
Royal Holloway, University of London

Doctoral Thesis

Conformal and Venn Predictors for
Multi-probabilistic Predictions and

Their Applications

Author:

Chenzhe Zhou

Supervisor:

Alex Gammerman

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

Computer Learning Research Centre

Department of Computer Science,

Royal Holloway, University of London

2015

Declaration of Authorship

I, CHENZHE ZHOU, declare that this thesis titled, Conformal and Venn Predictors

for Multi-probabilistic Predictions and Their Applications and the work presented in it

are entirely my own. I confirm that:

• Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

1

Abstract

In machine learning, a typical algorithm gives predictions for the unknown objects based

on known properties learned from the training data set. However, most algorithms can

only give a single prediction (for classification, it is predicted label; for regression, it is

predicted value). A demand for probabilistic prediction has risen in view of the fact that

a prediction with its complementary probabilistic estimation is more informative than a

single prediction. An example is the probabilistic weather forecast. We prefer hearing

that tomorrow has a chance of 60% to be rainy rather than there will be rain tomorrow.

However, in most areas, single probabilistic prediction is still not enough. True proba-

bility could be either higher or lower than its estimation. If we make multiple probabilistic

predictions that can hedge the true probability within an interval, we could have a better

estimation. The term multi-probability is brought to mind, which means that we announce

several probability distributions for the new label rather than a single one.

In this thesis, we propose several novel designs of Venn predictors and Conformal

predictors that provide multi-probabilistic predictions together with single predictions.

These implementations are based on k-Nearest Neighbours, Support Vector Machines and

Crammer and Singer’s Multi-Class Support Vector Machines. These algorithms could give

high accuracy together with probabilistic predictions. Experimental testing is carried out.

We then compare these algorithms to some other algorithms for probabilistic predic-

tions. The results demonstrate the advantages of applying these algorithms.

2

Acknowledgements

I am very thankful to my supervisor Alex Gammerman for his invaluable suggestions on

the subjects of my research and his generous and continuing help and support during

all these year I study here. I would also like to thank my advisor Zhiyuan Luo for his

constructive advice and friendly guidance on every aspect from my research to life during

my oversea study life.

I am very grateful to Volodya Vovk for his directions and help in theoretical research

and Ilia Nouretdinov for his insightful comments and discussions regarding my work.

My sincere thanks also goes to other members in Computer Learning Research Centre,

especially Mitya Adamskiy, Meng Yang, Jiaxin Kou, Valentina Fedorova, Antonis Lam-

brou, James Smith for offering a great environment for study and research. Also thanks

to all other fellow Ph.D. students of Department of Computer Science of Royal Holloway,

University of London, for the supportive and friendly environment.

Last but not the least, I would like to thank my family: my lovely parents, for bringing

me to the beautiful world at the first place and supporting me spiritually and materially

throughout my life.

3

Contents

List of Figures 7

List of Tables 8

List of Algorithms 10

1 Introduction 11

1.1 Motivation . 11

1.2 Main Contributions . 13

1.3 Publications . 14

1.4 Outline of the Thesis . 14

2 Overview of Machine Learning Algorithms 16

2.1 Problem and Assumptions . 17

2.2 Conformal Prediction . 19

2.3 Venn Prediction . 25

2.4 Underlying Algorithms . 33

2.4.1 k -Nearest Neighbours . 33

2.4.2 Support Vector Machine . 34

2.4.3 Multi-class SVM . 41

2.4.4 Crammer and Singer’s Multi-class SVM 44

4

2.5 Probabilistic Prediction Algorithms . 49

2.5.1 Naive Bayes Classifier . 50

2.5.2 Logistic Regression . 52

2.5.3 Platt Scaling . 55

2.6 Comparisons with Simple Predictors and Probabilistic Predictors 58

2.7 Summary . 59

3 Transforming Predictions into Probabilities 62

3.1 Related Works . 63

3.1.1 SVM with Isotonic Regression . 63

3.1.2 Inductive Conformal Predictors . 64

3.2 Venn-ABERS Predictor with SVM . 65

3.3 Conformal Prediction with Bivariate Isotonic Regression 68

3.3.1 Conformal Prediction . 71

3.3.2 Nonconformity Measure . 73

3.3.3 Transforming Confidence into Probability 75

3.4 Summary . 76

4 Designs of Taxonomy for Venn Machines 79

4.1 Previous Designs of Taxonomy for Venn Machines 80

4.1.1 k -Nearest Neighbours Taxonomy . 80

4.1.2 SVM Taxonomy with Predictions . 80

4.1.3 SVM Taxonomy with Equal Size . 81

4.1.4 SVM Taxonomy with Lagrange Multipliers 82

4.1.5 Taxonomy with One-vs-All SVM . 84

4.1.6 Taxonomies with Neural Networks 84

4.2 SVM Taxonomy with Equal Length Intervals 86

4.2.1 Combined Decision Function . 89

4.3 SVM Taxonomy with k -Means Clustering Intervals 90

5

4.3.1 Dividing Intervals by k -Means Clustering 91

4.4 Taxonomy with Multi-class SVM by Crammer and Singer 93

4.5 Regression Venn Machine and Its Taxonomies 97

4.5.1 Choosing Grouping Method . 100

4.6 Summary . 101

5 Experiments and Results 103

5.1 Data Sets . 104

5.2 Evaluations of the Algorithms . 109

5.2.1 Brier Score . 111

5.2.2 Logarithmic Loss . 112

5.3 Experimental Settings . 114

5.3.1 Settings of Venn-ABERS Predictor 117

5.3.2 Settings of k -Means Clustering . 120

5.4 Classification Results with Offline Settings 123

5.5 Classification Results with Online Setting 138

5.5.1 Online Performances of Simple Probabilistic Predictors 158

5.6 Regression Results with Offline Setting . 165

5.7 Summary . 167

6 Conclusions and Future Works 171

6.1 Conclusions . 171

6.2 Future Works . 173

Appendix A Details of Data Sets 175

Appendix B Manual for the LibVM 182

Bibliography 196

6

List of Figures

4.1 Histogram of decision values on breast cancer data set 88

5.1 Histogram of decision values on satimage data set 121

5.2 Comparison of online performances on breast cancer data set. 140

5.3 Comparison of online performances on SVMguide1 data set. 142

5.4 Comparison of online performances on splice data set. 145

5.5 Comparison of online performances on USPS data set. 147

5.6 Comparison of online performances on satimage data set. 149

5.7 Comparison of online performances on segment data set. 152

5.8 Comparison of online performances on DNA data set. 154

5.9 Comparison of online performances on wine data set. 156

5.10 Comparison of online performances on vehicle data set. 159

5.11 Comparison of online performances of simple probabilistic predictors on

WBC data set. 161

5.12 Comparison of online performances of simple probabilistic predictors on

Segment data set. 162

5.13 Comparison of online performances of simple probabilistic predictors on

Wine data set. 163

5.14 Comparison of online performances of simple probabilistic predictors on

Vehicle data set. 164

7

List of Tables

2.1 Comparison with simple predictors and probabilistic predictors 60

5.1 Main dimensional characteristics of classification data sets. 109

5.2 Main dimensional characteristics of regression data sets. 109

5.3 Parameters for underlying algorithms . 115

5.4 Experimental setups for regression data sets. 117

5.5 Comparison of results on different calibration set sizes 118

5.6 Comparison with SVM accuracies and VA-SVM calibrated accuracies 120

5.7 5-fold cross-validation results on breast cancer data set 124

5.8 5-fold cross-validation results on SVMguide1 data set 126

5.9 5-fold cross-validation results on splice data set 128

5.10 5-fold cross-validation results on USPS data set 129

5.11 5-fold cross-validation results on satimage data set 131

5.12 5-fold cross-validation results on segment data set 133

5.13 5-fold cross-validation results on DNA data set 134

5.14 5-fold cross-validation results on wine data set 135

5.15 5-fold cross-validation results on vehicle data set 137

5.16 Online mode results on breast cancer data set 141

5.17 Online mode results on SVMguide1 data set 143

5.18 Online mode results on splice data set . 144

8

5.19 Online mode results on USPS data set . 146

5.20 Online mode results on satimage data set 150

5.21 Online mode results on segment data set . 151

5.22 Online mode results on DNA data set . 153

5.23 Online mode results on wine data set . 157

5.24 Online mode results on vehicle data set . 158

5.25 Comparison of narrowness and reliability results on the Boston Housing

data set. 166

5.26 Comparison of narrowness and reliability results on the Abalone data set. . 167

5.27 Comparison of narrowness and reliability results on the Computer Activity

data set. 168

5.28 Comparison of narrowness and reliability results on the Boston Housing

data set when the number of categories is 5. 169

5.29 Processing time of k-NN RVM. 170

A.1 Distribution of classes in WBC . 175

A.2 Distribution of classes in SVMguide1 . 176

A.3 Distribution of classes in Splice . 176

A.4 Distribution of classes in USPS . 177

A.5 Distribution of classes in Satimage . 178

A.6 Distribution of classes in Segment . 179

A.7 Distribution of classes in DNA . 179

A.8 Distribution of classes in Wine . 180

A.9 Distribution of classes in Vehicle . 180

A.10 Distribution of labels in Housing . 181

A.11 Distribution of labels in Abalone . 181

A.12 Distribution of labels in CompActi . 181

9

List of Algorithms

1 Conformal predictor . 24

2 Venn predictor . 30

- Function CalcFrequency(C) . 31

- Function FindInterval(jbest, P) . 31

- Function FindBestColumn(P) . 32

3 k-Nearest Neighbours classifier . 34

4 Binary Support Vector Machines classifier . 40

- Function SelectWorkingSet(y, G, Q) . 41

5 Crammer and Singer’s multi-class SVM classifier 48

- Function FixedPoint(D, θ, ϵ) . 49

6 Venn-ABERS predictor . 69

- Function PAVA(y1, . . . , yn) . 70

7 Conformal predictor with bivariate isotonic regression 77

8 SVM Venn predictor with k-means clustering 94

- Function kMeansClustering({di}) . 95

- Function IsConverge({mi}, {li}) . 96

- Function ReassignCategory({di}, {bi}) . 96

10

Chapter 1

Introduction

In this introduction chapter, we will briefly introduce the motivation for the research in

this thesis. The novelty achieved during the research will be given afterwards, along with

the related publications. In the end, the structure of this thesis will be listed.

1.1 Motivation

Machine learning is a branch of Artificial Intelligence. In 1959, Arthur Samuel defined

machine learning as a “Field of study that gives computers the ability to learn without

being explicitly programmed” [58].

Tom M. Mitchell provided a widely quoted, more formal definition: “A computer

program is said to learn from experience E with respect to some class of tasks T and

performance measure P, if its performance at tasks in T, as measured by P, improves with

experience E” [40, p. 2].

Essentially, machine learning is a scientific discipline concerned with the design and

development of teaching computers to make and improve predictions or behaviours based

on some empirical data, such as that from sensors or data sets. It is a type of Artificial In-

telligence. Another way to think about machine learning is that it is “pattern recognition”

11

- the act of teaching a program to react to or recognize patterns.

The process of machine learning is as follows. A learner can search through data, which

can be seen as examples of the possible relations between observed variables, to capture

characteristics of interest of their unknown underlying probability distribution. Then, the

learner can look for patterns and use that data to recognize complex patterns and make

intelligent decisions based on input data, which can also be interpreted as improving the

programme’s understanding.

Machine learning is becoming increasingly popular and being applied to a great variety

of problems and fields. However, most machine learning algorithms do not provide any

indication of how reliable their predictions are. The information on the reliability of the

predictions would be very beneficial for most applications, and it is even crucial for some

risk sensitive settings such as medical diagnosis and drug discovery. In this thesis, we are

interested in machine learning algorithms that provide additional information about how

reliable it is for each prediction.

A type of algorithm that give probabilities to complement its predictions is called

probabilistic predictors. As its name implies, probabilistic prediction is to predict proba-

bilities, or in other words, is to make estimations to the distribution that all the examples

are drawn from.

There are lots of algorithms to make probabilistic predictions since Charles J. Stone [59]

introduced a method using k-nearest neighbours in 1977. The most popular algorithms are

probably approximately correct learning [62] (a.k.a. PAC learning), and hold-out estimate.

However, these algorithms all have their drawbacks. For PAC learning, the shortcoming is

that its estimated bound of error is usually too loose to tell us any interesting information

on the data set, especially when the data set we deal with is not so large. For the hold-out

estimate, the drawback is that it rigidly separates the process of learning and prediction,

and the estimates rely on the hold-out examples. Furthermore, for both PAC learning and

hold-out estimate, they make probabilistic estimations for a whole group of predictions

rather than provide information on each prediction.

12

Other methods are such as Naive Bayes classifier, Logistic Regression and Platt Scal-

ing, which can make probabilistic estimations for individual prediction. However, these

algorithms are only applicable under strong assumptions.

In this thesis, we will mainly focus on a new kind of algorithm that makes probabilistic

predictions. They are Conformal prediction and Venn prediction introduced in [69]. Com-

paring to the algorithms we mentioned above, these newly developed methods have several

advantages. First, these algorithms blend the learning and prediction together. Second,

the probabilistic predictions our algorithms give are much more confident and accurate

than the traditional methods. Third, our algorithms provide probabilistic information on

every prediction individually rather than estimate an error on all future examples as a

whole.

1.2 Main Contributions

The novelty achieved during the work on this thesis is as follows.

Several new taxonomy designs based on Support Vector Machine for Venn Machine

were proposed, including:

• SVM Taxonomy with Equal Length Intervals

• SVM Taxonomy with k -Means Clustering Intervals

• Taxonomy with Multi-class SVM by Crammer and Singer

During the development of these new taxonomies, we also suggested a new way to

extend these algorithms from binary case to multi-class case by using a combined decision

value. Based on those new taxonomies for classification, we also proposed a new taxonomy

design for Regression Venn Machine.

All the above algorithms were tested on a variety of data sets, and the results showed

the advantages of these algorithms in giving predicted labels and probabilistic outputs.

13

Besides taxonomy designs for Venn Machines, we also researched into another type of

algorithm that transform predictions to probabilities. Among them are:

• Conformal Prediction with Bivariate Isotonic Regression

• Venn-ABERS Predictor with SVM

1.3 Publications

During the research covered in this thesis, the contributions were presented in two confer-

ences and resulted in two publications. A list of publications is as follows:

1. Chenzhe Zhou, Ilia Nouretdinov, Zhiyuan Luo, Dmitry Adamskiy, Luke Randell,

Nick Coldham, and Alex Gammerman, A comparison of venn machine with platt’s

method in probabilistic outputs, Artificial Intelligence Applications and Innovations

(2011), 483–490

2. Chenzhe Zhou, Ilia Nouretdinov, Zhiyuan Luo, and Alex Gammerman, Svm venn

machine with k-means clustering, Artificial Intelligence Applications and Innova-

tions, 2014

1.4 Outline of the Thesis

This introductory chapter has given the motivation behind the research carried out in this

thesis and has briefly described the main contributions.

The rest of the thesis is organised as follows.

Chapter 2 gives the background of the problem. It is devoted to known algorithms

that are capable as underlying algorithms in conformal predictors and Venn predictors

and other algorithms that also give probabilistic predictions.

In Chapter 3, we provide an introduction to two algorithms that belong to a new

type that transform predictions into probabilities. These two algorithms are conformal

14

predictor with bivariate isotonic regression and Venn-ABERS predictor.

In Chapter 4, several new designs of probabilistic predictors for Classification Venn

Machine are proposed and investigated. We also talk about the design of probabilistic

predictors for regression that provide valid intervals as predictions instead of a single

value.

In Chapter 5, we apply these algorithms mentioned in Chapter 2, Chapter 3 and Chap-

ter 4 on several data sets and compare our algorithms to other probabilistic predictors.

Chapter 6 gives the conclusion to the thesis, outlines its main contributions and pro-

vides directions for further research.

In Appendix, the reader can find an additional introduction for data sets and the

manual for our Venn predictors library.

15

Chapter 2

Overview of Machine Learning

Algorithms

In this chapter, we will mainly introduce some background related to the problems raised

in this thesis.

First, we start with the formal problem description that this thesis mainly solves to-

gether with some requisite assumptions in §2.1. Second, we give some brief introductions

for the basic frameworks of Conformal prediction and Venn prediction in §2.2. Then in §2.4,

several widely used traditional algorithms that apply to Conformal and Venn predictions

are introduced. We also introduced some algorithms that give probabilistic predictions

including Naive Bayes classifier, Logistic Regression and Platt Scaling in §2.5. In §2.6 of

this chapter, Conformal and Venn predictions are compared with simple prediction and

probabilistic predictions and the advantages and drawbacks are revealed in this section.

The summary section §2.7 summarizes this chapter and emphasizes the key parts in the

previous sections.

16

2.1 Problem and Assumptions

The examples are pairs consisting of objects and labels that carry information derived from

reality.

(x1, y1), (x2, y2), . . . , (xi, yi), . . . (2.1)

Each example (xi, yi) is composed of an object xi and its label yi. The object xi is a vector

of attributes that are real numbers quantified from the real world measurement. In other

words, xi ∈ Rd (where d is the number of attributes), and we call this measurable space

X ⊂ Rn the object space (or the feature space). The label yi is a real number, and they

are elements of a measurable space Y ⊂ R, which is called the label space. We denote

the pair of object and label by zi = (xi, yi) when we need a more compact notation. All

examples are elements of a measurable space Z = X×Y called the example space.

We are given a set of examples (z1, . . . , zn−1) that contains n − 1 known examples,

usually this is hereinafter referred to the training set. We are also given a new object xn,

which is usually referred to the testing example. A set of testing examples is called the

testing set. Our goal is to predict the label ŷn for the new object. Furthermore, we want

the predictor to give some estimations on the likelihood of its prediction being true (i.e.

ŷn = yn, where yn is the true label of object xn).

We assume that the object space X is not empty and the label space Y has at least

two different elements in it. According to the cardinality of label space, the problem can

be divided into two types of tasks: classification problem and regression problem. We

call a problem classification problem only when the cardinality K = |Y| of the label

space is finite, which means that the label space could be represented as a set of numbers

Y = {0, 1, 2, . . . ,K − 1} regardless of the original values of the label space. Classification

is to assign one sort of possible categories to objects according to [40, p. 54]. This kind of

problems includes medical diagnosis, handwriting recognition, spam detecting and so on.

If the cardinality of the label space is infinite, usually the labels are real-valued, this sort

of problems often refers to the regression problem. Regression problems include market

17

price prediction, biometrics and econometrics problems etc. In this thesis, we only took

these two problems into consideration.

In order to build a probabilistic predictor, we need to make some additional assump-

tions. Basically, when we learn from the example space (or the environment), we always

want it to be governed by some constant laws or some laws evolving slowly in the space

that we could learn from. If the environment keeps changing all the time, it will be too

hard for us to learn anything from it. In the traditional way to satisfy the request of a

steady environment, we assume that all the examples are randomly chosen from some fixed

probability distribution Q on the fixed example space Z. In other words, all the examples

share the same probability distribution Q and they are independent from each other. We

say that these examples are independent and identically distributed (also known as i.i.d.).

This is called the randomness assumption [69, p. 2].

Furthermore, we could make the randomness assumption without knowing anything

about the probability distribution Q at the beginning. All we know are the example space

Z and these examples are drawn independently from the same probability distribution Q.

In this case, we say we are learning under unconstrained randomness [69, p. 3]. Most of

the algorithms talked in this thesis are under this assumption.

However, the assumption our algorithms need is usually slightly weaker than the stan-

dard assumption. It is called the exchangeability assumption, and it assumes that the

infinite data sequence (2.1) is drawn from a distribution Q that is exchangeable [69, p. 18].

This means for every positive integer n, every permutation π of {1, . . . , n}, and every

measurable set E ⊂ Z∞,

Q{(z1, z2, . . .) ∈ Z∞ : (z1, . . . , zn) ∈ E}

= Q{(z1, z2, . . .) ∈ Z∞ : (zπ(1), . . . , zπ(n)) ∈ E} (2.2)

where Z∞ is the set of all infinite sequences of elements of Z. The exchangeability as-

sumption can be satisfied by random permutation of the data sets.

Throughout this thesis, we follow the same description of this problem and generally

18

we use one of the randomness assumption and the exchangeability assumption depending

on which one is needed to make a stronger statement.

2.2 Conformal Prediction

In a classification or regression problem in machine learning, we simply want to predict

the true label yn for the new object xn before we observe it from the successive sequence

of the example space.

For any example sequence (x1, y1), . . . , (xn−1, yn−1) ∈ Z∗ and any new object xn ∈ X,

the function we need can be represented as follows

D : Z∗ ×X→ Y (2.3)

This function is called a simple predictor. It announces D(x1, y1, . . . , xn−1, yn−1, xn) ∈ Y

as its prediction for yn, the true label of xn.

In a more complicated notion of prediction, we attempt to complement every possible

label with a degree of confidence instead of choosing a single element ofY as our prediction.

Then we try to pronounce a subset of Y with a predefined degree of confidence. For each

possible label, if the predefined degree of confidence is greater than its complementary

degree of confidence, we will include this label in our subset. By pronouncing this subset,

we are confident, to a predefined degree, the true label yn will fall in our predicted subset.

The more confident we want to be, the larger the subsets should be. Since it will include

more possible labels. Such predictor is called confidence predictor and the outcome of this

predictor is called prediction set. It is described in [23,69].

A confidence predictor takes an additional parameter ϵ ∈ (0, 1) as significance level.

The complementary value 1 − ϵ is called the confidence level. Given the training set, the

new object and the significance level ϵ, a confidence predictor Γ is described as

Γ : Z∗ ×X× (0, 1)→ 2Y (2.4)

where 2Y is the power set of Y.

19

This predictor Γ outputs a subset

Γ ϵ(x1, y1, . . . , xn−1, yn−1, xn) (2.5)

The subset must satisfy

Γ ϵ1(x1, y1, . . . , xn−1, yn−1, xn) ⊆ Γ ϵ2(x1, y1, . . . , xn−1, yn−1, xn) (2.6)

whenever ϵ1 ≥ ϵ2.

With a confidence of 1− ϵ, Γ announce yn is in its prediction set

yn ∈ Γ ϵ(x1, y1, . . . , xn−1, yn−1, xn) (2.7)

If the prediction set contains no labels, we call this an empty prediction. If the pre-

diction set contains one label (no need to be exact the true label), we call this a certain

prediction. While the prediction set contains several labels, we say these predictions are

multiple predictions. Only if the true label yn is not included in the above prediction set,

we say that an erroneous prediction is made by the confidence predictor, which means

multiple predictions that include the true label are not mistakes, they are just not infor-

mative.

A confidence predictor has two important properties: validity and efficiency. Given a

significance level ϵ, if the relative frequency of errors that a confidence predictor makes

does not exceed ϵ for every ϵ given to it, we say a confidence predictor is valid. It means

that the number of errors or the error rate can be controlled within an acceptable tolerance

by the significance level ϵ, which is predefined by the user. The other property efficiency

means the confidence predictor should give informative prediction sets. It is obvious that

a prediction set with fewer labels is more informative than the prediction set with more

labels. In other words, it can be understood as that an informative prediction set given

by a confidence predictor should be as small as possible.

These two properties, especially the validity, can be the main advantage over other

types of algorithms like simple predictors or probabilistic predictors. However, we cannot

20

achieve the property of validity at no cost. In contrast, the property of validity and the

property of efficiency are contradictory. Given a small ϵ, the error rate can be controlled

under ϵ, which means it is valid, but to make few errors or to give prediction set that

includes true label at high (1− ϵ) confidence results in including more labels in the predic-

tion set. In other words, lower significance levels result in larger prediction sets, and vice

versa. Thus, we need to balance validity and efficiency, which makes confidence machine

a very flexible tool [14].

A conformal predictor is such a confidence predictor. Conformal predictors refer to a

set of algorithms that produce a prediction set when given a significance level. It announces

that a new object will have a label that makes it similar to the known examples in some

specified way [69, p. 7]. Furthermore, its estimates of reliability are not in the form of

probabilities; it uses the degree to which the specified type of similarity holds among the

old examples to estimate our confidence in the prediction.

The idea of a rudimentary Conformal prediction was described by Gammerman et

al. [22], and the formal definitions were first described by Vovk et al. [68] and Saunders et

al. [55].

In the following, we will give the definition of conformal prediction. We begin with the

concept of “bag”, which is also called a multi-set. A bag is a collection of some elements

regardless of the order of the elements, which is similar to a set. The difference between

a bag and a set is that repetition of the elements is allowed in a bag, which means the

elements in a bag can be identical. The size n of a bag is the number of elements a bag

contains. Since the elements in a bag may be repeated, we must mention what elements

it contains and how many times each of them duplicated to identify a bag. We refer to

a bag contains n elements as !z1, . . . , zn", and some of the elements may be identical to

each other.

Although the order of the elements in a bag is irrelevant, we mark the elements in the

order in our notation so that it is convenient when we mention these elements. We write

Z(n) for the set of all bags of size n containing n elements from a measurable space Z. We

21

write Z(∗) for the set of all bags of elements of Z.

The general idea of conformal prediction is to assume the label of the new object xn is

one of the possible labels, say y. Then we measure how well the new pair of example (xn, y)

conforms with the known examples !z1, . . . , zn−1" through a nonconformity measure. We

try every possible label in this way and calculate a nonconformity score for each possible

label. To announce a possible label in our prediction set depends on whether its p-value

is greater than the predefined significance level ϵ.

There are many different nonconformity measures, and each one defines a conformal

predictor.

Formally, a nonconformity measure is a method that assesses how strange a new object

is from the old examples, which maps each possible new example and each bag of old

examples to a numerical score, named nonconformity score.

A : Z(∗) × Z→ R (2.8)

It is easy to invent nonconformity measure [69, p. 24] based on the algorithms we already

have. The algorithm used by a conformal predictor is called underlying algorithms of the

conformal predictor. An introduction to some popular underlying algorithms will be given

in §2.4, while how we use these underlying algorithms as nonconformity measures will have

a devoted section, namely §3.3.2 in next chapter.

If we separately think of nonconformity measures dealing with different bags of exam-

ples, the set of nonconformity measures An for each n = 1, 2, . . . can be defined as

An : Z(n−1) × Z→ R (2.9)

where n is the size of the bag.

The nonconformity score for each zi in a bag !z1, . . . , zn" is

αi := An(!z1, . . . , zi−1, zi+1, . . . , zn", zi) (2.10)

The numerical value of αi on its own does not give us any information about how

strange the example zi is compared to other examples. For this reason, we use p-value

22

as an indicator of strangeness that a nonconformity score αi compared with others. It

can be achieved by calculating the proportion of nonconformity scores that are greater

than or equal to αi among all scores. The definition of p-value for example zi is given in

Eq. (2.11).

p :=
|{j = 1, . . . , n : αj ≥ αi}|

n
(2.11)

In Eq. (2.11), p is the p-value for example zi. It is a quantitative estimation of the

strangeness between the example zi and the other examples. Since αi is compared with

itself, the numerator of the p-value is at least 1. Hence, the p-value ranges from 1
n to 1,

indicating that example zi is very nonconforming (i.e. strange) if the p-value is small or

it is very conforming (i.e. similar) if the p-value is large.

Here we give the formal definition of conformal prediction. Given a training set

!z1, . . . , zn−1", a new object xn and a significance level ϵ, the conformal predictor Γ

determined by a nonconformity measure An gives a prediction set as in Eq. (2.12)

Γ ϵ(x1, y1, . . . , xn−1, yn−1, xn) := {y ∈ Y : py > ϵ} (2.12)

In Eq. (2.12), py is the p-value for the pair of (xn, y) and is defined as follows

py :=
|{i = 1, . . . , n : αi ≥ αn}|

n
(2.13)

where

αi = An(!(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, y)", (xi, yi))

αn = An(!(x1, y1), . . . , (xn−1, yn−1)", (xn, y))

We have a confidence of 1− ϵ that the true label yn of xn is included in our prediction

set Γ ϵ.

As a class of confidence predictors, conformal predictors also satisfy the criterion of

validity. Algorithm 1 is a pseudo-code for a conformal predictor. In the algorithm, NCM is

a function that calculates non-conformity scores based on underlying algorithms. Different

implementations of NCM will be introduced in next chapter.

23

Algorithm 1: Conformal predictor

Data: training set Z(n−1), testing object xn, significance level ϵ

Result: prediction set Γ ϵ

Γ ϵ ← ∅ ; /* initial a empty prediction set */

K ← |Y| ; /* get the size of label space */

for y = 0 to K − 1 do /* try every possible label */

for i = 1 to n do /* for each label calculate all NCM scores */

αi ← NCM(!(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, y)", (xi, yi));

/* calculate non-conformity score for every example */

end

c← 0 ; /* initial the counter to 0 */

for i = 1 to n do /* count how many NCM score ≥ an */

if αi ≥ αn then

c← c+ 1;

end

end

py ← c
n ; /* calculate p-value */

if py > ϵ then

Γ ϵ ← AddToSet(Γ ϵ, y);

/* add current label y to prediction set */

end

end

return Γ ϵ

24

2.3 Venn Prediction

Conformal predictors give p-values as estimates of reliability for the predictions, which

are not direct probabilities. Although we will introduce an algorithm to transform the

outcome of conformal predictors to probabilities, making a predictor give probabilities

directly will be more intuitive.

There is a variety of machine learning algorithms that can make probabilistic predic-

tions, which is to assign a probability distribution of the label for a new object. This kind

of algorithm is called probabilistic predictors. However, most of these predictors are based

on strong statistical assumption, which is not suitable for data sets from the real world.

Hence, they fail to give valid predictions when these assumptions are not satisfied.

Venn prediction allows us to give valid probability distributions under i.i.d. assumption

only. It was firstly introduced in [71] and were discussed in detail in [69, Chapter 6].

Furthermore, Venn predictors produce a set of probability distributions for a predicted

label, which can also be interpreted as a bounded interval of probabilities that the predicted

label is true.

To introduce Venn predictors, we begin with the assumptions we make in this sec-

tion. We follow most of the assumptions given in §2.1, additionally there are two more

assumptions:

1. the label spaceY is finite, which means that we only deal with classification problem.

2. the sequence of examples z1, z2, . . . is finite instead of continuing indefinitely. Assume

the number of examples we observed is N .

Given a binary classification problem (we use problem with binary classes only for sim-

plicity). The possible labels are denoted by {0, 1} and a probabilistic predictor announces

probability pn for the event yn = 1. Suppose we are observing examples in sequence,

which means we make probabilistic prediction pn after we observed a new object xn and

before we observe the true label for the new object xn. This protocol is called online set-

25

ting and it is useful for demonstrating the ideas about testing calibration of probabilistic

predictions.

We want know whether the predicted probability pn tends to be too high or too low

overall. This can be tested by comparing the average predicted probabilities with the

overall frequency of “1” among N examples. The average probability is as follows.

p̄N :=
1

N

N∑

n=1

pn (2.14)

Also, the overall frequency of “1” is

ȳN :=
1

N

N∑

n=1

yn (2.15)

If

ȳN ≈ p̄N (2.16)

we say the predictions are “unbiased on average”. If p̄N is distinguished with ȳN , we say

the predictions is biased on average.

In a more refined version, we test the calibration in a subset of n examples for which

pn is close to a given value p∗. We compare p∗ with the frequency of “1” in this subset,

say ȳN (p∗). If

∀p∗, ȳN (p∗) ≈ p∗ (2.17)

then the pn can be considered “well calibrated”, in other words, have a frequentist justi-

fication. John Venn [66] was one of the first writers on frequentist probability, and Venn

prediction was named after him.

However, to have a good calibration is not enough to make useful probabilistic pre-

dictions. Assume yn equals to 1 if n is odd and 0 otherwise, hence ȳn ≈ 0.5. We can

set pn = 0.5 to achieve excellent calibration, but this makes the probabilistic predictions

meaningless. To overcome this, what we need in addition to good calibration is some-

times called “high resolution”. This term suggests that we introduce a procedure that is

used in our Venn prediction. The predictor divides objects into categories and uses the

frequencies in the category that contains xn as the probabilistic prediction pn. The more

26

numerous the categories - the more information predictor takes into account in creating

the categories - the greater the resolution and the more useful the probabilistic prediction

should be. Back to the previous example, we can sort all examples into two categories

rather than one whole category. One category is for odd numbers and the other is for even

numbers. Then we predict “1” as an odd number and “0” as an even number since they

fall into different categories.

Suppose we are given a binary classification problem !z1, z2, . . . , zn−1" and a new ob-

ject xn. The label space Y = {0, 1}. Before we introduce Venn predictors, we give the

definition of the procedure that partitions objects into categories as we mentioned. A

taxonomy is a method that can divide objects into categories by using underlying algo-

rithms. Practically any known machine learning algorithm can be used as an underlying

algorithm, which is very similar to conformal predictors. Therefore, Venn predictors are

a framework of machine learning algorithms rather than a single algorithm.

Let a taxonomy for !z1, z2, . . . , zn−1, (xn, y)" be An, where y ∈ Y. The category τi

assigned to example zi by An is defined in Eq. (2.18).

τi := An(!z1, . . . , zi−1, zi+1, . . . , zn−1, (xn, y)", zi) (2.18)

Example zi and zj are in the same category if and only if τi = τj . The Venn predictor

associated with this Venn taxonomy An outputs the pair (p0, p1) as its prediction for xn’s

label, where

py :=
|{(x∗, y∗) ∈ !z1, . . . , zn−1, (xn, y)" : τ∗ = τn ∧ y∗ = y}|

|{(x∗, y∗) ∈ !z1, . . . , zn−1, (xn, y)" : τ∗ = τn}|
(2.19)

for both y ∈ {0, 1}. The denominator is always positive, since (x∗, y∗) = (xn, y) =⇒ τ∗ =

τn. Intuitively, p0 is the proportion of examples with label 0 to all examples of the same

category of xn. p1 is the proportion of examples with label 1. p0 and p1 are the predicted

probabilities that the label of xn is 1. Hence, we call a Venn predictor multi-probabilistic

predictor. Only when p0 ≈ p1, these predictions are useful.

Venn predictors have an important property of validity: they are automatically well

calibrated. The property of validity of Venn predictors allows them to produce valid

27

results when the examples are drawn independently from the same probability distribution

without knowing what the distribution is, which seems more useful and applicable to

the real-world problems. This property of validity was proofed in [69, Theorem 6.6] if

we satisfy the exchangeability assumption. According to Theorem 6.6, the validity does

not depend on the size of the data sequence N . Therefore, we can drop the second

additional assumption we made at the beginning, which is the sequence of examples is

finite. However, this known version proof is complicated, Vovk proposed a much simpler

version in [70, Theorem 1] and the intuition behind it is more transparent.

The shortcoming of this procedure is that it may be too special for some specific data

sets. We need to notice that more categories do not always lead to better results. So

rather than speak of resolution, we will speak of efficiency. For efficiency, it requests the

probabilities that a predictor gives to be more informative, which are as close to 0 or 1 as

possible.

Venn predictors are suitable for multi-class problems as well. The generalized idea of

Venn predictors can be described as follows: firstly we divide known objects (labels are

not included here, hence we only use the information from features) into several categories

by using a taxonomy. The new object is also assigned to one of these categories in the

same way. Then we calculate the frequencies of labels in the category that contains the

new object as the probability distribution for the new object’s label. We try this several

times for every possible label, which is analogous to the way we treat the new object when

we use a nonconformity measure to define a conformal predictor. At last, we announce a

set of probability distributions for the unknown label of the new object.

In the following, we give the explicit definition of Venn prediction. Assuming a standard

machine learning classification problem: given a training set of examples !z1, z2, . . . , zn−1".

Each zi consists of a pair of object xi and label yi. The label space Y is finite. We are

also given a test object xn. Our task is to predict the label y for the new object xn and

give the estimation of the likelihood that our prediction is correct.

