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Abstract—Resilient control systems should efficiently restore
control into physical systems not only after the sabotage of
themselves, but also after breaking physical systems. To enhance
resilience of control systems, and given an originally minimal-
input controlled linear-time invariant(LTI) physical system, we
address the problem of efficient control recovery into it after
removing a known system vertex by finding the minimum number
of inputs. According to the minimum input theorem, with a
digraph embedded into LTI model and involving a precomputed
maximum matching, this problem is modeled into recovering
controllability of it after removing a known network vertex. Then,
we recover controllability of the residual network by efficiently
finding a maximum matching rather than recomputation. As
a result, except for precomputing a maximum matching and
predetermining the removed vertex, the worst-case execution time
of control recovery into the residual LTI physical system is linear.

I. INTRODUCTION

Control systems [1] can effectively sense, compute, com-
municate and control physical systems automatically [2] [3],
which are also called process control systems, cyber-physical
systems, distributed control system and supervisory control
and data aquision systems in different applications [4]. Al-
though breaking control systems damages its control into phys-
ical systems [5] [2] [6] [7], control systems would also lose its
control due to sabotage of the physical system. Therefore, to
maintain a resilient control system against malicious attack or
random failure on a single system vertex of a physical system,
it is desirable to recover the controllability of the residual
physical system with high efficiency.

In this paper, we therefore address the problem of efficiently
recovering control into a LTI physical system after removing
an already known vertex, which is initially conrtrolled by
the minimal inputs. To model this problem, a large, sparse,
Erdős-Rényi random digraph in LTI model and also including
a precomputed maximum matching, is considered as an input
network. By the minimum input theorem [8], since the mini-
mum number of inputs to fully control a digraph in LTI model
is determined by the maximum (cardinality) matching, our
problem is modeled into efficient recovery of controllability
of an input network after removing a known vertex. And
this problem is solved by identifying a maximum matching
of this residual network so that the minimum number of
inputs and the system vertices directly driven by those inputs

would be clarified finally. Besides, the removed vertex can
be predetermined by nodal importance in some aspects, such
as the vertex degree [9] [10]. In particular, we do not find a
maximum matching of the residual digraph caused by a nodal
removal, instead, we efficiently find a maximum matching of
the input digraph in linear time, which contains the minimum
number of arcs incident to the following removed node. Since
such a maximum matching is proved to directly determine the
maximum matching of the residual network, recomputation
of a maximum matching of residual network is effectively
avoided.

For our contribution, with a minimal-input controlled LTI
physical system and a known system vertex, control recovery
into this system after removing that known vertex is executed
in linear time by efficiently finding a maximum matching of a
relative digraph after a nodal removal. Besides, given a general
digraph, we also proved that the maximum matching of it after
a known nodal removal can be efficiently identified through
another maximum matching of it before the nodal removal.

Remaining paper is outlined as follows: Section II intro-
duces control theory and the minimum input theorem; Section
III reviews previous work of control recovery; Section IV
shows our recovery method and section V concludes this
paper.

II. CONTROL THEORY & MINIMUM INPUT THEOREM

In modern control theory [11] [12] [13], a linear-time
invariant (LTI) system can be described by a differential
equation:

ẋ(t) = Ax(t) + Bu(t) (1)

where A ∈ RN×N is a matrix, representing the in-
teraction among N system vertices; matrix B ∈ RN×M

represents the impact of M external inputs on the N sys-
tem vertices. Also, vector x(t) = (x1(t), x2(t), . . . , xN (t))T

captures the state of every system vertex at time t; while
vector u(t) = (u1(t), u2(t), . . . , uM (t))T indicates the M
external inputs at time t, which directly drive M system
vertices of N . When system described by equation 1 is
controllable, if and only if the matrix C ∈ RN×NM , where
C = [B,AB,A2B, . . . ,AN−1B], has the full rank[11], noted
by rank(C) = N and called the controllability rank condition.



