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Abstract

Unlike many conventional machine learning methods, conformal predictors

allow to supply individual predictions with valid measurement of confidence.

In this thesis we adapt conformal predictors to address three common prob-

lems related to feature handling.

First of all, we consider the problem of feature selection in the context

of conformal predictors. The main idea of our method is to use confidence

measures as an indicator of usefulness of di↵erent feature subsets.

The second one is the problem of how to utilize the additional informa-

tion which is only available in training set. Recently, Vapnik proposed a

novel learning paradigm to incorporate additional information within SVM

algorithm. Inspired by Vapnik’s method, we propose an approach to deal

with additional information by conformal predictors.

The last problem is classification using features with missing information.

Conventionally, missing information is dealt with in pre-processing step, ei-

ther by ignoring it or imputing it. We suggest a method which embeds the

processing of missing information within conformal predictors.

Experiments have been carried out to evaluate the proposed methods

using public datasets. Results demonstrate the e↵ectiveness of these methods

for feature handling.
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Chapter 1

Introduction

1.1 Motivation

Machine learning is a broad field of Artificial Intelligence. It is about pro-

gramming computers to automatically learn a solution to a problem based

on past experience [32, 28]. Classification is the most widely used form of

machine learning. Learning how to classify objects to one of a pre-specified

set of categories or classes is a characteristic of intelligence that has been of

keen interest to researchers in Computer Science [5]. The ability to perform

classification and to be learnt to classify gives people and computer programs

the power to make decisions. In recent years classification algorithms have

been successfully used to solve many interesting and often di�cult real-world

problems [73, 23], such as text categorization, fraud detection, machine vi-

sion, bio-informatics and medical diagnosis. In general, classifications can be

accomplished in two broad learning frameworks, o↵-line and on-line [73]. In

o↵-line mode we have a fixed training set of data ready for learning at the

beginning. In on-line mode the data comes sequentially and algorithms keep
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on learning on each trial to make predictions.

The classification methods assign classes to new objects and the ratios of

making correct predictions have been used to evaluate their performance. In

real-world problems users not only care about making correct predictions but

also are concerned about how reliable algorithms are and how confident their

predictions are. In order to help users make a reliable decision in complex

problems, it has become essential to compute a reliable measurement of confi-

dence that demonstrates the belief of the algorithm in the predicted result [8].

Conformal predictor is a recently developed general learning framework for

making well-calibrated predictions in on-line mode, and provides prediction

with reliable measures of confidence in o↵-line mode [92]. In machine learn-

ing, available training experience can have a significant impact on success

or failure of the learner. Theoretically, having more features should result

in more discriminating power. However, practical experience with machine

learning algorithms has shown that this is not always the case [45]. If the

data has no statistical regularity that machine learning algorithms exploit,

the learning will fail. Even if the data is suitable for machine learning, the

task of learning may not be easy either.

As Bellman stated in 1961 [10], high dimensional data lead to the degra-

dation of performance. Feature selection is one useful pre-processing method

in machine learning to find the optimal feature subset that classifiers can

learn easier and consume less time by eliminating irrelevant or redundant

information. There is a great variety of methods proposed for feature se-

lection [51, 54]. These methods can be categorized into three board types:

filters, wrappers and embedded methods.
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The earliest approaches to feature selection within machine learning were

filters. Statistical methods have been used to rank or weight the relationships

between features and classes based on general characteristics of data. Such

selections operate independently of any learning algorithm, which means un-

desirable information is filtered out of the data before the learning begins. A

filter provides a very easy way to calculate since it only takes a short com-

puting time. However, it is incapable of removing redundant information

because this information is likely to have similar ranking or weighting [100].

Other researchers argue that the characteristics of a particular learning

algorithm should be taken into account during selection. These methods,

called wrappers, use learning algorithms to estimate the accuracy of selected

feature subset and select the optimal one which has the best estimated ac-

curacy. The wrappers often give better results than filters because they are

optimized for a particular learning algorithm used [72]. On the other hand,

the wrappers utilize the learning machine of interest as a black box and

need much more time and space to re-run learning algorithms than filters.

Although it is shown by John, Kohavi, and Pfleger [47] that the optimal fea-

tures obtained must be from the relevant information, the wrapper approach

does not use a relevance and redundancy measurement directly.

In contrast to the filter and wrapper methods, learning and feature selec-

tion in embedded methods cannot be separated, which means feature selec-

tion is performed as part of the model construction process. This approach

tends to be in between filters and wrappers in terms of computational com-

plexity. However, the features selected cannot be directly utilized by other

classifiers. In this thesis, based on the measurement of confidence we are
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interested in using conformal predictors as a wrapper for feature selection

to demonstrate the characteristics of a dataset. Besides, irrelevance and

redundance measurement are directly used.