Suppose we have a taxonomy for n objects x1, . . . , xn that divides these objects into

28

different categories in a specific way, say An. Note that it is different from nonconformity

measures in Conformal prediction. Nonconformity measures and taxonomies play a similar

role in Conformal prediction and Venn prediction respectively. Hence we use the same

symbol here.

We also consider a arbitrary label y ∈ Y for the new object xn. An assigns a category

τi to an example zi

τi := An(!z1, . . . , zi−1, zi+1, . . . , (xn, y)", zi) (2.20)

where n is the number of elements in the bag, τi ∈ T is one of the finite categories from

the category space T.

Moreover, we assign zi and zj to the same category if and only if

An(!z1, . . . , zi−1, zi+1, . . . , zn", zi) = An(!z1, . . . , zj−1, zj+1, . . . , zn", zj) (2.21)

The category τn is assigned to (xn, y). Let Py be the empirical probability distribution

of the labels in category τn. Py contains K frequencies of all possible labels.

Py :=
|{(x∗, y∗) ∈ !z1, . . . , zn−1, (xn, y)" : τ∗ = τn ∧ y∗ = y′}|

|{(x∗, y∗) ∈ !z1, . . . , zn−1, (xn, y)" : τ∗ = τn}|
y′ ∈ Y (2.22)

Py is a probability distribution on Y.

Having tried every possible label for xn, we get a K×K frequency matrix P. The Venn

predictor P := {Py : y ∈ Y} is a multi-probabilistic predictor that gives K probability

distributions, where K is the number of labels in this label space.

To interpret this prediction, let the quality of a column be the minimum entry of the

column in matrix P. Let the best column, which has the highest quality, be jbest. Then

our predicted label is jbest and the interval of possibilities that our prediction is correct is

defined as:

[min
i=0,...,K−1

Pi,jbest , max
i=0,...,K−1

Pi,jbest] (2.23)

In Algorithm 2, the pseudo-code for a Venn predictor is given.

29

Algorithm 2: Venn predictor

Data: training set Z(n−1), testing example xn

Result: predicted label ŷn, probability interval [ln, un]

K ← |Y| ; /* get the size of label space */

for y = 0 to K − 1 do /* try every possible label */

for i = 1 to n do /* assign a category for every example */

τi ← Taxonomy(!(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, y)", (xi, yi));

end

C ← ∅ ; /* initial a empty category set */

for i = 1 to n do

if τi = τn then /* find examples in the category that xn falls */

C ← AddToSet(C, yi) /* add its label to category set */

end

end

Py ← CalcFrequency(C) ; /* calculate the frequency of labels */

end

jbest ← FindBestColumn(P) ; /* find the column with highest quality */

[ln, un]← FindInterval(jbest, P) ; /* find max and min in best column */

ŷn ← jbest;

return ŷn, [ln, un]

30

Function CalcFrequency(C)

Function CalcFrequency(C)

total ← SizeOf(C) ; /* get size of category set */

count ← 0 ; /* initial count array to 0 */

for i = 1 to total do /* for every label in the set */

count[yi] ← count[yi] + 1 ;

end

return count

end

Function FindInterval(jbest, P)

Function CalcFrequency(jbest, P)

lower ← 1 ; /* initial lower to maximal value 0 */

upper ← 0 ; /* initial upper to minimal value 0 */

for i = 1 to K do /* for every value in column jbest */

if lower > Pi,jbest then /* find current minimal value */

lower ← Pi,jbest ;

end

if upper < Pi,jbest then /* find current maximal value */

upper ← Pi,jbest ;

end

end

return [lower, upper]

end

31

Function FindBestColumn(P)

Function FindBestColumn(P)

max ← 0 ; /* initial max to minimal value 0 */

index ← 0 ; /* initial index to 0 */

for j = 1 to K do /* for every column in the matrix */

quality ← 1 ; /* initial quality to maximum value 1 */

for i = 1 to K do /* find the minimal in column j */

if Pi,j < quality then

quality ← Pi,j ;

end

end

if quality > max then /* compare quality to max */

max ← quality ;

index ← j;

/* record value and index if quality greater than max */

end

end

return index

end

32

2.4 Underlying Algorithms

As we mentioned before, Conformal prediction and Venn prediction are algorithmic frame-

works rather than simple predictors. Generally, a Conformal predictor or Venn predictor

can be built on top of almost any machine learning algorithm [69, p. 11]. These algorithms

are referred to as underlying algorithms. In the following subsections, we will introduce

some most widely-used underlying algorithms and all the underlying algorithms we used

in this thesis.

2.4.1 k-Nearest Neighbours

Among all the methods in machine learning, k-Nearest Neighbours (k-NN) is one of the

most fundamental and simple algorithms for both classification and regression.

k-Nearest Neighbours algorithm was developed to fulfil the demand of performing

discriminatory analysis when reliable parametric estimations of probability densities are

unknown or difficult to determine. In 1951, a non-parametric method for pattern recogni-

tion was introduced by Fix and Hodges in [18], which has become known as the k-Nearest

Neighbours rule. Later in 1967, Cover and Hart worked out one of the formal properties

of the k-Nearest Neighbours rule in [11]. It was shown in the paper that for an infinite

example set the probability of error of the rule is bounded above by twice the Bayes prob-

ability of error when k = 1. These established the foundations of k-Nearest Neighbours

and led to a long series of investigations.

The basic idea behind k-NN algorithm is based on the closest training examples in the

feature space: an unknown object is classified the same as the most frequent label through

majority voting among its k nearest neighbours. When we mentioned the closest or the

nearest example, it refers to the example that has the smallest distance metric between

the testing example and the specified training example. The commonly used distance

metric is the geometric distance, which is also known as Euclidean distance. However,

there are other choices such as Hamming distance introduced in [25] and Tangent distance

33

introduced in [57] in cases of different problems.

With 1-Nearest Neighbour rule, the predicted label ŷn for testing example xn is shown

as follows:

ŷn := yj , where j = argmin
i∈{1,...,n−1}

||xn − xi|| (2.24)

The following is a pseudo-code for k-Nearest Neighbours classification method.

Algorithm 3: k-Nearest Neighbours classifier

Data: training set Z(n−1), new object xn, number of neighbours k

Result: predicted label ŷn

for i = 1 to n− 1 do /* calculate distances between xn and xi */

di ← CalcDistance(xn, xi);

end

neighbours ← FindKMinimal(d, k);

/* find k minimal values and record the indices */

y′ ← Vote(neighbours, Y) ; /* vote for the majority label */

ŷn ← y′;

return ŷn

2.4.2 Support Vector Machine

Support vector machines (SVMs) are a popular machine learning algorithm for classifica-

tion. The related subject of support vector machines can be said to have started in late

1970s [64]. The original SVMs algorithm was invented by Vladimir N. Vapnik, which was

devoted to solving linearly separable binary classification problems. The current standard

version of SVMs, which is also suitable for the non-linearly separated data sets, was pro-

posed by V. Vapnik and C. Cortes. The formal descriptions and definitions were given

in [10] and [65]. After several years of research, this method has become capable to deal

with multi-class classification, regression and many other machine learning tasks. It has

become one of the most widely used machine learning algorithms.

34

The basic idea behind support vector machines is to construct a hyperplane in a high-

dimensional or infinite-dimensional feature space that could separate all the examples into

two categories. There are many hyperplanes that might separate the examples. Intuitively,

one reasonable good separation is the largest separation represented by the hyperplane that

has the largest distance to the nearest training examples of both sides. This hyperplane is

called the maximum-margin hyperplane. Then a new object is assigned by this classifier

to a category based on which side of the hyperplane it falls on.

The detailed descriptions of support vector machines are as follows: we follow the

same definitions and descriptions in our previous section §2.1. We are given a training set

Z(n−1) and a new object xn, and our goal is to predict ŷn for the new object. Specifically,

each xi ∈ X is a d-dimensional vector i.e. the X ⊂ Rd, and the label space only has two

elements i.e. Y = {−1,+1}.

Suppose we have some hyperplane H0 that separates all the examples. This hyperplane

can be written as the set of points x satisfying

H0 : w · x+ b = 0 (2.25)

where w is normal to the hyperplane and w ̸= 0. We define d+ and d− to be the

perpendicular distances from the nearest positive and negative examples to the hyperplane

respectively. For the linearly separable case, we suppose all the training examples satisfy

the following constraints:

w · xi + b ≥ +1 for yi = +1 (2.26)

w · xi + b ≤ −1 for yi = −1 (2.27)

Furthermore, these constraints can be written together as

yi(w · xi + b) ≥ 1 ∀i = 1, . . . , n− 1 (2.28)

Now we have two more hyperplanes: H1:w ·xi + b = +1 and H2:w ·xi + b = −1. Note

that H1 and H2 are parallel since they share the same normal w and that no training

35

points fall between them. Hence d+ is the perpendicular distance between H0 and H1

and equals to 1
||w|| , while d− is the perpendicular distance between H0 and H2 and equals

to 1
||w|| as well. We define the margin of hyperplane H0 to be d+ + d−, simply 2

||w|| .

As we want to find the maximum-margin hyperplane, we need to maximize the margin

2
||w|| , which is the same as to minimize ||w||, subjects to constraints (2.28). Consequently

we can now transform this problem into a standard quadratic programming optimization

problem as in Eq. 2.29:

1

2
||w||2 → min

s.t. ∀i = 1, . . . ,n− 1, yi(w · xi + b) ≥ 1

(2.29)

By solving this quadratic programming optimization problem, we can predict ŷn as sgn(w ·

xi + b), where sgn(·) is the sign function. Eq. (2.30) is called the decision function, and

the value f(xi) for xi is called the decision value. Since decision function contains all the

information on the solution of the optimization problem, usually f(·) represents an SVM

classifier.

f(x) = w · x+ b (2.30)

For linearly non-separable case, non-negative slack variables ξi will be introduced as

V. Vapnik and C. Cortes suggested in [10]. This modification allows for mislabelled exam-

ples, and still tries to choose a hyperplane that splits the examples as cleanly as possible.

Because some mislabelled examples will fall on the other side of the category, which means

the hyperplane will not clearly separate all the examples into two categories, this modifica-

tion is called soft margin method. The constraints (2.28) will be replaced by the following

constraints:

yi(w · xi + b) ≥ 1− ξi

ξi ≥ 0 ∀i = 1, . . . , n− 1
(2.31)

Thus, for a training error to occur, the corresponding ξi must exceed unity. Hence,
∑n−1

i=1 ξi

is an upper bound on the training errors. We need to take this extra cost for errors

into account. By introducing parameter C as a trade-off between a large margin and a

36

small error penalty, the objective function changes from minimizing ||w|| to minimizing

||w|| + C
∑

i ξi. C is chosen by the user, a larger C corresponding to assigning a higher

penalty to errors. The new quadratic programming optimization problem can be written

as:

1

2
||w||2 + C

n−1∑

i=1

ξi → min

s.t. ∀i = 1, . . . , n− 1, ξi ≥ 0, yi(w · xi + b) ≥ 1− ξi

(2.32)

Especially while C =∞, all ξi must equal to zero, which makes the optimization problem

for non-separable case (2.32) the same as the problem for linearly separable case (2.29).

To make the optimization problem easy to handle and solve, we will transform this

prime form to Wolfe dual form [76] by introduce some non-negative Lagrange multipliers

αi for constraint −yi(w · xi + b) + 1 − ξi ≤ 0 in (2.32) and ri for constraint −ξi ≤ 0 in

(2.32). In this reformulation of the problem, the new optimization problem is as follows:

n−1∑

i=1

αi −
1

2

n−1∑

i=1

n−1∑

j=1

yiyjαiαj(xi · xj)→ max

s.t.
n−1∑

i=1

yiαi = 0, 0 ≤ αi ≤ C, ∀i = 1, . . . , n− 1

(2.33)

Notice that the slack variables ξi and Lagrange multipliers ri for ξi cancel themselves out

in formula Eq. (2.33). Additionally, by applying KarushKuhnTucker conditions, which

were published by and named after Harold W. Kuhn, Albert W. Tucker [36] and William

Karush [33], we have some more complementarity conditions:

∀i = 1, . . . , n− 1, (αi − C)ξi = 0 (2.34)

αi(−yi(w · xi + b) + 1− ξi) = 0 (2.35)

The most important advantage of dual form is that the slack variables ξi vanish from

the problem, appearing only in the constraints, while the constant C appears only as an

additional constraint on the Lagrange multipliers.

Suppose α̂ = (α̂1, α̂2, . . . , α̂n−1) solve this optimization problem. Thus, if 0 < α̂i < C,

we get ξi = 0 and −yi(w · xi + b) + 1 = 0. We could solve b in the decision function

37

Eq. (2.30) as:

b̂ :=
1

yi
− ŵ · xi (2.36)

The normal w in the decision function Eq. (2.30) could be obtained from the derivation

of the Lagrangian for problem (2.32), which is as follows:

ŵ :=
1

2

n−1∑

i=1

αiyixi (2.37)

Now we have our support vector machines classifier, and we could use Eq. (2.30) to assign

a label to the new object xn.

Apparently, the sum in Eq. (2.37) contains only xi such that αi ̸= 0. Such xi in training

set are called support vectors. Furthermore, there are two types of support vectors: those

with 0 < α̂i < C and those with α̂i = C. If 0 < α̂i < C, we get the slack variable ξ̂i = 0,

which means the vector is on the margin. If α̂i = C, we can have the slack variable ξ̂i > 0

(i.e. the positive slack variable), which means the vector is inside the margin.

Kernel Trick The optimization problem (2.33) we introduced before is a linear classifier.

In 1992, Bernhard E. Boser, Isabelle M. Guyon and Vladimir N. Vapnik suggested a way

to construct non-linear classifiers by applying the kernel trick to the problem in [6]. Kernel

trick was originally proposed by A. Aizerman et al. in [2]. To use the kernel trick in the

dual form of support vector machines is astonishingly straightforward: every dot product

of examples (xi · xj) in (2.33) is replaced by a non-linear kernel function K(xi, xj). This

maps all examples from their original feature space to a user-defined feature space (usually

higher-dimensional than the original one or even infinite-dimensional). The mapping allows

support vector machines to find a maximum-margin hyperplane in a transformed feature

space by computing values of kernel function instead of computing the dot product of the

examples in that space. This operation is often computationally cheaper than the explicit

computation of the coordinates.

Some common kernel functions include:

38

• Polynomial function:

K(xi,xj) = (κxi · xj + c)d (2.38)

The special case for this kernel function is when κ = 1, c = 0 and d = 1, it becomes

K(xi,xj) = xi · xj, which is exactly the dot product of examples.

• Radial basis function:

K(xi,xj) = exp(−γ∥xi − xj∥2) (2.39)

This kernel function is very popular among all kernel functions. The feature space

of this kernel has an infinite number of dimensions.

• Hyperbolic tangent function:

K(xi,xj) = tanh(κxi · xj + c), (2.40)

After choosing a user-specific kernel function and setting the parameter C and the

parameters for kernel function, the final optimization problem for support vector machines

with kernel trick can be written as:

n−1∑

i=1

αi −
1

2

n−1∑

i=1

n−1∑

j=1

yiyjαiαjK(xi,xj)→ max

s.t.
n−1∑

i=1

yiαi = 0, 0 ≤ αi ≤ C, ∀i = 1, . . . , n− 1

(2.41)

By applying the kernel function, the SVM classifier also reformulates to Eq. (2.42)

ŷ := sgn(
1

2

n−1∑

i=1

α̂iyiK(xi,xn) + b̂) (2.42)

where

b̂ :=
1

yi
− 1

2

n−1∑

k=1

α̂kykK(xi,xk) (2.43)

The pseudo-code of the algorithm for solving this dual form optimization problem

by using sequential minimal optimization (invented by John Platt in [47]) is listed in

Algorithm 4.

39

Algorithm 4: Binary Support Vector Machines classifier

Data: label array y of all training examples

matrix Q : Qij = yiyjK(xi,xj)

stopping tolerance ϵ

Result: decision function f

αi ← 0 ; /* initial Lagrange multipliers */

Gi ← −1 ; /* initial gradients */

while TRUE do

(i, j)← SelectWorkingSet(y, G, Q);

/* select two Lagrange multipliers to solve */

if reach stopping tolerance then

break;

end

αi ← UpdateAlpha(i) ; /* update chosen alpha i */

αj ← UpdateAlpha(j) ; /* update chosen alpha j */

G← UpdateGradient(αi,αj) ; /* reconstruct gradients */

end

b̂← CalculateB() ; /* calculate offset b */

return f ← (α̂, b̂)

40

Function SelectWorkingSet(y, G, Q)

Function SelectWorkingSet(y, G, Q)

i← argmaxi {−yiGi};

j ← argminj {−(yjGj − yiGi)2/(Qii +Qjj − 2yiyjQij)};

if yjGj − yiGi < ϵ then /* reach stopping tolerance */

return −1

else
return i, j

end

end

2.4.3 Multi-class SVM

Support vector machines (SVMs) is a very well developed technique and is becoming

a popular algorithm in almost all fields of machine learning. However, this algorithm

was originally designed for binary classification, that is, the class labels can only take

two values. The lack of capability dealing with multi-class problems would hinder this

algorithm being implemented in more applications. The research on how to effectively

extend support vector machines for multi-class classification has never stopped.

Currently, there are two types of approaches solving multi-class SVM. One is by de-

composing multi-class SVM into several binary-class SVM sub-problems while the other is

by directly considering all examples in a single optimization formulation. Popular meth-

ods for using a combination of several binary SVM classifiers to solve a given multi-class

problem are: one-versus-all SVM, one-versus-one SVM, error-correcting output codes [15]

and directed acyclic graph SVM (DAGSVM) [49]. Common methods for constructing a

single classifier for multi-class problem include: K. Crammer and Y Singer’s Multi-class

SVM [12] [13] and J. Weston and C. Watkins’s Multi-class SVM [74], [73]. In the following,

there are some descriptions of the algorithms mentioned above.

One-versus-all SVM is probably the earliest used implementation for SVM multi-class

41

classification [7]. This approach constructs a set of K binary classifiers, f0, f1, . . . , fK−1,

where K is the number of classes. Each binary classifier is trained with examples in some

class as positive examples and all the other examples as negative examples. In other words,

the ith SVM classifier fi is trained with all the examples of the ith class as positive, and all

other examples as negative examples. We then combine them to get a multi-class classifier

according to the largest output before applying the sign function. The predicted label ŷn

for new object xn is described in Eq. (2.44):

ŷn := argmax
i=0,...,K−1

fi(xn) (2.44)

This strategy is also called the winner-takes-all strategy.

Another popular solution for multi-class SVM is one-versus-one SVM. The One-versus-

one method was introduced in [34] and firstly used on SVM in [21] and [35]. This method

constructs a set of K(K−1)
2 binary classifiers on examples from each pair of classes. For

examples from the ith and the jth classes, the binary SVM classifier is referred to as fij .

In addition, when we train all classifiers, we always take the examples of the former as

positive examples and the latter as negative examples. Hence, fij is basically the same

as fji except the labels are opposite, that is, fij(x) = −fji(x). After we trained all the

classifiers, we assign a label ŷn to the new object xn through the following voting strategy

suggested in [21]: if the classifier fij predicts xn is in the ith class then the vote goes for

ith class. Otherwise, the vote goes for jth class. This process is repeated for all binary

classifiers. Then we predict ŷn the class with the majority of votes:

ŷn := argmax
i=0,...,K−1

K−1∑

j=0,j ̸=i

V(fij(xn)), V(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

1 if x > 0

0 if x ≤ 0

(2.45)

V(x) is the voting function that gives “1” for voting and “0” for not voting as output. If

two labels have equal votes, we take the first appeared one as our predicted label. This

voting strategy is called the max-wins-voting strategy.

Directed acyclic graph SVM (DAGSVM) [49] is a method that shares the same idea

with One-versus-one method. This method also trains a set of K(K−1)
2 classifiers on each

42

pair of classes. However, the difference is that DAGSVM predicts the labels of new objects

through a rooted binary directed acyclic graph that uses the K(K−1)
2 classifiers as its nodes.

This kind of acyclic graph starts with a rooted node, and each node points to two other

nodes or two possible labels. At each node, the new object xn will be carried out on the

binary SVM classifier that the node associated with, the outcome of this SVM classifier

determines which direction it goes. Thus the testing example xn goes through a path from

the rooted node to a possible label. Since one possible class will be eliminated at each

node, only (K − 1) SVM classifiers will be carried out to predict ŷn for xn. Therefore, the

time cost of this method will be reduced comparing to One-versus-one SVM, which will

carry out all K(K−1)
2 classifiers to predict a label. In addition, this method also solves the

problem arises in the max-wins-voting strategy, that is, there may be two possible classes

have the same votes.

SVM using error-correcting output codes is also a method to decompose multi-class

SVM into a series of binary SVM classifiers. Theoretically speaking, the error-correcting

output codes (ECOC) is a powerful framework to deal with the multi-class problem, which

can be deployed with any binary classification algorithms. It was developed by Dietterich

and Bakiri in 1995 [15]. The basis of the ECOC framework consists of representing each

class by a designed code. The codes encode the category information of each class for

a given binary problem. Additionally, they are sequences of binary digits “0” and “1”,

or in SVM “−1” and “+1” to make it meaningful. Since each bit of the codeword is a

binary digit, we concatenate the feature vector xi and each bit of the codeword as the true

label of xi to construct several binary SVM classifiers. To classify a new object xn, every

classifier trained before is evaluated to produce a new codeword. This is then mapped to

the nearest of all the possible codewords. When we say “nearest” here, we usually use

the Hamming distance introduced by Richard Hamming in [25] as the measurement. We

assume the codeword of k-bits length for each class is Wi = (wi,0, . . . , wi,k−1), and the

43

predicted codeword is B = (b0, . . . , bk−1). The predicted label can be given as follows:

ŷn := argmin
i=0,...,K−1

k−1∑

j=0

|bj − wi,j | (2.46)

The advantage of using this method is that by encoding each label into an error-correcting

code and training each bit separately, the classifier may be able to recover from the errors.

If the minimal Hamming distance between any pair of known codewords is d, then this

algorithm can at least correct errors in ⌊d−1
2 ⌋ bits of the predicted codeword B. This is

because the minimal Hamming distance between the predicted codeword B and any other

known codewords Wi is d−⌊d−1
2 ⌋ = ⌊

d−1
2 ⌋+1 > ⌊d−1

2 ⌋, which means the nearest codeword

of B is still the correct one.

2.4.4 Crammer and Singer’s Multi-class SVM

K. Crammer and Y. Singer [13] proposed a multi-class SVM method that casts the multi-

class classification problem into a single optimization problem, rather than decomposing

it into multiple binary classification problems.

We follow the same problem descriptions given in §2.1 when introducing this method.

We are given (n− 1) training examples (x1, y1), . . . , (xn−1, yn−1), which are classified into

K different classes. Each xi is a d-dimensional vector that carries d attributes. The set of

possible labels Y = {0, 1, . . . ,K − 1}. We are also given a new object xn, and our mission

is to predict which class ŷn this object belongs. In other words, we want to construct a

multi-class classifier H : X→ Y that maps an example xi from the feature space X to an

possible label yi from the label space Y. In Crammer and Singer’s algorithm, it aims to

construct a classifier of the form

HM(x) :=
K−1

argmax
r=0

{Mr · x} (2.47)

where M is a matrix of size K × d and Mr is the rth row of M. And we interchangeably

call the value of Mr · xi the similarity score for class r. In this way, we predict the label

ŷn the same as the index of the row in M that achieves the highest similarity score with

44

xn.

The starting point of building this multi-class classifier is to generalize the notion of

margin to multi-class problems. We can do this by introducing the following piecewise

linear bound

max
r

{Mr · xi + 1− δyi,r}−Myi · xi (2.48)

where δp,q is equal to 1 if p = q and 0 otherwise. Therefore, Eq. (2.48) is zero if the

similarity score Myi · xi for the true label yi is larger by at least one than the scores

assigned to the rest of the labels. If the similarity score for the true label is larger than

any other scores by a value less than one, we suffer a loss on the margin. If the similarity

score for the true label is not the largest score among all scores, we then have a misclassified

example. This is the generalized notion of margin for multi-class problems.

In addition, we can calculate an upper bound on the empirical loss by summing all

examples in Z together,

ϵZ(M) ≤ 1

n− 1

n−1∑

i=1

[
max

r
{Mr · xi + 1− δyi,r}−Myi · xi

]
(2.49)

According to the definition of linearly separable, the above loss is equal to zero for all

examples, that is,

∀i, max
r

{Mr · xi + 1− δyi,r}−Myi · xi = 0 (2.50)

If a matrix M satisfies Eq. (2.50), it would also satisfy the following constraints,

∀i, r, Myi · xi + δyi,r −Mr · xi ≥ 1 (2.51)

If we define the norm of a matrix M the same as the sum of the norm of all row vectors

in this matrix ||M||22 = ||(M0, . . . ,MK−1)||22 =
∑

i,j M
2
i,j , based on the previous work [49]

and [13], we would like to find a matrix M of a small norm and also subjects to Eq. (2.51).

Therefore, this optimization problem for linearly separable case can be represented in a

standard quadratic programming optimization form,

1

2
||M||22 → min

M

s.t. ∀i, r Myi · xi + δyi,r −Mr · xi ≥ 1

(2.52)

45

In a more general case that the feature space cannot be linearly separated by this multi-

class classifier, we can change the margin to a soft margin as we did in generalizing SVM

from linearly separable case to linearly non-separable case. Therefore, some non-negative

slack variables ξi ≥ 0 are added to the constraints Eq. (2.51),

∀i, r, Myi · xi + δyi,r −Mr · xi ≥ 1− ξi (2.53)

Also the optimization problem Eq. (2.52) will be replaced by

1

2
β||M||22 +

n−1∑

i=1

ξi → min
M,ξ

s.t. ∀i, r Myi · xi + δyi,r−Mr · xi ≥ 1− ξi

(2.54)

To solve this prime form of the optimization problem, we transform this to its dual

form by adding a set dual variables η and use KarushKuhnTucker theorem in [33] and [36]

to convert the inequality constraints to equality constraints. To make the final dual form

simple and easy to understand, we substitute some variables and omit some additive and

positive multiplicative constants. Let 1i be the vector whose components are all zero except

for the ith component that is equal to one, and let 1 be the vector whose components are

all one. Then the dual form can be written as follows,

−1

2

∑

i,j

(xi · xj)(τ i · τ j) + β
∑

i

τ i · 1yi → max
τ

s.t. ∀i, τ i ≤ 1yi and τ i · 1 = 0

(2.55)

where τ i = 1yi − ηi. We can describe M in the form of

Mr := β−1
∑

i

τi,rxi (2.56)

We substitute Eq. (2.56) in Eq. (2.47) and finally we get the classifier for predict ŷn for

the new object xn

ŷn := H(xn) =
K−1

argmax
r=0

{Mr · xn} =
K−1

argmax
r=0

{∑

i

τi,r(xi · xn)
}

(2.57)

46

Additionally, if we substitute τ i with 1yi − ηi in Eq. (2.56), we can rewrite Eq. (2.56)

in terms of variable η

Mr := β−1
[∑

i:yi=r

(1− ηi,r)xi +
∑

i:yi ̸=r

(−ηi,r)xi

]
(2.58)

Eq. (2.58) indicates that the solution of the optimization problem given by Eq. (2.55) is a

linear combinations of the examples x1, . . . , xn−1. In the same way in Eq. (2.37) for binary

SVM classifier, we say that an example xi is a support vector if there is a row r for which

this coefficient is not zero. In Eq. (2.58), the support vectors are separated into two types

through the two sums. The left part of the plus sign in Eq. (2.58)
∑

i:yi=r (1− ηi,r)xi

implies all the support vectors of class r. If ηi,r < 1, an example xi is a support vector.

The right part
∑

i:yi ̸=r (−ηi,r)xi implies all other support vectors from the rest classes

except class r. If ηi,r > 0, an example xi is a support vector.

Note in Eq. (2.55) and Eq. (2.57), an example xi only appears in the form of inner

product, which means we can replace all inner product (xi · xj) with the value of a ker-

nel function K(xi,xj) that satisfies Mercer’s conditions mentioned in [65]. Hence, the

optimization problem Eq. (2.55) can be rewritten as follows

−1

2

∑

i,j

K(xi,xj)(τ i · τ j) + β
∑

i

τ i · 1yi → max
τ

s.t. ∀i, τ i ≤ 1yi and τ i · 1 = 0

(2.59)

The original classifier in Eq. (2.57) can be rewritten to Eq. (2.60) as well.

ŷn := H(xn) =
K−1

argmax
r=0

{∑

i

τi,rK(xi,xn)
}

(2.60)

To solve the optimization problem described in Eq. (2.55) will lead to immeasurable

time consuming and memory costing. However, K. Crammer and Y. Singer also gave

an algorithm to solve this problem in [12] by decomposing it into small problems. The

pseudo-code of this algorithm is given in Algorithm 5.

47

Algorithm 5: Crammer and Singer’s multi-class SVM classifier

Data: training set: {(x1, y1), . . . , (xn−1, yn−1)}, and new object xn

Result: predicted label ŷn

τ i ← 0 ; /* initial coefficients tau */

Fi,r ← −βδr,yi ; /* initial matrix F */

Ai = K(xi,xi) ; /* initial diagonal kernel values */

repeat

for i = 1 to n− 1 do

ψi ← maxr Fi,r −minr:τi,r<δyi,r
Fi,r;

end

p← argmaxi ψi;

for r = 0 to K − 1 do

Dr ← Fp,r

Ap
− τp,r + δr,yp ;

θ ← 1
K

(∑K−1
r=0 Dr

)
− 1

K ;

end

τ ⋆
p ← FixedPoint(D, θ, ϵ/2);

∆τ p ← τ ⋆
p − τ p;

for i = 1 to n− 1 do

for r = 0 to K − 1 do

Fi,r ← Fi,r +∆τp,rK(xi,xj);

end

end

τ p ← τ ⋆
p;

until ψp < ϵβ;

ŷn ← argmaxr

{∑
i τi,rK(xi,xn)

}
;

/* find label with maximal similarity score */

return ŷn

48

Function FixedPoint(D, θ, ϵ)

Function FixedPoint(D, θ, ϵ)

initialize l← 0;

repeat

l← l + 1;

θl+1 ← 1
K

[∑K−1
r=0 max {θl, Dr}

]
− 1

K ;

until | θl−θl+1

θl
| ≤ ϵ;

for r = 0 to K − 1 do

νr ← min {θl+1, Dr};

end

return τ ← ν − B
A

end

2.5 Probabilistic Prediction Algorithms

Instead of predicting only a single label for the unknown object, probabilistic predictors

are able to provide a probability distribution over a set of labels. This kind of predictors

complements predicted labels with a degree of certainty. Sometimes, the information on

probabilities can be more useful. T. Hastie, R. Tibshirani and J. Friedman said “The

interest is often more in the class probabilities themselves, rather than in performing a

class assignment.” in [27].

When we obtain a set of probabilistic estimations on each class for the new object xn,

say pi(xn), i = 0, . . . ,K−1, we use some optimal decision rule [5, p. 39-40] to help us map

the probability distribution to predicted label. Naturally, we classify xn into the class that

has the highest probability. This is also called the maximum a posteriori (MAP) estimate.

Hence, the classifier of probabilistic predictors are as follows

ŷn := argmax
i

pi(xn) (2.61)

In this section, we will introduce some most widely used probabilistic predictors.

49

Among them are: Naive Bayes Classifier, Logistic Regression and Platt Scaling. In addi-

tion, the first two algorithms are naturally probabilistic while Platt scaling turns support

vector machines into probabilistic predictors.

2.5.1 Naive Bayes Classifier

Naive Bayes classifiers are a set of probabilistic predictors, which has been studied exten-

sively since the 1950s. From its name we could easily find its two key properties, the word

“Bayes” in the name derives from the fact that this algorithm is based on applying Bayes’

theorem (named after T. Bayes 1702-1761) while the word “Naive” in the name stands

for the fact that this algorithm is under the naive independence assumptions between the

features. This assumption means that, in simple terms, the value of each feature in the

feature space X is not related any other feature.

According to [54], Naive Bayes was introduced to the area of information retrieval

in the early 1960s. After that, it has become a popular algorithm for the problem of

classifying documents into different categories by using word frequencies as the features.

Despite its simplicity, Naive Bayes can provide comparable results with some sophisticated

methods in this area of documents classification if appropriately preprocessed [52]. Later

on, it was also applied in medical diagnosis [53].

In addition to the description of problem given in §2.1, we assume that each object xi

is a d-dimensional vector, which can be represented as xi = (fi,1, . . . , fi,d). We refer to

the collection of each feature as Fj where j = 1, . . . , d. Then the probability model for a

classifier can be written as

p(Y |F1, . . . , Fd) (2.62)

This is the conditional probability of the dependent class variable Y on all feature variables

F1, . . . , Fd. However, when the dimension of the feature vector is large, Eq. (2.62) becomes

50

infeasible to be based on. Therefore, we use Bayes’ theorem to reformulate this model

p(Y |F1, . . . , Fd) =
p(Y)p(F1, . . . , Fd|Y)

p(F1, . . . , Fd)

=
p(Y)p(F1|Y)p(F2|Y, F1)p(F3, . . . , Fd|Y, F1, F2)

p(F1, . . . , Fd)

=
p(Y)p(F1|Y)p(F2|Y, F1) . . . p(Fd|Y, F1, . . . , Fd−1)

p(F1, . . . , Fd)

(2.63)

Since the feature variables are given by the training set, p(F1, . . . , Fd) is a scaling factor,

which is also a constant when the training set is known. In other words, p(Y |F1, . . . , Fd)

is proportional to p(Y)p(F1|Y)p(F2|Y, F1) . . . p(Fd|Y, F1, . . . , Fd−1). Now we take Naive

Bayes’ independence assumptions between the features into account, which results in

p(Y |F1, . . . , Fd) ∝ p(Y)p(F1|Y)p(F2|Y, F1) . . . p(Fd|Y, F1, . . . , Fd−1)

∝ p(Y)p(F1|Y)p(F2|Y) . . . p(Fd|Y)

∝ p(Y)
d∏

i=1

p(Fi|Y)

(2.64)

By combining Eq. (2.64) with the optimal decision rule Eq. (2.61), we get the classifier for

Naive Bayes

ŷn := argmax
y

p(Y = y)
d∏

i=1

p(Fi = fi|Y = y) (2.65)

Along with the predicted label, we can also give the probabilistic estimate for the predicted

label

p(Y = ŷn) =
p(Y = ŷn)

∏d
i=1 p(Fi = fi|Y = ŷn)∑K−1

y=0 p(Y = y)
∏d

i=1 p(Fi = fi|Y = y)
(2.66)

To calculate this classifier, the probability p(Y = y) for each label can be estimated by

the relative frequency of each class in the training set. For the estimates of the probability

p(Fi|Y) for each feature, we need to make an additional assumption on the distribution of

the feature variables or generate non-parametric models for the variables [32]. The extra

assumptions are referred to as the event models of Naive Bayes classifiers. Among the

popular event models are

• Gaussian Naive Bayes In this assumption, we assume the continuous values of

each feature variable Fi have a Gaussian distribution. Then the probability for

51

feature variable F is as follows

p(F = f |Y = y) =
1√
2πσ2

y

e
− (f−µy)2

2σ2
y (2.67)

where µy and σ2
y are normal distribution parameters, which can be calculated from

the mean and variance of the values in F associated with class y.

• Multinomial Naive Bayes When the values of features are discrete rather than

continuous, we can use multinomial naive Bayes assumption. In this assumption, we

assume (n− 1) (the same as the number of training examples following our previous

description) values of a feature variable F take on J different values, we then build

a new vector θ = (θ1, . . . , θJ) from the absolute frequency of each possible value

in the original feature vector. Therefore, θj is the frequency of the jth value, and
∑J

j=1 θj = n−1 At the meanwhile, we also assume the values of each feature variable

have a multinomial distribution (p0, . . . , pK−1), where pi is the probability that class

i occurs. Hence, the probability of observing a feature vector θ is given by

p(θ|Y) =
(
∑

j θj)!∏
j (θj)!