However, value of each non-zero entry of matrix A and B is
known by approximation in parctice [14]. Besides, calculating
the rank of matrix C from A and B is also computationally
massive in O(2N ) time [8]. To avoid those two constrains and
still verify whether a LTI system is controllable or not, Lin et
al. [14] [15] put forward the structural controllability, which
is defined:

Definition 1 (Lin’s Structural Controllability [14]). A sys-
tem of equation 1 is structurally controllable if a completely
controllable system with the same structure as it exists.

To investigate conditions of structurally controllable sys-
tems, a system described by equation 1 is mapped into a
digraph noted by G(A,B) = (V1 ∪ V2, E1 ∪ E2). In detail,
with a bijection λ, for any non-zero entry noted by aij ∈ A,
there is λ : aij →

−−−−→
〈vj , vi〉, where

−−−−→
〈vj , vi〉 ∈ E1 vi, vj ∈ V1.

For any non-zero entry of B noted by bij ∈ B, there is
λ : bij →

−−−−→
〈uj , vi〉, where

−−−−→
〈uj , vi〉 ∈ E2 and uj ∈ V2,

vi ∈ V1. Then, G(A,B) is used to give conditions of structural
controllability with following items:

Definition 2 (Inaccessibility [14]). In G(A,B), any vi ∈ V1
is inaccessible if it can not be approached from any vertex of
V2.

Definition 3 (Dilation of Digraphs [14]). In G(A,B) with
vertex sets S ⊆ V1, and T (S) = {vj |

−−−−→
〈vj , vi〉 ∈ E1 ∪ E2, vi ∈

S}, G(A,B) contains a dilation iff |S| > |T (S)|.

Definition 4 (Stem, Bud [14]). In G(A,B), a stem is
a directed path. A bud is a directed cycle pluse an arc
such as {{

−−−−→
〈v1, v2〉,

−−−−→
〈v2, v3〉, . . . ,

−−−−→
〈vj , v1〉},

−−−−−−→
〈vj+1, vj〉}, where−−−−−−→

〈vj+1, vj〉 is called a distinguished edge.

Definition 5 (Cactus [14]). By definition 4, any stem is a
cactus. Given a stem S0 and buds B1, B2, . . . , Bl, then, S0 ∪
B1 ∪ B2 ∪ . . . Bl is a cactus if the tail of the distinguished
edge of any Bi (1 ≤ i ≤ l) is not the top vertex of S0 but is
the only common vertex of S0 ∪B1 ∪B2 ∪ . . . Bi−1. A set of
vertex-disjoint cacti is called a cactus.

After this, conditions of structurally controllable systems
are given below:

Theorem 1 (Lin’s Structural Controllability Theorem [14]).
The following three statements are equivalent:

1) A system of equation 1 is structurally controllable.
2) The digraph G(A,B) contains neither inaccessible

nodes nor dilation.
3) G(A,B) is spanned by a cactus.

Based on the controllability rank condition, almost
all structrually controllable systems are also controllable
except for some pathological cases with certain con-
strains [14], [15]. As an instance of a pathological case,
a system of equation 1 includes five system vertices
{v1, v2, v3, v4}, one external input u1, and system edges:
{
−−−−→
〈u1, v1〉,

−−−−→
〈v1, v2〉,

−−−−→
〈v2, v3〉,

−−−−→
〈v3, v2〉,

−−−−→
〈v3, v4〉}. Obviously, such

a system is structurally controllable because it contains neither
inaccessible nodes nor dilation according to the theorem 1. But
this system can not be completely controllable if weight of any
edge is positive one, because the rank of matrix C is less than
four. Besides, whether the numebr of inputs is minimal in a
system of equation 1 was still pending over decades. In recent
years, Liu et al. [8] effectivly solved this problem via the
maximum matching of digraphs, which is generalised by the
following theorem:

Theorem 2 (The Minimum Input Theorem [8]). The min-
imum number of inputs to fully control a digraph such as
G(A) = (V1, E1) is one, if there is a perfect matching.
Otherwise, it equals the number of unmatched nodes according
to a maximum matching.