Conformal predictors are then applied to two common classification prob-

lems related to features handling. The first problem is classification with

additional information. Generally, learning is reliable when the training ex-

amples and test examples are coming from the same distribution. In the

real-world, we often have some additional information which can help us

making decisions. For example, normally doctors diagnose using general

testing results, if the diagnosis is still unclear based on all available results,

they may send the patient for some additional tests such as blood test and

MRI scan. If there is a patient who does not have ability to a↵ord additional

tests, can we utilize previous additional testing results to diagnose accu-

rately? Recently, Vapnik proposed a new learning framework, learning with

privileged information, to incorporate additional information within Support

Vector Machines [91]. Vapnik defined “privileged information” as the features

which are only available in training set. A new method, SVM+, has been

introduced to realize the framework. Inspired by this framework, we would

like to adapt conformal predictions for dealing with additional information.

The other problem is classification using features with missing informa-

tion. Real-life data are frequently facing with imperfect problems: errors,

incompleteness, uncertainties and vagueness [48]. There are two ways to deal

with missing information, either ignoring it or imputing it. Ignoring miss-

ing value may lead us losing useful information. And imputation method

costs extra time and space. Based on conformal predictor we propose a new
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method which performs imputation as part of a learning framework to re-

duce the complexity. The method assumes that missing values only exist in

the test set. The method we used here is similar to the method we used for

handling additional information, as additional values in the training set can

be seen as missing in test set. The di↵erence is that missing values could

happen to any features, but addition information is usually related to a fixed

subset of features.

1.2 Main Contributions

Feature selection by conformal predictors

We firstly investigate on an application of conformal predictor for feature

selection. The measurement of confidence can be used to demonstrate the

characteristics of datesets. Furthermore, irrelevant and redundant features

have been analyzed and eliminated to minimize the size of feature subset.

We apply the method on Abdominal Pain dataset and other 4 datasets from

UCI dataset repository. Results show that the selected feature subset works

well for classifiers in both o↵-line and on-line modes.

Conformal predictions with additional information

The existion of additional information is a very common scenario in real-

life data. However, traditional learning framework does not have abilities

to utilize additional information directly. The framework of learning with

additional information is inspired by “learning with privileged information”

paradigm. Experimental results show that conformal predictors successfully
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realize the new learning framework in both o↵-line and on-line mode.

Conformal predictions with missing information

This research exploits the applications of conformal predictors using features

with missing values. Unlike other methods which either ignoring missing

information or requiring extra resources for imputation, the new conformal

predictors can directly make predictions with missing information. By cal-

culating how strange examples with hypothetical missing information and

classes are from previous examples with whole information and given classes,

the new method do not need to learn on a validation set to estimate missing

information.

1.3 Publications

The following publications have been produced as a result of the work pre-

sented in this thesis.

The result of Section 2.3 on feature selection for abdominal pain dataset

was firstly presented at AIAI workshop in 2011 and published in the pro-

ceedings [101], and then included as a book chapter [9].

• M. Yang, I. Nouretdinov, Z. Luo, and A. Gammerman. Feature se-

lection by conformal predictor. In L. Iliadis, I. Maglogiannis, and H.

Papadopoulos, editors, Artificial Intelligence Applications and Innova-

tions, volume 364 of IFIP Advances in Information and Communication

Technology, pages 439-448. Springer Berlin Heidelberg, 2011.

• T. Bellotti, I. Nouretdinov, M. Yang, and A. Gammerman. Feature
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selection. Chapter 6, in book: Conformal Prediction for Reliable Ma-

chine Learning, 1st Edition. (S. Ho, V. Balasubramanian, and V. Vovk,

editors). Morgan Kaufmann, 2014.

The result of prediction with additional information was presented at

AIAI 2nd workshop in 2013 and published in the proceedings [102].

• M. Yang, I. Nouretdinov, and Z. Luo. Learning by conformal predic-

tors with additional information. In H. Papadopoulos, A. Andreou, L.

Iliadis, and I. Maglogiannis, editors, Artificial Intelligence Applications

and Innovations, volume 412 of IFIP 141 Advances in Information and

Communication Technology, pages 394-400. Springer Berlin Heidel-

berg, 2013.

The following publication was the result of research collaboration with

Zhejiang University on the applications of SVM algorithms for the analysis

of coal properties.

• Y. Wang, M. Yang, G. Wei, R. Hu, Z. Luo, and G. Li. Improved PLS

regression based on SVM classification for rapid analysis of coal prop-

erties by near-infrared reflectance spectroscopy. Sensors and Actuators

B: Chemical, volume 193, pages 723–729, 2014.

1.4 Outline of the Thesis

The introductory chapter presents the motivation behind this research and

summarizes the main contributions. The rest of the thesis is organized as

follows.
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Chapter 2 is devoted to the theory of conformal predictors. We present

the necessary background of classification in machine learning in Section 2.1.

Section 2.2 gives a description of conformal predictors.

Chapter 3 is concerned with the application of conformal predictors for

feature selection. Section 3.1 introduce the background of feature selection.

Our method of feature selection based on conformal predictors is given in

section 3.2. Results and discussion are given in Section 3.3.