∏

i

pθii (2.68)

• Bernoulli naive Bayes When the values of features are binary numbers, we can

use Bernoulli naive Bayes assumption. In this assumption, the probability of an

object given a class y is given by

p(F1, . . . , Fd|Y = y) =
d∏

i=1

[Fip(wi|Y = y) + (1− Fi)(1− p(wi|Y = y))] (2.69)

where p(wi|Y = y) is the probability of class y generating the binary variable wi.

2.5.2 Logistic Regression

Logistic regression is a sort of probabilistic predictors that predict probabilities for binary

problems. Although it has the terminology “regression” in its name, it should be empha-

sized that this is a predictor for classification rather than regression [5, p. 205]. Commonly,

logistic regression is also called logit regression or logit model [20, p. 128].

52

Logistic regression measures the relationship between the categorical label space and

the feature space, of which the features are usually (but not necessarily) continuous, by

using probability scores as the estimations on how likely the outcome is one of the possible

labels [4]. The probability for each single testing example is obtained by substituting a

linear model into a logistic function. The model of logistic regression is based on two extra

assumptions. The first assumption is that the feature variables should be independent

with each other. The second one is that the conditional mean p(y|x) subjects to Bernoulli

distribution.

Before we introduce logistic regression, we will begin with the logistic function. Logistic

function was named in 1844-1845 by Pierre Franois Verhulst [67], which always takes on

values between 0 and 1 [28]:

p̂(t) =
et

et + 1
=

1

1 + e−t
(2.70)

where p̂ is the predicted probability and e is the natural logarithm. If we treat t as a linear

combination of feature vector x, say t = β0 +β ·x, the logistic function can be written as:

p̂(x) =
1

1 + e−(β0+β·x) (2.71)

In Eq. (2.71), β0 and β are coefficients that related to the feature space. Since the range

of logistic function is between 0 and 1 and logistic function is monotonically increasing,

this will be interpreted as the probability that how likely the predicted label should be

“1” rather than “0” in a binary case denoted by {0, 1}.

The logistic regression function Eq. (2.71) takes feature vector x as input and output

p̂(x) as the probabilistic prediction. The value of β0 + β · x can be any number from

negative infinity to positive infinity, whereas the output p̂(x) is always confined to values

between 0 and 1. Therefore, it is perfect to be interpreted as a probability.

To minimize the misclassification rate, we also use Eq. (2.61) to predict probabilities,

that is to predict the label with the highest probability. In this binary case, we should

predict ŷ = 1 when p̂ ≥ 0.5 and ŷ = 0 when p̂ < 0.5. We notice that whenever β0+β ·x ≥ 0

53

the predicted probability p̂ ≥ 0.5 otherwise p̂ < 0.5. This means that logistic regression

gives us a linear classifier for ŷ as follows

ŷ =

⎧
⎪⎪⎨

⎪⎪⎩

1 if β0 + β · x ≥ 0

0 if β0 + β · x < 0

(2.72)

Therefore, logistic regression can be seen as a special case of the generalized linear model.

The coefficients β0 and β can be derived through maximum likelihood estimation [39].

In addition, logistic regression applies to multi-class problems by running K − 1 in-

dependent binary logistic regression models, which is usually referred to as multinomial

logistic regression. Before we apply multinomial logistic regression, we need to make an-

other assumption that the class variable should follow the assumption of independence of

irrelevant alternatives (i.e. IIA). This assumption means that the odds of one class over

another do not depend on the presence or absence of other “irrelevant” alternatives. This

allows the choice of K alternatives to be modelled as a set of K − 1 independent binary

choices.

As in Eq. (2.72), we write the linear classifier for multinomial logistic regression to

predict the probability for kth class of example xi as

f(k, i) = βk ·Xi (2.73)

where βk = (β0, . . . ,βd) and Xi = (0, x1, . . . , xd). Note that Xi in Eq. (2.73) is different

from the feature vector that are grouped into vectors of size d+ 1 where d is the number

of features in the training set.

Thus, we choose one of the outcomes, say K − 1, as a “pivot” and then we run K − 1

independent binary logistic regression models for the other K − 1 labels against the pivot

54

label. Hence, this would proceed as follows

ln
p(yi = 0)

p(yi = K − 1)
= β0 ·Xi

ln
p(yi = 1)

p(yi = K − 1)
= β1 ·Xi

· · · · · ·

ln
p(yi = K − 2)

p(yi = K − 1)
= βK−2 ·Xi

If we exponentiate both sides and solve for the probabilities, we get:

p(yi = 0) = p(yi = K − 1)eβ0·Xi

p(yi = 1) = p(yi = K − 1)eβ1·Xi

· · · · · ·

p(yi = K − 2) = p(yi = K − 1)eβK−2·Xi

Using the fact that all K of the probabilities must sum to one, we find:

p(yi = K − 1) =
1

1 +
∑K−2

k=0 eβk·Xi

(2.74)

We can use this to find the other probabilities:

p(yi = 0) =
eβ0·Xi

1 +
∑K−2

k=0 eβk·Xi

p(yi = 1) =
eβ1·Xi

1 +
∑K−2

k=0 eβk·Xi

· · · · · ·

p(yi = K − 2) =
eβK−2·Xi

1 +
∑K−2

k=0 eβk·Xi

The unknown parameters βk can then be solved as an optimization problem.

2.5.3 Platt Scaling

Unlike Naive Bayes classifier and Logistic Regression, which generate probabilities on

themselves, Platt scaling is a method that transforms the outputs of a classifier into a

55

probability distribution over classes. The original method that applies a Platt scaling on

the outputs of support vector machines was proposed by John Platt in [48]. Additionally,

it has been shown to be effective for other types of classifiers as well [42].

The basic idea of Platt scaling is to fit a logistic function on the outputs of a classifier.

Then the outputs of the logistic function, which are restricted to a range from 0 to 1, will

be treated as the probabilistic estimates to the predicted labels. It sounds like Logistic

Regression we mentioned in the previous section. However, the difference is that Logistic

Regression tries to find the optimized coefficients for a logistic regression model, which

takes in the linear combination of the values of features as inputs. While Platt scaling

tries to find the optimized coefficients for a logistic regression model, which takes in the

outputs of other classifiers as input.

Given a binary classification problem Z = {(x1, y1), . . . , (xn−1, yn−1)} where the label

space Y is denoted by {−1,+1}. Moreover, we are also given a classifier f trained on Z

and the real-valued function f follows the form of

ŷn :=

⎧
⎪⎪⎨

⎪⎪⎩

+1 if f(x) ≥ 0

−1 if f(x) < 0

(2.75)

when predicting ŷn for the new object xn.

Therefore, the probabilistic estimates given by Platt scaling on this classifier are as

follows

p̂(yn = +1|xn) =
1

1 + exp(Af(x) +B)
(2.76)

that is, a logistic transformation of the classifier scores f(x), where A and B are two scalar

parameters that are learned by the algorithm.

The optimized parameter A and B can be determined by using maximum likelihood

estimation from a training set (fi, yi). Additionally, Platt suggests to use regularized

target probabilities ti instead of yi+1
2 , which is 1 for yi = +1 and 0 for yi = −1, as the

56

new training set (fi, ti). ti can be defined as:

ti :=

⎧
⎪⎪⎨

⎪⎪⎩

N++1
N++2 if yi = +1

1
N−+2 if yi = −1

(2.77)

where N+ is the number of positive examples and N− is the number of negative examples.

Then, the parameters A and B are found by minimizing the negative log likelihood of

the training data, which is a cross-entropy error function.

−
∑

i

[ti log (pi) + (1− ti) log(1− pi)]→ min
A,B

(2.78)

The decision function Eq. (2.30) of SVM we introduced in §2.4.2 follows the same form

we described in Eq. (2.75). When the value of f(x) is large, it means that the example is

far away from the separating hyperplane Eq. (2.25). We expect the predicted probability

given by Eq. (2.76) to be close to 1 since we consider this example is unlikely to have the

negative label “-1”. In contrast, when the value of f(x) is close to 0, it means that the

example is near the separating hyperplane. We think the predicted probability that this

example is a positive example should be much lower than the previous situation, maybe

around 0.5. By applying Platt scaling, the above requirements can be completely satisfied.

Note that when B ̸= 0, the probabilistic estimates contain a correction compared to the

original decision function, which means Platt scaling can calibrate the predictions based on

the maximal predicted probabilities. This is useful especially when applying Platt scaling

on support vector machines since the bias introduced by SVM might be calibrated in Platt

scaling.

The original method of Platt scaling is only applicable to binary problems. However, by

introducing pairwise coupling, Ting-Fan Wu, Chih-Jen Lin and Ruby C. Weng proposed

a method to calculate predicted probabilities on multi-class problem [77]. This method

can be viewed as an improved version of the coupling approach by P. Refregier and F.

Vallet in [51]. The basic idea of this method is to introduce the estimated pairwise class

probabilities rij first. rij is an estimate to the true probability µij = P (y = i|y = i or j,x),

57

which could be obtained by training a model for examples of ith and jth classes in the

training set. Then we could use all rij to estimate pi = P (y = i|x) where i = 0, . . . ,K−1.

In [51], P. Refregier and F. Vallet considered that

rij
rji
≈ µij

µji
=

pi

pi+pj

pj

pi+pj

=
pi
pj

(2.79)

Thus, choosing any K−1 rij and considering the condition
∑K−1

i=0 pi = 1, the probabilities

pi can be obtained by solving a linear system.

In [77], a optimization formulation was proposed

K−1∑

i=0

∑

j:j ̸=i

(rjipi − rijpj)
2 → min

p
s.t.

K−1∑

i=0

pi = 1, pi ≥ 0, ∀i (2.80)

This formulation considers all equations in Eq. (2.79) not only K−1 of them, which solves

the problem that the results depend strongly on the selection of K − 1 rij , pointed out

previously by Price et al. [50].

In the experiments carried out in §5, this method was used for multi-class problems.

2.6 Comparisons with Simple Predictors and Proba-

bilistic Predictors

Conformal predictors and Venn predictors represent one type of algorithm that produce

predictions complemented with the information on their reliability. In this section, we

compare them with other approaches. Firstly, we compare these algorithms with simple

predictors. They form a large category among all machine learning algorithms. Simple

predictors are a type of algorithm that output a label without any additional information.

k-nearest neighbours and support vector machines are two most widely-used examples

of this type of algorithm. Secondly, we compare Conformal and Venn predictors with

probabilistic predictors that output a probability distribution of a new label. We will

briefly describe this method that provide information on how reliable predictions are,

compare them with Conformal and Venn predictors and demonstrate their limitations.

58

In the introduction of this thesis, we described two measurements of performance of

Conformal and Venn predictors: validity and efficiency. Validity demonstrates how re-

liable predictions are; efficiency is concerned with how informative predictions are. For

Conformal predictors, validity implies that the error rate is close to the preset significance

level, and efficiency means outputs contain as few as possible multiple predictions. For

Venn predictors, validity implies that observed frequencies are well-calibrated by the prob-

ability distributions it outputs. While efficiency means the probability interval output by

Venn predictors is narrow and close enough to 0 or 1. For simple predictors, efficiency is

guaranteed since single prediction is informative. However, there is no concept of validity

for simple predictors, since simple predictors only give single predictions.

For probabilistic predictors, validity is usually guaranteed, but only under statistical

assumptions that are stronger than i.i.d. (lots of probabilistic predictors assumes that

examples are of a specific probability distribution). While efficiency for probabilistic pre-

dictors usually depends on the algorithms.

This is summarised in Table 2.1.

2.7 Summary

In this chapter, we introduced the frameworks of Conformal and Venn predictors alongside

some underlying algorithms that used or compared in this thesis. Conformal and Venn

predictors were introduced in [69] and represent a new type of algorithmic frameworks to

make probabilistic predictions. They provide information on how reliable the prediction is

for each new object, and more important is that this information is valid when the online

mode is applied.

We demonstrated that these algorithms had distinct advantages over other probabilistic

algorithms. These advantages are summarised as follows:

1. These algorithms give single predictions for the unknown objects alongside the es-

timations of how reliable they are, which makes them more informative than any

59

Table 2.1: Comparison with simple predictors and probabilistic predictors

Predictor Output Type Validity Efficiency

Simple

predictors

single

prediction

depends on the

data

depends on the

algorithm

Probabilistic

predictors

single

probability

distribution

guaranteed

under strong

statistical

assumptions

depends on the

algorithm

Conformal

predictors

a set of

predictions

guaranteed depends on the

nonconformity

measure

Venn

predictors

a set of

probabilities

guaranteed depends on the

taxonomy

60

other simple predictors or probabilistic predictors.

2. Validity is based on a simple i.i.d. assumption (or a weaker exchangeability assump-

tion), which can be often satisfied when data sets are randomly permuted. Valid

predictions do not depend on the assumed probability distribution of examples as

normal probabilistic predictors usually do.

3. These two methods are flexible frameworks rather than single algorithms. This

means practically any machine learning algorithm can be used as the underlying

algorithm.

61

Chapter 3

Transforming Predictions into

Probabilities

Generally, there are two types of algorithms that give probabilistic estimations. The

first type of algorithm can generate probabilities itself, e.g. Naive Bayes classifier and

Logistic Regression. The other type of algorithm generates probabilities based on some

outputs from other classifiers, e.g. Platt Scaling. More specifically, this kind of algorithm

transforms the predictions given by other classifiers into probabilities. This concept is

similar to Platt Scaling, which transforms the decision values of an SVM classifier into

probabilities by fitting a sigmoid function on them.

In this chapter, we will mainly introduce two designs of algorithms that transform

predictions into probabilities. This first one is called Venn-ABERS Prediction and it is

introduced in §3.2. This algorithm is a different type of Venn predictor and transforms

the outputs of other classifiers into probabilities by applying isotonic regression. The

second one is called Conformal Prediction with Bivariate Isotonic Regression (CP-BivIR)

and it is introduced in §3.3. It is an algorithm based on conformal prediction. This

algorithm transforms confidences and credibilities obtained from conformal predictors into

62

probabilities by applying a bivariate isotonic regression to them.

3.1 Related Works

Before we introduce these two algorithms, we start with introducing some algorithms

related to them. There are many algorithms that transform the predictions given by other

classifiers into probabilities. Among them, Platt Scaling transforms decision values into

probabilities, which was introduced in §2.5.3. Zadrozny and Elkan’s SVM with Isotonic

Regression was also an approach that convert SVM scores into probabilities.

3.1.1 SVM with Isotonic Regression

SVM with Isotonic Regression was proposed in [78] by Zadrozny and Elkan. The basic

idea was very similar to Platt Scaling. It trains a binary SVM classifier on all training

data set and calculate the decision values as well. Then it maps all decision values into

an isotonic sequence of values between 0 and 1. Intuitively, the values could be output as

probabilities. When a new object is coming, we calculate its decision value and use this

value to locate its position in the isotonic sequence and output the average value of nearby

values as the probability.

To be more explicit, suppose we are given a binary classification problem: the training

set is !z1, z2, . . . , zn−1" while the label space Y = {0, 1}. We are offering a new object

xn as well. Our task is to predict ŷn and the probability that the label is 1. This

algorithm works as follows. First, we train a binary SVM classifier on this problem with

the optimal hyperplane w ·x+ b = 0. Then the decision value di for example zi is defined

as di = w · xi + b Decision values have no imposed boundaries, ranging from −∞ to

∞. We then pair decision values with the true labels of training examples together as

(di, yi). After we get a sequence of pairs (d1, y1), (d2, y2), . . . , (dn−1, yn−1) and we sort

this into a increasing sequence according to the decision values. Let the sorted sequence

be (dπ(1), yπ(1)), (dπ(2), yπ(2)), . . . , (dπ(n−1), yπ(n−1)). Since possible labels are 0 and 1,

63

the label sequence yπ(1), yπ(2), . . . , yπ(n−1) is a series of binary numbers. We then adopt

a “pool-adjacent violators algorithm” (abbrev. PAVA, we will cover the details in later

section) on the binary sequence and transform the sequence into a monotonically increasing

sequence y′π(1), y
′
π(2), . . . , y

′
π(n−1). For every i < j, there must be y′π(i) ≤ y′π(j). We predict

the new object xn by calculate its decision value dn. We announce the probability as y′π(i)

where i = 1, 2, . . . , n− 2, dπ(i) ≤ dn < dπ(i+1).

This method is motivated by the fact that the relationship between SVM scores and the

empirical probabilities appears to be monotonically increasing for many datasets. The PAV

algorithm finds the stepwise-constant isotonic function that best fits the data according

to a mean-squared error criterion.

3.1.2 Inductive Conformal Predictors

Inductive Conformal Predictors (abbrev. ICP) are not algorithms that transform predic-

tions into probabilities. However, both algorithms introduced in the followings use the

same concept proposed in this algorithm. It was introduced by Papadopoulos in [44].

The basic idea of Inductive Conformal Predictors is as follows: we are given a stan-

dard classification problem. Instead of taking all training examples into consideration as

Transductive Conformal Predictors (abbrev. TCP) does, Inductive Conformal Predictors

tries to solve the problem by dividing the original training data set into two parts. The

small part extracted from the original training set is called calibration set, while the big

part remains is called proper training set. A conformal predictor is firstly trained only

on the proper training set and then adapted to the calibration set. Only nonconformity

scores of examples in the calibration set are calculated and stored. When a new object

comes, we use the conformal predictor trained previously to calculate the nonconformity

score and then compare with nonconformity scores of the calibration set.

According to [44], the use of such a measure will not have an impact on the validity

of the results produced by the conformal predictor. It means that Inductive Conformal

Predictors still have the property of validity. Additionally, the time consuming of ICP

64

reduces compared to TCP while ICP still has a comparable accuracy. The only drawback

of ICP is a small loss in terms of accuracy.

In the following, we give the formal definition of Inductive Conformal Predictors. Sup-

pose we are given a classification problem: the training set is !z1, z2, . . . , zn−1" while the

label space Y = {0, 1, . . . ,K}. We are offering a new object xn as well. First, we di-

vide the training set into two parts. The proper training set !z1, z2, . . . , zl" contains l

examples. The calibration set !zl+1, zl+2, . . . , zn−1" contains n− l−1 examples. The non-

conformity measure Al is trained only on the proper training set. We use Al to calculate

all nonconformity scores for examples in the calibration set.

αi := Al(!z1, z2, . . . , zl", zi), i = l + 1, l + 2, . . . , n− 1 (3.1)

This results in a sequence αl+1,αl+2, . . . ,αn−1. For each possible y ∈ Y

αn := Al(!z1, z2, . . . , zl", (xn, y)) (3.2)

So that

py :=
|i = l + 1, l + 2, . . . , n− 1, n : αi ≥ αn|

n− l
(3.3)

After we tried all possible labels, we can predict the classification with the largest p-value

together with its confidence and credibility.

3.2 Venn-ABERS Predictor with SVM

Venn-ABERS predictor is a recently developed algorithm introduced in [70], which makes

multi-probabilistic predictions for the new objects. It is modified from Zadrozny and

Elkan’s procedure of probability forecasting in [78]. According to [37] and [31], the method

of calibrating probabilistic predictions introduced by Zadrozny-Elkan method do not al-

ways achieve its goal and sometimes leads to poorly calibrated predictions. The simple

modification introduced Venn predictors into the procedure to overcome the problem of

potentially weak calibration as a result of the fact that Venn predictors are always well

calibrated and guaranteed to be well calibrated under the exchangeability assumption.

65

Suppose we are given a standard binary classification problem: a training set of exam-

ples !z1, z2, . . . , zn−1". Each zi consists of a pair of object xi, and label yi. The possible

labels are binary, that is, y ∈ Y = {0, 1}. We are also given a new object xn. Our task

is to predict the label ŷn for the new object xn and give the estimation of the likelihood

that our prediction is correct.

Before we discuss more generalized Venn-ABERS predictors, there are some notions to

be introduced first. The first notion is the term “scoring algorithm”. Scoring algorithm

is an algorithm that trains a classifier on the training set and uses the classifier to output

a prediction score s(xn) for the new object xn and predicts the label of xn to be “1”

if and only if s(xn) ≥ c (c is a fixed threshold). So s(·) is hereby called the scoring

function. Many machine learning algorithms for classification are scoring algorithms. In

our case, the decision function of SVM is a scoring function, since we assign a new object

the positive label “+1” if and only if its decision value is greater than zero and vice versa

for the negative label. The second notion is “increasing”. We say that a function f(·)

is increasing if its domain is an ordered set and t1 ≤ t2 =⇒ f(t1) ≤ f(t2). The third

notion is “isotonic calibrator”, which is a monotonically increasing function on the set

{(s(x1), y1), . . . , (s(xn−1), yn−1)} that maximizes the likelihood

n−1∏

i=1

pi, where pi :=

⎧
⎪⎪⎨

⎪⎪⎩

g(s(xi)) if yi = 1

1− g(s(xi)) if yi = 0

(3.4)

this function g(·) is unique and can be found by using the “pool-adjacent violators algo-

rithm” (abbrev. PAVA) introduced in [3]. We call such function g(·) the isotonic calibrator

for ((s(x1), y1), (s(x2), y2), . . . , (s(xn−1), yn−1)).

To make a prediction for new object xn, we can find the closet s(xi) to s(xn), and

announce g(s(xi)) as its prediction. It is exactly what we do in SVM with Isotonic Re-

gression. This method is likely to over-fit since the examples are used both for training

and calibrating. The Venn-ABERS predictor can be defined as follows. Like we do in a

standard Venn predictor, we try every possible label for the new object xn, which is 0

66

and 1. s0 is a scoring function trained on !z1, z2, . . . , zn−1, (xn, 0)", while s1 is a scoring

function trained on !z1, z2, . . . , zn−1, (xn, 1)" Let g0 and g1 be the isotonic calibrators.

g0 := ((s0(x1), y1), (s0(x2), y2), . . . , (s0(xn−1), yn−1), (s0(x), 0))

g1 := ((s1(x1), y1), (s1(x2), y2), . . . , (s1(xn−1), yn−1), (s1(x), 1))
(3.5)

To achieve the isotonic calibrator, we do the followings according to the definition

of PAVA. First we arrange the pairs (s(xi), yi) in the increasing order based on the val-

ues of scoring function s(xi). Having obtained a binary sequence consisting of labels

{yπ(1), yπ(2), . . . , yπ(n)}, we applied PAVA to find the increasing sequence of them. By

adopting PAVA, we do as follows:

• Step 1: Start with yπ(1), move to the right and stop if the pair (yπ(i), yπ(i+1))

violates the monotonicity constraint, i.e. yπ(i) > yπ(i+1). Pool yπ(i) and the adjacent

yπ(i+1), by replacing them both by their average.

y∗π(i) = y∗π(i+1) :=
(yπ(i) + yπ(i+1))

2
(3.6)

• Step 2: Next check that yπ(i−1) ≤ y∗π(i). If not, pool {yπ(i−1), yπ(i), yπ(i+1)} into one

average. Continue to the left until the monotonicity requirement is satisfied. Then

proceed to the right until the last one.

The final isotonic calibrator g is a function mapping the increasing scores to the in-

creasing sequence (i.e. probabilities). As the score increases, the object is more likely

to be “1” in correlation with the increasing sequence. Then the multi-probability predic-

tion output for that the predicted label being “1” is {p0, p1}, where p0 := g0(s(xn)) and

p1 := g1(s(xn)). For the reason that we need to predict the probability for the prediction

label being correct, we should transform the bounds {p0, p1} to {1− p1, 1− p0} when the

predicted label is “0”.

Venn-ABERS predictors with SVM give a probabilistic type of predictions, which is the

same as regular Venn predictors. Vovk proposed and proved that VennABERS predictors

are Venn predictors in [70, Proposition 1]. He reformulated a Venn-ABERS predictor

67

into a Venn predictor and compared it to the original Venn predictor, demonstrating

that the predictions of them were identical. Therefore, Venn-ABERS predictors are Venn

predictors and inherit all properties of validity from Venn predictors. According to [70],

the simplified of Venn-ABERS predictor is more computational efficient and performs

better. The difference between the simplified version of Venn-ABERS predictor with the

original version is that in the simplified version we only train scoring function once. That

is s(·) = s0(·) = s1(·). The pseudo-code of simplified Venn-ABERS predictor is listed as

below in Algorithm 6.

3.3 Conformal Prediction with Bivariate Isotonic Re-

gression

As we mentioned in the previous chapter, conformal predictors provide a prediction set

that should contain the true label based on the given significance level and the noncon-

formity scores of all examples. However, the conformal predictors themselves do not give

any probabilistic information except p-values. In this section, we will introduce an algo-

rithm named Conformal Prediction with Bivariate Isotonic Regression (CP-BivIR) that

transforms confidence and credibility of the prediction into probabilities by implementing

the bivariate isotonic regression.

Inspired by Venn-ABERS predictor, we considered conformal predictors as a special

type of scoring functions. As we described in the previous chapter, we are given a sig-

nificance level ϵ. If the confidence of a possible label is greater and equal to 1 − ϵ, we

will include this label in our prediction set. This process has a lot in common with scor-

ing functions in Venn-ABERS predictor. Moreover, we would like to make use of both

confidence and credibility. Hence, we use bivariate isotonic regression for two variables

rather than isotonic regression for a single variable. Conformal Prediction with Bivariate

Isotonic Regression also uses the design of Inductive Conformal Predictors, which divides

the training data set into proper training set and calibration set.

68

Algorithm 6: Venn-ABERS predictor

Data: training set Z(n−1) and new example xn

Result: predicted label ŷn with probabilistic interval [p0, p1]

S ← TrainSVM(Z(n−1)) ; /* train a SVM classifier */

for i = 1 to n do /* calculate all scores */

si ← S(xi);

end

sπ(1), . . . , sπ(n) ← Sort(s1, . . . , sn) ; /* sort all scores */

for i = 0 to 1 do /* generate isotonic calibrators g0 g1 */

yn ← i;

gi ← PAVA (yπ(1), . . . , yπ(n)) ; /* call PAVA function */

pi ← gi(sn);

end

if p0 > 0.5 then /* assign label based on probability */

ŷn ← 1;

return ŷn, [p0, p1]

else

ŷ ← 0;

return ŷn, [1− p1, 1− p0]

end

The basic idea behind this algorithm is as follows. First, the training set of the problem

is split into proper training set and calibration set. This is the same as Inductive Conformal

Prediction suggested by Harris Papadopoulos in [44]. Second, the proper training set

will be used to train a conformal predictor that will then be applied to the calibration

set to make predictions for all examples in the calibration set. Third, all the predicted

labels, the true labels, the confidences and credibilities of examples in the calibration

set will be transformed into a two-dimensional probability matrix by implementing the

69

Function PAVA(y1, . . . , yn)

Function PAVA(y1, . . . , yn)

for i = 1 to n− 1 do /* searching violator from start to end */

j ← i ;

while j > 0 ∧ yj > yj+1 do /* find a violator */

sum ← 0;

for k = j to i+1 do /* calculate the average of current pool */

sum ← yk + sum;

end

avg ← sum
i+2−j ;

for k = j to i+ 1 do

yk ← avg;

end

/* assign average value to every example in the pool */

j ← j − 1 ; /* check last value */

end

end

return y1, . . . , yn

end

70

bivariate isotonic regression. Finally, when we are given a new object, we use our conformal

predictor to give a predicted label for the new object and use the probability matrix to

make probabilistic predictions based on its confidence and credibility.

The following subsections will be organized as follows. In §3.3.1, some details of confor-

mal predictor related to this algorithm will be given. Then in §3.3.2, we will introduce the

nonconformity measure and what we used in this algorithm. The approach of transforming

confidence and credibility into probabilities will be proposed in §3.3.3.

3.3.1 Conformal Prediction

First, let us recall the definition of conformal prediction we gave in §2.2. Given a training

set !z1, . . . , zn−1", a new object xn and a significance level ϵ, the conformal predictor Γ

determined by a nonconformity measure An gives a prediction set as in Eq. (3.7)

Γ ϵ(x1, y1, . . . , xn−1, yn−1, xn) := {y ∈ Y : py > ϵ} (3.7)

In Eq. (2.12), py is the p-value for the pair of (xn, y) and is defined as follows

py :=
|{i = 1, . . . , n : αi ≥ αn}|

n
(3.8)

As we said in §2.2, a conformal predictor is also a confidence predictor, so it satisfies

the criterion of validity.

Let ω be the data sequence (x1, y1, x2, y2, . . .) that a confidence predictor Γ processes.

Then we can introduce a formal notation for the errors Γ makes. An error that Γ makes

on the nth trial can be described as

errϵn(Γ,ω) :=

⎧
⎪⎪⎨

⎪⎪⎩

1 if yn ̸∈ Γ ϵ(x1, y1, . . . , xn−1, yn−1, xn)

0 otherwise

(3.9)

the total number of errors until the latest example xn is

Errϵn(Γ,ω) :=
n∑

i=1

errϵi(Γ,ω) (3.10)

71

If all the examples are drawn from an exchangeable probability distribution P , which

is one of our assumptions made in §2.1. The error at the nth trial errϵn(Γ,ω) is the realized

value of a random variable, which may be designated as errϵn(Γ, P). Formally, if for each ϵ

errϵ1(Γ, P), errϵ2(Γ, P), . . . (3.11)

is a sequence of independent random variables each of which has probability ϵ of being 1

and probability 1− ϵ of being 0, we say that the confidence predictor Γ is exactly valid. If

a confidence predictor is exactly valid, the probability of a prediction set at a confidence

level 1− ϵ being in error is exactly ϵ.

However, it suggested that no confidence predictor is exactly valid according to The-

orem 2.1 in [69]. The detailed proof was also given in [69]. Therefore, for confidence

predictors, exact validity becomes vacuous. However, confidence predictors satisfy an-

other criterion of validity, which is called conservatively valid. If a confidence predictor is

conservatively valid, the probability it makes an error when it outputs a prediction set at

a confidence level 1− ϵ is no greater than ϵ.

Formally, the confidence predictor Γ is conservatively valid if for any exchangeable

probability distribution P on Z∞ there exists a probability space with two families

(ξ(ϵ)n : ϵ ∈ (0, 1), n = 1, 2, . . .), (η(ϵ)n : ϵ ∈ (0, 1), n = 1, 2, . . .) (3.12)

of binary-valued random variables such that:

• for a fixed ϵ, ξ(ϵ)1 , ξ(ϵ)2 , . . . is a sequence of independent Bernoulli random variables

with parameter ϵ;

• for all n and ϵ, η(ϵ)n ≤ ξ(ϵ)n ;

• the joint distribution of errϵn(Γ, P), ϵ ∈ (0, 1), n = 1, 2, . . . , coincides with the joint

distribution of η(ϵ)n , ϵ ∈ (0, 1), n = 1, 2, . . .

In other words, a confidence predictor is conservatively valid if the error errϵn(Γ, P) is

dominated in distribution by a sequence of independent Bernoulli random variables with

parameter ϵ.

72

According to [69, Proposition 2.2], conservative validity leads to asymptotic conserva-

tiveness, which can be defined as follows: for any exchangeable probability distribution P

on Z∞ and any significance level ϵ,

lim sup
n→∞

Errϵn(Γ, P)

n
≤ ϵ (3.13)

with certainty.

When applied to a classification problem, it is very natural to give the single prediction

for the new object together with its confidence and credibility as Saunders et al. suggested

in [55].

A nonconformity measure An determines a conformal predictor that provides a predic-

tion set with a certain confidence for the new object xn that it should contain the object’s

true label yn. We obtain this set by supposing that yn will have a value y that makes

(xn, y) conform with the previous examples and the level of significance ϵ determines the

amount of confidence that we require.

As Saunders et al. suggested in [55], it is natural to report the greatest 1− ϵ for which

Γ ϵ is a single label set and predict the single label as our predicted label. However, in

consideration to avoid overconfidence when the new object xn is unusual, it is wise to

report also the largest ϵ for which Γ ϵ is empty. We call these two values confidence and

credibility respectively, and the definitions were given by Vovk et al. in [69].

The confidence is defined as

sup{1− ϵ : |Γ ϵ| ≤ 1}, (3.14)

The credibility is defined as

inf{ϵ : |Γ ϵ| = 0} (3.15)

3.3.2 Nonconformity Measure

Nonconformity measure is a function that gives quantitative estimations of the strangeness

for an example compared with other examples. There are many different nonconformity

73

measures, and each one defines a conformal predictor. The algorithm used in the non-

conformity measure is called “underlying algorithm”. Most of the traditional algorithms

could be used as underlying algorithms. However, we mainly focus on two of them in our

nonconformity measures: one uses k-nearest neighbours and the other uses support vector

machines.

We use the same assumption as in §3.3.1, and the nonconformity measure using 1

nearest neighbour algorithm can be defined as follows

An(!(x1, y1), . . . , (xn−1, yn−1)", (xn, y)) :=
mini=1,...,n−1:yi=y d(xn, xi)

mini=1,...,n−1:yi ̸=y d(xn, xi)
(3.16)

where d(xn, xi) is the distance between xn and xi. The distance can be any distance such

as Euclidean distance, Hamming distance, Manhattan distance, etc. In our algorithm, we

use Euclidean distance, i.e. d(xn, xi) = ||xn − xi||.

The numerical value of An is small when the minimal distance to the example that

has the same label as xn is small by comparing to the minimal distance to the examples

that have the different labels. An object is considered nonconforming if it is close to an

example labelled in a different way and far from any example labelled in the same way.

The other nonconformity measure we used in the algorithm is based on support vector

machines. We use the Lagrange multipliers αi obtained from the dual form problem (3.17)

as the nonconformity measures.

n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

yiyjαiαjK(xi, xj)→ max

s.t.
n∑

i=1

yiαi = 0, 0 ≤ αi ≤ C, i = 1, . . . , n

(3.17)

The value ai of nonconformity measure i.e. zi equals to the Lagrange multiplier αi.

With αi = 0, the examples zi are very typical, neither on the margins nor within the

margin. With αi = C, the examples zi are the most extreme outliers under the given

choice of C. With 0 < αi < C, the examples zi are intermediate. This makes the

Lagrange multipliers αi of the dual form problem ideal for use as nonconformity scores.

An object is considered nonconforming if it is an outlier within the margin.

74

3.3.3 Transforming Confidence into Probability

Isotonic Regression is an algorithm for calculating a weighted least squares regression func-

tion that is restricted to be increasing with respect to a partial order on the independent

variables. The term “isotonic” means the direction of the trend of the regression curve

is strictly increasing. Bivariate Isotonic Regression (BivIR) is a generalization of Isotonic

Regression with respect to increasing linear ordering on both variables. This algorithm

was introduced in Dykstra and Robertson in [16] by developing Isotonic Regression for a

single variable with “Pool Adjacent Violators Algorithm” (PAVA).

Assuming xij is a given two-dimensional array of original values, wij is a non-negative

array of weights, the algorithm is iterative in nature and uses successive one-dimensional

smoothing. The algorithm produces the solution to

min
∑

i,j

(gij − xij)
2wij (3.18)

where G(i, j) = gij such that gij ≤ gkl whenever i ≤ k and j ≤ l.

In order to apply this algorithm to conformal prediction, we design the framework of

Conformal Prediction with BivIso as follows.

First, we divide the given training set {z1, . . . , zn−1} into two subsets: a proper training

set {z1, . . . , zm} and a calibration set {zm+1, . . . , zn−1} where 0 < m < n− 1. In the

training procedure, we only use the proper training set to train our conformal predictor.

Secondly, after we got the conformal predictor, we conduct the calibration set as a

testing set and give the prediction together with its confidence and credibility for every

example in the calibration set. According to the definitions of confidence and credibility we

have given before in (3.14) and (3.15) and the definition of p-value in (2.11), the possible

values for confidence are 0
m+1 ,

1
m+1 , . . . ,

m
m+1 and for credibility are 1

m+1 ,
2

m+1 , . . . ,
m+1
m+1 .