In general digraphs, a matching is a set of edges without
sharing heads or tails. A maximum matching is a matching out
of any other ones. A digraph may contain multiple maximum
matchings. The head of an arc involved into a maximum
matching is a matched node, otherwise, it is unmatched. When
the number of matched nodes is same as the number of
vertices, this digraph has a perfect matching [16]. Nonetheless,
by contrast, in a directed bipartite graph, a maximum matching
is a set of maximum number of completely vertex-disjoint
edges in this paper.

By theorem 1 and the minimum input theorem [8], efficient
control recovery of an originally minimal-input controlled
LTI physical system after a known vertex removal, can be
modeled into efficiently recovering the controllability of a
digraph in LTI model with a precomputed maximum matching
after removing a known vertex. And efficiently identifying
a maximum matching of the residual digraph can be as a
solution.

III. RELATED WORK

Control recovery of complex networks attracts increasing
attentation. People do it via the maximum matching or via
the power dominating set [17]. On the one hand, Ding et al.
[18] designed a scenario by adding extra nodes or edges to
the residual digraph after malicious attack or random failure
on network structure, involving recomputing a maximum
matching of the residual graph. On the other hand, because
structurally controllableity is the necessary but not sufficient
condition of complete controllability, there are also scenarios
recovering structural controllability [14]. Alwasel et al. in
[19] [20] [21] recovered the structural controllability of the
Erdős-Rényi random digraph in LTI model after removing
vertices by maintaining an approximated power dominating set
[17] with the average-case time complexity O(nck) according
to original research in [22] [23], where c is a constant number,
with the remaining digraph, n is the number of nodes and k
is the number of partitioned subgraphs. Besides, Alcaraz et
al. [24] still relies on the power dominating set to recover
structural controllability [14] of general power-law and scale-
free digraphs in LTI model without recomputation of a new
power dominating set. Three repair strategies are given against



deletion of nodes and edges respectively, which are re-linking
existing dominating nodes with unobserved nodes; re-linking
with constrained network diameter; and using pre-computed
instances. Particularly, the first two strategies are executed in
O(|U ||V |2), in which U is the set of nodes out of remaining
dominating set and V is the set of all vertices. From those
previous work, control recovery can be effectively executed
after malicious attack or random failure on system vertices via
several ways in polynominal time. By contrast, we obtain the
controllability of networks in LTI model by precomputing a
maximum matching so that the inputs would be minimal. And
out control recovery into the network after a known nodal re-
moval is executed by finding a maximum matching efficiently
to confirm the minimal inputs rather than recomputation of a
maximum matching.

Reviewing existing maximum matching algorithms is in-
dispensable for us. To identify a maximum matching of a
general bipartite graph, the Hopcroft-Karp algorithm [25] is
well-known. With n and m as the number of nodes and
edges of a given bipartite graph, the worst-case execution
time of Hopcroft-Karp algorithm is O(m

√
n). When the

bipartite graph is dense, time complexity is improved into
O(m

√
n/logn) [26]. By contrast, for computing a maximum

matching of general undirected graphs, Micali and Vazirani
[27] also approached the same time complexity as the Hoproft-
Karp algorithm. Until now, for the worst-case execution time
to computate an exact maximum matching of general graphs
via the deterministic algorithms, these two algorithms are the
best [28]. Nevertheless, concerning the time complexity, these
two algorithms should be used as few times as possible in
multiply identifying a maximum matching of networks. In
consequence, efficiently identifying a maximum matching of
a digraph after a node deletion rather than recomputation is
worth of being considered as a way to efficiently recover
controllability of a resilient physical system. To avoid recom-
putation of a maximum matching of the residual network, we
firstly identify a maximum matching containing the minimum
number of edges incident to the following removed node
through the known one. Then, we conclude that a maximum
matching of the residual digraph is determined by it without
recomputation.