Chapter 4 covers the development of the new solution of realizing the

learning framework with additional information. It starts with the back-

ground of additional information in Section 4.1 and the idea of learning

using privileged information in Section 4.2. Based on conformal predictor

we propose a new way to utilize additional information in both o↵-line and

on-line mode in Section 4.3. Results are presented in Section 4.4.

Chapter 5 considers the development of prediction with missing infor-

mation. The background on missing value and the current methods to deal

with missing information is described in Section 5.1. Section 5.2 presents the

new algorithm of predictions with missing information using conformal pre-

dictors. Results of di↵erent methods are compared and discussed in Section

5.3.

Finally, Chapter 6 presents conclusions and suggests possible future work.
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Chapter 2

Conformal Predictors for

Classification

2.1 Background

2.1.1 Classification in Machine Learning

Machine learning is a branch of Artificial Intelligence, compared with the

study of systems and how to perform important tasks by learning from expe-

rience [73]. This is often feasible and cost-e↵ective where manual program-

ming is not [59]. As a result, machine learning is widely used in computer

science and other fields [60]. Classification is one of the most mature and

widely used forms [23]. In machine learning, learning is divided into two

categories, supervised learning and unsupervised learning [73]. In this thesis

when we use the term “classification”, we refer to supervised learning. In

supervised learning, classification is the problem of identifying to which of

a set of categories a new object belongs, on the basis of a training set of

18



data containing objects whose category membership is known. Classification

has been studied and researched for decades, and it has already been widely

used to solve many interesting and often di�cult real-world problems, such

as text categorization (e.g., spam filtering), fraud detection, machine vision

(e.g., face detection), bio-informatics (e.g., protein classification according to

their function) and medicines [73]. Classification procedure and key issues

will be discussed in the next section.

2.1.2 Classification Procedure

The process of applying classification to a real-world problem is based on

four elements: learning environment, data representation, applications of

classification algorithms and performance evaluation [60, 45, 92].

Learning environment

Learning from experience is as important for a computer as it is for a human

being. In order for there to be something to learn, the learning environment

must be governed by constant laws [92]. It is assumed that a sequence of

examples is generated randomly from some fixed probability distribution, say

Q, on a fixed space of possible examples, say Z. When we say the examples

are chosen randomly from Q, we mean they are independently and identically

distributed (i.i.d.).

Data representation

In the typical classification task, each example z
i

is assumed to consist of an

object x
i

and its label y
i

, shown as following definition: Given a set of i.i.d.

19



examples, Z = {(x1, y1), ..., (xn

, y
n

)},x
i

2 Xd, y
i

2 Y , where n is the number

of examples and object x
i

is described by a fixed number, d, of measurements,

or features (attributes) and a label y
i

2 {1, . . . , C} denotes its class, with C

being the number of classes. If C = 2, this is called binary classification; if

C > 2, this is called multi-class classification.

Application of classification algorithms

Although the true probability distribution Q is unknown, based on the ob-

served data a function approximation can be constructed to explain it. The

construction of the function approximation is called a learning algorithm or

a classifier. The examples used for learning are called training examples, and

the examples to be classified are called test examples. The classifiers have

all attempted to derive procedures that would be able to [59],

1. be equal or similar to a human decision-marker’s behaviour.

2. handle a wide variety of problems and to be extremely general.

3. be used in practical settings with proven success.

Nowadays, a wide variety of approaches has been developed based on

Artificial Intelligence, such as Logic-based techniques and Perceptron-based

techniques, and Statistics, such as Bayesian Networks and Instance-based

techniques [60].

Decision trees are based on Logic-based techniques which use trees as

predictive models that classify examples by sorting them based on feature

values. In these tree structure, nodes represent class labels and branches

represent conjunctions of features that lead to those class labels. It is easy for
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people to understand decision tree models after a brief explanation. Artificial

Neural Networks(ANNs) are created base on Perceptron-based techniques. In

an ANN, simple artificial nodes, known as neurons, are connected together

to form a network which mimics a biological neural network. ANNs have

been applied to many real-world problems, but they are lack of ability to

reason about their output in a way that can be e↵ectively communicated [60].

Conversely to ANNs, a Bayesian Network is a probabilistic graphical model

that provides a probability that an example belongs in each class rather

than simply a classification [59]. k-Nearest Neighbor algorithm is one of the

Instance-based learning algorithms. It is based on the principle that the

examples within a dataset will generally exist in close proximity to other

examples that have similar properties[60]. A shortcoming of the k-Nearest

Neighbor is that it is sensitive to the structure of the data.

Performance evaluation

The performance of a classifier is evaluated by many evaluation methods.

The classifier?s discrimination power can be evaluated by two key measure-

ments on predictions, measurement of how correct they are (accuracy) and

measurement of how probable they are (confidence) [52, 22].