Since these numerators of all the possible values are integers, we could use these two

variables as the indices of the two-dimensional array.

Let confi be the numerator of the confidence for example zm+i in the calibration set and

credi be the numerator minus one of the credibility for example zm+i in the calibration set

75

where i = 1, . . . , n−m− 1. Let yi be the true label of the example zm+i in the calibration

set and ŷi be the predicted label of example zm+i in the calibration set. We generate our

two-dimensional arrays X(i, j) = xij and W(i, j) = wij as follows, ∀i = 1, . . . , n−m− 1,

X(confi, credi) :=

⎧
⎪⎨

⎪⎩

X(confi, credi) + 1 if yi = ŷi

X(confi, credi) if yi ̸= ŷi
(3.19)

W(confi, credi) := W(confi, credi) + 1 (3.20)

After we record all values in calibration set, we then use xij divided by wij as the final

xij

X(confi, credi) :=
X(confi, credi)

W(confi, credi)
, if W(confi, credi) ̸= 0 (3.21)

Thirdly, we could use Bivariate Isotonic Regression to calculate the isotonic array

G(i, j) = gij . Each value in gij is equally weighted and is a real number ranging in [0, 1]

Finally, for the new object xn, we give the prediction with confidence and credibility

by using the conformal predictor generated from the proper training set and use the

confidence and credibility for the new object as indices to find the probabilities from the

isotonic array generated from the calibration set.

plower = G(n− 1−m− credn, n− 1−m− confn) (3.22)

pupper = G(confn, credn) (3.23)

The pseudo-code of Conformal predictor with bivariate isotonic regression is listed as

below in Algorithm 7.

3.4 Summary

In this chapter, two implementations of algorithms that produce multi-probabilistic pre-

dictions by transforming the outputs of other algorithms into probabilities are introduced.

Among them are Conformal prediction with bivariate isotonic regression and Venn-ABERS

predictor with SVM.

76

Algorithm 7: Conformal predictor with bivariate isotonic regression

Data: proper training set Z(m), calibration set Z(n−1−m) and new example xn

Result: predicted label ŷn with probabilistic interval [ln, un]

NCM ← TrainNCM(Z(m));

for i = m+ 1 to n do /* loop for all examples in calibration set */

for y = 0 to K − 1 do /* loop for every possible label */

for j = 1 to m do /* for each label calculate all NCM scores */

αj ← NCM(!(x1, y1), . . . , (xm, ym) " /(xj , yj), (xj , yj));

end

αi ← NCM(!(x1, y1), . . . , (xm, ym)", (xi, yi));

c← 1;

for j = 1 to m do

if αj ≥ αi then

c← c+ 1;

end

end

py ← c
n ;

end

confi ← CalcConfidence(py, ∀y ∈ Y);

credi ← CalcCredibility(py, ∀y ∈ Y);

end

X, W← BuildMatrix(conf, cred);

G← BivariateIsotonicRegression(X, W);

ln ← G(n− 1−m− credn, n− 1−m− confn);

un ← G(confn, credn);

return ŷn, [ln, un]

77

Conformal prediction with bivariate isotonic regression can be treated as an extension

of conformal prediction. As we know, conformal predictors themselves do not give direct

probabilities for their predictions, while they produce p-values instead. Our algorithm

uses isotonic regression to transform confidence and credibility into probabilities.

Venn ABERS prediction is a new type of Venn prediction, which transforms a sequence

of scores into valid probabilities by using isotonic regression.

The advantages of these algorithms are

1. These algorithms produce multi-probabilistic predictions that give a more intuitive

estimation on the true probability by hedging it within range.

2. The probabilities given by these algorithms are valid under a simple i.i.d. assump-

tion, which is more applicable on real-world data sets than traditional probabilistic

predictors that make extra strong assumptions on the data sets.

3. These algorithms are frameworks of machine learning algorithms rather than a single

algorithm, and the efficiency depends on the underlying algorithms. This makes these

two algorithms much more flexible than other probabilistic predictors.

78

Chapter 4

Designs of Taxonomy for Venn

Machines

In this chapter, four new designs of taxonomy for Venn Machines will be introduced. They

are SVM Venn Machines using equal intervals in §4.2, SVM Venn Machines using k-means

clustering intervals in §4.3 and Multi-class SVM Venn Machines using k-means clustering

intervals in §4.4. We will also introduce a taxonomy design for Regression Venn Machines

in §4.5.

Venn Machine is a multi-probabilistic predictor described in [69]. The basic idea of

Venn Machine is to divide every example into its corresponding category based on certain

rules, then we choose all examples that share the same category with the new object and

calculate the frequencies of labels in the chosen category as estimations of probabilities

for the new object’s label. A taxonomy is a way to divide objects into categories. The

underlying algorithm is the algorithm used in the taxonomy.

As we discussed in §2.3, taxonomies are related to the properties of efficiency and

validity of Venn predictors, which are very important in Venn prediction. A good taxon-

omy defines a good Venn predictor. Therefore, taxonomy design has become one of the

79

most popular research areas in Venn prediction. In §4.1, we will introduce several Venn

predictors proposed in previous related works.

4.1 Previous Designs of Taxonomy for Venn Machines

Lots of taxonomy designs for Venn Machines were proposed in related works. Those

taxonomies were constructed based on different underlying algorithms such as k-NN, SVM,

Neural Networks, Random Forests, Logistic Regression, etc. In this section, we mainly

focus on introducing some implementations of taxonomies based on k-Nearest Neighbours,

Support Vector Machines and Neural Networks.

4.1.1 k-Nearest Neighbours Taxonomy

One of the simplest Venn taxonomies is the taxonomy based on k-Nearest Neighbours

algorithm proposed in [69]. In this taxonomy, the category of an example is the same as

its nearest neighbours’ label. Hence, the number of categories is the same as the size of

label space. Two examples are assigned to the same category if the labels of their nearest

neighbours are same. If the number of an example’s neighbours we examine is more than

one, we will conduct a majority voting to find the majority label as the category for that

example. The commonly used distance metric is the geometric distance, which is also

known as Euclidean distance. We choose 1-Nearest Neighbours with Euclidean distance

as the underlying algorithm for the taxonomy, therefore the category τi of example zi is

assigned by taxonomy An, which is described in Eq. (4.1).

τi := An(!z1, . . . , zi−1, zi+1, . . . , (xn, y)", zi) = yj , where j = argmin
k∈{1,...,n},k ̸=i

||xi − xk||

(4.1)

4.1.2 SVM Taxonomy with Predictions

We can design Venn taxonomies based on either outputs of SVM such as final predictions

and distances to the maximum-margin hyperplane or intermediate values of SVM such

80

as Lagrange multipliers. The simplest design is based on the predictions given by SVM,

which was introduced in [14].

Similar to k-Nearest Neighbours taxonomy, we assign the predicted label of an example

given by an SVM classifier to its category. Suppose we are given a binary classification

problem: !z1, . . . , zn−1, (xn, y)" and the label space is Y = {−1,+1} and we need to

partition this bag into categories. We train a binary SVM classifier on this bag. It is

constructed with the maximum-margin hyperplane w · x+ b = 0. For each example zi in

the bag, we calculate its predicted label ŷi = sgn(w ·xi+ b) and assign this to its category.

Examples belong to the same category if and only if they are predicted as of the same

category by the SVM. As a result, the number of categories is the same as the size of label

space that is two and the category τi for example zi is one of the labels, which is +1 or

−1. The SVM taxonomy with predictions An is defined in Eq. (4.2).

τi := An(!z1, . . . , zi−1, zi+1, . . . , (xn, y)", zi) = sgn(w · xi + b) (4.2)

Since Multi-class SVM can be decomposed into several binary SVMs or solved in a

single optimization formulation as we introduced in §2.4.3. This taxonomy can easily be

generalized from binary cases to multi-class cases.

4.1.3 SVM Taxonomy with Equal Size

As well as using the prediction of SVM in the design, we can also use the distances to the

maximum-margin hyperplane of SVM in the design. SVM taxonomy with equal size was

introduced in [14]. A Venn Machine with this taxonomy allows us to preset the number

of categories to any value.

Suppose we are given a binary classification problem: !z1, . . . , zn−1, (xn, y)" and the

label space is Y = {−1,+1} and we need to partition this bag into T different categories.

We train a binary SVM classifier on this bag with the optimal hyperplane w · x + b = 0.

The distance di of an example zi to the hyperplane is the value calculated before we apply

a sign function and make a prediction, i.e. di = w · xi + b. Note that distances could

81

be negative values, which means the distances we mentioned are signed distances. The

negative values of distances indicate that their examples are classified as negative label −1

by this SVM classifier. We can group examples with close values of distances together to

divide this bag into categories. Two examples are assigned to the same category if they

fall into the same group.

The workflow is as follows: firstly, we train a binary SVM classifier on the bag

!z1, . . . , zn−1, (xn, y)" and obtain the optimal hyperplane w · x+ b = 0. Secondly, we cal-

culate distance di = w ·xi+b for every example zi and sort the sequence {di}, i = 1, . . . , n

into a sorted sequence {d′i}, i = 1, . . . , n. Thirdly, let a separating indices sequence be

{Li}, i = 0, . . . , T . Let L0 be 1 and L1, L2, . . . , LT be integers closest to n
T ,

2n
T , . . . , n.

Finally, we partition the sorted sequence {d′i} by division points d′L0
, d′L1

, . . . , d′LT
. The

category τi of example zi is then defined as the number of the interval formed by these

division points where the corresponding distance di falls:

τi := An(!z1, . . . , zi−1, zi+1, . . . , (xn, y)", zi) = j, where j = 1, . . . , T, d′Lj−1
< di ≤ d′Lj

(4.3)

4.1.4 SVM Taxonomy with Lagrange Multipliers

Besides using outputs of SVM in the designs, intermediate values will be a good idea as

well. SVM taxonomy with Lagrange multipliers proposed in [14] is a taxonomy design

based on Lagrange multipliers. A Venn Machine with this taxonomy also allows us to

preset the number of categories to any value. Lagrange multipliers are introduced when

we reformulate the optimization problem of SVM from the prime form into the dual form.

The detailed description was given in §2.4.2.

Suppose we are given a binary classification problem: !z1, . . . , zn−1, (xn, y)" and the

label space is Y = {−1,+1} and we need to partition this bag into T categories. We train

a binary SVM classifier on this bag in dual form as Eq. (2.41). The optimal hyperplane is

w · x + b = 0. Lagrange multipliers are calculated during the training process. For each

82

training example zi, there is an optimal corresponding Lagrange multiplier αi. According

to the previous introduction to Lagrange multiplier, we know that an example zi is not a

support vector if its Lagrange multiplier αi = 0. If its Lagrange multiplier 0 < αi < C

where C is the cost, the example zi is a support vector on the margin. If its Lagrange mul-

tiplier αi = C, the example zi is a support vector within the margins. Values of Lagrange

multipliers reflect the strangeness of their examples, which we can use for designing Venn

taxonomy by grouping examples with close values of Lagrange multipliers together.

Since values of Lagrange multipliers are non-negative, which means examples outside

both margins have the same value or range. We should consider the ones on different sides

of the optimal hyperplane separately. Therefore, we introduce a predicate that w·x+b > 0

or not, and divide all examples into four bags roughly.

1. !zi : αi = 0 & w · xi + b > 0"

2. !zi : αi = 0 & w · xi + b < 0"

3. !zi : 0 < αi ≤ C & w · xi + b > 0"

4. !zi : 0 < αi ≤ C & w · xi + b < 0"

The first and second bags can be treated as two categories. The third and fourth bags can

be partitioned respectively into T ′ categories of approximately similar size. The procedure

is analogous to the one described in the previous taxonomy design. The total number T

of categories equals to 2 + 2T ′. Eq. (4.4) shows the formal definition of this taxonomy.

τi :=An(!z1, . . . , zi−1, zi+1, . . . , (xn, y)", zi)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if αi = 0 & w · xi + b > 0

T ′ + 1 if αi = 0 & w · xi + b < 0

j if 0 < αi ≤ C & w · xi + b > 0 where j = 1, . . . , T ′, α′
Lj−1

< αi ≤ α′
Lj

−j if 0 < αi ≤ C & w · xi + b < 0 where j = 1, . . . , T ′, α′
Lj−1

< αi ≤ α′
Lj

(4.4)

83

4.1.5 Taxonomy with One-vs-All SVM

Most of the previous SVM-based taxonomy designs are only suitable for binary cases.

Lambrou et al. proposed a generalized SVM taxonomy for multi-class cases in [37] by

implementing One-vs-All SVM.

To decompose a multi-class SVM problem into several binary-class SVM sub-problems

is a widely-used approach for solving multi-class SVM. To use One-vs-All scheme is one

of the most popular methods among them. This approach constructs K (the size of label

space) binary SVM classifiers. For each subproblem, it choose one label from the label

space and make all training examples with the same label as the chosen one the positive

class in a binary SVM classifier. The rest training examples are grouped into one single

class as the negative class in a binary SVM classifier. Then it solves this binary SVM sub-

problem and calculates the decision values for testing objects. After all SVM classifiers

are trained, the predicted label for each testing object is achieved by a winner-takes-all

strategy. The details of this scheme was introduced in §2.4.3.

Suppose we are given a multi-class classification problem: !z1, . . . , zn−1, (xn, y)" and

the label space is Y = {0, 1, . . . ,K − 1} and we need to partition this bag into categories.

We train a One-vs-All SVM on this problem and get K binary classifiers. Let the decision

functions f(x) = w · x + b of these binary classifiers be f0(·), f1(·), . . . , fK−1(·). This

taxonomy assigns the predicted label of an example to its category the same as the SVM

taxonomy with predictions. Therefore, there are K categories and two examples are

assigned to the same category if they are predicted to the same label. The taxonomy An

is defined in Eq. (4.5).

τi := An(!z1, . . . , zi−1, zi+1, . . . , (xn, y)", zi) = argmax
j=0,...,K−1

fj(xi) (4.5)

4.1.6 Taxonomies with Neural Networks

Neural Networks, also referred as Artificial Neural Networks, are a family of learning

algorithms inspired by biological neural networks. Neural Networks simulate a system of

84

“neurons” that are interconnected and can communicate with each other. The connections

between neurons have numerical weights that can be tuned based on experience, making

Neural Networks adaptive to inputs and capable of learning. Five Venn predictors with

Neural Networks were proposed by H. Papadopoulos in [45].

The basic idea of taxonomies with Neural Networks is to divide examples into categories

based on the outputs of Neural Networks, which can be interpreted as probabilities for

each class. To train such a Neural Networks model, we tuned the model as follows. First,

the model only used a single hidden layer along with an input layer and an output layer.

These three layers constituted a fully connected feedforward network. The hidden layer

consisted of neurons with a hyperbolic tangent activation function. The output layer

consisted of neurons with a softmax activation function, which outputs a value between 0

and 1. Furthermore, the outputs of all neurons in output layer added up to 1. Therefore,

the outputs of this Neural Networks model can be interpreted as probabilities for each

class.

Suppose we are given a multi-class classification problem: !z1, . . . , zn−1, (xn, y)" and

the label space is Y = {0, 1, . . . ,K − 1} and we need to partition this bag into categories.

This model was trained with the scaled conjugate gradient algorithm [41] minimizing

cross-entropy error (aka. log loss):

CE = −
n∑

i=1

K−1∑

j=0

tji log (o
j
i) (4.6)

where o0i , . . . , o
K−1
i are the outputs of the network for example zi and tji equals to #yi = j$.

Let #π$ be 1 if the predicate π holds and 0 otherwise.

We denote the five taxonomies proposed in [45] as V1, V2, V3, V4, V5. The details are

given in the following.

1. The first taxonomy V1 assigns an example a category the same as the label corre-

sponding with its maximum output. Therefore, there are K categories, one for each

possible label of the problem. Two examples belong to the same category if their

maximum outputs are of the same class.

85

2. The second taxonomy V2 is based on V1 and further divides the examples in each

category of V1 into two categories according to the value of their maximum output.

A high threshold θ is needed for this taxonomy to separate each original category

into two halves. Hence, the number of categories is 2K.

3. The third taxonomy V3 is also based on V1 and similar to V2. V3 divides examples

in each category of V1 into two categories according to the second largest output. A

low threshold θ is needed to cut each original category into two halves. Notice that

the threshold in V3 is different with the threshold in V2. The number of categories

that V3 produces is again 2K.

4. The fourth taxonomy V4 follows the same idea of V2 and V3. The difference is

that taxonomy V4 deals with the difference between the highest and second highest

outputs. A threshold θ is needed to divide examples in each original category into

two smaller categories. The number of categories that V4 produces is still 2K.

5. The fifth taxonomy V5 is different with the others. V5 assigns two examples to the

same category if their outputs correspond to the same composition of labels. This

can be done by applying a low threshold θ to every output of an example. If its

output is above θ, the label related to this output will be added to the set. Two

examples are considered in the same category if their sets are completely same. This

taxonomy produces 2K categories, however most of them are almost always empty.

4.2 SVM Taxonomy with Equal Length Intervals

In last section, we introduced some previous taxonomy designs based on k-Nearest Neigh-

bours, Support Vector Machines and Neural Networks. In this section, we will propose

an SVM taxonomy design inspired by SVM taxonomy with equal size. This taxonomy

was firstly proposed in [79] and only suitable for binary cases. We will also develop a

generalized version of this taxonomy for multi-class problems in this section.

86

In SVM taxonomy with equal size, examples are grouped into several categories with

the same size based on their distances to the optimal hyperplane. As we know, examples

are not evenly distributed on the whole feature space in most situations, which means

that the sorted distances sequence {d′i} have dissimilar spacing between two adjacent

examples. Take an extreme case into consideration that examples are linearly separable.

The distances are either greater than +1 or less than −1. Hence, there exists a category

consists of a bunch of values greater than +1 and a bunch of values less than −1. Examples

in this category share very fewer similarities and give poor performance in predicting new

objects falling into this category.

In our taxonomy design, we use a different approach to partition examples into cat-

egories. The workflow of our design is stated as follows. Firstly we use the training set

to train an SVM and calculate the decision values (f(x) = w · x + b) of all examples in

the training set and the new object. Secondly the whole range of decision values will be

divided into several intervals of equal length. Each interval is a category and objects of

which the decision values fall into the same interval are of the same category.

Suppose we are given a binary classification problem: !z1, . . . , zn−1, (xn, y)" and the

label space is Y = {−1,+1} and we need to partition this bag into T different categories.

We train a binary SVM classifier on this bag with the optimal hyperplane w · x + b = 0.

The distance di of an example zi to the hyperplane is the value calculated before we

apply a sign function and make a prediction, i.e. di = w · xi + b. All distances are

calculated and among them dmin is the minimal value and dmax is the maximal value.

Let a division points sequence be {Li}, i = 0, . . . , T . Let L0 be dmin, and L1, L2, . . . , LT

be 1
T (dmax − dmin),

2
T (dmax − dmin), . . . , (dmax − dmin). The category τi of example zi

is then defined as the number of the interval formed by these division points where the

corresponding distance di falls:

τi := An(!z1, . . . , zi−1, zi+1, . . . , (xn, y)", zi) = j, where j = 1, . . . , T, Lj−1 < di ≤ Lj

(4.7)

To make it simpler, we can use preset minimal and maximal values when we calculate

87

the division points, since decision values of SVM usually follow a specific pattern. Fig. 4.1

shows the histogram of decision values on breast cancer data set. The figure indicates

that decision values are distributed on the area around two margins (+1 and −1). For

example, if we are asked to divide breast cancer examples into eight categories, we could

set the minimal value to −2 and maximal value to +2. Therefore, the division points

are −∞,−1.5,−1, . . . ,+1,+1.5,+∞. We use ∞ as division points to include examples

outside the preset minimal and maximal values into categories.

Figure 4.1: Histogram of decision values on breast cancer data set

 0

 10

 20

 30

 40

 50

 60

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

fre
qu

en
cy

decision values

By using our taxonomy, examples in the same category have more in common. This is

one of the advantages compared with SVM taxonomy with equal size. The other advantage

is that our taxonomy reduces some computational complexity. We no longer need to sort

the distances sequence and to compare the distance of the new object with division points

several times to locate its category. Since we can get the category of a new object directly

by calculation. However, the drawback of this design is that the size of each category is

undefined. A small size of category could lead to a rough estimation of the probability.

Another drawback of our design is that our taxonomy still can not deal with multi-class

problems. In the next subsection, we will discuss the generalization of this taxonomy to

88

make it suitable for multi-class problems.

4.2.1 Combined Decision Function

In multi-class cases, if we choose to decompose the original problem into several binary

sub-problems, we will need to train several binary SVM classifiers regardless of whether

One-vs-One or One-vs-All approach is used. A scheme for multi-class SVM using One-vs-

All approach was developed by Lambrou et al. in [37], which uses the overall predicted

labels in the taxonomy. Generally, One-vs-One SVM is more efficient in accuracy than

One-vs-All SVM. Therefore, we need to develop a new function to combine the outputs

of all One-vs-One SVM classifiers and transform them into a single prediction score that

could be used by our taxonomy. We call such function a Combined Decision Function.

Since we have several decision values for each example, we consider using an average

value of all related decision values. Then we combine the average decision value and the

predicted label together as a new combined decision value. This value can reflect the

strangeness of examples. Examples with the same predicted label have close combined

decision values, which will be assigned to the same category.

For a data set with K possible labels: {0, 1, . . . ,K − 1}, there are K(K − 1)/2 binary

SVM if we use One-vs-One approach. For each possible label, there are K − 1 related

SVM decision functions. Then we use (4.8) to calculate the combined decision function

D(xn) for the new object xn,

D(xn) := ŷn +
1

K − 1

K−1∑

i=0,i ̸=ŷn

N(fŷn,i(xn)) (4.8)

where ŷn is the overall predicted label done by max-wins voting strategy in One-vs-One

SVM, fŷn,i(xn) is the decision function of SVM classifier on ŷn-vs-i, N(·) is a function

that does the normalized transformation to [0, 1]. Another point we need to declare here

is that in fŷn,i(xn) we always put ŷn before i, which means we need to apply an opposite

operation when ŷn is greater than i. Since the examples of label ŷn are treated as negative

examples in i-vs-ŷn classifier of a binary SVM.

89

This function firstly selects all K − 1 related SVM and applies an opposite operation

if ŷn is not treated as the positive class in the binary SVM classifier. Then it does the

normalization to transform the values into [0, 1]. By adding all normalized values together

and dividing by K − 1, we calculate the average decision value of xn. Finally, we output

the average decision value added with predicted label ŷn as the combined decision value of

new example xn. The reason for adding ŷn to the arithmetic mean is that it could spread

the average decision values of different classes to a range of [0,K], otherwise the average

decision values of all classes would have the same range of [0, 1]. By adding the predicted

label, it also keeps the same strangeness of examples.

Through the procedure we described above, we could obtain a combined decision values

sequence {Di}, where Di is the combined decision value of example zi calculated by

substituting xi into Eq. (4.8). Then we apply the same approach we do in SVM taxonomy

with equal length intervals. The taxonomy An can be defined as Eq. (4.9).

τi := An(!z1, . . . , zi−1, zi+1, . . . , (xn, y)", zi) = j, where j = 1, . . . , T, Lj−1 < Di ≤ Lj

(4.9)

In a similar way, we can use preset division points to simplify the problem. It is

obviously that all combined decision values are within the range of [0,K]. We can set the

number of categories the same as the number of possible labels (i.e. T = K) and let the

division points L0, L1, . . . , LK be 0, 1, . . . ,K. Through this, users do not need to give the

number of categories.

4.3 SVM Taxonomy with k-Means Clustering Inter-

vals

In last section, we introduced a generalized SVM taxonomy with equal length intervals.

When dealing with binary problems, this algorithm introduced a new parameter, i.e. num-

ber of categories. For different data sets, we need to use different settings for numbers

90

of categories in order to achieve best performances. While for multi-class problems, we

predefine the number of categories the same as the number of possible labels according to

our design. However, since the division points locate equally in the whole range regardless

of the distribution of decision values, this division may yield poor results for some data

sets.

In this section, we will propose an alternative method that divides examples into cat-

egories by applying a k-means clustering on the decision values. This algorithm was

introduced in our previous publications [80]. The difference of this taxonomy design com-

pared to the previous one is that it uses a different method to separate the decision values

sequence instead of dividing them into equal length intervals. It can adjust the division

points automatically according to the distribution of decision values. The process to ac-

quire combined decision values is the same as SVM taxonomy with equal length intervals

does.

4.3.1 Dividing Intervals by k-Means Clustering

Instead of dividing the intervals homogeneously, a new dividing scheme was then de-

veloped, which uses k-means clustering [19, 38] to divide all decision values. This idea

happened when we tried to find the internal properties of a sequence of values for a better

division, which is also what cluster analysis is capable of.

k-means clustering is a cluster analysis method that aims to divide n objects into

k clusters in which each object belongs to the cluster with the nearest mean. Given a

sequence of objects (x1, x2, . . . , xn), where each object xi ∈ Rd is a d-dimensional real

vector, k-means clustering aims to partition the n objects into k (k ≤ n) sets: S =

{S1, S2, . . . , Sk} so as to minimise the within-cluster sum of squares (WCSS):

argmin
S

k∑

i=1

∑

xj∈Si

∥xj −mi∥2 (4.10)

where mi is the mean value of points in Si.

The most commonly used algorithm to solve the problem uses an iterative refinement

91

technique. Given an initial set of k-means m(1)
1 , . . . ,m(1)

k , the algorithm proceeds by

alternating between the following two steps:

Assignment step: Assign each object to the cluster whose mean is closest to it.

S(t)
i := {xp : ||xp −m(t)

i || ≤ ||xp −m(t)
j ||, ∀1 ≤ j ≤ k}

where each xp is assigned to exactly one S(t), even if it could be is assigned to two or more

of them. t is the index of the current iteration.

Update step: Calculate the new means to be the centroids of the objects in the new

clusters.

m(t+1)
i :=

1

|S(t)
i |

∑

xj∈S(t)
i

xj

The algorithm has converged when the assignments no longer change.

Commonly used initialization methods are Forgy Method and Random Partition [24].

In Forgy method, k initial means are randomly chosen from the data set while each object

from the data set will be randomly assigned an initial cluster in Random Partition method.

The Forgy method tends to spread the initial means out, while Random Partition places

all of them close to the centre of the data set. According to Hamerly et al. in [24], the

Forgy method of initialization is preferable for standard k-means algorithms.

In our design, dimension d is fixed to “1”, while the number of clusters is equal to the

number of possible labels K. So the heuristic algorithm we used could be described as

below.

1. k initial mean values are randomly generated within the data domain.

2. k clusters are created (or reassigned) by associating every object with the nearest

mean value.

3. The centroid of each of the k clusters becomes the new mean value.

4. Steps 2 and 3 are repeated until the change of WCSS (4.10) between two states

declines to be less than the terminal tolerance ϵ = 10−4.

92

When the heuristic algorithm finishes, we have K clusters and assign each cluster a cat-

egory. Examples whose combined decision values are in the same cluster will be in the

same category. The taxonomy An can be defined as Eq. (4.11).

τi := An(!z1, . . . , zi−1, zi+1, . . . , (xn, y)", zi) = argmin
j
∥xi −mj∥,

where mj =
1

|Sj |
∑

xk∈Sj

xk

(4.11)

Having applied k-means clustering, we divided the decision values into categories that

could be used to calculate the matrix for new examples and make the probabilistic pre-

dictions as the standard Venn Machine does. The pseudo-code of our algorithm is listed

as below in Algorithm 8.

4.4 Taxonomy with Multi-class SVM by Crammer and

Singer

In §4.1 and §4.2, we introduced some SVM-based taxonomy designs that decomposes a

multi-class SVM problem into several binary-class SVM sub-problems. In this section, we

will introduce a new taxonomy design based on multi-class SVM that can be solved as a

single optimization problem.

As we mentioned in §2.4.4, Crammer and Singer proposed a multi-class SVM in [12].

Crammer and Singer’s Support Vector Machines (abbrev. MCSVM) starts from a general-

ized notion of the margin to multi-class problems. Using this notion they cast multi-class

categorization problems as a constrained optimization problem with a quadratic objective

function. Unlike most of the previous approaches that typically decompose a multi-class

problem into multiple independent binary classification tasks, the Crammer and Singer’s

notion of margin yields a direct method for training multi-class predictors. By using

the dual form of the optimization problem, this algorithm is able to incorporate kernels

with a compact set of constraints and decomposes the dual form problem into multiple

optimization problems of reduced size.

93

Algorithm 8: SVM Venn predictor with k-means clustering

Data: training set Z(n−1), new object xn, label space Y = {0, 1, . . . ,K − 1}

Result: predicted label ŷn with probability interval [ln, un]

initialization;

D ← TrainSVM(Z(n−1));

for i = 1 to n do /* calculate combined decision values */

di ← D(xi);

end

{τi}← kMeansClustering({di}) ; /* assign categories to all examples */

for y = 0 to K − 1 do /* try every possible label */

C ← ∅;

for i = 1 to n do /* find examples assigned to same category of xn */

if τi = τn then
C ← AddToSet(C, yi)

end

end

Fy ← CalcFrequency(C);

end

ŷn ← FindBestColumn(F);

[ln, un]← FindInterval(ŷn, F);

return ŷn, [ln, un]

Suppose we are given a multi-class classification problem: !z1, . . . , zn−1, (xn, y)" and

the label space is Y = {0, 1, . . . ,K − 1} and we need to partition this bag into T different

categories. Instead of decomposing a multi-class problem into multiple independent binary

classification tasks, they construct a multi-class predictor H in Eq. (4.12).

HM(x) :=
K−1

argmax
r=0

{Mr · x} (4.12)

Through a series of reformulations and transformations, the single optimization problem

94

Function kMeansClustering({di})

Function kMeansClustering({di})

for i = 1 to K do /* initial k mean values */

mi ← i− 0.5 ; /* initial current centroids to i-0.5 */

li ← 0 ; /* initial last centroids to 0 */

end

while not IsConverge({mi}, {li}) do /* hasn’t converge */

for i = 1 to K − 1 do /* calculate division points */

bi ← mi+mi+1

2 ;

end

{τi}← ReassignCategory({di}, {bi});

for i = 1 to K do /* recalculate mean values */

li ← mi ; /* store current state */

sum ← 0 ; /* initial sum and count to 0 */

count ← 0;

for j = 1 to n do

if τj = i then /* find examples of same category */

sum ← dj+ sum;

count ← 1+ count;

end

end

mi ← sum
count ; /* calculate mean value */

end

end

return τ1, . . . , τn

end

95

Function IsConverge({mi}, {li})

Function IsConverge({mi}, {li})

for i = 1 to K do /* compare current centroids with last centroids */

if |mi − li| > ϵ then /* still has changes */

return FALSE

end

end

return TRUE

end

Function ReassignCategory({di}, {bi})

Function ReassignCategory({di}, {bi})

for i = 1 to n do /* reassign categories */

for j = 0 to K − 1 do

if bj ≤ di < bj+1 then

τi ← j + 1;

end

end

end

return {τi}

end

96

can be written as Eq. (4.13).

−1

2

∑

i,j

K(xi,xj)(αi ·αj) + β
∑

i

αi · 1yi → max
α

s.t. ∀i, αi ≤ 1yi and αi · 1 = 0

(4.13)

The detailed derivation of this dual form problem is described in §2.4.4. By solving the

optimization problem in Eq. (4.13), we can get the classifier of Crammer and Singer’s

multi-class SVM as Eq. (4.14).

ŷn := H(xn) =
K−1

argmax
r=0

{∑

i

αi,rK(xi,xn)
}

(4.14)

According to our previous experience in designing taxonomies using Support Vector

Machines, we can use the predictions of MCSVM, the similarity scores, which are interme-

diate values before adopting the argument of the maximum function, and the intermediate

variables α in our taxonomy designs. Here, we use the simplest outputs, the predictions,

to design our taxonomy. The taxonomy assigns the category of example zi the same as

its predicted label ŷi. Examples that are predicted in the same class share the same cate-

gory. Therefore, the number of categories T equals the number of possible labels K. This

taxonomy An is defined as follows.

τi := An(!z1, . . . , zi−1, zi+1, . . . , (xn, y)", zi) =
K−1

argmax
r=0

{ ∑

j=1,...,n

αj,rK(xj ,xi)
}

(4.15)

4.5 Regression Venn Machine and Its Taxonomies

Due to the internal mechanism that Venn predictors calculate the frequency matrix of

labels as estimation of the distribution, the standard Venn predictors could only deal with

classification problem. A simple workaround is to discretize the real-valued labels into

categorical labels before adopting a standard Venn predictor. However, the original Venn

predictors give a single predicted label and lower and upper probabilistic bounds as estima-

tions for the certainty. Therefore, we need to transform the estimation of the distribution

to some meaningful real values as predictions. Inspired by Regression Conformal Predic-

tion proposed in [46], we designed Venn predictors for regression. The predictors give an

97

interval with a given significance level ϵ that the true values would fall into this interval.

This would sound more reasonable than a categorical label as the single prediction with

probabilistic bounds in regression problems.

The basic idea of our Regression Venn Machine could be described as follows: firstly

we discretize the y values of all training examples of a regression problem into several bins,

and we assign a label for each bin to transform the regression problem to a classification

problem. Secondly, a typical Venn Machine for classification is applied. While we obtain

the frequency matrix, we also know which examples are counted in each hypothesis. Fi-

nally, we group the y values of those examples and fit a normal distribution to them before

we predict an interval for the new object at different confidence levels.

The taxonomy we use in our algorithm is k-Nearest Neighbours taxonomy mentioned

in §4.1.1. It is not complicated: two examples are assigned to the same category if their

nearest neighbours have the same majority label. This makes the number of categories

equal to the number of discretized labels.

Assume that we are given a regression problem. The training set consists of n − 1

examples z1, z2, . . . , zn−1. We are also given a new object xn. Each zi is a pair of xi and

yi, where yi is a real number (i.e. yi ∈ R). Since the training set is finite, we have a range

for y, let us say [a, b]. So that, ∀1 ≤ i ≤ n− 1(i = 1, 2, . . . , n− 1), a ≤ yi ≤ b. Let the

number of labels be K and assign every example in training set a new label y′i if

a+ (b− a)
y′i
K

< yi ≤ a+ (b− a)
y′i + 1

K
, y′i = 0, 1, . . . ,K − 1 (4.16)

When the new object xn comes, we make a hypothesis for each of all possible labels

by assigning y′n = 0, 1, . . . ,K − 1 to xn as its label. In the meanwhile, we calculate the

Euclidean distance of new object xn and example xi as follows:

d(xn, xi) := ∥xn − xi∥ =
√∑dim

t=1
(xn,t − xi,t)2 (4.17)

where dim is the dimension of the feature space. We find all k nearest neighbours of new

object xn measured by Euclidean distance and include them into a set Sn. We assign the

98

category τn of the new object with the majority label among all its neighbours set Sn:

τn :=An(!z1, . . . , zn−1", (xn, y
′
n))

= argmax
y

|{(x∗, y∗) ∈ Sn : y∗ = y, y = 0, 1, . . . ,K − 1}|
(4.18)

For example zi, we assign its category τi the same way.

τi :=An(!z1, . . . , zi−1, zi+1, . . . , zn−1, (xn, y
′
n)", zi)

= argmax
y

|{(x∗, y∗) ∈ Si : y
∗ = y, y = 0, 1, . . . ,K − 1}|

(4.19)

In each hypothesis y′n = i, i = 0, 1, . . . ,K − 1, we assign categories to all examples, find

examples in the same category as (xn, y′n) and calculate their frequencies of labels.

