation. More precisely, for each address a we first
derive ‘random’ coins as per r ← F (k, a), where F is the PRF and k its key (that
is stored as part of the DAP signing key), and then compute the SOT key pair
corresponding to a as per (sk[a], vk[a]) ← gen〈r〉, where the 〈·〉 notation indi-
cates running an (otherwise randomized) algorithm with explicitly given coins.
Note that this reduces the size of the DAP signing key from linear (in n) to
constant. (2) We include (one-time pad) encryptions of PRF key k in the DAP
verification key such that knowledge of any SOT signing key sk[a] suffices to
recover it. More concretely, we embed into the DAP verification key the set of
values k+h(a, sk[a]), for all a ∈ A, where + denotes (in most cases) the bit-wise
XOR operation and h is a random oracle. (This technique is borrowed from [3].)
Overall, as we prove, this is sufficient to achieve key-extractability in the DAP
sense. We give the formal details of our construction in the following.

SOT-to-DAP transform. Let A,P be sets. From a key-extractable signa-
ture scheme Σ for message space P with algorithms gen, sgn, vfy, ext and spaces
SK,VK,S we construct a key-extractable signature scheme Σ′ for message space
M = A×P with algorithms gen′, sgn′, vfy′, ext′ and spaces SK′,VK′,S ′ such that
if the former is strictly one-time then the latter is double-authentication prevent-
ing. As building blocks we employ a pseudorandom function F : K×A → R that
has a commutative group (K,+) as its key space3 and the randomness space R
of algorithm gen as its range, and a hash function h : A × SK → K. Both F
and h will be modeled as random oracles in the security analysis. Let SK′ = K,
VK′ = VK|A| ×K|A|, S ′ = S, and implement algorithms gen′, sgn′, vfy′ as speci-
fied in Fig. 4. (Algorithm ext′ is specified in Fig. 5 and discussed below.)

The signature schemes obtained with our transform provide both unforge-
ability and key extractability.
Theorem 1 (DAP unforgeability). Let Σ and Σ′ be the SOT and DAP sig-
nature schemes involved in our construction. If Σ is unforgeable in the SOT
sense then Σ′ is unforgeable in the DAP sense. More precisely, for any adver-
sary F ′ against Σ′ there exist adversaries E ,F against Σ such that in the random
oracle model for F and h we have

Advdap
Σ′ (F ′) ≤ n ·Advsot

Σ (F) + qF /|K|+ n · qh ·Advsot
Σ (E) ,

3 Consider that same-length bit-strings together with the bit-wise XOR operation form
a commutative group to see that this requirement is easily fulfilled in practice.

Proc gen′
00 k ←$ K; K[·]← ⊥
01 sk[·]← ⊥; vk[·]← ⊥
02 For all a ∈ A:
03 r ← F (k, a)
04 (sk[a], vk[a])← gen〈r〉
05 K[a]← k + h(a, sk[a])
06 sk′ ← k
07 vk′ ← (vk[·],K[·])
08 Return (sk′, vk′)

Proc sgn′(sk′,m)
09 k ← sk′; (a, p)← m
10 r ← F (k, a)
11 (sk[a],)← gen〈r〉
12 σ ←$ sgn(sk[a], p)
13 Return σ

Proc vfy′(vk′,m, σ)
14 (vk[·],)← vk′
15 (a, p)← m
16 Return vfy(vk[a], p, σ)

Fig. 4. Our SOT-to-DAP transform (main algorithms). The 〈·〉 notation in lines 04
and 11 indicates that gen is (deterministically) invoked on random coins r.

where n = |A| is the cardinality of the address space, qF and qh are the numbers
of queries to F and h, respectively, and K is the key space of the PRF. The
running times of E and F are about that of F ′.