An estimate of classification accuracy on new examples is a common

performance evaluation criterion. It is the number of correct predictions

made divided by the total number of predictions made, multiplied by 100 to

turn it into a percentage. A classifier’s accuracy can be calculated by at least

two techniques [60]. One technique is to split training set by using part of it

for training and the rest for estimation performance. The other one is known
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as k-fold cross-validation [31]. The training set is divided into k equal-sized

subsets which are mutually exclusive to each other and for each subset the

classifier is trained on all of remaining subsets. The estimated accuracy of

the classifier is the average of the accuracy of each subset. Obviously, this

type of validation is more expensive computationally, but it gives the most

accurate estimate of a classifier’s error rate [50].

If you are predicting the label of a new object x, how confidence are you

about your prediction ŷ which will be the same as the true label y? One way

to answer the question is to use confidence measure. In statistics, the term

“confidence” is often associated with the concept of confidence intervals. The

estimate of confidence interval points out that the number of errors in test

stage is guaranteed, which can not exceed (100 � c)%, where c 2 [0, 100] is

the confidence value. All approaches that provide guarantees on errors can

be broadly identified to be motivated by two theories, Bayesian learning [76]

and Probably Approximately Correct (PAC) learning [82].

2.1.3 Key Issues in Classification

Issues of data

Collecting the data set is the first step in classification. If an expert is

available, the most important fields (features) can be suggested. If not, a

“brute-force” method is applied. It is a general problem-solving technique

that consists of systematically enumerating all possible candidates for the

solution and checking whether each candidate satisfies the problem’s state-

ment. Nevertheless, a data set collected by the “brute force” method can not

be directly used for classification, since it often contains noise and missing
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values. Thus, data pre-processing is necessary [103].

There are many problems that are often encountered in data pre-processing [74]:

• No values have been input (missing information).

• Impossible and unlikely values have been input.

• Irrelevant features are present in the data.

Missing information is an unavoidable problem in dealing with most real

world data sources. There are a number of methods have been developed

to handle features with missing values [16]. In general, these methods are

applied in the pre-processing stage and can be categorized into two types,

ignoring missing values or imputing missing values.

Some data handling software is used to check impossible values at the

point of input, so that these values can be re-entered. This kind of errors is

generally straightforward, such as coming across negative prices when pos-

itive ones are expected [60]. The notion of “unlikely value” means those

values that are suspicious due to their relationship to a specific probability

distribution. For example, a standard normal distribution with a mean of

5, a standard deviation of 3 [74]. This kind of problem is normally solved

by Variable-by-Variable data cleansing method, which is using metadata,

such as cardinality, max, min,variance, and deviation, to detect a number of

unlikely values [60].

Generally, features are characterized as: relevant, which denotes that the

features have an influence on the output; irrelevant, which indicates that

features are independent of the output; and redundant, which denotes the

features are correlated with other features. Feature subset selection is the
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process of identifying and removing irrelevant and redundant features [100].

In addition to the features which are missing or irrelevant, the problem

of additional values is another big challenge for machine learning. In real-

life problems, additional information provides an opportunity for people to

make better decision. Most learning frameworks in machine learning assume

that the examples in training set and test set are coming from the same

distribution [94]. Thus, additional information can not be directly utilized.

Recently, Vapnik proposed a novel learning paradigm to incorporate addi-

tional information within machine learning, by imitating it as a “master” to

a pupil [91].

Issues of learning algorithm

There are some common problems of the applications of learning algorithms.

• Need of reliable measurement of confidence.

Given a set of training examples, statistical learning theory produces

a function mapping the objects into the labels. Then the function

is applied on a new object and gives a predicted label. Many ma-

chine learning algorithms have been successfully applied for industrial

applications [73, 65]. For example, we used the Support Vector Ma-

chine to improve the predictive ability on properties of the coal sam-

ples [98]. But, these learning algorithms only provide the predictions -

how probably are the predictions correct? This question has not been

answered as well as we might like [92]. Although the Bayesian and PAC

learning approaches can estimate confidence, the values generated by

these methods are often impractical, invalid or unreliable [82, 56, 83].
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Bayesian learning approach makes a fundamental assumption on the

probability distribution of the data. The values generated by Bayesian

approach are generally correct only when the observed data are actually

generated by the assumed distribution, which does not happen often in

real-world scenarios. This is demonstrated by Melluish et al. [75]. In

their experiments, Bayesian method was applied to the data where the

underlying probability distribution was not known. Results illustrated

the key role of the choice of the prior distribution to obtain valid mea-

sures of probability in Bayesian learning methods. On the other hand,

the PAC approach relies only on the i.i.d assumption. However, the

error bounds generated by such approach are often not very practical,

as demonstrated by Proedrou [82], and by Nouretdinov et al. [78].

• The problem of overfitting.

In machine learning, overfitting generally happens when a model is too

complicated or when training examples are insu�cient [27]. The learner

may adjust to very specific random features instead of describing the

underlying relationship. Thus, the accuracy of predictions in test set

is low, while it is very high in training set.

• Curse of dimensionality.