After we tried every hypothesis, we could create a K × K frequency matrix F with

each row the frequency of each label. Together with the matrix, we also know exactly

which examples are associated with which frequency in the matrix. The corresponding

examples are considered having something in common with each other. Hence, we could

use these examples to estimate the prediction of the new object. The quality of a column

of this matrix is its minimum entry. We call the column with the highest quality the best

column. Let the best column be jbest. Then we group all the corresponding y values from

the examples associated with the frequency in matrix F by the following approaches:

1. Choose all the examples from the i∗th row that includes the highest quality.

i∗ := argmin
i

Fi,jbest (4.20)

2. Choose all the examples from the j∗th column that is the best column.

j∗ := jbest (4.21)

3. Choose only the examples from the block of the highest quality. A block is a set that

contains all examples associated with the chosen frequency in the matrix, which is

Fi∗,j∗ here.

i∗ := argmin
i

Fi,jbest , j∗ = jbest (4.22)

99

4. Choose all the examples from every row.

After we have the group of examples, we generate a histogram and fit a normal distri-

bution N (µn,σ2
n) to it. We predict with 1 − ϵ confidence that yn will be in the interval

based on Fisher’s prediction interval [17]:

µn − t
ϵ
2∞σn

√
n− 1

n− 2
< yn < µn + t

ϵ
2∞σn

√
n− 1

n− 2
(4.23)

where ϵ is a user-defined significance level. t
ϵ
2∞ is the point that the t-distribution with ∞

degrees of freedom exceeds exactly ϵ
2 of the time. We use t

ϵ
2∞ instead of t

ϵ
2
n−2 for the reason

that we need to make sure we have enough examples in each category, which is usually

larger than 100. Since t
ϵ
2∞ is very close to t

ϵ
2
n−2 when n > 100, we use t

ϵ
2∞ instead to reduce

calculation.

When given a significance level ϵ, our Regression Venn Machines will pronounce an

interval

[µn − t
ϵ
2∞σn

√
n− 1

n− 2
, µn + t

ϵ
2∞σn

√
n− 1

n− 2
] (4.24)

with 1 − ϵ confidence that the true value yn falls into this interval. For Method (4), we

could generate intervals for each hypothesis (i.e. row) respectively, and use the union or

intersection of all intervals as the final interval.

4.5.1 Choosing Grouping Method

We tried the different grouping methods we mentioned above and compared the results.

Method (2) and Method (3) achieved worse results than Method (1), of which the per-

centage outside predictions both dropped by 6%-7% compared with Method (1) while the

width increased by 25%-60% on the contrary compared with Method (1).

The results of Method (4) are quite similar to the results of Method (1). When we

looked into it, we found that whatever the number of categories is there are only two

kinds of distribution. One is the distribution when the category τn of the new object xn

is different from the hypothesis y′n. The other is when they are the same. This is because

100

the distance between these objects and the discretized labels are fixed when giving these

examples and so is the category of the new object xn. When τn is different from y′n, the

examples in the same category as the new object are those which had the same category

before except those which have changed its category to y′n when the new object xn is

introduced. When τn has the same value of y′n, the examples in the same category as

the new object are those which had the same category before together with those which

have changed its category to y′n. The difference between two kinds of distributions is not

significant, which resulted in the similar results achieved by Method (1) and Method (4).

So in our algorithm, we choose Method (1) to group the examples.

4.6 Summary

In this chapter, we introduced five formerly proposed taxonomy designs. Among them

are k-Nearest Neighbours taxonomy, SVM taxonomy with predictions, SVM taxonomy

with equal size, SVM taxonomy with Lagrange multipliers and taxonomy with One-vs-All

SVM.

We also proposed three new taxonomy designs for Venn Machines. Among them are

SVM taxonomy with equal length, SVM taxonomy with k-means clustering and taxonomy

with Crammer and Singer’s multi-class SVM.

SVM taxonomy with equal length calculates the distances from examples to the hy-

perplane obtained by training an SVM classifier on the data set and sort the examples

according to their distances, then the whole range of distances is separated into several

intervals with equal length and the examples are divided into different categories based

on the interval their distances fall into. SVM taxonomy with k-means clustering shares

the same idea of calculating the distances as SVM taxonomy with equal length does. The

difference is that instead of dividing them into several intervals this taxonomy divides ex-

amples through k-means clustering. Taxonomy with multi-class SVM uses the predictions

given by Crammer and Singer’s multi-class SVM to replace the combined decision values.

101

By using these taxonomies, we extend Venn Machine with SVM from binary only to

multi-class applicable, which is one of the main novelty in this chapter. Also, the property

of validity is not effected by the underlying algorithms used in the algorithm. Hence, the

probabilities produced by applying these taxonomies into Venn Machines are valid.

A method of dealing with Regression Venn Machines was also introduced in the chapter.

This method discretizes the real-valued labels of a regression problem and treats them as

a classification problem. Then it solves this problem and groups the outputs into a region

prediction.

102

Chapter 5

Experiments and Results

To have a more intuitive performance comparisons of our algorithms with other algorithms,

we tested our algorithms on several benchmark data sets in both offline setting and online

setting. The detailed information of the experiments will be given in the following sections

of this chapter.

In §5.1, we will give the basic introductions of all the benchmark data sets we used

in our comparisons. This introduction includes the source, the usage, the content and

the basic dimensional characters of these data sets. Some additional information could be

found in the Appendix A.

In §5.2, we will describe the ways how we evaluate these algorithms in different as-

pects. These measures include accuracies, probabilistic estimates, the average width of

the probability bounds, Brier score and logarithmic loss.

§5.3 gives the settings for all the parameters of all these algorithms along with the

reason we choose these values for the parameters. This section also includes some empirical

results to support the choice of the specific values.

Then in the following three sections §5.4 to §5.6, we will give the detailed results of

our comparisons between all these algorithms. The results were organized into different

tables and figures by data sets. Through all these three sections, we will cover the novel

103

findings we acquired during interpreting the results.

At last, in §5.7, we will summarize this chapter and reiterate our findings on the results.

5.1 Data Sets

To compare all our algorithms, 12 data sets from the real world were used, which could be

easily obtained from some public data sets repository like UCI Repository [61] and Delve

Datasets [60] except SVMguide1 obtained from the website of LibSVM [9].

These data sets cover different fields, among them are medical diagnosis, bioinformatics,

image recognition, price prediction and so on. These data sets can be separated into two

type based on the type of problems raised in the data sets. One is a set of classification

data sets that take categorical values as labels. The other is a set of regression data sets

that take continuous values as labels. We will introduce them separately.

Some brief introductions of classification data sets are as follows.

• WBC is the abbreviation for Wisconsin Breast Cancer data set. This breast cancer

data set was created by Dr. William H. Wolberg from the University of Wisconsin

Hospitals [75]. The problem proposed in this data set is to diagnose whether a breast

cancer is benign or malignant based on the clinical report. All the examples in this

data set are based on clinical cases, which contains 10 features with information

about breast cancer. Except the first feature, which is the ID number of the example,

the other features are all discrete numbers ranging from 1 to 10. The two possible

labels are benign or malignant. Note that the original data set has 699 examples

including 16 instances with missing values. Hence, when we conduct experiments on

this data set, we simply removed those instances with missing values to shrink the

size of data set into 683.

• SVMguide1 is a data set of an astroparticle application from Jan Conrad of Up-

psala University, Sweden. This data set was used and cited in [29], however, it did

not mention the source or any other details of this data set. Hence, the detailed

104

information of this data set remains unknown. There are 3089 examples used as

training examples and 4000 used for testing. Each example consists of 4 continuous

features and can be categorized into 2 classes.

• Splice is short for primate splice-junction gene sequences (DNA) with associated

imperfect domain theory (Delve version). The original data set was donated by

G. Towell, M. Noordewier and J. Shavlik [43]. The problem proposed in this data

set is to recognize the boundaries between exons and introns from a given sequence

of DNA. The exons are the parts of the DNA sequence retained after splicing, while

introns are the parts of the DNA sequence that are spliced out. The original data

set contains 3190 examples with 60 sequential DNA nucleotide positions as features,

which can be represented as “A”, “G”, “T”, “C”, “D”, “N”, “S” ans “R”. However,

the incidence of “D”, “N”, “S” ans “R” are very tiny, only 15 among all 3190 exam-

ples. Hence, in this version of the data set, all examples with any of “D”, “N”, “S”

ans “R” categories have been deleted. Now, each of the 60 features is always filled

by one of 4 types of nucleotide. The original data set has three classes, which are

“IE” (intron to exon boundary, sometimes called “donors”), “EI” (exon to intron

boundary, sometimes called “acceptors”) and “NE” (neither of them). In this ver-

sion of the data set, the examples assigned to “IE” and “EI” are merged to make a

new class while the examples with label “NE” remain the same. Now, the data set

contains 3175 examples with 60 categorical features, while each example belongs to

one of two possible classes.

• USPS is a handwritten digits recognition data set given by J. Hull in [30]. The

problem proposed in this data set is to recognize the digits according to the grey-scale

images. All examples in this data set are handwritten digits automatically scanned

from envelopes by the U.S. Postal Service (USPS) Then these scanned images have

been de-slanted and normalized into the same size, resulting in 16 × 16 grey-scale

images. This data set includes 9298 examples, of which 7291 examples are marked

105

as the training set and 2007 examples are marked as the testing set. Each example

contains 256 grey-scale values of all pixels in the images as features. All the examples

are assigned to one of the 10 digits from “0” to “9”.

• Satimage is the Landsat Satellite Image data set provided by Ashwin Srinivasan,

University of Strathclyde. The problem proposed in this data set is to identify the

object of the central pixel based on itself and all 8 pixels in its neighbourhood from

a satellite image. The data set was generated from the multi-spectral scanner image

in 4 different spectral bands. Hence, each example consists of 36 values of 3 × 3

pixels in the neighbourhood from 4 multi-spectral scanner images as features. Each

of these values is numerical, ranging from 0 to 255. This data set contains 6435

examples, while 4435 examples are marked as the training set and 2000 examples

are marked as the testing set. The whole data set is classified into 6 classes, each

class stands for one landform and is coded as a number.

• Segment is the Image Segmentation data set donated by Vision Group, University

of Massachusetts. The problem proposed in this data set is to identify the objects

in a segmented piece from 7 outdoor images. The examples were drawn randomly

from a database and hand-segmented into 3× 3 pixel piece. Each instance consists

of 19 continuous values carrying different kinds of information including the colour,

the intensity, the contrast, the line density and so on. This data set contains 2310

examples of 7 different types.

• DNA is also the data set of primate splice-junction gene sequences (DNA) with

associated imperfect domain theory (Statlog version). However, this data set is a

refined version produced by Ross King at Strathclyde University. The source of this

data set is the same as Splice data set, but the preprocessing is different. Each

types of the 4 nucleotide (“A”, “C”, “T”, “G”) was replaced by 3 binary indicator.

Therefore, the number of features increased to 180 from 60. At the meanwhile, this

data set kept the original three classes and removed 4 ambiguous examples from the

106

original data set. The final data set contains 3186 examples with 180 features of

binary value. Each example belongs to one of the three classes.

• Wine is for Wine Recognition data set donated by S. Aeberhard [1] The problem

proposed in this data set is to identify three different cultivars through the results of

a chemical analysis of the wines. The quantities of 13 constituents were determined

in the analysis and were used as the features of all the examples. All these features

are continuous. This data set contains 178 examples from 3 different classes.

• Vehicle is the Vehicle Silhouettes data set donated by Turing Institute [56]. The

purpose of this data set is to identify the type of vehicle from a given silhouette. The

silhouette images of vehicles were captured by a camera. Every example contains 18

features, which were a combination of independently-scaled features utilizing both

classical measures and heuristic measures extracted from the silhouettes of 4 types

of vehicles. Note that the original data set consists of 946 instances, however 100

instances are being kept by the donor. Therefore, this data set contains 846 examples

with 18 features, while each example can be classified into 4 different types.

Some brief introductions of regression data sets are as follows.

• Housing is the Boston Housing data set created and donated by D. Harrison and

D.L. Rubinfeld [26]. The purpose of this data set is to predict the median value of

an owner-occupied home in suburbs of Boston. The data set contains 12 continuous

and 1 binary-valued features, which cover different aspects in this area such as the

crime rate, average number of rooms per dwelling, weighted distances to five Boston

employment centres and so on. The labels are the median value in $1000’s of a house

described by the above 13 features, ranging from 5.0 to 50.0. This data set consists

of 506 examples.

• Abalone is the Abalone data set donated by Sam Waugh [72]. The problem raised

in this data set is to predict the age, which is a boring and time-consuming task,

107

of abalone from some physical measurements, which are easy to get. The physical

measurements include some geometric measurements and some weights in different

states, resulting in 7 continuous and 1 nominal features such as length, height, whole

weight and so on. The labels are the number of rings in the cut shell, which can be

treated as the age of abalone, ranging from 1 to 29. This data set consists of 4177

examples.

• CompActi is the Computer Activity data set from Delve. The purpose of this

data set is to predict the portion of time that CPUs run in user mode from a large

variety of computer activities. The data was collected from a computer running in a

multi-user university department. The users were doing all kinds of tasks including

accessing the Internet, editing files or running very CPU-bound programs. Every 5

seconds, some system measures were recorded. 12 features were extracted from the

system measures to be used for predicting the portion of time. This data set consists

of 8192 examples.

In our experiments, the separated training and testing sets were blended into one for

every data set. Each feature was normalized to the range of [−1, 1].

The classification data sets we used in offline and online comparisons could be divided

into two parts based on their number of classes. The binary-only data sets are listed in the

first half, while the multi-class data sets are listed in the second half. Some dimensional

characteristics of these data sets including the size of data sets, the number of features

and the number of classes are summarised in Table 5.1.

Some dimensional characteristics of regression data sets including the size of data sets,

the number of features and the number of classes are summarised in Table 5.2.

Across all data sets, there are data sets of different types, different numbers of features

in different fields. The diversity of data sets can help us assess the best algorithms on all

kinds of data sets.

108

Table 5.1: Main dimensional characteristics of classification data sets.

Data Set # of Examples # of Features # of Classes

WBC 683 10 2

SVMguide1 7089 4 2

Splice 3175 60 2

USPS 9298 256 10

Satimage 6435 36 6

Segment 2310 19 7

DNA 3186 180 3

Wine 178 13 3

Vehicle 846 18 4

Table 5.2: Main dimensional characteristics of regression data sets.

Data Set # of Examples # of Features Label Range

Housing 506 13 45

Abalone 4177 8 28

CompActi 8192 12 99

5.2 Evaluations of the Algorithms

In our experiments, we used several measurements to evaluate the performance of algo-

rithms.

The first measurement is the accuracy of predictions, which is also one of the most im-

portant measurements when evaluating an algorithm. Accuracy calculates the proportion

of examples that are correctly classified by a classifier out of all testing examples. Given a

trained classifier f(·) and a set of n testing examples {(x1, y1), . . . , (xn, yn)}, the accuracy

109

Cn can be calculated as

Cn :=
1

n

n∑

i=1

#ŷi = yi$, ŷi = f(xi) (5.1)

Let #π$ be 1 if the predicate π holds and 0 otherwise. When evaluating algorithms in online

settings where the testing examples are coming in succession, we calculate the accuracy of

the whole data set after we achieve all predicted results. The higher the accuracy is, the

better we consider the algorithm.

The second measurement is the average probabilistic outputs. The probabilistic out-

puts are estimates of reliability that the predictions given by a classifier are correct. Single

probabilistic predictors announce single likelihood while multi-probabilistic predictors give

multiple estimates of the reliability. However, to evaluate a probability for a prediction

seems infeasible, since we have no clue as to the true probability in most cases. We can

use the label’s relative frequency to estimate its probability, when the experiments are

conducted in a significant number of trials according to [66]. Hence, we use the average

probabilities to estimate the accuracy.

For single probabilistic predictor, the probabilistic output is

p̄n :=
1

n

n∑

i=1

pi (5.2)

The closer to the accuracy this probability is, the better we consider the algorithm is.

For multi-probabilistic predictor, we predict lower and upper bounds, referred to as

[li, ui], for a prediction ŷi, therefore our probabilistic outputs are

l̄n :=
1

n

n∑

i=1

li (5.3)

ūn :=
1

n

n∑

i=1

ui (5.4)

If the accuracy is hedged well by the average lower and upper bounds, we consider the

algorithm is good.

When we apply algorithms on data sets with online setting, we use error rate and

error probability interval, which complement the accuracy and probability interval, to

110

evaluate the algorithms. We refer to error probability interval as [l′i, u
′
i], which equals to

[1−ui, 1− li]. The following curves are used in the figures to demonstrate the performance

of the algorithms in online setting. the cumulative error curve:

En :=
n∑

i=1

#ŷi ̸= yi$ (5.5)

the cumulative lower error probability curve:

Ln :=
n∑

i=1

l′i (5.6)

and the cumulative upper error probability curve:

Un :=
n∑

i=1

u′
i (5.7)

We consider that the cumulative error probability bounds of a good algorithm can hedge

the cumulative error curve well, which means the cumulative error curve will lay between

the two cumulative bounds.

We use our third measurement to measure the narrowness of the bounds. The average

width Wn measures the average width between the lower and upper bounds.

W̄n :=
1

n

n∑

i=1

(ui − li) =
1

n

n∑

i=1

ui −
1

n

n∑

i=1

li = ūn − l̄n (5.8)

If the average width of a pair of bounds is small, we consider that these probabilistic

estimates are good.

We also use Brier score and logarithmic loss to evaluate the validity of the probabilistic

outputs. The detailed description of these two measurements is given in the next section.

5.2.1 Brier Score

The Brier score is a proper score function that measures how accurate the probabilistic

outputs are. It was proposed by Glenn W. Brier in 1950 [8].

It applies to those classifiers that give probability estimates to all possible labels like

all the algorithms we described in this thesis. The number of classes can be any finite

111

number, which means this measurement can be applied to algorithms for both binary and

multi-class data sets. In addition, the probability assigned to each class is in the range of

0 to 1, and all probabilities must sum to 1.

The basic idea of the Brier score is to measure the mean squared error between the

predicted probability p̂i for ith class and the actual incidence oi, where oi equals to 1 if

the predicted label is the label for ith class otherwise it equals to 0. Hence, the more

accurate the predicted probability is, which is close to 1 when predicted label is true label

otherwise close to 0, the lower Brier score is. The most common formulation of the Brier

score is described as

BS :=
1

n

n∑

i=1

(p̂i − oi)
2 (5.9)

However, Eq. (5.9) is only for binary case and omits half of the squared error, since (p̂i−oi)2

for one class share the same value with (p̂i − oi)2 for the other class.

In our experiments, several data sets were conducted including both binary and multi-

class data sets. Therefore, we need a generalized version of Brier score as the measurement.

The original definition by Brier [8] is already applicable to multi-class classification prob-

lems. Given a classifier f(·) and a set of n testing examples {(x1, y1), . . . , (xn, yn)}, let p̂ij

be the predicted probability for jth class in ith example and oij be the actual incidence

for jth class of ith example. The original formulation of the Brier score is described as

BS :=
1

n

n∑

i=1

K−1∑

j=0

(p̂ij − oij)
2 (5.10)

The Brier score in Eq. (5.10) takes on a value between 0 and 2.

In our experiments, we use the generalized version of Brier score in Eq. (5.10) for

both binary and multi-class problems. Additionally, for algorithms that give multiple

probabilistic estimates, we use the average probabilities to calculate the Brier score.

5.2.2 Logarithmic Loss

The logarithmic loss (LogLoss), which is also called the cross-entropy error function [5,

p. 209], has be used as an alternative to the mean squared error. It can also be used as a

112

measurement for the accuracy of the predicted probabilities.

This error measure applies to those classifiers that announce probabilities that each

label might be true for both binary and multi-class data sets. Again, all the algorithms

we studied in this thesis can apply this measurement. The total sum of probability for

each label should be 1. Meanwhile all probabilities range from 0 to 1.

The basic idea of the logarithmic loss is to calculate the entropy of the true label

and the predicted probability p̂i. Given a classifier f(·) and a set of n testing examples

{(x1, y1), . . . , (xn, yn)}, the formulation of the logarithmic loss for binary case is as follows

LogLoss := − 1

n

n∑

i=1

[y+ log p̂i + y− log (1− p̂i)] (5.11)

In Eq. (5.11), the binary label y−, y+ is denoted by 0, 1, while p̂i is the estimated probability

for label y+ in ith example. From the formulation, we could find that the use of logarithm

on the error provides extreme punishments for being both confident and wrong. Hence,

the lower the logarithmic loss is, the better probabilistic estimates an algorithm gets.

In our experiments, we use a generalized version of logarithmic loss for both binary

and multi-class data sets. Let p̂ij be the predicted probability for jth class in ith example

and oij be the actual incidence for jth class of ith example. oij is equal to 1 if label j is

the true label otherwise it equals 0. The generalized version is described in Eq. (5.12)

LogLoss := − 1

n

n∑

i=1

K−1∑

j=0

oij log p̂ij (5.12)

In the worst possible case, a predictor gives a predicted label with 100% probability when

it turns out to be actually false will add infinite to the error score and make every other

entry pointless. In our experiments, original predicted probabilities are bounded away

from the extremes by using

max(min(p̂, 1− 10−15), 10−15) (5.13)

to prevent the infinite in logarithm. Additionally, for algorithms that give multiple prob-

abilistic estimates, we use the average probabilities to calculate the logarithmic loss.

113

5.3 Experimental Settings

In all of our experimental results, we used some abbreviations instead of the full names of

our algorithms for convenience. Among them are:

• NaiveBayes stands for Naive Bayes classifier given in §2.5.1.

• LogReg stands for Logistic Regression given in §2.5.2.

• SigSVM stands for Platt Scaling given in §2.5.3.

• VM-KNN stands for Venn Machine with k-nearest neighbours introduced in [69].

• CP-BivIR stands for conformal predictor with bivariate isotonic regression given

in §3.3.

• VA-SVM stands for Venn-ABERS predictor with SVM given in §3.2.

• VM-SVM-EL stands for SVM Venn Machine with equal length intervals given in

§4.2.

• VM-SVM-ES stands for SVM Venn Machine with equal size intervals introduced

in [14].

• VM-SVM-OA stands for Venn Machine with One-vs-All SVM introduced in [37].

• VM-SVM-KM stands for SVM Venn Machine with k-means clustering intervals

given in §4.3.

• VM-MCSVM stands for Venn Machine with Crammer and Singer’s multi-class

SVM given in §4.4.

Together with all our designs of multi-probabilistic predictors, traditional or widely-

used algorithms were added to the comparison as benchmarks. They are NaiveBayes for

Naive Bayes classifier, LogReg for Logistic Regression, SigSVM for Platt Scaling and VM-

KNN for Venn Machine with k-nearest neighbours. Hence, there are 11 algorithms in the

comparisons overall.

114

For every data set we used in the experiments, we applied a grid search to find the best

parameters of SVM. All our algorithms using SVM shared the same SVM parameters in

each comparison.

In addition, the grid search for each data set was carried out on the parameter C for

the cost in SVM and the parameter γ in the radial basis function (RBF) of SVM.

The searching range for C was from 2−5 to 215 with a step of 22, while the searching

range for γ was from 2−15 to 23 with a step of 22. For each trial on each pair of C and

γ, we carried out a 5-fold cross-validation test. Then we compared the accuracies and

recorded the best pair in Table 5.3.

Table 5.3: Parameters for underlying algorithms

Data Set k for

k-NN

Kernel function

for SVM

Parameters for ker-

nel function

WBC 1 RBF C = 29, γ = 2−7

SVMguide1 1 RBF C = 29, γ = 21

Splice 1 RBF C = 21, γ = 2−5

USPS 1 RBF C = 21, γ = 2−5

Satimage 3 RBF C = 21, γ = 21

Segment 1 RBF C = 27, γ = 2−1

DNA 5 RBF C = 21, γ = 2−7

Wine 3 RBF C = 21, γ = 2−3

Vehicle 3 RBF C = 27, γ = 2−3

Offline Settings for Classification

In offline setting, we conducted experiments on all 11 algorithms. However, since Venn-

ABERS predictor is only applicable to binary data sets, this algorithm was only tested on

WBC, SVMguide1 and Splice data sets.

115

Before each experiment, we merged the original training and testing sets together to

create a whole data set for each experiment. Then we applied five cross-validation tests for

each whole data set to avoid over-fitting on the original pair of training and testing sets.

In each cross-validation test, we kept the same settings. The number of cross-validation

folds was five regardless the size of the data sets. When carrying out all cross-validation

tests, we randomly permuted all the examples and drew each fold through a stratified

selection to make sure the hold-out fold and the whole data set shared the same class

distribution. The stratified selection meant that examples of each class were grouped

together and separated into five shares firstly, and then one share from examples of each

class were blended into a fold for cross-validation.

After all the offline experiments, we used the measurements introduced in §5.2 to

calculate the measures on each data set and grouped them into tables in §5.4.

Online Settings for Classification

While for online setting, we mainly conducted experiments on algorithms with online

capability, which included VM-KNN, CP-BivIR, VA-SVM, VM-SVM-EL, VM-SVM-ES,

VM-SVM-OA, VM-SVM-KM and VM-MCSVM. Since CP-BivIR has the different type

of validity that could not compare with Venn predictors, we excluded CP-BivIR in our

online comparisons. Moreover, VA-SVM was only applicable on binary data sets, hence it

was only compared on WBC, SVMguide1 and Splice data sets.

However, we also wanted to know that how simple probabilistic predictors would per-

form with online settings. Hence, we add NaiveBayes, LogReg and SigSVM into compar-

isons on 4 data sets, which were WBC, Segment, Wine and Vehicle data sets. Due to the

absence of the property of validity for simple probabilistic predictors, we only compared

the performance measurements in the tables of results and listed the online performance

figures in a separated subsection at the end of §5.5.

In order to satisfy our assumption of exchangeability, we also merged the training set

and testing set together and randomly permuted the data sets each time before we ran an

116

online test. So in practice, the order of all the examples in a data set was different across

all tests.

After each online test, the measurements mentioned in §5.2 were applied and the

results were organized into tables in §5.5. We also gave a figure with several sub-figures,

reflecting the online performance for each data set. Each subfigure contained three curves

on the results of each candidate algorithm. The three curves were cumulative error curve,

cumulative lower error probability curve and cumulative upper error probability curve. For

the results of simple probabilistic predictors with online settings, the probabilistic output

was the average probability and the average width was the difference between accuracy

and average probability.

Offline Settings for Regression

In order to compare with the results of regression conformal prediction with nearest neigh-

bours in [46], we briefly used the same number of folds and number of neighbours in our

experiments. Based on their sizes, the Boston Housing, Abalone and Computer Activity

data sets were split into 10, 4 and 2 folds respectively. The numbers of neighbours were

4, 16 and 8 respectively. Table 5.4 summarizes the experimental setup for each data set.

Table 5.4: Experimental setups for regression data sets.

Housing Abalone CompActi

of Folds 10 4 2

k for k-NN 4 16 8

5.3.1 Settings of Venn-ABERS Predictor

As well as the settings for the underlying algorithm, we need two more settings for Venn-

ABERS prediction. One is the input parameter: the size of the calibration set, and the

other is whether to calibrate the prediction or not.

117

Choosing the Size of Calibration Set

The original training set was split into proper training set and calibration set. The cali-

bration set will not participate in the training of the classifier in case of over-fitting, which

means we will have fewer examples for training as usual. The less training examples could

lead to less accuracy while more calibration examples may have a chance in resulting in

a better probabilistic outputs. We then conducted experiments on WBC and Splice data

set we mentioned before by setting the size of the calibration set from 10% to 50% of the

whole training set. The results are shown in Table 5.5.

Table 5.5: Comparison of results on different calibration set sizes

Data Set Size (%) Accuracy Probabilistic Outputs

WBC 10% 97.88% [75.56%, 100.00%]

20% 97.53% [83.41%, 97.21%]

30% 97.17% [85.67%, 95.97%]

40% 97.53% [87.72%, 96.23%]

50% 97.17% [88.00%, 96.53%]

Splice 10% 89.61% [79.73%, 91.01%]

20% 89.61% [80.60%, 88.05%]

30% 89.15% [83.40%, 88.32%]

40% 88.28% [84.94%, 89.15%]

50% 87.72% [84.61%, 88.42%]

This table mainly indicates two points. The first is that the accuracy decreases as

the percentage of calibration set increases. From the results of WBC data set, this is

not clearly demonstrated for the reason that the size of WBC testing set is small (283

examples) and this data set is well separated judging by the high accuracy. However, the

results of Splice data set strongly support our point: almost 2% decrease when 50% data

118

is used in calibration compared to 10%. The second point is more important and can be

obviously observed from the results: as the size of calibration set increases, the bounds

become narrower.

Calibrating Prediction

The other setting is whether to calibrate our predictions to the more likely label based

on our probabilistic outputs or not. Since the probabilities given by Venn-ABERS predic-

tor are calculated after the scoring function (in our case, it is an SVM classifier) makes

predictions. We compare the probabilities we calculated. If probabilities are greater than

0.5 while our prediction is not +1, we change our prediction to −1. This is called cali-

brating our predictions. We also conducted WBC, Splice and scaled SVMguide1 data set

we mentioned before by setting the size of the calibration set from 10% to 50% of the

whole training set. The results of the original predictions from SVM and the calibrated

predictions are listed in Table 5.6.

From Table 5.6 we observed a downward trend from the results. In the results of

all data sets, the calibrated accuracies dropped up to 2.8% compared from the original

accuracies, showing that the calibration of the predictions has no significant dependency

with the better performance. When we checked the calibrated labels, we found that

they were mostly located around the boundary between two classes. According to the

definition of isotonic calibrators, the probability of the label being “1” depends on the

distance between the object and the hyperplane. If an object in the negative half is far

away from the hyperplane, the likelihood of this object being positive (i.e. “1”) is almost

zero, and vice versa. An outlier in the opposite half could lower or raise the average

probability of adjacent objects. This gives evidence on that Venn-ABERS predictor is an

algorithm that generates probabilities rather than calibrating the prediction based on the

highest likelihood.

Having given careful consideration to both accuracy and narrowness of the bounds, we

decided to take 30% of the whole data set as the calibration set and not to calibrate the

119

Table 5.6: Comparison with SVM accuracies and VA-SVM calibrated accuracies

Data Set Size (%) Accuracy Calibrated Accuracy

WBC 10% 97.88% 97.17%

20% 97.53% 95.05%

30% 97.17% 95.05%

40% 97.53% 94.70%

50% 97.17% 95.41%

Splice 10% 89.61% 89.57%

20% 89.61% 89.53%

30% 89.15% 87.68%

40% 88.28% 87.68%

50% 87.72% 87.72%

SVMguide1 10% 96.13% 96.10%

(Scaled) 20% 96.00% 95.98%

30% 95.95% 95.93%

40% 95.94% 95.60%

50% 95.78% 95.73%

final prediction after we obtained the likelihood.

5.3.2 Settings of k-Means Clustering

The number of clusters k and the initial means, the two key features of k-means clustering,

are often regarded as its biggest drawbacks. The number of clusters k is an input param-

eter: an inappropriate choice of k may yield poor results. That is why, when performing

k-means clustering, it is important to run diagnostic checks for determining the number of

clusters in the data set. The choice of initial means might lead the convergence to a local

120

minimum, which may produce counter-intuitive results. A good design of the combined

decision function could make it easier to avoid these two drawbacks.

To have a more intuitive view of our combined decision function described in Eq.4.8, we

applied the algorithm to Satimage data set and plotted the histogram in Fig. 5.1, roughly

representing the distribution of the decision values.

Figure 5.1: Histogram of decision values on satimage data set

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6

fre
qu

en
cy

decision values

It can be seen obviously from the figure that there were 6 clusters in the data set,

the exact number of the possible labels. Furthermore, each cluster i (i = 1, 2, . . . , k)

is approximately within a range of (i − 1, i), which means we could choose the initial

means from each range to avoid the local minimum trap as much as possible and speed

up the convergence process. We conducted k-means clustering to these decision values

and calculated the 6 centroids: 0.63, 1.91, 2.64, 3.33, 4.57, 5.59. The result seems to be a

reasonable reflection of the histogram.

Then we could come to our decision that we set the number of clusters k the same as

the number of possible labels K and we choose the initial means as 0.5, 1.5, . . . , k − 0.5 if

the possible labels are 0, 1, . . . ,K − 1.

Additionally, we need to notice that k-means clustering uses Euclidean distance as a

121

metric and variance as a measure of cluster scatter. It tends to produce equal length halves

on both sides of a division point. Since data is split halfway between cluster means, the

distances of division points to their adjacent cluster means are the same. This can lead

to suboptimal splits as some objects will be attributed to the incorrect cluster, especially

for unbalanced data set like Satimage data set. For example, in Fig. 5.1, the centroids of

first and second clusters are 0.63 and 1.91 respectively. Hence, the division point of these

two clusters 1.27. All examples falls on the left side of 1.27 would be categorized to the

first cluster, however, they have a higher chance to be in cluster 2 obviously.

122

5.4 Classification Results with Offline Settings

In this section, we organized all the 5-fold cross-validation results into different tables by

the data sets: the results of all algorithms on the same data set, including our algorithms

and the benchmarking algorithms, were put together in one table. We listed five measures

of the performance, each took a column in the table. Among them were accuracies,

probabilistic outputs, the average width of the probabilistic bounds (if the predictor gives

bounds as probabilistic estimations), the Brier score and the logarithmic loss. To make the

outstanding results clear, we emphasized the best outcome among all candidate algorithms

of each measure by representing it in bold type, while we also underlined the best result

of each measure among all Conformal and Venn predictors for convenience.

WBC Data Set

In Table 5.7, the results of 5-fold cross-validation on breast cancer data set are listed.

Among all the algorithms, VM-SVM-KM achieved the best accuracy 97.36%. However,

the improvement was not significant, ranging from 0.14% to 1.75%, compared with other

algorithms. If we only compared this result with other SVM-related algorithms (i.e. the

underlying algorithm is SVM or the algorithm itself is based on SVM), the improvement

was even smaller, only 0.14% to 1.02%.

For the probabilistic outputs results, it indicated that almost all multi-probabilistic

predictors gave probabilistic bounds that could hedge the accuracy well except CP-BivIR

whose accuracy exceeded its probabilistic estimates by about 2%. For those single-

probability predictors, we also found that the average predicted probabilities were not

so precise as estimations for accuracies. The differences were from 0.86% to 3.40%.

The outcomes for the average width of the probabilistic bounds showed that CP-BivIR

yielded the narrowest bounds, which was only 0.03 (%) while the loosest bounds were

attained by VA-SVM, which was 6.90%. The results of other algorithms were of the same

level, ranging from 0.36 (%) to 1.67 (%).

123

For the Brier scores, the results laid between 0.043 and 0.084, which was very close.

The best score was from Platt scaling (SigSVM) while the worst one was from VM-KNN.

The Brier scores of our algorithms were within an even smaller interval, which was 0.050

to 0.059.

While for logarithmic loss results, the best score 0.035 was also from Platt scaling, and

we noticed that Logistic Regression (LogReg) also acquired very good log loss, which is

0.040. These two algorithms were incomparable in log loss compared with other algorithms.

The log loss scores of our methods were around 0.100 except VA-SVM, of which the score

was 0.992, about 10 times to results of other Conformal or Venn predictors.

Table 5.7: 5-fold cross-validation results on breast cancer data set

Algorithm Accuracy Probabilistic

Outputs

Avg.

Width

Brier

Score

Log

Loss

NaiveBayes 96.34% 99.74% 0.070 0.314

LogReg 96.63% 97.74% 0.051 0.040

SigSVM 97.22% 96.36% 0.043 0.035

VM-KNN 95.61% [95.33%, 95.71%] 0.38 0.084 0.182

CP-BivIR 97.17% [94.98%, 95.01%] 0.03 0.059 0.113

VA-SVM 96.78% [91.27%, 98.17%] 6.90 0.052 0.992

VM-SVM-EL 97.22% [96.96%, 97.72%] 0.76 0.050 0.100

VM-SVM-ES 96.34% [95.77%, 97.22%] 1.45 0.057 0.099

VM-SVM-OA 97.22% [97.19%, 97.56%] 0.37 0.053 0.118

VM-SVM-KM 97.36% [97.10%, 97.46%] 0.36 0.056 0.116

VM-MCSVM 97.07% [95.65%, 97.32%] 1.67 0.055 0.107

124

SVMguide1 Data Set

In Table 5.8, the results of 5-fold cross-validation on SVMguide1 data set are listed.