IV. CONTROL RECOVERY VIA MAXIMUM MATCHING

A. Preliminaries

Firstly, an input digraph is defined:

Definition 6 (Input Digraph). A large, sparse Erdős-Rényi
random digraph D = (V,A) in LTI model, including a
precomputed maximum matching MD by using algorithm [25]
or [27], and excluding parallel arcs, isolated nodes and
selfloops, is determined as an input digraph, where V =
{vi|1 ≤ i ≤ N}(N > 1), A = {

−−−−→
〈vi, vj〉|1 ≤ i, j ≤ N, i 6= j}.

The removed vertex is noted by u and u ∈ D, and by the
minimum input theorem [8], problem of control recovery into
a D − u that models control revocery into a LTI physical

system after a system nodal removal, is solved by efficiently
identifying a maximum matching of D − u.

Secondly, a maximum matching noted by MM ⊆ D
involving the minimum number of edges incident to u, where
l ∈ {0, 1, 2} represents that minimum number. Then, following
lemmas concludes how MM of D determines the maximum
matching of D − u. In notation,

−−−−→
〈vg, u〉 and

−−−−→
〈u, vf 〉 note any

two arcs incident to u. M(vg,vf ) notes a matching incident to
vg , vf and out of MM , while MM(vg,vf ) notes the matching
of MM adjacent to M(vg,vf ) in D − u.

Lemma 1. Within D = (V,A) of definition 6, when either
l < 2, or l = 2 and @M(vg,vf ). The maximum matching of
D − u is the remaining matching of MM .

Proof. When l = 0, u 6∈MM , removal of u can not influence
MM , so MM is also a maximum matching of D−u. When
l = 1, after removal of u, matching either {MM−

−−−−→
〈vg, u〉} or

{MM −
−−−−→
〈u, vf 〉} is obtained. If it is not maximal in D − u.

At least an arc not incident to this matching could exist; or,
a matching out of MM incident to either vg or vf and share
heads or tails with this remaining matching could exist, which
contradicts with maximality of MD or l = 1. Thus, {MM −−−−−→
〈vg, u〉} or {MM−

−−−−→
〈u, vf 〉} is a maximum matching of D−u.

When l = 2 and @M(vg,vf ), {
−−−−→
〈vg, u〉,

−−−−→
〈u, vf 〉} ⊆MM . For the

same reason of l = 1, {MM−
−−−−→
〈vg, u〉−

−−−−→
〈u, vf 〉} is a maximum

matching of D − u.

Lemma 2. Within D = (V,A) of definition 6, when l = 2
and ∃Mvg,vf , {{MM−MM(vg,vf )},M(vg,vf )} is a maximum
matching of D − u.

Proof. When l = 2, and ∃M(vg,vf ), MM includes
−−−−→
〈vg, u〉 and

−−−−→
〈u, vf 〉. In D−u, since |M(vg,vf )|−|MM(vg,vf )| = 1, we can
thus obtain a matching: {{MM−MM(vg,vf )},M(vg,vf )}. For
the same reason of l = 1, based on the maximality of MD or
the condition of l = 2, this matching is a maximum matching
in D − u.

By lemma 1, 2, a maximum matching of D − u can
be obtained without recomputation, while MM should be
identified in D. To do this, a bipartite graph B = (VB , EB)
mapped from D is used and defined:

Definition 7 (Bipartite graph B). With two bijection α, β and
D = (V,A) of definition 6, a bipartite graph B = (VB , EB),
|EB | = |A|, VB = V +

B ∪ V
−
B is obtained. For any

−−−−→
〈vi, vj〉 ∈

A −MD, α :
−−−−→
〈vi, vj〉 →

−−−−−→
〈v+i , v

−
j 〉, while for any

−−−−→
〈vp, vq〉 ∈

MD, there is β :
−−−−→
〈vp, vq〉 →

−−−−−→
〈v+q , v−p 〉, where

−−−−→
〈vq, vp〉 ∈ MB ,

−−−−−→
〈v+i , v

−
j 〉 ∈ EB −MB , and v+i , v

+
q ∈ V +

B , v−j , v
−
p ∈ V −

B .