Proof sketch. On first sight the security argument for our construction seems to
be straight-forward: Any valid DAP signature is in fact a valid SOT signature,
so forging the one implies forging the other. Also the DAP signing oracle seems
to be easily simulated with the SOT signing oracle. (The latter processes at most
one query per key, but this is perfectly matched with the one-query-per-address
requirement of DAP unforgeability). The reason why ultimately the proof is not
that easy is that the DAP construction uses the SOT scheme in a non-blackbox
fashion. More precisely, for a reductionist proof to go through, the random coins
of the SOT key generation would need to be freshly drawn right before key
generation, and be forgotten immediately afterwards. This is not necessarily the
case in our construction, as the coins are generated in a specific and reproducible
way, using the PRF. More precisely, as we model the PRF as a random oracle,
the coins are uniform and hidden from the adversary as long as the PRF key k
is not queried by the latter to its F oracle. However, as h-based encryptions of k
are embedded into the verification key, bounding the probability of this event
involves arguing about the probability of reconstructing SOT signing keys, and
such arguments can only be given if the SOT key generation algorithm receives
properly distributed coins, i.e., coins that are drawn uniformly at random. Below
we give a more careful analysis that avoids this circularity by cleverly condition-
ing events on each other.

In the following we refer with EF to the event that the adversary poses a
query with first argument k to its F oracle. We need to bound the probability
that EF occurs to a small value. There are precisely two ways that lead the
adversary to posing such a query: (1) Without any knowledge about k but by
sheer luck: the adversary guesses k ∈ K and hits the right one. As the adversary
can try qF times, the probability for this is bounded by qF /|K|. (2) By making a
more informed guess, i.e., by exploiting obtained knowledge about k. Note that
the only information available about k are its random oracle based encryptions,

which are information-theoretically hiding up to the point where the adversary
poses a corresponding query to the h oracle. Let Eh be the corresponding event
that the adversary queries oracle h on one of the n-many SOT signing keys.
Instead of deriving individual bounds for Pr[EF] and Pr[Eh], we analyze the
probabilities of two closely related events:

Let E′F be the event that EF occurs before Eh, including the case that Eh
does not occur at all, and let E′h be the event that Eh occurs before EF , in-
cluding the case that EF does not occur at all. Then, as discussed above, we
have Pr[E′F] ≤ qF /|K|. Further, as in the E′h case we can assume perfectly ran-
dom coins of SOT key generation, we can bound Pr[E′h] with the probability of
SOT key recovery, which is in particular bounded by the SOT forging proba-
bility. In particular there exists for each 1 ≤ α ≤ n an adversary Eα such that
Pr[E′h | the h query happens for address number α] ≤ qhAdvsot

Σ (Eα). By defin-
ing adversary E such that it uniformly picks a value 1 ≤ α ≤ n and then behaves
like Eα, we obtain Pr[E′h] ≤ nqhAdvsot

Σ (E).
The bounds on E′F and E′h can be additively combined as Pr[EF ∨ Eh] =

Pr[E′F] + Pr[E′h]. If Eσ denotes the event of a DAP forgery then overall we
have Advdap

Σ′ (F ′) = Pr[Eσ] ≤ Pr[Eσ | ¬EF ∧ ¬Eh] + Pr[EF ∨ Eh]. We already
bounded the second term. For the first term note that ¬EF ∧ ¬Eh means that
the adversary does not exploit the random oracle based encryption of the signing
key. In this case the initially discussed natural reduction works, showing Pr[Eσ |
¬EF ∧ ¬Eh] ≤ nAdvsot

Σ (F), for a forger F that results from the reduction.
By combining the above bounds we obtain the one from the theorem state-

ment. ut

Theorem 2 (DAP key extractability). Let Σ and Σ′ be the SOT and DAP
signature schemes involved in our construction. If Σ is strictly one-time then Σ′
is double-authentication preventing. More precisely, the algorithm ext′ specified
in Fig. 5 is an extraction algorithm for scheme Σ′ if its building block ext is an
extraction algorithm for scheme Σ.

Proc ext′(vk′,m1, σ1,m2, σ2)
00 (vk[·],K[·])← vk′
01 (a1, p1)← m1; (a2, p2)← m2
02 Require a1 = a2 ∧ p1 6= p2
03 Require (p1, σ1), (p2, σ2) ∈ V(vk[a1])
04 sk[a1]← ext(vk[a1], p1, σ1, p2, σ2)
05 Require sk[a1] 6= ⊥
06 k ← K[a1]− h(a1, sk[a1])
07 Return k

Fig. 5. SOT-to-DAP transform (extraction algorithm). We write ‘Require C’ for a
condition C as an abbreviation for ‘If not C: Return ⊥’. Note that the condition in
line 05 is always fulfilled.