Among all the algorithms, SigSVM achieved the best accuracy, which was 97.21% while

Naive Bayes yielded the worst accuracy, which was 93.19%. However, the difference was not

significant compared with our algorithms, only ranging from 0.20% to 1.58%. Especially

for VM-SVM-EL, VM-SVM-ES and VM-SVM-KM, their results were comparable to the

best accuracy with a difference of only 0.20%

For the probabilistic outputs results, it indicated that the accuracies of almost all

our multi-probability predictors except VA-SVM were slightly outside their probabilistic

bounds, however, the offset (i.e. the distance between accuracy and the nearest bound

in percentage) was less than 0.5%. The probabilistic bounds of VA-SVM still hedged its

accuracy well. For those single probabilistic predictors, we also found that there was a

difference between the estimates and the accuracies. The differences for SigSVM and for

LogReg were about 0.5% and 0.12% while the offset of Naive Bayes was larger, about

3.35%.

The outcomes for the average width of the probabilistic bounds showed that VM-KNN

yielded the narrowest bounds, which was only 0.04 (%) while the loosest bounds were

attained by VA-SVM, which was 1.41%. The results of other algorithms were of the same

level, ranging from 0.05 (%) to 0.29 (%).

For the Brier scores, the results laid between 0.046 and 0.103, which was very close.

The best score was from Platt scaling (SigSVM) while the worst one was from Naive Bayes.

The Brier scores of our algorithms were within an even smaller interval, which was 0.049

to 0.057, except CP-BivIR, which had a Brier score of 0.084.

While for logarithmic loss results, the best score 0.012 was from VM-SVM-KM, which

was much smaller compared with others (ranging from 0.042 to 0.181). Except the best

score achieved by VM-SVM-KM, the log loss scores of our other methods were around

0.100, which means the probabilistic estimates of the accuracies were precise.

125

Table 5.8: 5-fold cross-validation results on SVMguide1 data set

Algorithm Accuracy Probabilistic

Outputs

Avg.

Width

Brier

Score

Log

Loss

NaiveBayes 93.19% 96.54% 0.103 0.112

LogReg 95.37% 95.25% 0.071 0.054

SigSVM 97.21% 96.71% 0.046 0.042

VM-KNN 95.58% [95.48%, 95.52%] 0.04 0.084 0.181

CP-BivIR 95.63% [94.95%, 95.01%] 0.06 0.084 0.078

VA-SVM 96.95% [95.76%, 97.17%] 1.41 0.049 0.092

VM-SVM-EL 97.01% [97.49%, 97.56%] 0.07 0.049 0.101

VM-SVM-ES 97.00% [97.34%, 97.63%] 0.29 0.051 0.097

VM-SVM-OA 95.99% [96.01%, 96.06%] 0.05 0.076 0.162

VM-SVM-KM 97.01% [97.48%, 97.55%] 0.07 0.057 0.012

VM-MCSVM 96.77% [96.87%, 97.01%] 0.14 0.053 0.098

Splice Data Set

In Table 5.9, the results of 5-fold cross-validation on splice data set are listed.

Among all the algorithms, VM-SVM-KM and VM-SVM-EL both achieved the best

accuracy, which was 91.69%. In addition, the improvement was significant if compared

with the worst result. The results revealed that the algorithms can be divided into three

according to their accuracies. The worst part included VM-KNN and CP-BivIR, which

used k-NN as the underlying algorithm, only yielded an accuracy of about 75% to 77%.

The best part that had an accuracy greater than 90% included all SVM-related algorithms

except VM-SVM-ES. The rest of the algorithms were in the middle part, which gave an

accuracy of about 85%, including Naive Bayes, Logistic Regression and VM-SVM-ES. The

reason for these results was that the efficiency of Conformal and Venn predictors depends

126

on the underlying algorithms.

For the probabilistic outputs results, it indicated that the accuracies of our multi-

probability predictors except VA-SVM and VM-MCSVM were slightly outside their prob-

abilistic bounds. The probabilistic bounds of VA-SVM and VM-MCSVM hedged their

accuracy well. For those single probabilistic predictors, we also found that there was a

difference between the estimates and the accuracies. The differences for SigSVM and for

LogReg were about 0.24% and 0.94% while the offset of Naive Bayes was larger, about

4.10%.

The outcomes for average width of the probabilistic bounds showed that VM-KNN and

VM-SVM-OA yielded the narrowest bounds, which was only 0.08 (%) while the loosest

bounds were attained by VA-SVM, which was 2.91%. The results of other algorithms were

of the same level, ranging from 0.12 (%) to 0.62 (%).

For the Brier scores, the best result 0.125 was attained by SigSVM while the worst

score 0.362 was attained by VM-KNN. Since Brier scores have a relationship with the

accuracies, usually the worse accuracies lead to the worse Brier scores. Hence, the Brier

scores of our algorithms except those algorithms using k-NN as the underlying algorithm

were within a small interval, which was 0.135 to 0.195.

While for logarithmic loss results, the best score 0.091 was also from Platt scaling

(SigSVM), while the best score among our algorithms was 0.229 given by VA-SVM.

USPS Data Set

In Table 5.10, the results of 5-fold cross-validation on USPS data set are listed.

We noticed that Naive Bayes achieved a bad accuracy 78.41% while it still gave an

unrealistic probabilistic estimate 99.66%, which lead to the worst Brier score 0.427 and

the worst log loss 2.365 among all algorithms. The Naive Bayes algorithm was not suitable

for the USPS data set was probably the reason for that. Hence, we did not take Naive

Bayes into account when we compared other algorithms.

Among all other the algorithms, SigSVM achieved the best accuracy, which is 98.11%.

127

Table 5.9: 5-fold cross-validation results on splice data set

Algorithm Accuracy Probabilistic

Outputs

Avg.

Width

Brier

Score

Log

Loss

NaiveBayes 87.28% 91.38% 0.189 0.163

LogReg 84.94% 85.88% 0.219 0.153

SigSVM 91.65% 91.41% 0.125 0.091

VM-KNN 75.27% [74.98%, 75.06%] 0.08 0.362 0.546

CP-BivIR 77.43% [77.74%, 77.86%] 0.12 0.345 0.430

VA-SVM 91.09% [89.11%, 92.02%] 2.91 0.135 0.229

VM-SVM-EL 91.69% [91.91%, 92.09%] 0.18 0.161 0.356

VM-SVM-ES 85.29% [87.10%, 87.72%] 0.62 0.195 0.301

VM-SVM-OA 90.02% [94.07%, 94.15%] 0.08 0.182 0.335

VM-SVM-KM 91.69% [92.34%, 92.48%] 0.14 0.164 0.424

VM-MCSVM 90.29% [90.04%, 90.60%] 0.56 0.173 0.385

However, the improvement was not significant. Comparing with the second and third

best results, which were achieved by VM-SVM-EL and VM-SVM-KM respectively, the

improvement was only 0.07% and 0.13%. The worst result was achieved by VM-SVM-ES,

which was 90.41%

For the probabilistic outputs results, it indicated that all multi-probability predictors

gave probabilistic bounds, which did not hedge the accuracy well. The accuracies were

slightly outside the probability interval. For those single probabilistic predictors, the aver-

age predicted probabilities were not so precise as estimates for accuracies. The differences

were 1.93% for LogReg and 1.10% for SigSVM.

The outcomes for the average width of the probabilistic bounds showed that CP-BivIR

yielded the narrowest bounds 0.00 (%), which meant that the lower bound and the upper

128

bound were identical. However, these bounds did not hedge the accuracy, it was 2.15%

less than the accuracy. The results of other algorithms were of the same level, ranging

from 0.08 (%) to 0.40 (%).

Except LogReg, VM-SVM-ES and VM-SVM-OA, of which the Brier scores were 0.103,

0.139 AND 0.096 respectively, the other results laid between 0.030 and 0.058 which was

very close. The best score was from Platt scaling (SigSVM) while the best score among

our algorithms was from VM-SVM-EL.

While for logarithmic loss results, the best score 0.029 was also from Platt scaling. All

other algorithms yielded a log loss between 0.133 and 0.190, which was at the same level,

except VM-SVM-ES and VM-SVM-OA gave a log loss of 0.311 and 0.280 respectively.

Table 5.10: 5-fold cross-validation results on USPS data set

Algorithm Accuracy Probabilistic

Outputs

Avg.

Width

Brier

Score

Log

Loss

NaiveBayes 78.41% 99.66% 0.427 2.365

LogReg 93.50% 95.43% 0.103 0.133

SigSVM 98.11% 97.01% 0.030 0.029

VM-KNN 97.46% [97.17%, 97.31%] 0.14 0.050 0.165

CP-BivIR 97.01% [94.86%, 94.86%] 0.00 0.058 0.190

VM-SVM-EL 98.04% [98.77%, 98.91%] 0.14 0.039 0.170

VM-SVM-ES 90.41% [92.50%, 92.90%] 0.40 0.139 0.311

VM-SVM-OA 94.98% [95.52%, 95.65%] 0.13 0.096 0.280

VM-SVM-KM 97.98% [98.78%, 98.91%] 0.13 0.040 0.176

VM-MCSVM 96.62% [97.18%, 97.26%] 0.08 0.052 0.169

129

Satimage Data Set

In Table 5.11, the results of 5-fold cross-validation on satimage data set are listed.

Among all the algorithms, SigSVM achieved the best accuracy 97.36%, which was

very close to the second best accuracy 92.37% that obtained by VM-SVM-KM. Other

Conformal and Venn predictors had comparable accuracies to the best and second best

accuracies except VM-SVM-ES. The results of VM-SVM-ES, Naive Bayes and LogReg

were around 80% to 85%, which were worse than other algorithms.

For the probabilistic outputs results, it indicated that all multi-probability predictors

gave probabilistic bounds, which did not hedge the accuracy well. The accuracies were

slightly outside the probability interval. Moreover, for those single-probability predictors,

we also found that the estimate of SigSVM for the accuracy was precise, the difference

between accuracy and probability estimate was only 0.13%, while other two algorithms

Naive Bayes and LogReg had an offset of 1.59% and 19.02%.

The outcomes for the average width of the probabilistic bounds showed that VM-

MCSVM yielded the narrowest bounds, which was only 0.07 (%) while the loosest bounds

were attained by VM-SVM-ES, which was 0.35%. The results of other algorithms were of

the same level, ranging from 0.11 (%) to 0.32 (%).

For the Brier scores, the results of all algorithms with an accuracy higher than 90%

laid between 0.115 and 0.179, which was very close. While other four algorithms, which

did not perform well on accuracy, had larger Brier scores, 0.389, 0.199, 0.293 and 0.230 for

NaiveBayes, LogReg, VM-SVM-ES and VM-SVM-OA respectively. The best score was

from Platt scaling (SigSVM) while the worst one was from NaiveBayes.

While for logarithmic loss results, the best score 0.035 was also from Platt scaling, and

we noticed that Logistic Regression (LogReg) also acquired outstanding log loss, which is

0.159 among the other algorithms. For the rest algorithms, the range of their log loss was

around 0.400 to 0.600.

130

Table 5.11: 5-fold cross-validation results on satimage data set

Algorithm Accuracy Probabilistic

Outputs

Avg.

Width

Brier

Score

Log

Loss

NaiveBayes 79.77% 98.79% 0.389 1.698

LogReg 85.89% 87.48% 0.199 0.159

SigSVM 92.46% 92.59% 0.115 0.094

VM-KNN 89.99% [90.09%, 90.21%] 0.13 0.173 0.391

CP-BivIR 90.47% [90.01%, 90.33%] 0.32 0.170 0.411

VM-SVM-EL 92.09% [92.79%, 92.90%] 0.11 0.152 0.428

VM-SVM-ES 80.42% [81.70%, 82.05%] 0.35 0.293 0.585

VM-SVM-OA 85.56% [85.61%, 85.73%] 0.12 0.230 0.478

VM-SVM-KM 92.37% [92.67%, 92.78%] 0.11 0.146 0.409

VM-MCSVM 91.53% [91.51%, 91.58%] 0.07 0.179 0.407

Segment Data Set

In Table 5.12, the results of 5-fold cross-validation on segment data set are listed.

We noticed that Naive Bayes achieved a bad accuracy 79.91% while it still gave an

unrealistic probabilistic estimate 97.55%, which lead to the worst Brier score 0.373 and

the worst log loss 0.762 among all algorithms. The second worse accuracy 90.09% was

achieved by VM-SVM-OA. It also had the second worse Brier score 0.161 and log loss

0.330 among all algorithms. The Naive Bayes and VM-SVM-OA were not suitable for

Segment data set was probably the reason for that. Hence, we did not take Naive Bayes

into account when we compared other algorithms.

Among all the algorithms, SigSVM achieved the best accuracy 97.45%, which was

very close to the second best accuracy 97.32% that obtained by VM-SVM-KM. However,

the improvement was not significant, ranging from 0.22% to 2.47%, compared with other

131

algorithms.

For the probabilistic outputs results, it indicated that only the accuracies given by VM-

KNN and VM-SVM-ES were slightly outside their bounds, while the offset is less than

0.26%. Moreover, for those single-probability predictors, we also found that the average

predicted probabilities were not so precise as estimates for the accuracies. The differences

were from 0.82% to 3.87%.

The outcomes for average width of the probabilistic bounds showed that CP-BivIR

yielded the narrowest bounds, which was only 0.11 (%) while the loosest bounds were

attained by VM-MCSVM, which was 1.15(%). The results of other algorithms were of the

same value 0.38(%).

For the Brier scores, the results laid between 0.047 and 0.087, which was very close. The

best score was from Platt scaling (SigSVM) while the worst one was from VM-SVM-ES.

While for logarithmic loss results, the best score 0.046 was also from Platt scaling. The

log loss scores of our methods were around 0.150 except VM-SVM-ES, of which the score

was 0.228, about 50% higher than other results of other Conformal or Venn predictors.

DNA Data Set

In Table 5.13, the results of 5-fold cross-validation on DNA data set are listed.

Among all the algorithms, SigSVM and VM-SVM-KM achieved the best and the second

best accuracy, which was 96.01% and 95.82%. The difference between these two results

was only 0.19%. The results also revealed that the algorithms that used k-NN as the

underlying algorithm did not perform well on this data set, only yielded an accuracy of

81.14% for VM-KNN and 83.68% for CP-BivIR.

For the probabilistic outputs results, it indicated that the accuracies of our multi-

probability predictors except CP-BivIR and VM-MCSVM were slightly outside their prob-

abilistic bounds. The probabilistic bounds of CP-BivIR and VM-MCSVM hedged their

accuracy well. Moreover, for those single-probability predictors, SigSVM gave a reasonable

estimate of which the difference was only 0.61%. However, the differences for NaiveBayes

132

Table 5.12: 5-fold cross-validation results on segment data set

Algorithm Accuracy Probabilistic

Outputs

Avg.

Width

Brier

Score

Log

Loss

NaiveBayes 79.91% 97.55% 0.373 0.762

LogReg 94.98% 95.80% 0.072 0.090

SigSVM 97.45% 93.68% 0.047 0.046

VM-KNN 96.36% [96.62%, 97.00%] 0.38 0.069 0.177

CP-BivIR 96.60% [96.55%, 96.66%] 0.11 0.071 0.184

VM-SVM-EL 97.23% [97.03%, 97.41%] 0.38 0.054 0.156

VM-SVM-ES 95.50% [95.60%, 95.98%] 0.38 0.087 0.228

VM-SVM-OA 90.09% [89.95%, 90.33%] 0.38 0.161 0.330

VM-SVM-KM 97.32% [96.98%, 97.36%] 0.38 0.052 0.148

VM-MCSVM 96.96% [96.61%, 97.76%] 1.15 0.060 0.157

and for LogReg were unrealistic, they both gave their probability estimates more than

99% while their accuracies remained at about 93% and 90%.

The outcomes for average width of the probabilistic bounds showed that VM-KNN and

VM-SVM-KM yielded the narrowest bounds, which was only 0.11 (%) while the loosest

bounds were attained by CP-BivIR, which was 1.78%.

For the Brier scores, the best result 0.064 was attained by SigSVM while the worst

score 0.302 was attained by VM-KNN. If we considered the performance of the underlying

algorithms and only took SVM-related algorithms into account, the Brier scores were close,

between 0.081 to 0.117.

While for logarithmic loss results, the best score 0.091 was also from Platt scaling

(SigSVM), while the best score among our algorithms was 0.205 given by VM-SVM-KM.

133

Table 5.13: 5-fold cross-validation results on DNA data set

Algorithm Accuracy Probabilistic

Outputs

Avg.

Width

Brier

Score

Log

Loss

NaiveBayes 93.53% 99.47% 0.121 0.396

LogReg 90.46% 99.90% 0.190 1.087

SigSVM 96.01% 95.40% 0.064 0.057

VM-KNN 81.14% [81.27%, 81.38%] 0.11 0.302 0.549

CP-BivIR 83.68% [82.25%, 84.03%] 1.78 0.282 0.513

VM-SVM-EL 95.70% [95.92%, 96.04%] 0.12 0.083 0.209

VM-SVM-ES 93.72% [93.98%, 94.14%] 0.16 0.117 0.263

VM-SVM-OA 94.22% [95.52%, 95.65%] 0.13 0.107 0.236

VM-SVM-KM 95.82% [95.94%, 96.05%] 0.11 0.081 0.205

VM-MCSVM 95.51% [95.33%, 96.11%] 0.78 0.094 0.272

Wine Data Set

In Table 5.14, the results of 5-fold cross-validation on wine data set are listed.

Among all the algorithms, VM-SVM-KM achieved the best accuracy, which is 98.88%.

The improvement ranged from 0.57% to 2.81%, comparing with other algorithms. Since

the accuracies of all algorithms were around 97%, we believed that the improvement was

significant.

For the probabilistic outputs results, it indicated that almost all multi-probability

predictors except VM-KNN and CP-BivIR gave probabilistic bounds, which can hedge

the accuracy well. While for VM-KNN, the accuracy was slightly larger than the upper

bound by 0.25% However, for CP-BivIR, the accuracy exceeded its probabilistic estimates

by about 4%. Moreover, for those single-probability predictors, we also found that the

average predicted probabilities were not so precise as estimates for the accuracies. The

134

differences were from 0.97% to 4.29%.

The outcomes for the average width of the probabilistic bounds showed that CP-BivIR

yielded the narrowest bounds, which was only 0.52 (%) while the loosest bounds were

attained by VM-SVM-ES, which was 7.80%. The results of other algorithms were of the

same level, ranging from 2.04 (%) to 2.66 (%).

For the Brier scores, the results laid between 0.022 and 0.068, which was very close.

The best score was from VM-SVM-KM while the worst one was from VM-SVM-ES.

While for logarithmic loss results, the best score 0.033 was from NaiveBayes, and we

noticed that SigSVM also acquired very good log loss, which is 0.036. The log loss scores

of other methods ranged from 0.064 to 0.156. Among them, the best log loss score was

obtained by VM-SVM-KM.

Table 5.14: 5-fold cross-validation results on wine data set

Algorithm Accuracy Probabilistic

Outputs

Avg.

Width

Brier

Score

Log

Loss

NaiveBayes 97.75% 98.72% 0.035 0.033

LogReg 96.63% 98.99% 0.051 0.068

SigSVM 97.75% 93.46% 0.033 0.036

VM-KNN 96.63% [94.34%, 96.38%] 2.04 0.067 0.156

CP-BivIR 97.19% [92.65%, 93.17%] 0.52 0.061 0.150

VM-SVM-EL 98.31% [97.54%, 99.61%] 2.07 0.034 0.099

VM-SVM-ES 96.07% [90.15%, 97.95%] 7.80 0.068 0.156

VM-SVM-OA 97.19% [96.62%, 98.69%] 2.07 0.057 0.156

VM-SVM-KM 98.88% [97.51%, 99.58%] 2.07 0.022 0.064

VM-MCSVM 97.75% [96.83%, 99.49%] 2.66 0.044 0.109

135

Vehicle Data Set

In Table 5.15, the results of 5-fold cross-validation on vehicle data set are listed.

In order to avoid the poor performance NaiveBayes gave on this data set, we ignored

this algorithm in our following comparison. Except NaiveBayes algorithm, VM-SVM-OA

performed worst. It only yielded 68.44% on accuracy and 0.457 and 0.809 on Brier score

and log loss respectively.

Among all other algorithms, VM-SVM-KM achieved the best accuracy 85.82%. How-

ever, the improvement was not significant, ranging from 0.48% to 3.08%, when compared

with other SVM-related algorithms. According to the accuracies of VM-KNN and CP-

BivIR, this data set was also not suitable for algorithms using k-NN as underlying algo-

rithms.

For the probabilistic outputs results, it indicated that CP-BivIR, VM-SVM-KM and

VM-MCSVM gave probabilistic bounds, which can hedge the accuracy well. For other

algorithms, the accuracy was slightly outside its probabilistic bounds. For those single

probabilistic predictors, we also found that the average predicted probabilities were not

so precise as estimates for the accuracies. The differences were around 3%.

The outcomes for the average width of the probabilistic bounds showed that CP-BivIR

yielded the narrowest bounds, which was only 0.47 (%) while the loosest bounds were

attained by VM-MCSVM, which was 1.35%. The results of other algorithms were of the

same level, ranging from 0.59 (%) to 1.17 (%).

For the Brier scores, the results laid between 0.208 and 0.375. The best score was from

Platt scaling (SigSVM) while the worst one was from VM-KNN. The best Brier score of

our algorithms was achieved by VM-SVM-KM with a value of 0.245.

While for logarithmic loss results, the best score 0.148 was also from Platt scaling, and

we noticed that Logistic Regression (LogReg) also acquired good log loss, which is 0.200.

These two algorithms were notable in log loss compared with other algorithms. The log

loss scores of our methods were around 0.500 while the best of them was 0.482 yielded by

136

VM-SVM-KM.

Table 5.15: 5-fold cross-validation results on vehicle data set

Algorithm Accuracy Probabilistic

Outputs

Avg.

Width

Brier

Score

Log

Loss

NaiveBayes 47.40% 77.68% 0.841 1.148

LogReg 80.85% 84.29% 0.264 0.200

SigSVM 85.34% 82.36% 0.208 0.148

VM-KNN 71.87% [70.06%, 70.72%] 0.66 0.375 0.683

CP-BivIR 76.48% [76.40%, 76.87%] 0.47 0.360 0.545

VM-SVM-EL 84.63% [83.50%, 84.09%] 0.59 0.262 0.494

VM-SVM-ES 82.74% [82.98%, 84.15%] 1.17 0.297 0.576

VM-SVM-OA 68.44% [69.67%, 70.26%] 0.59 0.457 0.809

VM-SVM-KM 85.82% [85.51%, 86.10%] 0.59 0.245 0.482

VM-MCSVM 84.99% [84.29%, 85.64%] 1.35 0.282 0.556

137

5.5 Classification Results with Online Setting

In this section, we organized all the classification results in the online setting into different

tables and figures by the data sets: the results of all algorithms, including our algorithms

and the only benchmarking algorithm VM-KNN, on the same data set were put together

in one table. We also exclude the results of average width for Conformal Prediction with

Bivariate Isotonic Regression, due to the other kind of validity that is not comparable

to Venn Machines. We listed five measures of the performance, each took a column in

the table. Among them were accuracies, probabilistic outputs, the average width of the

probabilistic bounds (if the predictor gives bounds as probabilistic estimations), the Brier

score and the logarithmic loss. To make the best results clear, we emphasized the best

outcome among all candidate algorithms of each measure by representing it in bold type.

We also gave the online performance figures to show the difference of each algorithm

intuitively. Each figure consists of a set of sub-figures, and each sub-figure represents

the performance of one candidate algorithm. In the sub-figure, there are three lines, one

solid line stands for the cumulative errors and two dotted line stands for the cumulative

upper and lower bounds. The x-axis is the number of examples while the y-axis is the

number of cumulative errors. In most of the figures, we set the y-axis of the sub-figures

under the same scaling to compare them, except for some algorithms whose results were

exceptionally worse than others.

WBC Data Set

In Table 5.16, the results of classification with online settings on breast cancer data set

were listed. Moreover, the figures on the online performance were displayed in Fig. 5.2.

Notice that, in Fig. 5.2b, the y-axis of VM-KNN was twice the others’.

Among all algorithms, SigSVM achieved a comparable accuracy, which was second

highest, and the best average width, Brier score and log loss. NaiveBayes and LogLoss

also achieved good results except that the probabilistic output for NaiveBayes was a bit

138

optimistic, which was 99.72% about 4% higher than its accuracy.

Among all Venn predictors, VM-SVM-OA achieved the best accuracy, which was

96.92%, while VM-KNN obtained the worst accuracy 94.87%. However, the improvement

was not significant, ranging from 0.59% to 2.05%, compared with other algorithms.

For the probabilistic outputs results, it indicated that all multi-probability predictors

gave probabilistic bounds, which can hedge the accuracy well. It is easier to see if the

predictions of these predictors are well-hedged from the corresponding figure. In Fig. 5.2b,

although the cumulative errors curve of VM-KNN was increased with lots of fluctuations,

it was still within the bounds. The similar situation also went for all other algorithms.

The outcomes for average width of the probabilistic bounds showed that VM-SVM-OA

yielded the narrowest bounds, which was 1.50 (%) while the loosest bounds were attained

by VA-SVM, which was 13.55(%). The results of other algorithms were of the same level,

ranging from 2.81 (%) to 4.64 (%).

For the Brier scores, the results laid between 0.057 and 0.092, which was very close.

The best score was from VM-MCSVM while the worst one was from VM-KNN.

While for logarithmic loss results, the best score 0.107 was also from VM-MCSVM,

while the worst score 0.193 was from VM-KNN. However, the difference of these two results

was only 0.086.

SVMguide1 Data Set

In Table 5.17, the results of classification with online settings on SVMguide1 data set were

listed. Moreover, the figures on the online performance were displayed in Fig. 5.3.

Among all the algorithms, VM-MCSVM achieved the best accuracy, which was 96.39%,

while VM-KNN obtained the worst accuracy 94.82%. However, the improvement was not

significant, ranging from 0.07% to 59%, compared with other algorithms except VM-KNN.

For the probabilistic outputs results, the predictions given by VM-KNN was not in the

bounds according to Fig. 5.3b. It fluctuated around the lower bounds. Besides VM-KNN,

the cumulative errors curve of VM-SVM-EL (Fig. 5.3c) and VM-SVM-KM (Fig. 5.3f)

139

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700
cu

m
ul

at
iv

e
er

ro
rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(a) VA-SVM

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(b) VM-KNN

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(c) VM-SVM-EL

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700

cu
m

ul
at

iv
e

er
ro

rs
examples

cumulative errors
cumulative lower bound
cumulative upper bound

(d) VM-SVM-ES

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(e) VM-SVM-OA

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(f) VM-SVM-KM

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(g) VM-MCSVM

Figure 5.2: Comparison of online performances on breast cancer data set.

140

Table 5.16: Online mode results on breast cancer data set

Algorithm Accuracy Probabilistic

Outputs

Avg.

Width

Brier

Score

Log

Loss

NaiveBayes 95.71% 99.72% 4.01 0.083 0.375

LogReg 95.17% 97.67% 2.50 0.080 0.182

SigSVM 96.77% 96.21% 0.56 0.051 0.097

VA-SVM 95.43% [84.48%, 98.03%] 13.55 0.077 0.145

VM-KNN 94.87% [92.62%, 95.43%] 2.81 0.092 0.193

VM-SVM-EL 96.19% [95.23%, 98.56%] 3.33 0.060 0.124

VM-SVM-ES 95.01% [92.34%, 96.98%] 4.64 0.072 0.130

VM-SVM-OA 96.92% [95.77%, 97.27%] 1.50 0.059 0.130

VM-SVM-KM 96.77% [96.52%, 98.82%] 2.30 0.071 0.150

VM-MCSVM 96.33% [95.53%, 98.52%] 2.99 0.057 0.107

exceeded the upper bounds at last.

The outcomes for average width of the probabilistic bounds showed that VM-KNN

yielded the narrowest bounds, which was 0.23 (%) while the loosest bounds were attained

by VA-SVM, which was 3.35(%). The results of other algorithms were of the same level,

ranging from 0.36 (%) to 1.35 (%).

For the Brier scores, the results laid between 0.062 and 0.098, which was very close.

The best score was from VM-SVM-EL and VM-MCSVM while the worst one was from

VM-KNN.

While for logarithmic loss results, the best score 0.121 was also from VM-SVM, while

the worst score 0.202 was from VM-KNN. However, the difference between these two

results was only 0.081.

141

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000 4000 5000 6000 7000 8000
cu

m
ul

at
iv

e
er

ro
rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(a) VA-SVM

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000 4000 5000 6000 7000 8000

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(b) VM-KNN

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000 4000 5000 6000 7000 8000

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(c) VM-SVM-EL

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000 4000 5000 6000 7000 8000

cu
m

ul
at

iv
e

er
ro

rs
examples

cumulative errors
cumulative lower bound
cumulative upper bound

(d) VM-SVM-ES

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000 4000 5000 6000 7000 8000

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(e) VM-SVM-OA

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000 4000 5000 6000 7000 8000

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(f) VM-SVM-KM

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000 4000 5000 6000 7000 8000

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(g) VM-MCSVM

Figure 5.3: Comparison of online performances on SVMguide1 data set.

142

Table 5.17: Online mode results on SVMguide1 data set

Algorithm Accuracy Probabilistic

Outputs

Avg.

Width

Brier

Score

Log

Loss

VA-SVM 96.18% [93.28%, 96.63%] 3.35 0.064 0.121

VM-KNN 94.82% [94.53%, 94.76%] 0.23 0.098 0.202

VM-SVM-EL 96.32% [96.54%, 97.00%] 0.46 0.062 0.129

VM-SVM-ES 95.80% [95.22%, 96.57%] 1.35 0.066 0.124

VM-SVM-OA 95.25% [95.04%, 95.74%] 0.70 0.089 0.180

VM-SVM-KM 96.04% [96.38%, 96.74%] 0.36 0.072 0.152

VM-MCSVM 96.39% [96.26%, 96.71%] 0.45 0.062 0.128

Splice Data Set

In Table 5.18, the results of classification with online settings on splice data set were listed.

Moreover, the figures on the online performance were displayed in Fig. 5.4. Notice that,

in Fig. 5.4, the y-axis of VM-KNN and VM-SVM-ES were twice the others’.

Among all the algorithms, VM-SVM-KM achieved the best accuracy 89.54%, while

VM-KNN obtained the worst accuracy 71.90%. As the results from Table 5.9, VM-KNN

was not suitable for this data set, hence we excluded VM-KNN in our following compar-

isons. In other results, except VM-SVM-ES, which was only 81.76%, the other results

remained comparable to the best accuracy ranging from 88.11% to 89.19%.

For the probabilistic outputs results, it indicated that all multi-probability predictors

gave probabilistic bounds, which can hedge the accuracy well.

The outcomes for average width of the probabilistic bounds showed that VM-SVM-KM

yielded the narrowest bounds, which was 0.47 (%) while the loosest bounds were attained

by VA-SVM, which was 5.78(%). The results of other algorithms were of the same level,

ranging from 0.81 (%) to 1.35 (%).

143

For the Brier scores, the results laid between 0.176 and 0.280. The best score was from

VA-SVM while the worst one was from VM-SVM-OA. The difference between the best

and worst Brier score was 0.150, about 85% of the best score. The Brier scores of other

algorithms were within a small interval, which was 0.206 to 0.212.

While for logarithmic loss results, the best score 0.286 was also from VA-SVM, while

the worst score 0.610 was from VM-SVM-OA.

Table 5.18: Online mode results on splice data set

Algorithm Accuracy Probabilistic

Outputs

Avg.

Width

Brier

Score

Log

Loss

VA-SVM 88.11% [84.50%, 90.28%] 5.78 0.176 0.286

VM-KNN 71.90% [71.59%, 72.09%] 0.50 0.391 0.577

VM-SVM-EL 88.97% [88.52%, 89.35%] 0.83 0.212 0.482

VM-SVM-ES 81.76% [81.58%, 82.93%] 1.35 0.280 0.439

VM-SVM-OA 87.62% [94.27%, 94.88%] 0.61 0.326 0.610

VM-SVM-KM 89.54% [89.11%, 89.58%] 0.47 0.206 0.534

VM-MCSVM 89.19% [88.65%, 89.46%] 0.81 0.209 0.493

USPS Data Set

In Table 5.19, the results of classification with online settings on USPS data set were listed.

The figures on the online performance were displayed in Fig. 5.5. Notice that, in Fig. 5.5,

the y-axis of VM-SVM-ES and VM-SVM-OA were 1200 rather than 500, since we wanted

to show the trends clearly in other figures.

Among all the algorithms, VM-SVM-KM achieved the best accuracy 96.60%, while

VM-SVM-ES obtained the worst accuracy 88.73% and VM-SVM-OA obtained the second

worst accuracy 93.17%. The difference between the best and the worst accuracy was

7.87%. However, the accuracies of other algorithms were only insignificantly worse than

144

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 500 1000 1500 2000 2500 3000 3500
cu

m
ul

at
iv

e
er

ro
rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(a) VA-SVM

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 500 1000 1500 2000 2500 3000 3500

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(b) VM-KNN

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000 3500

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(c) VM-SVM-EL

 0

 200

 400

 600

 800

 1000

 0 500 1000 1500 2000 2500 3000 3500

cu
m

ul
at

iv
e

er
ro

rs
examples

cumulative errors
cumulative lower bound
cumulative upper bound

(d) VM-SVM-ES

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000 3500

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(e) VM-SVM-OA

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000 3500

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(f) VM-SVM-KM

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000 3500

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(g) VM-MCSVM

Figure 5.4: Comparison of online performances on splice data set.

145

the best result, ranging from 95.50% to 95.68%.

For the probabilistic outputs results, all multi-probability predictors gave probabilistic

bounds, which can hedge the accuracy well, according to Fig. 5.5.

The outcomes for average width of the probabilistic bounds showed that VM-SVM-KM

yielded the narrowest bounds, which was 0.67 (%) while the results of other algorithms

were of the same level, ranging from 0.77 (%) to 0.87 (%).

For the Brier scores, the results laid between 0.065 and 0.188. The best score was from

VM-SVM-KM while the worst one was from VM-SVM-ES. The worst score was three times

the best score, the evidence also laid in Fig. 5.5c, the cumulative curve fluctuated from

the upper bound to the lower bound. The Brier scores of other algorithms were within a

small interval, which was 0.081 to 0.102. Among them the Brier score of VM-SVM-OA

was a bit higher, which is 0.102, while others were very similar to each other.

While for logarithmic loss results, the best score 0.244 was also from VM-SVM-KM,

while the worst score 0.463 was from VM-SVM-ES. Moreover, the results of other algo-

rithms were all ranging from 0.248 to 0.294.

Table 5.19: Online mode results on USPS data set

Algorithm Accuracy Probabilistic

Outputs

Avg.

Width

Brier

Score

Log

Loss

VM-KNN 95.50% [94.96%, 95.79%] 0.83 0.085 0.259

VM-SVM-EL 95.54% [95.21%, 96.01%] 0.80 0.083 0.250

VM-SVM-ES 88.73% [88.51%, 89.33%] 0.82 0.188 0.463

VM-SVM-OA 93.17% [92.55%, 93.42%] 0.87 0.102 0.294

VM-SVM-KM 96.60% [96.24%, 96.91%] 0.67 0.065 0.244

VM-MCSVM 95.68% [95.08%, 95.85%] 0.77 0.081 0.248

146

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(a) VM-KNN

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(b) VM-SVM-EL

 0

 200

 400

 600

 800

 1000

 1200

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(c) VM-SVM-ES

 0

 200

 400

 600

 800

 1000

 1200

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(d) VM-SVM-OA

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(e) VM-SVM-KM

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(f) VM-MCSVM

Figure 5.5: Comparison of online performances on USPS data set.