By definition 7, MB must be a maximum matching of B,
and @

−−−−−→
〈v−i , v

+
i 〉 or vice-versa. Otherwise, maximality of MD

and D excluding selfloops would be contradicted. Given any
{
−−−−→
〈u, vf 〉,

−−−−→
〈vg, u〉} ⊆ MD, there are {

−−−−−→
〈v−f , u+〉,

−−−−−→
〈u−, v+g 〉} ⊆

MB . Thus, identifying MM ⊆ D can be solved by finding



a maximum matching noted by MMB of B that contains the
minimum number of edges incident to u+ and u−. To find
MMB , few kinds of defined matching sets of [29] are re-
defined and used by us in following:

Definition 8 (Replacing Link). In B = (VB , EB) of defini-
tion 7, with respect to MB , any single edge ei =

−−−−−→
〈v+i , v

−
j 〉 is a

replacing link if either v+i ∈MB and v+j 6∈MB or vice-versa.

Definition 9 (Uncrossed Replacing set). In B = (VB , EB)
of definition 7, with t(1 ≤ t ≤ |MB |) distinct edges
{m1,m2, . . . ,mt} ⊆ MB , a set of distinct t edges
{e1, e2, . . . , et} ⊆ EB −MB is an uncrossed replacing set,
if either ei ∩ mi ∈ V +

B ∩ MB(1 ≤ i ≤ t), ej ∩ mj+1 ∈
V −
B ∩ MB(1 ≤ j < t), and et ∩ {V −

B ∩ MB} ∈ ∅. OR,
ei ∩mi ∈ V −

B ∩MB(1 ≤ i ≤ t), ej ∩mj+1 ∈ V +
B ∩MB(1 ≤

j < t), and et ∩ V +
B ∩MB ∈ ∅.

Definition 10 (Crossed Replacing Set). In B = (VB , EB)
of definition 7, with t(1 ≤ t ≤ |MB |) distinct edges
{m1,m2, . . . ,mt} ⊆ MB , a set of distinct t edges
{e1, e2, . . . , et} ⊆ EB − MB is crossed replacing set, if
either ei ∩ mi ∈ V −

B ∩ MB(1 ≤ i < t), ej ∩ mj+1 ∈
V +
B ∩ MB(1 ≤ j < t), and et ∩ m1 ∈ V +

B ∩ MB ,
et ∩ {V −

B ∩MB} ∈ ∅. OR, ei ∩mi ∈ V +
B ∩MB(1 ≤ i < t),

ej ∩mj+1 ∈ V −
B ∩MB(1 ≤ j < t), and et∩m1 ∈ V −

B ∩MB ,
et ∩ {V +

B ∩MB} ∈ ∅.

Tassa et al. [29] proved that any matching set out of MB

that are used to produce a different maximum matching from
MB in involved nodes by edge replacement, must be classified
into these three kinds of edge sets of definition 8-10. Besides,
we deduce the distribution of these matching sets:

Lemma 3. In B = (VB , EB) of definition 7, with respect
to MB , given any two valid replacing sets of definition 8-10
incident to any v+i ∈ {V

+
B − V

+
B ∩MB}, v−j ∈ {V

−
B − V

−
B ∩

MB} respectively. Then, they can not share any vertex.