Proof. The argument is immediate: Having two “colliding” DAP signatures
means having two SOT signatures that are valid under the same verification key
but are on different messages. The DAP extraction algorithm in Fig. 5 applies
the SOT extraction algorithm to this setting to first recover the SOT signing key
and then, by decrypting the corresponding h-based ciphertext, the DAP signing
key. ut

5 Constructing SOT signatures

We propose the Fixed-Commitment transform that constructs signature schemes
from generic identification (ID) protocols, in a way related to that of the classic
Fiat–Shamir transform [10]. While the latter turns ID schemes into standard
unforgeable signature schemes, the signature schemes obtained with our new
transform are strictly one-time. We first recall details of (three-move) identifica-
tion protocols, then of the Fiat–Shamir transform, and then specify and study
our own construction.

5.1 Three-move ID protocols

We recall the definition of an important class of identification protocols and of
the security properties connected to it: special soundness, (honest-verifier) zero-
knowledge, and resilience against key recovery. While we refer to [11,12,14] for
general treatments of ID protocols, our notation is in particular close to that
of [2].

Three-Move ID Protocols. A three-move ID protocol consists of algo-
rithms G,P1,P2,V, an identification secret key space ISK, an identification pub-
lic key space IPK, a commitment space CMT, a challenge space CH, a response
space RSP, and a (prover) state space ST. The key generation algorithm G out-
puts a secret key isk ∈ ISK and a public key ipk ∈ IPK. Algorithms P1 and P2
are for the prover: Algorithm P1 takes a secret key isk ∈ ISK and a public key
ipk ∈ IPK, and outputs a state st ∈ ST and a commitment cmt ∈ CMT. Algo-
rithm P2 takes a state st ∈ ST and a challenge ch ∈ CH, and outputs a response
rsp ∈ RSP. Algorithm V is for the verifier: It takes a public key ipk ∈ IPK,
a commitment cmt ∈ CMT, a challenge ch ∈ CH, and a response rsp ∈ RSP,
and outputs T or F to indicate acceptance or rejection, respectively. A shortcut
notation for these syntactical definitions is

G → ISK× IPK
ISK× IPK → P1 → ST× CMT

ST× CH → P2 → RSP
IPK× CMT× CH× RSP → V → {T, F}

We further write TR = CMT × CH × RSP for the transcript space of the
ID protocol. A three-move ID protocol is correct if for all (isk, ipk) ∈ [G]
and (st, cmt) ∈ [P1(isk, ipk)] and ch ∈ CH and rsp ∈ [P2(st, ch)] we have
V(ipk, cmt, ch, rsp) = T.

Special soundness. A three-move ID protocol has special soundness if there
exists an extraction algorithm that recovers the identification secret key from
all (valid) same-commitment-different-challenge transcript pairs. Formally, the
notion requires the existence of an algorithm E that takes an identification pub-
lic key ipk ∈ IPK and two transcripts T1, T2 ∈ TR and outputs either a se-
cret key isk ∈ ISK or the failure symbol ⊥ /∈ ISK. For correctness (of extrac-
tion) we require that for all (isk, ipk) ∈ [G] and T1, T2 ∈ TR, if we write Ti =
(cmti, chi, rspi) and have that V(ipk, cmt1, ch1, rsp1) and V(ipk, cmt2, ch2, rsp2)
evaluate to T, then cmt1 = cmt2 ∧ ch1 6= ch2 implies E(ipk, T1, T2) = isk.
Honest-Verifier Zero-Knowledge. A three-move ID protocol is (per-
fectly) honest-verifier zero-knowledge if honestly generated transcripts leak noth-
ing about the involved secret key material. Formally, the notion requires the
existence of a simulator S that takes a public key ipk ∈ IPK and outputs a
transcript (cmt, ch, rsp) ∈ TR such that for all (isk, ipk) ∈ [G] the distributions{

(st, cmt)←$ P1(isk, ipk); ch ←$ CH; rsp ←$ P2(st, ch) : (cmt, ch, rsp)
}

and {
(cmt, ch, rsp)←$ S(ipk) : (cmt, ch, rsp)

}
are identical.
Resilience against Key Recovery. A three-move ID protocol ID is re-
silient against (blind) key recovery attacks if no adversary can reconstruct the
identification secret key from just the identification public key (no sample tran-
scripts are provided). Formally, for all inverters I we define the advantage
Advkr

ID(I) := Pr[(isk, ipk) ←$ G; isk ′ ←$ I(ipk) : isk = isk ′]. Intuitively, an
ID scheme is resilient against key recovery if all practical inverters have a negli-
gible advantage.