147

Satimage Data Set

In Table 5.20, the results of classification with online settings on satimage data set were

listed. The figures on the online performance were displayed in Fig. 5.6. Notice that, in

Fig. 5.6, the y-axis of VM-SVM-ES and VM-SVM-OA were twice the others’.

Among all the algorithms, VM-SVM-KM achieved the best accuracy 90.47%, while

VM-SVM-ES obtained the worst accuracy 79.43%. The difference between the best and

the worst accuracy was 11.04%. However, the accuracies of other algorithms were still

comparable with the best result, ranging from 84.21% to 89.91%.

For the probabilistic outputs results, it indicated that all multi-probability predictors

except VM-KNN and VM-SVM-ES gave probabilistic bounds, which can hedge the accu-

racy well. The cumulative errors curve of VM-KNN in Fig. 5.6a was slightly under the

lower bound, while the cumulative errors curve of VM-SVM-ES in Fig. 5.6c was beyond

the upper bound.

The outcomes for average width of the probabilistic bounds showed that VM-SVM-OA

yielded the narrowest bounds, which was 0.058 (%) while the loosest bounds were attained

by VM-SVM-ES, which was 2.82(%). The results of other algorithms were of the same

level, ranging from 0.69 (%) to 1.03 (%).

For the Brier scores, the results laid between 0.189 and 0.366. The best score was from

VM-KNN while the worst one was from VM-SVM-ES. The Brier scores of other algorithms

were within a range from 0.219 to 0.238, which were close to each other.

While for logarithmic loss results, the best score 0.423 was also from VM-KNN, while

the worst score 0.819 was still from VM-SVM-ES. The worst score was almost twice the

best score. Moreover, the results of other algorithms were all around 0.600.

Segment Data Set

In Table 5.21, the results of classification with online settings on segment data set were

listed. Moreover, the figures on the online performance were displayed in Fig. 5.7. Notice

that, in Fig. 5.7, the y-axis of VM-SVM-ES and VM-SVM-OA were 1.6 times the others’.

148

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1000 2000 3000 4000 5000 6000 7000

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(a) VM-KNN

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1000 2000 3000 4000 5000 6000 7000

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(b) VM-SVM-EL

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1000 2000 3000 4000 5000 6000 7000

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(c) VM-SVM-ES

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1000 2000 3000 4000 5000 6000 7000

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(d) VM-SVM-OA

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1000 2000 3000 4000 5000 6000 7000

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(e) VM-SVM-KM

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1000 2000 3000 4000 5000 6000 7000

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(f) VM-MCSVM

Figure 5.6: Comparison of online performances on satimage data set.

149

Table 5.20: Online mode results on satimage data set

Algorithm Accuracy Probabilistic

Outputs

Avg.

Width

Brier

Score

Log

Loss

VM-KNN 88.95% [88.20%, 88.89%] 0.69 0.189 0.423

VM-SVM-EL 89.57% [89.41%, 90.44%] 1.03 0.238 0.676

VM-SVM-ES 79.43% [80.04%, 82.86%] 2.82 0.366 0.819

VM-SVM-OA 84.21% [84.09%, 84.67%] 0.058 0.244 0.507

VM-SVM-KM 90.47% [90.17%, 91.20%] 1.03 0.219 0.614

VM-MCSVM 89.91% [89.68%, 90.63%] 0.95 0.232 0.656

For this data set, three simple probabilistic predictors did not obtain impressive results.

Especially, NaiveBayes yielded the worst results compared to all other algorithms.

Among all Venn predictors, VM-SVM-EL achieved the best accuracy, which was 95.37%,

while VM-SVM-OA obtained the worst accuracy 87.05%. The results of other algorithms

ranged from 89.56% to 95.24%, which was comparable to the best accuracy.

For the probabilistic outputs results, it indicated that all multi-probability predictors

gave probabilistic bounds, which can hedge the accuracy well. Fig. 5.7 also indicates

that: all cumulative errors curves are well-grounded except the one of VM-SVM-ES and

VM-SVM-OA in Fig. 5.7c, which are beyond the upper bound.

The outcomes for average width of the probabilistic bounds showed that VM-SVM-KM

yielded the narrowest bounds, which was 1.64 (%) while the loosest bounds were attained

by VM-MCSVM, which was 2.04 (%). The results of other algorithms were of the same

level, ranging from 1.67 (%) to 2.01 (%).

For the Brier scores, the results laid between 0.085 and 0.199, which was very close.

The best score was from VM-SVM-EL while the worst one was from VM-SVM-ES. The

worst Brier scores from VM-SVM-OA and VM-SVM-ES were approximately twice the

best score from VM-SVM-EL. The Brier scores of other algorithms were within a small

150

range between 0.089 to 0.098.

While for logarithmic loss results, the best score 0.231 was from VM-KNN, while the

worst scores 0.437 and 0.405 were from VM-SVM-ES and VM-SVM-OA. The results of

other algorithms ranged from 0.240 to 0.269, which was also close to the best score.

Table 5.21: Online mode results on segment data set

Algorithm Accuracy Probabilistic

Outputs

Avg.

Width

Brier

Score

Log

Loss

NaiveBayes 80.89% 97.77% 16.88 0.362 0.889

LogReg 93.16% 97.05% 3.89 0.108 0.333

SigSVM 88.78% 84.68% 4.10 0.156 0.311

VM-KNN 94.33% [92.71%, 94.72%] 2.01 0.098 0.231

VM-SVM-EL 95.37% [94.93%, 96.65%] 1.72 0.085 0.240

VM-SVM-ES 89.56% [89.78%, 91.48%] 1.70 0.182 0.437

VM-SVM-OA 87.05% [87.29%, 88.96%] 1.67 0.199 0.405

VM-SVM-KM 95.24% [94.88%, 96.52%] 1.64 0.089 0.245

VM-MCSVM 94.93% [94.44%, 96.48%] 2.04 0.094 0.269

DNA Data Set

In Table 5.22, the results of classification with online settings on DNA data set were listed.

Moreover, the figures on the online performance were displayed in Fig. 5.8. Notice that,

in Fig. 5.8, the y-axis of VM-KNN was 1.4 times the others’.

Among all the algorithms, VM-SVM-KM achieved the best accuracy 94.02%, while

VM-KNN obtained the worst accuracy 79.25%. Because of the performance of the under-

lying algorithm k-NN on this data set, we excluded VM-KNN in our following comparisons.

For the probabilistic outputs results, it indicated that all multi-probability predictors

except VM-KNN and VM-SVM-OA gave probabilistic bounds that could hedge the accu-

151

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(a) VM-KNN

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(b) VM-SVM-EL

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(c) VM-SVM-ES

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(d) VM-SVM-OA

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(e) VM-SVM-KM

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(f) VM-MCSVM

Figure 5.7: Comparison of online performances on segment data set.

152

racy well. However, the probabilistic bounds still gave the right estimates for the trends

of cumulative errors curse for VM-KNN in Fig. 5.8a. The cumulative errors curse went

far beyond the probabilistic bounds for VM-SVM-OA.

The outcomes for average width of the probabilistic bounds showed that VM-SVM-KM

yielded the narrowest bounds, which was 0.47 (%) while the loosest bounds were attained

by VM-MCSVM, which was 1.47 (%). The results of other algorithms were of the same

level, ranging from 0.55 (%) to 1.38 (%).

While for Brier scores, the best score 0.146 was from VM-SVM-OA, while the worst

score 0.215 was from VM-SVM-ES. However, the difference between these two results was

only 0.069.

For the log loss results, the results laid between 0.310 and 0.457, which was very close.

The best score was from VM-SVM-OA while the worst one was from VM-SVM-ES.

Table 5.22: Online mode results on DNA data set

Algorithm Accuracy Probabilistic

Outputs

Avg.

Width

Brier

Score

Log

Loss

VM-KNN 79.25% [78.42%, 79.10%] 0.68 0.324 0.581

VM-SVM-EL 93.89% [93.63%, 94.66%] 1.03 0.172 0.424

VM-SVM-ES 91.07% [89.60%, 90.98%] 1.38 0.215 0.457

VM-SVM-OA 91.65% [93.95%, 94.50%] 0.55 0.146 0.310

VM-SVM-KM 94.02% [93.79%, 94.26%] 0.47 0.170 0.425

VM-MCSVM 93.36% [93.71%, 95.18%] 1.47 0.176 0.444

Wine Data Set

In Table 5.23, the results of classification with online settings on wine data set were listed.

Moreover, the figures on the online performance were displayed in Fig. 5.9. Notice that,

in Fig. 5.9, the y-axis of VM-SVM-ES was twice the others’.

153

 0

 100

 200

 300

 400

 500

 600

 700

 0 500 1000 1500 2000 2500 3000 3500

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(a) VM-KNN

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000 3500

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(b) VM-SVM-EL

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000 3500

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(c) VM-SVM-ES

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000 3500

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(d) VM-SVM-OA

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000 3500

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(e) VM-SVM-KM

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000 3500

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(f) VM-MCSVM

Figure 5.8: Comparison of online performances on DNA data set.

154

Compared to all other algorithms, the results produced by simple probabilistic predic-

tors were within the average range. Among all Venn predictors, VM-SVM-KM achieved

the best accuracy 95.48%, while VM-SVM-ES obtained the worst accuracy 88.70%. The

other results ranged from 92.66% to 94.92%.

For the probabilistic outputs results, it indicated that all multi-probability predictors

gave probabilistic bounds, which can hedge the accuracy well.

The outcomes for average width of the probabilistic bounds showed that VM-MCSVM

yielded the narrowest bounds, which was 6.07 (%) while the loosest bounds were attained

by VA-SVM, which was 16.20(%). The results of other algorithms were of the same level,

ranging from 6.23 (%) to 6.45 (%).

For the Brier scores, the results laid between 0.065 and 0.161. The best score was from

VM-SVM-KM while the worst one was from VM-SVM-ES.

While for logarithmic loss results, the best score 0.134 was also from VM-SVM-KM,

while the worst score 0.295 was from VM-SVM-ES. The worst result was more than twice

the best score, which also indicated that VM-SVM-ES was not performed well here. The

results of other algorithms were of the same level, ranging from 0.205 to 0.237.

Vehicle Data Set

In Table 5.24, the results of classification with online settings on vehicle data set were

listed. Moreover, the figures on the online performance were displayed in Fig. 5.10.

SigSVM and NaiveBayes achieved poor results on this data set, especially for Naive-

Bayes. The accuracy of LogReg was comparable with other Venn predictors, but its

probabilistic output was 12.34% higher than the accuracy, which was too optimistic.

Among all Venn predictors, VM-SVM-KM achieved the best accuracy 79.76%, while

VM-KNN and VM-SVM-OA obtained the worst accuracies 66.04% and 60.71% respec-

tively. This is also a data set that not suitable for algorithms using k-NN or One-vs-All

SVM as the underlying algorithm. The improvement ranged from 0.71% to 4.38%, com-

paring with other algorithms.

155

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160 180

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(a) VM-KNN

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160 180

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(b) VM-SVM-EL

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120 140 160 180

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(c) VM-SVM-ES

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160 180

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(d) VM-SVM-OA

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160 180

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(e) VM-SVM-KM

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160 180

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(f) VM-MCSVM

Figure 5.9: Comparison of online performances on wine data set.

156

Table 5.23: Online mode results on wine data set

Algorithm Accuracy Probabilistic

Outputs

Avg.

Width

Brier

Score

Log

Loss

NaiveBayes 94.74% 98.27% 3.53 0.085 0.252

LogReg 94.94% 98.77% 3.83 0.073 0.320

SigSVM 92.66% 87.68% 4.98 0.095 0.188

VM-KNN 92.66% [88.66%, 95.98%] 6.32 0.114 0.237

VM-SVM-EL 94.92% [93.46%, 99.91%] 6.45 0.090 0.206

VM-SVM-ES 88.70% [78.22%, 94.42%] 16.20 0.161 0.295

VM-SVM-OA 95.48% [91.41%, 97.79%] 6.38 0.069 0.135

VM-SVM-KM 95.48% [93.59%, 99.82%] 6.23 0.065 0.134

VM-MCSVM 93.79% [93.07%, 99.14%] 6.07 0.097 0.205

For the probabilistic outputs results, it indicated that all multi-probability predictors

gave probabilistic bounds, which can hedge the accuracy well. From Fig. 5.10c, we also

learned that the cumulative errors curve of VM-SVM-ES fluctuated around the upper

bound, although the curve was almost always within the bounds, it exceeded the upper

bound at last.

The outcomes for average width of the probabilistic bounds showed that VM-SVM-KM

yielded the narrowest bounds, which was 2.21 (%) while the loosest bounds were attained

by VM-SVM-ES, which was 4.26(%). The results of other algorithms were of the same

level, ranging from 2.34 (%) to 3.08 (%).

For the Brier scores, the results laid between 0.354 and 0.380 if we excluded VM-KNN,

which is not suitable for this data set. The best score was from VM-SVM-KN while the

worst one was from VM-SVM-ES.

While for logarithmic loss results, the best score 0.711 was also from VM-SVM-KM,

while the worst score 0.773 was from VM-MCSVM. However, the difference of these two

157

results was only 0.062.

Table 5.24: Online mode results on vehicle data set

Algorithm Accuracy Probabilistic

Outputs

Avg.

Width

Brier

Score

Log

Loss

NaiveBayes 45.31% 80.55% 35.24 0.864 1.399

LogReg 76.71% 89.05% 12.34 0.351 0.752

SigSVM 61.78% 59.71% 2.07 0.453 0.782

VM-KNN 66.04% [64.68%, 67.76%] 3.08 0.451 0.835

VM-SVM-EL 79.05% [78.57%, 80.91%] 2.34 0.366 0.727

VM-SVM-ES 75.38% [76.14%, 80.40%] 4.26 0.380 0.733

VM-SVM-OA 60.71% [62.03%, 64.06%] 2.03 0.536 0.965

VM-SVM-KM 79.76% [79.12%, 81.33%] 2.21 0.354 0.711

VM-MCSVM 78.82% [78.67%, 81.05%] 2.38 0.377 0.773

5.5.1 Online Performances of Simple Probabilistic Predictors

We compared the performance measurements of simple probabilistic predictors on some

data sets in our previous subsection. In this subsection, we will show the online perfor-

mance figures containing cumulative curves of these three simple probabilistic predictors.

Since these predictors only gave single probabilistic outputs, there were only two cumula-

tive curves. One of the curves was cumulative errors curve, the other was the cumulative

probabilities curve.

Fig. 5.11 to Fig. 5.14 shown the performance curves on WBC, Segment, Wine and

Vehicle data sets respectively. From the figures, we learned that for NaiveBayes and Lo-

gReg, the probabilistic estimations were very optimistic, which means these two algorithms

usually gave higher estimations on accuracies. The differences between estimations and

accuracies (aka. average width in previous tables) were exceptionally large compared to

158

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(a) VM-KNN

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(b) VM-SVM-EL

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(c) VM-SVM-ES

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(d) VM-SVM-OA

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(e) VM-SVM-KM

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative lower bound
cumulative upper bound

(f) VM-MCSVM

Figure 5.10: Comparison of online performances on vehicle data set.

159

other algorithms. Both accuracies and probabilistic outputs showed no signs that the

results were improved as the training sets getting bigger.

For SigSVM, these figures showed that it produced a pessimistic estimation on the

accuracy. In most cases, the cumulative probabilities went over the cumulative errors.

The differences were better than the other two simple probabilistic predictors but not

comparable with Venn predictors. Moreover, two cumulative errors shown a trend to

increase in a slower speed as the training sets getting bigger. It indicated that the model

of SigSVM kept improving itself during the online process.

To sum up, these results shown that the property of validity for simple probabilistic

predictors is only guaranteed under strong statistical assumptions, which depends on the

data set. This is the main drawback compared to Venn predictors, whose validity was

guaranteed under an exchangeability assumption. The other drawback is that the proba-

bilistic output was a single probability distribution for each object, while Venn predictors

gave multiple estimations.

160

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600 700

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative probabilities

(a) NaiveBayes

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600 700

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative probabilities

(b) LogReg

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600 700

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative probabilities

(c) SigSVM

Figure 5.11: Comparison of online performances of simple probabilistic predictors on WBC

data set.

161

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative probabilities

(a) NaiveBayes

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative probabilities

(b) LogReg

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative probabilities

(c) SigSVM

Figure 5.12: Comparison of online performances of simple probabilistic predictors on Seg-

ment data set.

162

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160 180

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative probabilities

(a) NaiveBayes

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160 180

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative probabilities

(b) LogReg

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160 180

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative probabilities

(c) SigSVM

Figure 5.13: Comparison of online performances of simple probabilistic predictors on Wine

data set.

163

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700 800 900

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative probabilities

(a) NaiveBayes

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700 800 900

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative probabilities

(b) LogReg

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700 800 900

cu
m

ul
at

iv
e

er
ro

rs

examples

cumulative errors
cumulative probabilities

(c) SigSVM

Figure 5.14: Comparison of online performances of simple probabilistic predictors on Ve-

hicle data set.

164

5.6 Regression Results with Offline Setting

Since our methods output predictive regions instead of point predictions, the main aim

of our experiments was to check the narrowness of these regions. The first, third and the

last parts of Table 5.25-5.27 give mean, median and inter-decile mean width of the regions

produced for every data set by each setting of the k-NN RVM for the 90%, 95% and 99%

confidence levels. In the second part of Table 5.25-5.27 we check the reliability of the

obtained predictive regions for each data set. This is done by reporting the percentage

of examples for which the true label is not inside the region output by the corresponding

method. We also give the comparisons with the results of “TCP (8)” and “ICP (8)” from

Papadopoulos’s paper [46], in which the term “(8)” means the methods are using Eq. (8)

in [46] as the nonconformity measure. The “#C” in these three tables means the number

of categories.

The second part checks the validity of the predictive regions empirically. The above

tables indicated that the percentages reported here are usually less than the required

significance levels for 90% and 95% confidence. However, they are a bit larger than those

for 99% confidence.

A transformation of the width values reported in Tables 5.25-5.27 to the percentage

of the range of possible labels they represent shows that in general the predictive regions

produced by all our methods are relatively tight. The mean width percentages of all data

sets are between 25.0% and 76.6% for the 99% confidence level, between 19.1% and 58.2%

for the 95% confidence level and between 16.0% and 48.9% for the 90% confidence level.

By comparing these results to [46], we can see that the widths of our method are

regularly larger (15%-70%) than the results in [46] for the 90% and 95% confidence levels,

but a bit smaller or almost same (10%-40%) for the 99% confidence level.

When the number of categories increases, Table 5.26 and 5.27 shows that the widths

and the error rates both get improved. Especially in Table 5.27, the mean width shortened

by 21% and the median width shortened by 30% while the number of categories increased

165

Table 5.25: Comparison of narrowness and reliability results on the Boston Housing data

set.

Algorithm
Avg. Width % Outside Predictions

90% 95% 99% 90% 95% 99%

#C=5 20.78 24.75 32.53 4.55% 2.17% 1.58%

#C=10 22.00 26.21 34.45 4.74% 3.56% 2.37%

TCP (8) 10.24% 5.06% 0.97%

ICP (8) 9.47% 4.88% 0.79%

Algorithm
Median Width Inter-decile Avg. Width

90% 95% 99% 90% 95% 99%

#C=5 18.65 22.22 29.20 20.31 24.20 31.80

#C=10 20.52 24.45 32.13 21.37 25.46 33.46

TCP (8) 12.14 17.84 33.21 12.05 17.87 33.57

ICP (8) 13.71 19.44 38.81 13.69 19.42 41.58

from 5 to 10. However, the results went to the opposite when dealing with the Boston

Housing data set. This may be caused by the small size of the data set. While conducting

a 10-fold 10-category cross-validation to Boston Housing data set, the number of examples

in the same category as the testing objects is quite small.

Since the k-NNR CPs mentioned in [46] are using k-Nearest Neighbours Regression

as the nonconformity measure, it is different from our underlying algorithm, which is k-

Nearest Neighbours for classification. For Boston Housing data set, we tried different

numbers of neighbours and found the width went small when the neighbours decreased.

Table 5.28 shows the results for k = 1 when the number of category is 5, where k

stands for the number of neighbours using in k-Nearest Neighbours. By comparing this

to the results for k = 4, the mean width and median width decreased up to 27% for 90%,

166

Table 5.26: Comparison of narrowness and reliability results on the Abalone data set.

Algorithm
Avg. Width % Outside Predictions

90% 95% 99% 90% 95% 99%

#C=5 9.12 10.86 14.27 8.28% 5.03% 2.42%

#C=10 8.24 9.82 12.90 7.61% 4.69% 2.39%

TCP (8) 9.94% 4.94% 0.95%

ICP (8) 10.32% 5.09% 1.01%

Algorithm
Median Width Inter-decile Avg. Width

90% 95% 99% 90% 95% 99%

#C=5 9.21 10.98 14.43 9.33 11.12 14.61

#C=10 7.28 8.67 11.40 8.40 10.01 13.16

TCP (8) 6.69 9.27 16.11 6.71 9.26 16.12

ICP (8) 6.71 9.49 16.63 6.67 9.39 16.58

95% and 99%.

In Table 5.29 we report the processing times of our method. This table indicates the

huge computational efficiency of our method could achieve.

5.7 Summary

In this chapter, we gave the details of all our experiments conduct on different data sets.

These details included the brief description of each data set, the dimensional characteristics

of all data sets, the measures we used to evaluate algorithms, the settings of all related

parameters and the detailed results of all experiments grouped in tables and figures.

From our results, we gave our findings as follows:

1. Although Venn-ABERS predictor had the loosest probabilistic intervals, the pre-

167

Table 5.27: Comparison of narrowness and reliability results on the Computer Activity

data set.

Algorithm
Avg. Width % Outside Predictions

90% 95% 99% 90% 95% 99%

#C=5 19.94 23.75 31.22 6.29% 3.52% 1.10%

#C=10 15.83 18.86 24.79 4.82% 2.93% 0.89%

TCP (8) 9.98% 4.99% 0.97%

ICP (8) 9.71% 4.79% 0.95%

Algorithm
Median Width Inter-decile Avg. Width

90% 95% 99% 90% 95% 99%

#C=5 19.53 23.26 30.58 22.57 26.90 34.34

#C=10 13.67 16.29 21.41 17.26 20.57 27.03

TCP (8) 10.01 13.16 21.73 10.01 13.11 21.68

ICP (8) 10.15 13.59 22.71 10.25 13.47 22.58

dicted labels it gave were hedged well within its probabilistic intervals. The Venn-

ABERS predictor based on SVM gave a comparable accuracy. However, the absence

of a capability to deal with multi-class problems puts a limit on its potential.

2. Conformal Prediction with bivariate isotonic regression and Venn predictor with k-

Nearest Neighbours did not perform well on some data sets compared with other

Venn predictors using SVM as the underlying algorithm. The main reason was

these two algorithms used k-nearest neighbours rather than SVM. As we mentioned

before, the efficiency of Conformal predictors and Venn predictors depends on their

underlying algorithms. k-Nearest Neighbours can not perform well on some specific

data sets compared with SVM, especially when the boundaries between classes are

168

Table 5.28: Comparison of narrowness and reliability results on the Boston Housing data

set when the number of categories is 5.

Algorithm
Avg. Width % Outside Predictions

90% 95% 99% 90% 95% 99%

k = 1 17.78 21.18 27.84 7.11% 3.56% 1.19%

k = 4 20.78 24.75 32.53 4.55% 2.17% 1.58%

TCP (8) 10.24% 5.06% 0.97%

ICP (8) 9.47% 4.88% 0.79%

Algorithm
Median Width Inter-decile Avg. Width

90% 95% 99% 90% 95% 99%

k = 1 13.56 16.16 21.24 20.32 24.21 31.81

k = 4 18.65 22.22 29.20 20.31 24.20 31.80

TCP (8) 12.14 17.84 33.21 12.05 17.87 33.57

ICP (8) 13.71 19.44 38.81 13.69 19.42 41.58

not clear. Although the results were not as good as others, these two methods still

showed their capability on predicting narrow and valid probabilistic intervals.

3. Among the remaining four SVM related Venn predictors, the SVM Venn predictor

with equal size gave the worst performance. The best results were achieved by the

SVM Venn predictor with k-means clustering. The improvement was not significant,

but it is enough to distinguish this algorithm from the others. Another advantage

of using this taxonomy is that the number of categories and the number of clusters

among the objects are the same and they will be set to the number of possible

labels which is given together with the classification problem. It means we are not

necessary to find an optimal value for another parameter. However, the cumulative

169

Table 5.29: Processing time of k-NN RVM.

Algorithms Housing Abalone CompActi

RVM 1.0 sec 40 sec 1.5 min

TCP 20 sec 52 min 2.6 hrs

ICP 0.6 sec 8 sec 17 sec

error curves in online setting slightly outranged or fluctuated around one boundary

for some data sets. The reason for this may be that the introducing of combined

decision function resulted in a bit over-fitting. The results of Venn predictor with

One-vs-All SVM was also not very good, and this algorithm was not suitable for

some of the data sets. However, it still showed the potential on achieving narrow

bounds, which leads to an informative probabilist predictions.

4. We have also studied possible connections of probabilistic and reliable algorithms

with the problem of regression. We compared approaches for regression based on

Conformal Prediction and Venn Machines. Our Regression Venn predictor with k-

nearest neighbours was exceeded in prediction interval width by other regression

algorithms like transductive conformal predictor and inductive conformal predictor.

As the results revealed, this regression Venn predictor violated the validity. How-

ever, it was less time consumable according to the comparison between transductive

conformal predictor and inductive conformal predictor. Currently, the algorithms of

Regression Conformal Prediction gives better performance in all the experiments, so

the right design for Regression Venn Machines is a challenge for the future work.

5. If we look into the Appendix A, we will find that WBC and DNA data sets are

imbalanced. However, most algorithms performed well on these data sets both offline

and online mode. Only k-Nearest Neighbours based algorithms were not comparable

to other algorithms.

170

Chapter 6

Conclusions and Future Works

This chapter sums up the previous chapters, draws the conclusions of this thesis and

provides some possible directions for future work.

6.1 Conclusions

This thesis was devoted to algorithm designs based on Conformal prediction and Venn

prediction. Conformal and Venn predictors allow us to measure the reliability of the

single prediction given by the underlying algorithms. Moreover, these estimations have a

guarantee on the overall outcome. The majority of the thesis focuses on taxonomy designs

for Venn Machines.

The following new developments and results were presented in this thesis.

• A new modification of standard Conformal prediction was proposed: Conformal

prediction with bivariate isotonic regression. This method transforms confidence and

credibility values that are output by Conformal prediction into multi-probabilities

by applying an isotonic regression.

• An implementation of a new type of Venn predictors was given: Venn-ABERS pre-

171

dictors. This method transforms scores from other classifiers into valid probabilities

• A taxonomy using support vector machines with equal length intervals for Venn

Machines was designed. Also, this taxonomy was upgraded to support multi-class

problems from originally the binary only version. The method uses combined decision

values to represent all decision values derived from decomposed binary classifiers.

• Based on the combined decision values, a new taxonomy using support vector ma-

chines with k-means clustering intervals was proposed. This taxonomy divides com-

bined decision values into different categories by implementing k-means clustering

instead of separate them into equal-length intervals.

• A new taxonomy was designed, which is using multi-class support vector machines

proposed by Crammer and Singer in [13]. This algorithm transforms multi-class

support vector machines into a single optimization problem instead of decomposing

them into several binary support vector machines like one-vs-one and one-vs-rest

support vector machines. Then the prediction scores from the single classifier were

used the same way as the combined decision value in the taxonomy.

• Venn prediction for regression was also implemented. However, the results were not

comparable with another implementation of regression conformal prediction.

• Experimental testing of these designed taxonomies and algorithms was carried out.

A comparison among all these algorithms was shown in Chapter 5.

• In the experiments, SVM-based algorithms showed their flexibility compared with

other algorithms such as k-Nearest Neighbours and NaiveBayes. Almost in all experi-

ments, SVM-based algorithms performed better than other algorithms based designs.

Among all Venn taxonomy designs, taxonomies only with predictions in their designs

had the worst performance. Once their underlying algorithms did not perform well,

they could only yield poor results as well. Taxonomies that use intermediate values

of their underlying algorithm usually performed adequately.

172

• The online performances of simple probabilistic predictors were examined as well.

The results showed that the property of validity for simple probabilistic predictors

is only guaranteed under strong statistical assumptions, which depends on the data

set. This is the main drawback compared to Venn predictors. The other drawback

is that the probabilistic output was a single probability distribution for each object,

while Venn predictors gave multiple estimations.

6.2 Future Works

This research has left some questions openly and raised some new questions. Here we

describe some possible directions for further research. Among them are:

• The experimental results has shown that the efficiency of a Conformal predictor or a

Venn predictor is strongly correlated with the efficiency of its underlying algorithm.

This means that we have two ways to improve the results on some specific data

sets: the one is to find some more effective strangeness measures on the current

underlying algorithm to build better predictors; the other one is to design Venn

taxonomies or non-conformal measures on some other underlying algorithm that has

better efficiency on the data sets instead of current algorithm. In the future, we

can try to implement more machine learning algorithms such as random forests into

Conformal and Venn Machines’ frameworks. Although using Lagrange multipliers of

support vector machines as taxonomy for Venn Machines has already been proposed

in [14], future works are still possible to extend the capability of this taxonomy from

binary-class data sets to multi-class data sets.

• Comparing to simple predictors and other probabilistic predictors, Conformal and

Venn predictors have many advantages over them: they give more informative pre-

dictions, the validity of their predictions is guaranteed, they are flexible frameworks

that can use most of machine learning algorithms as underlying algorithms. However,

the drawback of Conformal and Venn predictors is their computational inefficiency,

173

especially when dealing with large data sets. Therefore, to develop some variants of

Conformal or Venn predictions that can reduce the inefficiency in terms of compu-

tational time while having comparable results is also a potential direction of further

research.

• As another sort of Venn predictors, Venn-ABERS prediction is less computational

inefficient than Venn machines while it still holds comparable accuracies and validity.

Considering the potential of this algorithm, we think the problems related to Venn-

ABERS prediction are worth researching in the future. These include extending

Venn-ABERS prediction to support multi-class problem, adding more selections on

scoring functions.

• By introducing SVM taxonomy with k-means clustering, we see a potential research-

ing direction that implement clustering algorithms into Venn machines.

174

Appendix A

Details of Data Sets

WBC Data Set

This data set can be obtained from (http://archive.ics.uci.edu/ml/datasets/Breast+

Cancer+Wisconsin+%28Original%29).

The distribution of classes is shown in Table A.1.

Table A.1: Distribution of classes in WBC

Class # of Examples % of Examples

1 444 65.01%

2 239 34.99%

When conducting SVM on this data set, the best pair of parameters for RBF kernel is

C = 29, γ = 2−7. The best rate = 97.22% is determined by a grid search on a range of

[2−5 . . . 215, 2−15 . . . 23].

175

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29

SVMguide1 Data Set

This data set can be obtained from (http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/binary.html#svmguide1).

The distribution of classes is shown in Table A.2.

Table A.2: Distribution of classes in SVMguide1

Class # of Examples % of Examples

1 3089 43.57%

2 4000 56.43%

When conducting SVM on this data set, the best pair of parameters for RBF kernel

is C = 29, γ = 21. The best rate = 97.15% is determined by a grid search on a range of

[2−5 . . . 215, 2−15 . . . 23].

Splice Data Set

This data set can be obtained from (http://www.cs.toronto.edu/~delve/data/splice/

desc.html).

The distribution of classes is shown in Table A.3.

Table A.3: Distribution of classes in Splice

Class # of Examples % of Examples

1 1527 48.09%

2 1648 51.91%

When conducting SVM on this data set, the best pair of parameters for RBF kernel is

C = 21, γ = 2−5. The best rate = 91.62% is determined by a grid search on a range of

[2−5 . . . 215, 2−15 . . . 23].

176

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#svmguide1
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#svmguide1
http://www.cs.toronto.edu/~delve/data/splice/desc.html
http://www.cs.toronto.edu/~delve/data/splice/desc.html

USPS Data Set

This data set can be obtained from (http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/multiclass.html#usps).

The distribution of classes is shown in Table A.4.

Table A.4: Distribution of classes in USPS

Class # of Examples % of Examples

1 1553 16.70%

2 1269 13.65%

3 929 9.99%

4 824 8.86%

5 852 9.16%

6 716 7.70%

7 834 8.97%

8 792 8.52%

9 708 7.61%

10 821 8.83%

When conducting SVM on this data set, the best pair of parameters for RBF kernel is

C = 21, γ = 2−5. The best rate = 98.04% is determined by a grid search on a range of

[2−5 . . . 215, 2−15 . . . 23].

Satimage Data Set

This data set can be obtained from (http://archive.ics.uci.edu/ml/datasets/Statlog+

%28Landsat+Satellite%29).

The distribution of classes is shown in Table A.5.

177

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps
http://archive.ics.uci.edu/ml/datasets/Statlog+%28Landsat+Satellite%29
http://archive.ics.uci.edu/ml/datasets/Statlog+%28Landsat+Satellite%29

Table A.5: Distribution of classes in Satimage

Class # of Examples % of Examples

1 1533 23.82%

2 703 10.92%

3 1358 21.10%

4 626 9.73%

5 707 10.99%

6 1508 23.43%

When conducting SVM on this data set, the best pair of parameters for RBF kernel

is C = 21, γ = 21. The best rate = 92.29% is determined by a grid search on a range of

[2−5 . . . 215, 2−15 . . . 23].

Segment Data Set

This data set can be obtained from (http://archive.ics.uci.edu/ml/datasets/Image+

Segmentation).

The distribution of classes is shown in Table A.6.

When conducting SVM on this data set, the best pair of parameters for RBF kernel is

C = 27, γ = 2−1. The best rate = 97.32% is determined by a grid search on a range of

[2−5 . . . 215, 2−15 . . . 23].

DNA Data Set

This data set can be obtained from (http://www.sgi.com/tech/mlc/db/DNA.all).

The distribution of classes is shown in Table A.7.

When conducting SVM on this data set, the best pair of parameters for RBF kernel is

178

http://archive.ics.uci.edu/ml/datasets/Image+Segmentation
http://archive.ics.uci.edu/ml/datasets/Image+Segmentation
http://www.sgi.com/tech/mlc/db/DNA.all

Table A.6: Distribution of classes in Segment

Class # of Examples % of Examples

1 330 14.29%

2 330 14.29%

3 330 14.29%

4 330 14.29%

5 330 14.29%

6 330 14.29%

7 330 14.29%

Table A.7: Distribution of classes in DNA

Class # of Examples % of Examples

1 767 24.07%

2 765 24.01%

3 1654 51.91%

C = 21, γ = 2−7. The best rate = 95.95% is determined by a grid search on a range of

[2−5 . . . 215, 2−15 . . . 23].

Wine Data Set

This data set can be obtained from (http://archive.ics.uci.edu/ml/datasets/Wine).

The distribution of classes is shown in Table A.8.

When conducting SVM on this data set, the best pair of parameters for RBF kernel is

C = 21, γ = 2−3. The best rate = 98.31% is determined by a grid search on a range of

[2−5 . . . 215, 2−15 . . . 23].

179

http://archive.ics.uci.edu/ml/datasets/Wine

Table A.8: Distribution of classes in Wine

Class # of Examples % of Examples

1 59 33.15%

2 71 39.89%

3 48 26.97%

Vehicle Data Set

This data set can be obtained from (http://archive.ics.uci.edu/ml/datasets/Statlog+

%28Vehicle+Silhouettes%29).