Proof. Assuming there is a vertex shared by any two valid
replacing sets of definition 8-10, incident to v+i 6∈ MB and
v−j 6∈ MB respectively. Then, in B = (VB , EB) with respect
to MB , there must be a path starting from this shared vertex
and ending at a node out of MB and alternatively involving
arcs out of and of MB , while there must be another path
ending at this shared vertex and starting from V −

B or V +
B out

of MB and alternatively contains arcs of and out of MB . Both
of these two alternating pahts would produce a matching out
of MB and adjacent to a submatching of MB , which is also
bigger than this submatching of MB in cardinality by one. In
other words such matching can replace this submatching of
MB to obtain a matching bigger than MB in cardinality by
one. However, since MB is already the maximum matching, a
contradiction would exist otherwise. Consequently, any shared
vertex by such two valid replacing link of definition 8 or
replacing sets of definition 9, 10 can not exist.

B. Find a Replacing Link or a Replacing edge Set
Following algorithm finds a replacing link, or a replacing

sets incident to v−f , when
−−−−−→
〈v−f , u+〉 ∈MB . In notation, H(v−f )

represents a set of arcs whose head is v−f , and any arc of it is
noted by ai ∈ H(v−f ). P0 notes an arc set, P (P0) represents a
set of arcs pointing arcs of P0, in which any arc of it is noted
by aj ∈ P (P0). Also, Pn notes a traversed path of P0 ending
at v−f starting from a node of MB . And Msub ⊆ MB that is
adjacent to the replacing sets at nodes of both V −

B and V +
B .

Algorithm 1 Find a replacing link or set incident to v−f
Input: B = (VB , EB), MB , P0 = ∅, v−f ∈MB , u+, u−

Output: A replacing link or set incident to v−f
1: Label nodes involved into MB and VB = VB − u+ − u−
2: while H(v−f ) 6= ∅ and ai ∈ H(v−f ) do
3: H(v−f ) = H(v−f )− ai
4: P0 = P0 + ai and Label tail of ai with v−f
5: if Tail of ai out of MB then
6: return ai
7: while P (P0) 6= ∅ and ∃aj ∈ P (P0) do
8: EB = EB − aj
9: if Tail of aj is not labeled with v−f then

10: Label tail of aj with v−f and P0 = P0 + aj
11: if aj pointing Pn and tail of aj out of MB then
12: return {Pn, aj} −Msub

Proof. Nodes of MB are all labelled in O(|VB |) time to know
if a tail of any arc ending at v−f is in or out of MB without
searching it in MB . Then, procedure finds paths alternatively
involving arcs out of and of MB from v−f to a node out of MB .
Due to arcs of MB are known, after removing Msub ⊆MB in
a found path, remaining arcs are a replacing set by definition
9, 10. Firstly, ai ∈ H(v−f ) is selected and added into P0 to
consider if it is a replacing link by definition 8, and its tail
is labeled with v−f . If so, it is returned. Otherwise, procedure
keeps searching proposed paths from ai in the while loop from
line 7 to line 12. For current aj ∈ P (P0) is an edge of MB ,
and tail of aj is not labeled with v−f , it is added into P0.
For P0 = {ai, aj}, there is not proposed alternating path by
now, and procedure keeps searching arcs pointing aj to obtain
proposed paths. During this process, any tail of a traversed arc
pointing P0 is verified, if it is labelled already, this arc is not
added into P0, otherwise, its tail is labeled and added into P0.
If P (P0) = ∅ caused by removing each arc of EB pointing P0

in line, all nodes able to approach ai through a directed path
have been traversed. Once tail of an arc of P (P0) is out of
MB , a directed path Pn with this arc is obtained, which is our
proposed. After removing all involved arcs of MB , remaining
matching of this path is a replacing edge set. After this, another
arc of H(v−f ) is chosen and examed as ai, while it is the only
one arc of P0 possibly pointed by nodes out of P0 at this
moment. When H(v−f ) = ∅ caused by removal of its arcs in
line 3, this procedure terminates, and replacinging sets incident
to v−f can be obtained. Without precomputing MB , since edge



of EB is added into P0 once at most, total running time of
this procedure is thus represented by O(|VB |+ |EB |).