5.2 The Fiat–Shamir transform
A well-known generic construction of a signature scheme from a three-move ID
scheme and a random oracle is by Fiat and Shamir [10]. In a nutshell, for cre-
ating a signature on a message the signer invokes the P1 algorithm to obtain
a fresh commitment, simulates an (honest) verifier by letting the random ora-
cle, on input the commitment and the message, specify a challenge, and finally
invokes the P2 algorithm to obtain a response that completes the transcript.
The signature consists of the commitment and the response. The verification
algorithm recovers the challenge by querying the random oracle and checks for
transcript validity using the V algorithm. For reference we reproduce the details
of this construction in the following.
Fiat–Shamir Transform. Let M be a message space and let G,P1,P2,V
be the algorithms and ISK, IPK,CMT,CH,RSP,ST be the spaces of a three-
move ID protocol. Let H : IPK×CMT×M→ CH be a hash function. Then the
Fiat–Shamir transform (FS) converts the ID protocol into a signature scheme Σ:
After letting SK = ISK × IPK, VK = IPK, S = CMT × RSP, the algorithms
gen, sgn, vfy of the scheme are as specified in Fig. 6.

Proc gen
00 (isk, ipk)←$ G
01 sk ← (isk, ipk)
02 vk ← ipk
03 Return (sk, vk)

Proc sgn(sk,m)
04 (isk, ipk)← sk
05 (st, cmt)←$ P1(isk, ipk)
06 ch ← H(ipk, cmt,m)
07 rsp ←$ P2(st, ch)
08 σ ← (cmt, rsp)
09 Return σ

Proc vfy(vk,m, σ)
10 ipk ← vk; (cmt, rsp)← σ
11 ch ← H(ipk, cmt,m)
12 d← V(ipk, cmt, ch, rsp)
13 Return d

Fig. 6. Signature scheme obtained via the Fiat–Shamir transform.

5.3 The Fixed-Commitment transform

We propose the Fixed-Commitment transform (FC) as an alternative way of
constructing a signature scheme from a three-move ID protocol. It differs from
the Fiat–Shamir transform in that generating a commitment using the P1 al-
gorithm happens only once and during key generation, instead of during sign-
ing operations. The challenge (of the ID protocol) continues to be a function
of commitment and message. Thus, signatures on different messages share the
same commitment but use different challenges, allowing for the extraction of the
identification secret key via the special soundness property. By using a similar
trick as in our SOT-to-DAP transform (see Section 4), i.e., by embedding a ran-
dom oracle based encryption of the remaining signing key components into the
verification key, the signature scheme is rendered strictly one-time. We specify
the details of the FC transform in the following.

Fixed-Commitment Transform. LetM be a message space and let G,P1,
P2,V be the algorithms and ISK, IPK,CMT,CH,RSP,ST be the spaces of a
three-move ID protocol. Assume (ST,+) is a commutative group.3 LetH : IPK×
CMT ×M → CH and h : ISK → ST be hash functions, both of which will be
modeled as random oracles in the security analysis. Then the Fixed-Commitment
transform (FC) converts the ID protocol into a signature scheme Σ: After letting
SK = IPK × ST × CMT, VK = IPK × CMT × ST, S = RSP, the algorithms
gen, sgn, vfy, ext of the scheme are as specified in Fig. 7.

The signature schemes obtained with our transform provide both unforge-
ability and key extractability.

Theorem 3 (SOT unforgeability). Let ID be a three-move ID protocol and let
Σ be the signature scheme obtained from it via the Fixed-Commitment transform.
If ID has special soundness, is honest-verifier zero-knowledge, and is resilient
against key recovery, then Σ is unforgeable in the SOT sense. More precisely,
for any adversary F against Σ there exists an inverter I such that in the random
oracle model for H and h we have

Advsot
Σ (F) ≤ Q ·Advkr

ID(I) + (qH)2/|CH| ,

where Q = qH + qh and qH , qh are the numbers of queries to random oracles H
and h, respectively. The running time of I is about that of F .