Curse of dimensionality is another big problem in machine learning.

The term “curse of dimensionality” was coined by Bellman to refer to

the fact that many algorithms that work fine when the input is low

dimension become intractable when the input is high-dimensional [10].

The complexity of learning during training increases exponentially with
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the number of features [27].

In this thesis, we pay attentions to the issues about irrelevant features,

missing information and additional information. For providing reliable mea-

surement of confidence, conformal predictors (CP) has been studied. We

applied CP on feature selection to address the problems when data contain

irrelevant or unlikely values. Then, CP has been extended and adapted for

learning with additional information and missing information.

2.2 Conformal Predictors

Conformal predictor is a recently developed learning framework [92]. Clas-

sifications in CP are based on hypothesis testing. The algorithm outputs a

probability of the instance being a member of each of the possible classes.

Thus, it can output a region prediction with the guaranteed number of errors

or a single prediction with certain confidence [8].

2.2.1 Transductive and On-line Learning

Generally, classifications can be accomplished in two broad learning frame-

works, o↵-line and on-line [89].

Most previous theoretical work in machine learning has been in an in-

ductive and o↵-line framework. In o↵-line learning, one uses a batch of old

examples to generate a prediction rule, which is then applied to new exam-

ples. Once a rule or model has been generated from the training set it will

not change. We call this induction/deduction learning framework. In induc-

tive prediction we first draw a general rule from examples in hand; this is
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inductive step. When presented with a new object, we derive a prediction

from the general rule; this is the deductive step.

Compared with the o↵-line learning, new examples in the on-line learning

come and are classified one by one; the algorithm continues to learn after the

true label is provided after each prediction. For example, there is a new

example x
i

. Once the classifier assigned a predictive label to it, the true

label of x
i

will be revealed, the program will be updated after each example

has been seen. We could say that we infer our classification directly from the

data set, it is a transductive framework, one makes predictions sequentially,

basing each new prediction on all the previous examples instead of repeatedly

using a rule constructed from a fixed batch of examples.

One of the advantages of conformal predictor is that it can work with a

framework that is transductive and on-line, which takes a shortcut, moving

from old examples directly to the prediction about the new object [92].

2.2.2 Conformal Predictions

This section describes the theory behind the conformal predictors framework,

and its implementation for classification.

Theory of CP

The theory of CP was recently developed by Vovk, Shafer and Gammer-

man [89, 92]. It is based on the Kolmogorov complexity [70] of an i.i.d.

sequence of data examples. If l(Z) is the length of a binary string Z and

C(Z) is its Kolmogorov complexity (the length of the minimal description of
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Z using a universal description language), then:

�(Z) = l(Z)� C(Z) (2.1)

where �(Z) is called the randomness deficiency of the string Z. Intuitively,

Equation 2.1 states that lower the value of C(Z), higher the �(Z), or the lack

of randomness.

The Martin-Löf test [71] for randomness provides a method to connect

randomness with statistical hypothesis testing. This test can be summarized

as a function t : X �! N (the set of natural numbers with 0 and 1), such

that 8n 2 N,m 2 N,P 2 P
n

:

P{x 2 Xn : t(x) � m}  2�m (2.2)

where P
n

is the set of all i.i.d. probability distributions. Equation 2.2

can also be written as:

P{x 2 Xn : t(x) 2 [m,1)}  2�m (2.3)

Now, if we use the transformation t0(x) = 2�x, Equation 2.3 can in turn

be written in terms of a new function t0(z) :

P{x 2 Xn : t0(x) 2 (0, 2�t(x)]}  2�m (2.4)

Hence, a function t0 : X �! (0, 2�m] is a Martin-Löf test for randomness

if 8m,n 2 N , the following holds true:

P{x 2 Xn : t0(x)  2�m}  2�m (2.5)

If 2�m is substituted for a constant, say r, and r is restricted to the interval

[0, 1], Equation 2.5 is equivalent to the definition of a p-value typically used
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in statistics for hypothesis testing [8]. Given a null hypothesis H0 and a test

statistic, p-value is simply defined as the probability of obtaining a result at

least as extreme as the one that was actually observed, assuming that the

null hypothesis is true. In other words, the p-value is the smallest significance

level of the test for which H0 is rejected based on the observed data, i.e. the

p-value provides a measure of the extent to which the observed data supports

or disproves the null hypothesis [8].

Non-conformity measure and p-value

In order to apply the above theory to classification problems, Vovk et al. [92]

defined a NonConformity Measure (NCM) that quantifies how di↵erent a

new example is from old ones.

In conformal predictors, nonconformity measure is denoted as a real-

valued function A(B, z
i

) that means how di↵erent an example z
i

is from the

examples in a bag B. The bag is used to formalize the point that the order

in which old examples appear does not make any di↵erence [92]. A bag is

composed by a collection of n elements, which is write as *z1, . . . , zn+. The

bag Hz1, . . . , z10I is the bag we get from z1, . . . , z10 when we ignore their

order.