When
−−−−−→
〈u−, v+g 〉 ∈ MB , this algorithm can be modified to

find replacing links and sets incident to v+g in O(|VB |+ |EB |)
time. In detail, H(v−f ) is replaced with T (v+g ) to note all arcs
whose tail is v+g , P (P0) now represents a set of arcs pointed
by arcs of P0, Pn now is a traversed path starting from v+g and
ending at node of MB . Also, pointing should be replaced by
pointed by in line 12, and tail should be replaced with head.

C. Obtain maximum matching MMB of B = (VB , EB)

After obtaining a replacing link or set incident to v−f and
v+g by algorithm IV-B, next algorithm obtains MMB in B =
(VB , EB) of definition 7, which involves the minimum number
of edges incident to u+ and u− under all possible conditions.
In notation, Rv−

f
, Rv+

g
represent any two replacing sets or

links of definition 8-10 incident to v−f and v+g respectively.
Adj(Rv−

f
) and Adj(Rv+

g
) also denote the set of edges of MB

adjacent to Rv−
f

and Rv+
g

in B.

Algorithm 2 Find a maximum matching MMB of B
Input: B = (VB , EB), MB Rv−

f
, Rv+

g

Output: MMB

1: if ∃Rv−
f

and ∃Rv+
g

then
2: return MMB = {{MB − Adj(Rv−

f
) −

Adj(Rv+
g

)}, Rv−
f
, Rv+

g
}

3: else if @ Rv+
g

and ∃ Rv−
f

then
4: return MMB = {{MB −Adj(Rv−

f
)}, Rv−

f
}

5: else if ∃ Rv+
g

and @ Rv−
f

then
6: return MMB = {{MB −Adj(Rv−

f
)}, Rv+

g
}

7: else if @ Rv−
f

and @ Rv+
g

then
8: return MMB = MB

Proof. When
−−−−−→
〈u+, v−f 〉 ∈ MB or

−−−−−→
〈v+g , u−〉 ∈ MB , by

operating algorithm IV-B, existence of replacing sets or links
incident to v−f and v+g can be confirmed respectively, based on
which, following procedure shows all possibilities of obtaining
MMB through MB . Referring to the lemma 3, for any
obtained Rv−

f
and Rv+

g
, they must be vertex disjoint. Besides,

in particular, when either @Rv−
f

or @Rv+
g

, it is just possible
that either u+ ∈MB or u− ∈MB . By contrast, once Rv−

f
6∈ ∅

or Rv+
g
6∈ ∅, there must be u+ ∈ MB or u− ∈ MB . Thus,

for u+ ∈ MB or u− ∈ MB , there would be u+ 6∈ MMB

or u− 6∈ MMB . Except for the precomputation of MB and
execution of algorithm IV-B, according to definition 8-10,
this procedure obtaining MMB is executed by all known
information, which leads the total rnning time of this algorithm
is O(1).

D. Identify the maximum matching MM of D = (V,A)

After obtaining the maximum matching MMB that contains
the minimum number of edges incident u− and u+ by apply-
ing algorithm IV-B and algorithm IV-C in B = (VB , EB)

of definition 7, MMB would be used to identify MM of
D = (V,A) of definition 6 according to the bijections α, β
of definition 7. And the value of l ∈ {0, 1, 2} would also be
confirmed. The related algorithm is below:

Algorithm 3 Identify a maximum matching MM of D
Input: D = (V,A), MD, u
Output: MM
1: if u 6∈MD then
2: MM = MD and l = 0
3: else if u ∈MM then
4: Mapping D = (V,A) with MD into B = (VB , EB)

with MB by definition 7.
5: Obtain MMB by operating algorithm IV-B, IV-C.
6: Mapping MMB into MM through bijection α, β of

definition 7.
7: Search arcs incident to u involved into MM
8: return MM and value of l