Proc gen
00 (isk, ipk)←$ G
01 (st, cmt)←$ P1(isk, ipk)
02 K ← st + h(isk)
03 sk ← (ipk, st, cmt)
04 vk ← (ipk, cmt,K)
05 Return (sk, vk)

Proc sgn(sk,m)
06 (ipk, st, cmt)← sk
07 ch ← H(ipk, cmt,m)
08 rsp ←$ P2(st, ch)
09 σ ← rsp
10 Return σ

Proc vfy(vk,m, σ)
11 (ipk, cmt,)← vk
12 rsp ← σ
13 ch ← H(ipk, cmt,m)
14 d← V(ipk, cmt, ch, rsp)
15 Return d

Proc ext(vk,m1, σ1,m2, σ2)
16 (ipk, cmt,K)← vk
17 rsp1 ← σ1; rsp2 ← σ2
18 Require m1 6= m2
19 ch1 ← H(ipk, cmt,m1)
20 ch2 ← H(ipk, cmt,m2)
21 Require V(ipk, cmt, ch1, rsp1)
22 Require V(ipk, cmt, ch2, rsp2)
23 Require ch1 6= ch2
24 T1 ← (cmt, ch1, rsp1)
25 T2 ← (cmt, ch2, rsp2)
26 isk ← E(ipk, T1, T2)
27 Require isk 6= ⊥
28 st ← K − h(isk)
29 sk ← (ipk, st, cmt)
30 Return sk

Fig. 7. SOT signature scheme obtained via the Fixed-Commitment transform. We
write ‘Require C’ for a condition C as an abbreviation for ‘If not C: Return ⊥’. Note
that the condition in line 27 is always fulfilled.

Proof sketch. Consider first the variant of the FC transform that does not embed
encrypted state information in the verification key. With respect to this scheme,
the simulator for game SOT has to provide the adversary with a verification
key, a signature oracle that processes at most one query, and access to random
oracle H. Insist w.l.o.g. that the adversary poses precisely one signing query,
and that before it does so it poses the corresponding query to H. Let m be the
message for which the signature is requested, and let 1 ≤ i ≤ qH be the index
of the corresponding H-query. The simulator proceeds as follows: it generates a
key pair (isk, ipk) with G; it guesses an index 1 ≤ j ≤ qH uniformly at random;
it aborts, with probability 1 − 1/qH , if j 6= i; it generates a protocol transcript
(cmt, ch, rsp) using the zero-knowledge simulator; it answers the jth H-query
with challenge ch (all remaining H-queries are answered with uniformly picked
challenges); it invokes the adversary on input the verification key composed
of ipk and cmt. Note that the simulator can properly simulate a signature on
messagem, just by releasing rsp. Note further that with probability 1−qH/|CH|,
for the challenge ch∗ corresponding to the forgery output by the adversary we
have ch 6= ch∗. As in this situation the special-soundness extraction algorithm is
applicable to recover isk, a natural reduction shows that the forging advantage
is bounded by qHAdvkr

ID(I) + (qH)2/|CH|, for an inverter I.
Consider next the full scheme that includes the encryption in the verification

key. This additional information is completely useless to the adversary up to the

point where it poses a h(isk) query. Each such query can be seen as trying to
break a key recovery challenge against scheme ID. That is, to the above bound
the term qhAdvkr

ID(I) needs to be added. The overall result is the bound claimed
in the theorem statement. ut

Theorem 4 (SOT key extractability). Let ID be a three-move ID protocol
and let Σ be the signature scheme obtained from it via the Fixed-Commitment
transform. If ID has special soundness then Σ is strictly one-time. More pre-
cisely, if H is collision resistant then algorithm ext in Fig. 7 constructs an ex-
traction algorithm for scheme Σ from the extraction algorithm E of scheme ID.