As we mentioned before, a NCM is used to score how di↵erent an exam-

ple is from a bag of old examples. Many classifiers can be adjusted to be

nonconformity measures. For example, the conformity measure underlying

k-Nearest Neighbour classifier is defined as,

↵y

i

=

P
k

j=1 D
y

ijP
k

j=1 D
�y

ij

(2.6)

where Dy

i

denotes the list of sorted distances between an example x
i

and
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other examples with the same label y. D�y

i

denotes the list of sorted distances

between an example x
i

and other examples with di↵erent labels. ↵
i

denotes

the value of nonconformity measure of the example x
i

. The higher ↵
i

is, the

stranger the example x
i

is from the old examples.

Given a new test object, x
n+1, a null hypothesis is assumed that x

n+1

belongs to the class, y. The non-conformity measures of all the examples

are re-computed assuming the null hypothesis is true. A p-value function is

defined as:

p(y) =
#{i = 1, ..., n+ 1 : ↵y

i

� ↵y

n+1}
n+ 1

(2.7)

This process is repeated with the null hypothesis supporting each of the

labels, thus providing a transductive inferential procedure of classification [8].

P -values satisfy the Martin-Löf test definition in Equation 2.5, thus p-values

inherit the following validity property :

Pr{p(y)  "}  "

where " is a given significance level, 0  "  1, such that 1- " is a desirable

confidence level.

The p-values measure the proportion of examples that are less conforming

than the new example with the hypothetic label. Obviously, 0 < p(y)  1.

The lower p-value is, the more nonconforming the example is, in relation to

the entire set. Conformal predictors could output two types of prediction,

single prediction and region prediction [92].

In single prediction, the label which has the highest p-value is assigned to

x
n+1. If pj and p

k

are the two highest p-values obtained, then p
j

is called the

credibility of the decision, and 1� p
k

is the confidence of the classifier in the

decision. With the measurement of confidence, we could say how confident
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the prediction is; and the measurement of credibility indicates how suitable

the training data are for classifying the example.

Region predictions are presented as sets �" for a specified confidence level

1�", which contain all the class labels with their p-values greater than 1�".

In on-line mode the confidence threshold (1 � ") directly translates to the

frequency of errors ", which means the number of errors is controlled by the

given confidence level [89].

The approach is summarized in Algorithm 1.
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Algorithm 1 Conformal Predictors for Classification
Require: training example sequence {z1 = (x1, y1), z2 = (x2, y2), ..., zn =

(x
n

, y
n

)}

Require: new example x
n+1

Require: nonconformity measure A

Require: significance level "

for y 2 Y do

z
n+1 = (x

n+1, y)

for i 2 1, . . . , n do

↵
i

= A(*z1, . . . , zi�1, zi+1, . . . , zn+, zi)
end for

↵
n+1 = A(*z1, . . . , zn+, zn+1)

p(y) = #{i=1,...,n+1:↵i�↵n+1}
n+1

end for

return region prediction �"

n+1 = {y : p(y) > "}

return single prediction ŷ
n+1 = argmax

y

{p(y)}

return confidence confidence(ŷ
n+1) = 1�max

y 6=ŷn+1{p(y)}

return credibility credibility(ŷ
n+1) = max

y

{p(y)}

2.2.3 Performance Evaluation

Single prediction is also called as simple prediction in other algorithms. The

measurement of accuracy and corresponding confidence is used to evaluate

the discrimination power.

In region prediction, e�ciency is used to show the goodness of predictions.

If the predictive set does not contain the true label, it makes an error. If the
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size of the set is 0 or 1, this prediction is certain, otherwise it is uncertain and

we have multiple prediction. The size of predictions indicates the e�ciency

of classification. The smaller the set we have, the more e�cient prediction

will be. Naturally, the higher the confidence level 1� " is, the more multiple

predictions will appear. For on-line learning, it has been proved that the

region prediction is well-calibrated, in the sense that the error rate converges

to less than or equal to ", if we assume the underlying probability distribution

is exchangeable [92].

2.2.4 Characteristics of CP

Validity

Validity is one of the advantages of conformal predictors. The conformal

predictors are always valid in on-line setting that the frequency of prediction

errors does not exceed a pre-specified significance level, ", at every confidence

level 1� " [92].

Flexibility

The framework is extensible to any kind of machine learning algorithms for

classification, as long as a suitable non-conformity measure is defined. Thus,

if a particular algorithm is suitable for an application, this framework can

be applied on top of the algorithm to obtain conformal prediction regions as

the output [89].
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Computational overhead

The framework has some limitations too [92]. A major limiting factor of the

framework (in its transductive form) is the computational ine�ciency of the

framework. Since the framework is based on transductive inference, the NCM

has to be recomputed for all the data instances when a new example enters the

system. This is a huge computational overhead. This resulted in the design

of the Inductive Conformal Predictors framework [92, 80, 79], where the

training set is divided into training and calibration portions. The calibration

portion is used to compute the p-values when a new example is observed, thus

significantly reducing the required computations. However, this approach

trades o↵ computational overhead for a loss in predictive e�ciency, and hence

has to be implemented after careful empirical evaluation [92].
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Chapter 3

Feature Selection by Conformal

Predictors

Feature selection remains an open area of research within machine learn-

ing community. Since the first review of these methods [12], there have

been many developments. Based on conformal prediction, we propose a new

feature selection method to select optimal features for e�cient region predic-

tions [9]. We start from background of feature selection.