Proof. Firstly, this procedure finds u in MD in Θ(|V |) to
known if u ∈MD or not. If u 6∈MD, by the property of MM ,
there must be MM = MD and l = 0. Otherwise, D = (V,A)
with precomputed MD is mapped into B = (VB , EB) with
MB through bijection α and β. Obviously, running time of
bijection is Θ(|A|). Then, by definition 6 and 7, obtaining
MM of D can be solved by finding MMB of B by using
algorithm 1, 2 in O(|V |+ |A|) time due to |VB | ≤ 2|V | and
|EB | = |A|. Since identifying MM via MMB is virtually a
part of reverse process of mapping D into B, given MMB ,
MM can be identified in O(|A|) time. Searching arcs incident
to u in MM in O(|A|) time is to confirm value of l. Therefore,
except for precomputation of MD and u, worst-case execution
of identifying MM that involves the minimum number of
edges incident to u is O(|V |+ |A|).

E. Control recovery via a maximum matching of D − u
Eventually, in accordance of the lemma 1 and 2, the process

of obtaining a maximum matching based on returned MM and
vlaue of l by algorithm IV-D is expressed by the following
procedure, so that the minimum number of inputs to fully
control D − u can be identified.

Algorithm 4 Find a maximum matching of D − u
Input: D = (V,A), MM , l
Output: A maximum matching of D − u
1: if l = 0 then
2: return MM
3: else if l = 1 then
4: return MM −

−−−−→
〈vg, u〉 or MM −

−−−−→
〈u, vf 〉

5: else if l = 2 then
6: if v+g not labeled with v−f in algorithm IV-B then
7: return MM −

−−−−→
〈vg, u〉 −

−−−−→
〈u, vf 〉

8: else if v+g labeled with v−f in algorithm IV-B then
9: return {{MM −

−−−−→
〈vg, u〉 −

−−−−→
〈u, vf 〉}M(vg,vf )



Proof. According to lemma 1, and lemma 2, when l = 1,
a maximum matching of D − u can be obtained imme-
diately. When l = 2, in B = (VB , EB), there must be
{
−−−−−→
〈v−f , u+〉,

−−−−−→
〈u−, v+g 〉} ⊆ MB . By algorithm IV-B, since any

node approaching v−f via a directed path has been labelled
with v−f . Thus, when l = 2, whether M(vg,vf ) exists or not,
can be confirmed by checking if v+g is labelled or not in B.
If ∃M(vg,vf ) in D, M(vg,vf ) can be obtained by mapping
a directed path that has been traversed in algorithm IV-B,
starting from v+g , and ending at v−f of B in O(|A|) time.
Thus, time complexity of this procedure is O(|A|) except for
computing MM and l.

With such a maximum matching of D − u, based on the
minimum input theorem [8], the minimum number of inputs
to fully control D − u is identified. And further, the control
into physical system that involving the digraph D − u is
therefore restored with the minimum number of inputs. For
the worst-case execution time of entire process except for
precomputation of MD and u, it is represented by O(|V |+|A|)
according to algorithm IV-D and IV-E.

V. CONCLUSION

Resilient control systems should recover control into phys-
ical systems efficiently not only after malicious attack or
random failure on themselves, but also after them on the
physical systems. In this paper, based on the minimum input
theorem [8], efficiently recovering the controllability of a
physical system after removing a known system vertex is
modeled by control recovery into a digraph involved into the
LTI system after a known vertex removal, which is further
solved by efficiently identifying a maximum matching of the
digraph rather than recomputation. As a result, except for the
precomputation of a maximum matching and the following
removed node of the input network, control recovery into the
modified physical system by removing a vertex can be eventu-
ally executed in linear time, which thus enhances the resilience
of control systems against vertex modification compared with
recomputation. For the future work, we propose to enhance
the resilience of control systems against edge removal of the
controllable LTI physical systems.
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