Proc gen
00 k ←$ {0, 1}κ
01 vk[·]← ⊥; K[·]← ⊥
02 For all a ∈ A:
03 (x, r)← F (k, a)
04 X ← gx; R← gr

05 vk[a]← (X,R)
06 K[a]← k + h(a, x, r)
07 sk ← k
08 vk ← (vk[·],K[·])
09 Return (sk, vk)

Proc sgn(sk,m)
10 k ← sk; (a, p)← m
11 (x, r)← F (k, a)
12 X ← gx; R← gr

13 c← H(X,R,m)
14 σ ← r + xc
15 Return σ

Proc vfy(vk,m, σ)
16 (vk[·],)← vk
17 (a, p)← m
18 (X,R)← vk[a]
19 c← H(X,R,m)
20 Return [RXc ?= gσ]

Fig. 8. DAP signature scheme based on Schnorr signatures, defined in respect to a
cyclic group G = 〈g〉 of prime-order q. We assume hash functions F : {0, 1}κ × A →
Zq × Zq, h : A× Zq × Zq → {0, 1}κ, H : G×G×M→ Zq.

Proof. The argument is immediate: Having two signatures on different messages
means having two ID protocol transcripts with the same commitment but dif-
ferent challenges (this requires that hash function H be collision resistant, see
line 23 in Fig. 7). Our SOT extraction algorithm applies the special-soundness
extraction algorithm to this setting to first recover the identification secret key,
and then, by decrypting the corresponding h-based ciphertext, the missing com-
ponent of the SOT signing key. ut

6 Putting things together: DLP-based DAP signatures

The overall goal of this article is to construct a practical DLP-based DAP sig-
nature scheme with short signatures. As in Section 4 we constructed DAP sig-
natures generically from SOT signatures, and in Section 5 we constructed SOT
signatures generically from ID schemes, what is missing is the specification of

appropriate DLP-based identification schemes. The classic candidates for this
are the schemes by Schnorr [20] and Okamoto [15]. Both of them provide special
soundness and honest-verifier zero-knowledge, and thus fit into our ID proto-
col framework. A less known and less general scheme is the one underlying DSA
and ECDSA signatures [1,8] (which can be seen as a variant of Schnorr’s scheme,
obfuscated to avoid intellectual property issues).

Proc gen
00 k ←$ {0, 1}κ
01 vk[·]← ⊥; K[·]← ⊥
02 For all a ∈ A:
03 (x, r)← F (k, a)
04 Require x 6= 0 ∧ r 6= 0
05 R← gr; t← f(R)
06 Require t 6= 0
07 X ← gx; vk[a]← (X,R)
08 K[a]← k + h(a, x, r)
09 sk ← k
10 vk ← (vk[·],K[·])
11 Return (sk, vk)

Proc sgn(sk,m)
12 k ← sk; (a, p)← m
13 (x, r)← F (k, a)
14 R← gr; t← f(R)
15 σ ← (H(m) + tx)1/r

16 Return σ

Proc vfy(vk,m, σ)
17 (vk[·],)← vk
18 (a, p)← m
19 (X,R)← vk[a]
20 t← f(R)
21 Return [gH(m)Xt ?=Rσ]

Fig. 9. DAP signature scheme based on (EC)DSA signatures (where we use the nota-
tion of the DSA algorithms from [9]). We assume a cyclic group G as in Fig. 8, and
hash functions F : {0, 1}κ × A → Zq × Zq, f : G → Zq, h : A × Zq × Zq → {0, 1}κ,
H : M→ Zq. We write ‘Require C’ for a condition C as an abbreviation for ‘If not C:
Return ⊥’.

In Figs. 8 and 9 we expose how our overall DAP scheme looks like if the three-
move ID protocol is instantiated with the ones underlying Schnorr and (EC)DSA
signatures, respectively. In both cases, targeting the 128 bit security level, we
propose a PRF key length of κ = 128 bit and a group order of 2κ = 256 bit.
Further, for compactness of verification keys, we suggest using elliptic curve
groups. In particular it would be somehow natural to instantiate the Schnorr-
based scheme with the parameters of (Schnorr-based) EdDSA signatures [4] (i.e.,
on Edwards curves) and the (EC)DSA-based scheme with NIST-standardized
curves.4 In both cases the signature size would be 256 bit. No DAP signature
scheme proposed in the past has that short signatures (so far, the shortest DAP
schemes have 2048 bit [3] and 1280 bit [7] signatures, which we beat by a factor of
8 and 5, respectively), and likely the length is even optimal (in the DLP setting).
The verification keys are considerably less compact, with a size of 640|A| bits.