3.1 Background

3.1.1 Feature Selection

The learning of the classifier is inherently determined by the features. In

theory, more features should provide more discriminating power, but this is

not always the case. The nature of high dimensionality of data can cause the

problem of “curse of dimensionality” [10]. In practice, with a limited amount
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of training examples, excessive number of features will not only significantly

slow down the learning process, but also cause poor classification performance

as irrelevant or redundant features may confuse the learning algorithm.

Recent research has shown that it is common to machine learning al-

gorithm to be a↵ected by irrelevant or redundant information [45]. The

simple nearest neighbour algorithm is sensitive to irrelevant attributes, and

its sample complexity (the number of training examples needed to achieve

a given accuracy level) grows exponentially with the number of irrelevant

attributes [68, 69, 3]. The naive Bayes classifier can be adversely a↵ected

by redundant attributes due to its assumption that attributes are indepen-

dent given the class [67]. Sample complexity for decision tree algorithms can

grow exponentially on some concepts (such as parity) as well. Decision tree

algorithms such as C4.5 [84, 85] can sometimes over-fit the training data,

resulting in large trees. In many cases, removing irrelevant and redundant

information can result in C4.5 producing smaller trees [54].

According to these, it is very important for classification to reduce dimen-

sionality and eliminate irrelevant or redundant features. Generally, there are

two approaches: feature extraction and feature selection.

Feature extraction transfers or projects original features to lower dimen-

sional spaces, and the obtained features here are generated from the original

features.

Feature selection is used to reduce the dimension of objects from Xd to

Xm, with m < d. This process can be denoted as following function:

fs(Xd) = Xm,m < d,Xm ⇢ Xd

where, fs is a feature selection method.
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By eliminating irrelevant and redundant features, feature selection can

help user for better understanding of data, resulting in cheaper collection of

a reduced set of features. Compared with feature selection, feature extraction

has no saving in data acquisition costs and loses data interpretability due to

transformation or projection.

Feature selection is the process of selecting feature subset from a given

feature space with the intention of meeting one or more of the following

goals [29]:

• Choose the feature subset that maximises the performance of the learn-

ing algorithm.

• Minimise the size of the feature subset without reducing the perfor-

mance of a learning problem significantly.

• Reduce the requirement for storage and computational time to classify

data.

Feature selection algorithms (with a few notable exceptions) perform a search

through the space of feature subsets, and, as a consequence, must address

four basic issues a↵ecting the nature of the search [61]:

1. Starting point. One must select a point in the feature subset space

from which to begin the search. For example, one might begin with no

feature and successively add attributes. In this case, the search is said to

proceed forward through the search space and the approach is called forward

selection. Conversely, the search can begin with all features and successively

remove them. In this case, the search proceeds backward and the approach

is called backward elimination. The search also can begin somewhere in the
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middle and move outwards from this point.

2. Search organisation. Search organisation is used to search feature

space to generate a candidate feature subset. An exhaustive search of the

feature subspace is impractical. With N initial features there exist 2N possi-

ble subsets. This is huge number even for medium-sized N . Heuristic search

strategies are more feasible than exhaustive ones and can give good results,

although they do not guarantee finding the optimal subset [45]. In each it-

eration of this searching procedure, all remaining features yet to be selected

(rejected) are considered for selection (rejection). There are many variations

to this simple process, but generation of subsets is basically incremental (ei-

ther increasing or decreasing). The order of the search space is O(N2) or less.

These procedures are very simple to implement and very fast in producing

results, because the search space is only quadratic in terms of the number of

features [29].

3. Evaluation strategy. How feature subsets are evaluated is the single

biggest di↵erentiating factor among feature selection algorithms. Algorithms

that perform feature selection as the preprocessing step prior to learning

can generally be placed into three categories, the filters, the wrappers and

embedded methods [55].

4. Stopping criterion. One must decide on some criterion for stopping

the search. Both search organisation and evaluation function can influence

the choice for a stopping criterion. Stopping criteria based on a search or-

ganisation include whether a predefined number of features are selected, and

whether a predefined number of iterations reached. Stopping criteria based

on an evaluation function can be: whether addition (or deletion) of any
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feature does not produce a better subset; and whether an optimal subset

according to some evaluation function is obtained.

When features are coming, search organisation generates subsets of fea-

tures for evaluation. The generation procedure can start from any start point.