The distribution of classes is shown in Table A.9.

Table A.9: Distribution of classes in Vehicle

Class # of Examples % of Examples

1 212 25.06%

2 217 25.65%

3 218 25.77%

4 199 23.52%

When conducting SVM on this data set, the best pair of parameters for RBF kernel is

C = 27, γ = 2−3. The best rate = 85.22% is determined by a grid search on a range of

[2−5 . . . 215, 2−15 . . . 23].

Housing Data Set

This data set can be obtained from (http://archive.ics.uci.edu/ml/datasets/Housing).

The distribution of labels is shown in Table A.10.

180

http://archive.ics.uci.edu/ml/datasets/Statlog+%28Vehicle+Silhouettes%29
http://archive.ics.uci.edu/ml/datasets/Statlog+%28Vehicle+Silhouettes%29
http://archive.ics.uci.edu/ml/datasets/Housing

Table A.10: Distribution of labels in Housing

Min. 1st Qu. Median Mean 3rd Qu. Max.

5.00 17.02 21.20 22.53 25.00 50.00

Abalone Data Set

This data set can be obtained from (http://archive.ics.uci.edu/ml/datasets/Abalone).

The distribution of labels is shown in Table A.11.

Table A.11: Distribution of labels in Abalone

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 8.00 9.00 9.93 11.00 29.00

CompActi Data Set

This data set can be obtained from (http://www.cs.toronto.edu/~delve/data/comp-activ/

desc.html).

The distribution of labels is shown in Table A.12.

Table A.12: Distribution of labels in CompActi

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 81.00 89.00 83.97 94.00 99.00

181

http://archive.ics.uci.edu/ml/datasets/Abalone
http://www.cs.toronto.edu/~delve/data/comp-activ/desc.html
http://www.cs.toronto.edu/~delve/data/comp-activ/desc.html

Appendix B

Manual for the LibVM

LibVM is a simple, easy-to-use, and efficient software for Venn Machine on classification,

which gives label prediction together with its probabilistic estimations. This library solves

Venn prediction in both online and offline mode with k-nearest neighbours or support

vector machines as the underlying algorithms. LibVM is written by myself for the purpose

of research. This chapter explains the usage of LibVM.

Installation and Data Format

On Unix systems, type make to build the vm-offline, vm-online and vm-cv programs.

Run them without arguments to show the usage of them.

The format of training and testing data file is:

<l abe l> <index1>:<value1> <index2>:<value2> . . .

. . .

. . .

. . .

Each line contains an instance and is ended by a ‘\n’ character (Unix line ending).

182

For classification, <label> is an integer indicating the class label (multi-class is sup-

ported). For regression, <label> is the target value that can be any real number. The

pair <index>:<value> gives a feature (attribute) value: <index> is an integer starting

from 1 and <value> is the value of the attribute, which could be an integer number or

real number. Indices must be in ASCENDING order. Labels in the testing file are only

used to calculate accuracies and errors. If they are unknown, just fill the first column with

any numbers.

A sample classification data set included in this package is iris scale for training and

iris scale t for testing.

Type vm-offline iris scale iris scale t, and the program will read the training

data and testing data and then output the result into iris scale t output file by de-

fault. The model file iris scale model will not be saved by default, however, adding

-s model file name to [option] will save the model to model file name. The output

file contains the predicted labels and the lower and upper bounds of probabilities for each

predicted label.

“vm-offline” Usage

Usage : vm−o f f l i n e [opt i ons] t r a i n f i l e t e s t f i l e [o u t p u t f i l e]

opt i ons :

−t taxonomy type : s e t type o f taxonomy (d e f au l t 0)

0 −− k−nea r e s t ne ighbours (KNN)

1 −− support vec to r machine with equal l ength (SVM EL)

2 −− support vec to r machine with equal s i z e (SVM ES)

3 −− support vec to r machine with k−means c l u s t e r i n g (SVMKM)

−k num neighbours : s e t number o f ne ighbours in kNN (de f au l t 1)

−c num categor i e s : s e t number o f c a t e g o r i e s f o r Venn p r ed i c t o r

(d e f au l t 4)

183

−s mode l f i l e name : save model

− l mode l f i l e name : load model

−p : p r e f i x o f opt ions to s e t parameters f o r SVM

−ps svm type : s e t type o f SVM (de f au l t 0)

0 −− C−SVC (multi−c l a s s c l a s s i f i c a t i o n)

1 −− nu−SVC (multi−c l a s s c l a s s i f i c a t i o n)

−pt ke rn e l t ype : s e t type o f k e rne l f unc t i on (d e f au l t 2)

0 −− l i n e a r : u ’∗ v

1 −− polynomial : (gamma∗u ’∗ v + coe f 0) ˆ degree

2 −− r a d i a l b a s i s f unc t i on : exp(−gamma∗ |u−v |ˆ2)

3 −− s igmoid : tanh (gamma∗u ’∗ v + coe f 0)

4 −− precomputed ke rne l (k e rne l va lue s in t r a i n i n g s e t f i l e

)

−pd degree : s e t degree in ke rne l f unc t i on (d e f au l t 3)

−pg gamma : s e t gamma in ke rne l f unc t i on (d e f au l t 1/

num features)

−pr coe f 0 : s e t coe f 0 in ke rne l f unc t i on (d e f au l t 0)

−pc co s t : s e t the parameter C o f C−SVC (de f au l t 1)

−pn nu : s e t the parameter nu o f nu−SVC (de f au l t 0 . 5)

−pm cach e s i z e : s e t cache memory s i z e in MB (de f au l t 100)

−pe ep s i l o n : s e t t o l e r an c e o f te rminat ion c r i t e r i o n (d e f au l t

0 . 001)

−ph sh r ink ing : whether to use the sh r ink ing h e u r i s t i c s , 0 or

1 (d e f au l t 1)

−pwi weights : s e t the parameter C o f c l a s s i to weight ∗C,

f o r C−SVC (de f au l t 1)

−pq : qu i e t mode (no outputs)

184

train file is the data you want to train with. test file is the data you want to pre-

dict. vm-offline will produce outputs in the output file by default. option -v randomly

splits the data into n parts and calculates cross validation accuracy/mean squared error

on them.

“vm-online” Usage

Usage : vm−on l i n e [opt i ons] d a t a f i l e [o u t p u t f i l e]

opt i ons :

−t taxonomy type : s e t type o f taxonomy (d e f au l t 0)

0 −− k−nea r e s t ne ighbours (KNN)

1 −− support vec to r machine with equal l ength (SVM EL)

2 −− support vec to r machine with equal s i z e (SVM ES)

3 −− support vec to r machine with k−means c l u s t e r i n g (SVMKM)

−k num neighbours : s e t number o f ne ighbours in kNN (de f au l t 1)

−c num categor i e s : s e t number o f c a t e g o r i e s f o r Venn p r ed i c t o r

(d e f au l t 4)

−p : p r e f i x o f opt ions to s e t parameters f o r SVM

−ps svm type : s e t type o f SVM (de f au l t 0)

0 −− C−SVC (multi−c l a s s c l a s s i f i c a t i o n)

1 −− nu−SVC (multi−c l a s s c l a s s i f i c a t i o n)

−pt ke rn e l t ype : s e t type o f k e rne l f unc t i on (d e f au l t 2)

0 −− l i n e a r : u ’∗ v

1 −− polynomial : (gamma∗u ’∗ v + coe f 0) ˆ degree

2 −− r a d i a l b a s i s f unc t i on : exp(−gamma∗ |u−v |ˆ2)

3 −− s igmoid : tanh (gamma∗u ’∗ v + coe f 0)

4 −− precomputed ke rne l (k e rne l va lue s in t r a i n i n g s e t f i l e

)

185

−pd degree : s e t degree in ke rne l f unc t i on (d e f au l t 3)

−pg gamma : s e t gamma in ke rne l f unc t i on (d e f au l t 1/

num features)

−pr coe f 0 : s e t coe f 0 in ke rne l f unc t i on (d e f au l t 0)

−pc co s t : s e t the parameter C o f C−SVC (de f au l t 1)

−pn nu : s e t the parameter nu o f nu−SVC (de f au l t 0 . 5)

−pm cach e s i z e : s e t cache memory s i z e in MB (de f au l t 100)

−pe ep s i l o n : s e t t o l e r an c e o f te rminat ion c r i t e r i o n (d e f au l t

0 . 001)

−ph sh r ink ing : whether to use the sh r ink ing h e u r i s t i c s , 0 or

1 (d e f au l t 1)

−pwi weights : s e t the parameter C o f c l a s s i to weight ∗C,

f o r C−SVC (de f au l t 1)

−pq : qu i e t mode (no outputs)

data file is the data you want to run the online prediction on. vm-online will produce

outputs in the output file by default.

“vm-cv” Usage

Usage : vm−cv [opt ions] d a t a f i l e [o u t p u t f i l e]

opt i ons :

−t taxonomy type : s e t type o f taxonomy (d e f au l t 0)

0 −− k−nea r e s t ne ighbours (KNN)

1 −− support vec to r machine with equal l ength (SVM EL)

2 −− support vec to r machine with equal s i z e (SVM ES)

3 −− support vec to r machine with k−means c l u s t e r i n g (SVMKM)

−k num neighbours : s e t number o f ne ighbours in kNN (de f au l t 1)

186

−c num categor i e s : s e t number o f c a t e g o r i e s f o r Venn p r ed i c t o r

(d e f au l t 4)

−v num folds : s e t number o f f o l d e r s in c r o s s v a l i d a t i o n (

d e f au l t 5)

−p : p r e f i x o f opt ions to s e t parameters f o r SVM

−ps svm type : s e t type o f SVM (de f au l t 0)

0 −− C−SVC (multi−c l a s s c l a s s i f i c a t i o n)

1 −− nu−SVC (multi−c l a s s c l a s s i f i c a t i o n)

−pt ke rn e l t ype : s e t type o f k e rne l f unc t i on (d e f au l t 2)

0 −− l i n e a r : u ’∗ v

1 −− polynomial : (gamma∗u ’∗ v + coe f 0) ˆ degree

2 −− r a d i a l b a s i s f unc t i on : exp(−gamma∗ |u−v |ˆ2)

3 −− s igmoid : tanh (gamma∗u ’∗ v + coe f 0)

4 −− precomputed ke rne l (k e rne l va lue s in t r a i n i n g s e t f i l e

)

−pd degree : s e t degree in ke rne l f unc t i on (d e f au l t 3)

−pg gamma : s e t gamma in ke rne l f unc t i on (d e f au l t 1/

num features)

−pr coe f 0 : s e t coe f 0 in ke rne l f unc t i on (d e f au l t 0)

−pc co s t : s e t the parameter C o f C−SVC (de f au l t 1)

−pn nu : s e t the parameter nu o f nu−SVC (de f au l t 0 . 5)

−pm cach e s i z e : s e t cache memory s i z e in MB (de f au l t 100)

−pe ep s i l o n : s e t t o l e r an c e o f te rminat ion c r i t e r i o n (d e f au l t

0 . 001)

−ph sh r ink ing : whether to use the sh r ink ing h e u r i s t i c s , 0 or

1 (d e f au l t 1)

−pwi weights : s e t the parameter C o f c l a s s i to weight ∗C,

f o r C−SVC (de f au l t 1)

187

−pq : qu i e t mode (no outputs)

data file is the data you want to run the cross validation on. vm-cv will produce

outputs in the output file by default.

Tips on Practical Use

• Scale your data. For example, scale each attribute to [0, 1] or [−1,+1].

• Try different taxonomies. Some data sets will not achieve good results on some data

sets.

• Change parameters for better results especially when you are using SVM related

taxonomies.

Examples

> vm−o f f l i n e −k 3 t r a i n f i l e t e s t f i l e o u t p u t f i l e

Train a Venn predictor with 3-nearest neighbours as its underlying algorithm on the data

set reading from train file. Then conduct this classifier to test file and output the

results to output file.

> vm−o f f l i n e −t 1 −s mod e l f i l e t r a i n f i l e t e s t f i l e

Train a Venn predictor using support vector machines with equal length intervals as tax-

onomy from train file. Then conduct this classifier to test file and output the results

to the default output file, also the model will be saved to file model file.

> vm−on l i n e −t 2 d a t a f i l e

Train an online Venn predictor classifier using support vector machine with equal size

intervals as taxonomy from data file. Then output the results to the default output file.

188

> vm−cv −t 3 −v 10 d a t a f i l e

Do a 10-fold cross validation Venn predictor using support vector machine with k-means

clustering intervals as taxonomy from data file. Then output the results to the default

output file.

Library Usage

All functions and structures are declared in different header files. There are 5 parts in this

library, which are utilities, knn, svm, vm and the other driver programs.

utilities.h and utilities.cpp

The structure Problem for storing the data sets (including the structure Node for storing

the attributes pair of index and value) and all the constant variables are declared in

utilities.h.

In this file, some utilizable function templates or functions are also declared.

T FindMostFrequent (T ∗array , int s i z e)

This function is used to find the most frequent category in kNN taxonomy.

stat ic inl ine void c l one (T ∗&dest , S ∗ src , int s i z e)

This static function is used to clone an array from src to dest.

void QuickSortIndex (T array [] , s i z e t index [] , s i z e t l e f t ,

s i z e t r i g h t)

This function is used to quick-sort an array and preserve the original indices.

Problem ∗ReadProblem (const char ∗ f i l e name)

This function is used to read in a data set from a file named file name.

189

void FreeProblem (struct Problem ∗problem)

This function is used to free a problem stored in the memory.

void GroupClasses (const Problem ∗prob , int ∗ num c la s s e s r e t , int

∗∗ l a b e l s r e t , int ∗∗ s t a r t r e t , int ∗∗ count re t , int ∗perm)

This function is used in Cross Validation and other predictions using SVM related tax-

onomies. This function will group the examples with same label together. The last 5

parameters are using to return corresponding values. num classes ret is used to store

the number of classes in the problem. labels ret is an array used to store the actual

label in the order of appearance. start ret is an array used to store the starting index

of each group of examples. count ret is an array used to store the count number of each

group of examples. perm is an array used to store the permutation of the permuted index

of the problem.

knn.h and knn.cpp

The structure KNNParameter for storing the kNN related parameters and the structure

KNNModel for storing the kNN related model are declared in knn.h.

In this file, some utilizable function templates or functions are also declared.

stat ic inl ine void I n s e r tLabe l (T ∗ l a b e l s , T l abe l , int

num neighbours , int index)

This static function will insert label into the index-th location of the array labels of which

the size is num neighbours.

KNNModel ∗TrainKNN(const struct Problem ∗prob , const struct

KNNParameter ∗param)

This function is used to train a kNN model from a problem prob and the parameter param,

it will return a model of the structure KNNModel.

190

double PredictKNN(struct Problem ∗ t ra in , struct Node ∗x , const

int num neighbours)

This function is used to predict the label for object x using kNN classifier.

double CalcDist (const struct Node ∗x1 , const struct Node ∗x2)

This function is used to calculate the distance between two objects x1 and x2, which will

be used in kNN.

int CompareDist (double ∗neighbours , double d i s t , int

num neighbours)

This function is used to compare a distance dist with the nearest neighbours’ distances

stored in an array neighbours, it will return the position of dist, if it is greater than all

the distances in neighbours, it gives num neighbours.

int SaveKNNModel (std : : o f s t ream &mode l f i l e , const struct KNNModel

∗model)

KNNModel ∗LoadKNNModel(std : : i f s t r e am &mod e l f i l e)

void FreeKNNModel (struct KNNModel ∗model)

These three functions are used to manipulate the kNN model file, including “save to file”,

“load from file” and “free the model”.

void FreeKNNParam(struct KNNParameter ∗param)

void InitKNNParam(struct KNNParameter ∗param)

const char ∗CheckKNNParameter (const struct KNNParameter ∗param)

These three functions are used to manipulate the kNN parameter file, including “free the

param”, “initial the param” and “check the param”.

191

svm.h and svm.cpp

The structure SVMParameter for storing the SVM related parameters and the structure

SVMModel for storing the SVM related model are declared in svm.h.

In this file, some utilizable function templates or functions are also declared.

SVMModel ∗TrainSVM(const struct Problem ∗prob , const struct

SVMParameter ∗param)

This function is used to train a SVM model from a problem prob and the parameter

param, it will return a model of the structure SVMModel.

double Pred ic tValues (const struct SVMModel ∗model , const struct

Node ∗x , double∗ d e c i s i o n v a l u e s)

This function is used to predict the label for object x using SVM classifier.

double PredictSVM(const struct SVMModel ∗model , const struct Node

∗x)

This function is an interface for PredictValues() to predict label.

double Pred i c tDec i s i onVa lue s (const struct SVMModel ∗model , const

struct Node ∗x , double ∗∗ d e c i s i o n v a l u e s)

This function is an interface for PredictValues() that wraps the main prediction function

with decision values to get both label and decision values.

int SaveSVMModel (std : : o f s t ream &mode l f i l e , const struct SVMModel

∗model)

SVMModel ∗LoadSVMModel(std : : i f s t r e am &mod e l f i l e)

void FreeSVMModel (struct SVMModel ∗∗model)

These three functions are used to manipulate the SVM model file, including “save to file”,

“load from file” and “free the model”.

192

void FreeSVMParam(struct SVMParameter ∗param)

void InitSVMParam(struct SVMParameter ∗param)

const char ∗CheckSVMParameter (const struct SVMParameter ∗param)

These three functions are used to manipulate the SVM parameter file, including “free the

param”, “initial the param” and “check the param”.

void SetPr in tNu l l ()

void SetPrintCout ()

These two functions are used to set the output destination. SetPrintNull() will print

the output to nowhere (except the warning and error messages and the final results).

SetPrintCout() will print the output to the standard output stream.

vm.h and vm.cpp

The structure Parameter for storing the Venn Machine related parameters and the struc-

ture Model for storing the Venn Machine related model are declared in vm.h. You need

to #include ‘‘vm.h’’ in your C/C++ source files and link your program with vm.cpp.

You can see vm-offline.cpp, vm-online.cpp and vm-cv.cpp for examples showing how

to use them.

In this file, some utilizable function templates or functions are also declared.

Model ∗TrainVM(const struct Problem ∗ t ra in , const struct

Parameter ∗param)

This function is used to train a Venn predictor from the problem train and the parameter

param.

double PredictVM(const struct Problem ∗ t ra in , const struct Model

∗model , const struct Node ∗x , double &lower , double &upper ,

double ∗∗ avg prob)

193

This function is used to predict a new object x from the problem train and the model. It

will return the predicted label, lower for lower bound of the probability, upper for upper

bound and avg prob for calculate performance measures are also returned.

void CrossVa l idat ion (const struct Problem ∗prob , const struct

Parameter ∗param , double ∗ p r e d i c t l a b e l s , double ∗

lower bounds , double ∗upper bounds , double ∗ br i e r , double ∗

l o g l o s s)

This function is used to do a cross validation on the problem prob and the parameter

param. The other 5 parameters are used to return the corresponding values.

void Onl inePred ic t (const struct Problem ∗prob , const struct

Parameter ∗param , double ∗ p r e d i c t l a b e l s , int ∗ i nd i c e s ,

double ∗ lower bounds , double ∗upper bounds , double ∗ br i e r ,

double ∗ l o g l o s s)

This function is used to do a online prediction on the problem prob and the parameter

param. The other 6 parameters are used to return the corresponding values.

int SaveModel (const char ∗model f i l e name , const struct Model ∗

model)

Model ∗LoadModel (const char ∗mode l f i l e name)

void FreeModel (struct Model ∗model)

These three functions are used to manipulate the model file, including “save to file”, “load

from file” and “free the model”.

void FreeParam (struct Parameter ∗param)

const char ∗CheckParameter (const struct Parameter ∗param)

These two functions are used to manipulate the parameter file, including “free the param”

and “check the param”.

194

vm-offline.cpp, vm-online.cpp and vm-cv.cpp

These three files are the driver programs for LibVM. vm-offline.cpp is for training and

testing data sets in offline setting. vm-online.cpp is for doing online prediction on data

sets. vm-cv.cpp is for doing cross validation on data sets.

The structure of these files are similar. In these programs, the command-line inputs

will be parsed, the data sets will be read into the memory, the train and predict process will

be called, the performance measure process will be carried out and finally the memories

it claimed will be cleaned up. It includes the following functions.

void ExitWithHelp ()

This function is used to print out the usage of the executable file.

void ParseCommandLine (int argc , char ∗argv [] , char ∗ f i l e name)

This function is used to parse the options from the command-line input, and return the

values like file names to the other parameters which is represented by file name.

Additional Information

This library can be obtained from https://github.com/fated/libvm. For any questions and

comments, please email c.zhou@cs.rhul.ac.uk.

Acknowledgements

Special thanks to Chih-Chung Chang and Chih-Jen Lin, which are the authors of LibSVM.

195

https://github.com/fated/libvm
mailto:c.zhou@cs.rhul.ac.uk

Bibliography

[1] S Aeberhard, D Coomans, and O De Vel, Comparison of classifiers in high dimen-

sional settings, Dept. Math. Statist., James Cook Univ., North Queensland, Australia,

Tech. Rep (1992), no. 92-02.

[2] A Aizerman, Emmanuel M Braverman, and L I Rozoner, Theoretical foundations of

the potential function method in pattern recognition learning, Automation and remote

control 25 (1964), 821–837.

[3] Miriam Ayer, HD Brunk, and GM Ewing, An empirical distribution function for sam-

pling with incomplete information, The annals of mathematical statistics 26 (1955),

no. 4, 641–647.

[4] Mohit Bhandari and Anders Joensson, Clinical research for surgeons, Thieme, 2011.

[5] Christopher M Bishop, Pattern recognition and machine learning, vol. 1, Springer,

New York, 2006.

[6] E Boser, N Vapnik, Isabelle M Guyon, T Bell Laboratories, Bernhard E Boser, and

Vladimir N Vapnik, A training algorithm for optimal margin classifiers, Proceedings

of the fifth annual workshop on computational learning theory, 1992, pp. 144–152.

[7] Lon Bottou, Corinna Cortes, John S Denker, Harris Drucker, Isabelle Guyon,

Lawrence D Jackel, Yann LeCun, Urs A Muller, Edward Sackinger, Patrice Simard,

196

et al., Comparison of classifier methods: a case study in handwritten digit recognition,

International Conference on Pattern Recognition, 1994, p. 77.

[8] GW Brier, Verification of forecasts expressed in terms of probability, Monthly weather

review 27 (1950), no. 693, 594–5.

[9] Chih-chung Chang and Chih-jen Lin, Libsvm: a library for support vector machines,

ACM Transactions on Intelligent Systems and Technology (TIST) 2 (2011), no. 3, 27.

[10] Corinna Cortes and Vladimir Vapnik, Support-vector networks, Machine learning 20

(1995), no. 3, 273–297.

[11] T Cover and P Hart, Nearest neighbor pattern classification, IEEE Transactions on

Information Theory 13 (1967), no. 1, 21–27.

[12] K Crammer and Y Singer, On the learnability and design of output codes for multiclass

problems, Machine Learning (2002), 201–233.

[13] Koby Crammer and Y Singer, On the algorithmic implementation of multiclass kernel-

based vector machines, The Journal of Machine Learning Research 2 (2002), 265–292.

[14] Dmitry Devetyarov, Confidence and venn machines and their applications to pro-

teomics, (2010).

[15] TG Dietterich and G Bakiri, Solving multiclass learning problems via error-correcting

output codes, arXiv preprint cs/9501101 (1995), 263–286.

[16] Richard L Dykstra and Tim Robertson, An algorithm for isotonic regression for two

or more independent variables, The Annals of Statistics 10 (1982), no. 3, 708–716.

[17] Ronald A Fisher, The fiducial argument in statistical inference, Annals of Eugenics 6

(1935), no. 4, 391–398.

[18] Evelyn Fix and Joseph L Hodges Jr, Discriminatory analysis-nonparametric discrim-

ination: consistency properties, Tech. Report May, DTIC Document, 1951.

197

[19] EW Forgy, Cluster analysis of multivariate data: efficiency versus interpretability of

classifications, Biometrics 21 (1965), 768–769.

[20] David Freedman, Statistical models: theory and practice, Cambridge University Press,

2009.

[21] Jerome Friedman, Another approach to polychotomous classification, Tech. report,

Technical report, Department of Statistics, Stanford University, 1996.

[22] A Gammerman, V Vovk, and V Vapnik, Learning by transduction, Proceedings of the

Fourteenth conference on Uncertainty in artificial intelligence (1998), 148–155.

[23] Alexander Gammerman and Vladimir Vovk, Hedging predictions in machine learning:

The second computer journal lecture, The Computer Journal 50 (2006), no. 2, 151–

163.

[24] Greg Hamerly and Charles Elkan, Alternatives to the k-means algorithm that find

better clusterings, Proceedings of the eleventh international conference on Information

and knowledge management (New York, NY, USA), CIKM ’02, ACM, 2002, pp. 600–

607.

[25] Richard W Hamming, Error detecting and error correcting codes, Bell System Tech-

nical Journal 29 (1950), no. 2, 147–160.

[26] David Harrison and Daniel L Rubinfeld, Hedonic housing prices and the demand for

clean air, Journal of Environmental Economics and Management 5 (1978), no. 1,

81–102.

[27] Trevor Hastie, Robert Tibshirani, Jerome Friedman, T Hastie, J Friedman, and R Tib-

shirani, The elements of statistical learning, vol. 2, Springer, 2009.

[28] David W Hosmer Jr and Stanley Lemeshow, Applied logistic regression, John Wiley

& Sons, 2004.

198

[29] CW Hsu, CC Chang, and CJ Lin, A practical guide to support vector classification,

1 (2003), no. 1, 1–16.

[30] Jonathan J Hull, A database for handwritten text recognition research, Pattern Anal-

ysis and Machine Intelligence, IEEE Transactions on 16 (1994), no. 5, 550–554.

[31] Xiaoqian Jiang, Melanie Osl, Jihoon Kim, and Lucila Ohno-Machado, Smooth iso-

tonic regression: A new method to calibrate predictive models, AMIA Summits on

Translational Science Proceedings 2011 (2011), 16–20.

[32] George H John and Pat Langley, Estimating continuous distributions in bayesian clas-

sifiers, Proceedings of the Eleventh conference on Uncertainty in artificial intelligence,

1995, pp. 338–345.

[33] William Karush, Minima of functions of several variables with inequalities as side

constraints, Ph.D. thesis, Masters thesis, Dept. of Mathematics, Univ. of Chicago,

1939.

[34] Stefan Knerr, Lon Personnaz, and Grard Dreyfus, Single-layer learning revisited:

a stepwise procedure for building and training a neural network, Neurocomputing,

Springer, 1990, pp. 41–50.

[35] Ulrich H-G Kreel, Pairwise classification and support vector machines, Advances in

kernel methods, 1999, pp. 255–268.

[36] H W Kuhn and A W Tucker, Nonlinear programming, 1951, pp. 481–492.

[37] Antonis Lambrou and Harris Papadopoulos, Reliable probability estimates based on

support vector machines for large multiclass datasets, Artificial Intelligence (2012),

182–191.

[38] S Lloyd, Least squares quantization in pcm, IEEE Transactions on Information Theory

28 (1982), 129–137.

199

[39] Scott Menard, Applied logistic regression analysis, vol. 106, Sage, 2002.

[40] Tom Mitchell, Machine learning, McGraw Hill, Burr Ridge, IL, 1997.

[41] Martin Fodslette Mller, A scaled conjugate gradient algorithm for fast supervised

learning, Neural Networks 6 (1993), no. 4, 525–533.

[42] Alexandru Niculescu-Mizil and Rich Caruana, Predicting good probabilities with su-

pervised learning, no. 1999, 2005, pp. 625–632.

[43] Michiel O Noordewier, Geoffrey G Towell, and Jude W Shavlik, Training knowledge-

based neural networks to recognize genes, Advances in neural information processing

systems, 1991, pp. 530–536.

[44] Harris Papadopoulos, Inductive conformal prediction: Theory and application to neu-

ral networks, Tools in artificial intelligence (2008).

[45] , Reliable probabilistic classification with neural networks, Neurocomputing

107 (2013), 59–68.

[46] Harris Papadopoulos, V Vovk, and A Gammerman, Regression conformal prediction

with nearest neighbours, Journal of Artificial Intelligence 40 (2011), 815–840.

[47] J Platt, Sequential minimal optimization: A fast algorithm for training support vector

machines, Advances in kernel methods support vector learning (1998), 1–21.

[48] , Probabilistic outputs for support vector machines and comparisons to regular-

ized likelihood methods, Advances in large margin classifiers 10 (1999), no. 3, 61–74.

[49] J Platt, N Cristianini, and J Shawe-Taylor, Large margin dags for multiclass classifi-

cation, Advances in Neural Information Processing Systems 12, 1999, pp. 547–553.

[50] David Price, Stefan Knerr, Lon Personnaz, Grard Dreyfus, et al., Pairwise neural

network classifiers with probabilistic outputs, Neural Information Processing Systems,

vol. 7, 1994, pp. 1109–1116.

200

[51] Ph. Refregier and F. Vallet, Probabilistic approach for multiclass classification with

neural networks, International Conference on Artificial Networks, 1991, pp. 1003–

1007.

[52] Jason D Rennie, Lawrence Shih, Jaime Teevan, David R Karger, et al., Tackling the

poor assumptions of naive bayes text classifiers, ICML, vol. 3, 2003, pp. 616–623.

[53] Irina Rish, An empirical study of the naive bayes classifier, IJCAI 2001 workshop on

empirical methods in artificial intelligence, vol. 3, 2001, pp. 41–46.

[54] Stuart Russell, Peter Norvig, and Artificial Intelligence, A modern approach, Artificial

Intelligence. Prentice-Hall, Egnlewood Cliffs 25 (1995).

[55] C. Saunders, A. Gammerman, and V. Vovk, Transduction with confidence and cred-

ibility, In Proceedings of the Sixteenth International Joint Conference on Artificial

Intelligence (IJCAI’99) 2 (1999), 722–726.

[56] J Paul Siebert, Vehicle recognition using rule based methods, (1987).

[57] PY Simard, YA LeCun, JS Denker, and B Victorri, Transformation invariance in pat-

tern recognition - tangent distance and tangent propagation, Neural Networks: Tricks

of the Trade 1524 (1998), 239–274.

[58] Phil Simon, Too big to ignore: The business case for big data, John Wiley & Sons,

2013.

[59] CJ Stone, Consistent nonparametric regression, The annals of statistics 5 (1977),

no. 4, 595–620.

[60] The University of Toronto, Delve datasets, 1995.

[61] Irvine University of California, Uc irvine machine learning repository, 1987.

[62] LG Valiant, A theory of the learnable, Communications of the ACM 27 (1984), no. 11,

1134–1142.

201

[63] V Vapnik, The nature of statistical learning theory, Springer Science & Business Me-

dia, 2000.

[64] Vladimir Vapnik, Estimation of dependences based on empirical data [in russian],

Nauka, Moscow, 1979.

[65] Vladimir Naumovich Vapnik and Vlamimir Vapnik, Statistical learning theory, vol. 2,

Wiley New York, 1998.

[66] John Venn, The logic of chance: An essay on the foundations and province of the

theory of probability, with especial reference to its application to moral and social

science, Macmillan, 1866.

[67] P F Verhulst, Mathematical researches into the law of population growth increase,

Nouveaux Mmoires de l’Academie Royale des Sciences et Belles-Lettres de Bruxelles

18 (1845), 1–42.

[68] V Vovk, Derandomizing stochastic prediction strategies, Machine Learning 35 (1999),

no. 3, 247–282.

[69] V Vovk, A Gammerman, and G Shafer, Algorithmic learning in a random world,

Springer Science & Business Media, 2005.

[70] Vladimir Vovk, Venn predictors and isotonic regression, arXiv preprint

arXiv:1211.0025 (2012), 1–4.

[71] Vladimir Vovk, Glenn Shafer, and Ilia Nouretdinov, Self-calibrating probability fore-

casting, Advances in Neural Information Processing Systems, 2003, p. None.

[72] Sam Waugh, Extending and benchmarking cascade-correlation, Ph.D. thesis, Univer-

sity of Tasmania, 1995.

[73] J Weston and CWatkins, Support vector machines for multi-class pattern recognition.,

ESANN (1999), 5–10.

202

[74] Jason Weston and Chris Watkins, Multi-class support vector machines, Tech. report,

Citeseer, 1998.

[75] William H WH Wolberg and Olvi L Mangasarian, Multisurface method of pattern

separation for medical diagnosis applied to breast cytology., Proceedings of the national

academy of sciences 87 (1990), no. 23, 9193–9196.

[76] Philip Wolfe, A duality theorem for nonlinear programming, Quarterly of applied

mathematics 19 (1961), no. 3, 239–244.

[77] TF Wu, CJ Lin, and RC Weng, Probability estimates for multi-class classification by

pairwise coupling, The Journal of Machine Learning Research 5 (2004), 975–1005.

[78] Bianca Zadrozny and Charles Elkan, Transforming classifier scores into accurate mul-

ticlass probability estimates, Proceedings of the eighth ACM SIGKDD international

conference on Knowledge discovery and data mining - KDD ’02 (New York, New

York, USA), ACM Press, 7 2002, p. 694.

[79] Chenzhe Zhou, Ilia Nouretdinov, Zhiyuan Luo, Dmitry Adamskiy, Luke Randell, Nick

Coldham, and Alex Gammerman, A comparison of venn machine with platt’s method

in probabilistic outputs, Artificial Intelligence Applications and Innovations (2011),

483–490.

[80] Chenzhe Zhou, Ilia Nouretdinov, Zhiyuan Luo, and Alex Gammerman, Svm venn

machine with k-means clustering, Artificial Intelligence Applications and Innovations,

2014.

203

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Main Contributions
	Publications
	Outline of the Thesis

	Overview of Machine Learning Algorithms
	Problem and Assumptions
	Conformal Prediction
	Venn Prediction
	Underlying Algorithms
	k-Nearest Neighbours
	Support Vector Machine
	Multi-class SVM
	Crammer and Singer's Multi-class SVM

	Probabilistic Prediction Algorithms
	Naive Bayes Classifier
	Logistic Regression
	Platt Scaling

	Comparisons with Simple Predictors and Probabilistic Predictors
	Summary

	Transforming Predictions into Probabilities
	Related Works
	SVM with Isotonic Regression
	Inductive Conformal Predictors

	Venn-ABERS Predictor with SVM
	Conformal Prediction with Bivariate Isotonic Regression
	Conformal Prediction
	Nonconformity Measure
	Transforming Confidence into Probability

	Summary

	Designs of Taxonomy for Venn Machines
	Previous Designs of Taxonomy for Venn Machines
	k-Nearest Neighbours Taxonomy
	SVM Taxonomy with Predictions
	SVM Taxonomy with Equal Size
	SVM Taxonomy with Lagrange Multipliers
	Taxonomy with One-vs-All SVM
	Taxonomies with Neural Networks

	SVM Taxonomy with Equal Length Intervals
	Combined Decision Function

	SVM Taxonomy with k-Means Clustering Intervals
	Dividing Intervals by k-Means Clustering

	Taxonomy with Multi-class SVM by Crammer and Singer
	Regression Venn Machine and Its Taxonomies
	Choosing Grouping Method

	Summary

	Experiments and Results
	Data Sets
	Evaluations of the Algorithms
	Brier Score
	Logarithmic Loss

	Experimental Settings
	Settings of Venn-ABERS Predictor
	Settings of k-Means Clustering

	Classification Results with Offline Settings
	Classification Results with Online Setting
	Online Performances of Simple Probabilistic Predictors

	Regression Results with Offline Setting
	Summary

	Conclusions and Future Works
	Conclusions
	Future Works

	Appendix Details of Data Sets
	Appendix Manual for the LibVM
	Bibliography