4 That this is “natural” was communicated to us by software engineers. From an
academic perspective the choice of curve should be orthogonal to the choice of
ID scheme. On the other hand, there seems nothing wrong with the proposal, so
we stick to it.

Note this is only slightly larger than those of [7] which are roughly 512|A| bits
in size.

References

1. Barker, E.B.: FIPS PUB 186-4—FEDERAL INFORMATION PROCESSING
STANDARDS PUBLICATION Digital Signature Standard (DSS) (2009), https:
//dx.doi.org/10.6028/NIST.FIPS.186-4

2. Bellare, M., Poettering, B., Stebila, D.: From identification to signatures, tightly:
A framework and generic transforms. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part II. LNCS, vol. 10032, pp. 435–464. Springer, Heidelberg,
Germany, Hanoi, Vietnam (Dec 4–8, 2016)

3. Bellare, M., Poettering, B., Stebila, D.: Deterring certificate subversion: Efficient
double-authentication-preventing signatures. In: Fehr, S. (ed.) PKC 2017, Part II.
LNCS, vol. 10175, pp. 121–151. Springer, Heidelberg, Germany, Amsterdam, The
Netherlands (Mar 28–31, 2017)

4. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 124–142. Springer, Heidelberg, Germany, Nara, Japan (Sep 28 – Oct 1, 2011)

5. Boneh, D., Kim, S., Nikolaenko, V.: Lattice-based DAPS and generalizations:
Self-enforcement in signature schemes. In: Gollmann, D., Miyaji, A., Kikuchi, H.
(eds.) ACNS 17. LNCS, vol. 10355, pp. 457–477. Springer, Heidelberg, Germany,
Kanazawa, Japan (Jul 10–12, 2017)

6. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.
(ed.) CRYPTO’88. LNCS, vol. 403, pp. 319–327. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 21–25, 1990)

7. Derler, D., Ramacher, S., Slamanig, D.: Short double- and N -times-authentication-
preventing signatures from ECDSA and more. Cryptology ePrint Archive, Report
2017/1203 (2017), https://eprint.iacr.org/2017/1203

8. Fersch, M., Kiltz, E., Poettering, B.: On the provable security of (EC)DSA sig-
natures. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 16. pp. 1651–1662. ACM Press, Vienna, Austria (Oct 24–28,
2016)

9. Fersch, M., Kiltz, E., Poettering, B.: On the one-per-message unforgeability of
(EC)DSA and its variants. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II.
LNCS, vol. 10678, pp. 519–534. Springer, Heidelberg, Germany, Baltimore, MD,
USA (Nov 12–15, 2017)

10. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 1987)

11. Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge Uni-
versity Press, Cambridge, UK (2001)

12. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC Press (2007)

13. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000. The Internet
Society, San Diego, CA, USA (Feb 2–4, 2000)

14. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press (2001), http://www.cacr.math.uwaterloo.ca/hac/

https://dx.doi.org/10.6028/NIST.FIPS.186-4
https://dx.doi.org/10.6028/NIST.FIPS.186-4
https://eprint.iacr.org/2017/1203
http://www.cacr.math.uwaterloo.ca/hac/

15. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO’92. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20, 1993)

16. Poettering, B.: Shorter double-authentication preventing signatures for small
address spaces. Cryptology ePrint Archive, Report 2018/223 (2018), https://
eprint.iacr.org/2018/223

17. Poettering, B., Stebila, D.: Double-authentication-preventing signatures. In: Kuty-
lowski, M., Vaidya, J. (eds.) ESORICS 2014, Part I. LNCS, vol. 8712, pp. 436–453.
Springer, Heidelberg, Germany, Wroclaw, Poland (Sep 7–11, 2014)

18. Poettering, B., Stebila, D.: Double-authentication-preventing signatures. Int. J.
Inf. Sec. 16(1), 1–22 (2017)

19. Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire!: Penalizing equivocation
by loss of bitcoins. In: Ray, I., Li, N., Kruegel:, C. (eds.) ACM CCS 15. pp. 219–230.
ACM Press, Denver, CO, USA (Oct 12–16, 2015)

20. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO’89. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 20–24, 1990)

https://eprint.iacr.org/2018/223
https://eprint.iacr.org/2018/223

	Shorter double-authentication preventing signatures for small address spaces