Then, an evaluation function measures the goodness of a feature subset, and

this value is compared with the previous best. If it is found to be better,

it replaces the previous best feature subset. The loop continues until some

stopping criterion is satisfied. Without a suitable stopping criterion the fea-

ture selection process may run exhaustively or forever through the space of

feature subsets. The feature selection process halts by outputting a selected

subset of features for the classification algorithm.

3.1.2 Existing Feature Selection Methods

Since feature selection has been studied by the statistics and machine learning

communities for many years, many methods have been developed for feature

selection.

Based on the general characteristics of the data filter methods use indi-

vidual search or heuristic search to evaluate the merit of feature subsets. The

feature evaluation function is independent on learning algorithms. In gen-

eral, filters are categorized into two approaches, feature ranking and feature

weighting, according to the di↵erent ways of evaluating features.

Many feature selection algorithms use feature ranking as a principal or

auxiliary selection mechanism because of its simplicity, scalability, and good

empirical success [39]. Feature ranking methods always use some statistical

approaches as evaluation functions to rank individual features. For example,
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when the label is binary, a typical feature evaluation function used is Fisher

discriminant ratio (FDR) [77], shown as the following Equation 3.1.

FDR(X
k

) =
(µ(Xk,1) � µ(Xk,2))

2

�2
(Xk,1)

+ �2
(Xk,2)

(3.1)

where X
k

is the vector of the features, k = 1, . . . , d. µ and � are the mean

and the standard deviation of example X
k

, respectively. Given a training set,

the main idea of FDR is to find a line in the original feature space that can

separate examples as much as possible. In other words, the bigger the square

of the di↵erence between the mean of two kinds of examples is and at the

same time the smaller the within-class scatters are, the better the expected

line is. Top ranking features are selected as the feature subset Xm such that

FDR(Xm) achieves its maximum, Xm ⇢ Xd.

If the label takes more than two values and the features are categorical,

feature evaluation function can be constructed based on �2 statistic [87].

The main idea of �2 statistic is using �2 to determine whether the relative

frequencies of the classes in adjacent intervals are similar enough to justify

merging. The formula for computing the �2 value for two adjacent intervals

is

�2 =
2X

i

CX

j

(A
ij

� E
ij

)2

E
ij

(3.2)

where C is the number of classes, A
ij

is the number of examples in the i-th

interval with class j, and E
ij

is the expected frequency of A
ij

= R
i

⇤C
j

/N . R
i

is the number of examples in the i-th interval, C
j

is the number of examples

of class j in the two intervals, N is the total number of examples in the two

intervals,. The extent of the merging process is controlled by automatically

defined �2 threshold. The threshold is determined through attempting to

maintain the comprehensibility of the original data.
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The other way to select features by filter method is to assign a relevance

weight to each feature. Each feature’s weight reflects its ability to distin-

guish among the class values, such as RELIEF method [57]. RELIEF use

heuristic research to rank features by their weights. Features which exceed

the user-specified threshold will be selected. The method only operates on

binary-classes. The algorithm works by randomly sampling examples from

the training data. For each example sampled, the nearest example of the

same class (nearest hit) and opposite class (nearest miss) is found. A fea-

ture’s weight is assigned or updated according to how well it distinguishes

the sampled example from its nearest hit and nearest miss. The weight cal-

culating formula used by RELIEF is shown in Equation 3.3:

W
X

= W
X

� di↵(X,R,H)2

n
+

di↵(X,R,M)2

n
, (3.3)

where W
X

is the weight for the feature X, R is a randomly sampled example,

H is the nearest hit, M is the nearest miss, and n is the number of randomly

sampled examples. The function di↵ calculates the di↵erence between two

examples for a given feature, di↵ 2 [0, 1]. It is clear that a feature’s weight

will be high if it di↵erentiates between examples from di↵erent classes and

has the same value for examples of the same class.

As mentioned in [61] “The rationale for wrappers is to select the fea-

ture subset which should provide a better estimate of accuracy predicted by

an induction method than a separate measure that has an entirely di↵erent

inductive bias”. Most of the variations in its applications are due to the fol-

lowing: the selection of feature subset search organisation; the ways to assess

the prediction performance of a induction algorithm and halt it; and which
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induction algorithms to use. A typical wrapper method can use di↵erent

kinds of classifiers for evaluation; hence no representative method is chosen

for demonstration of the categories under evaluation in this section.

John, Kohavi and Pfleger [47] were the first to consider the wrapper [4]

as a general framework for feature selection in machine learning. They also

presented formal definitions for two degrees of feature relevance, and claimed

that the wrapper is able to discover relevant features. They gave the assump-

tions of two degrees of feature relevance: a feature X
k

is said to be strongly

relevant to the labels if the probability distribution of the classes, given the

full feature set, changes when X
k

is removed; a feature X
k

is weakly relevant

if it is not strongly relevant and the probability distribution of the classes,

given some subset Xm (containing X
k

), Xm ⇢ Xd, changes when X
k

is re-

moved. The rest of the features which are not strongly or weakly relevant

are said to be irrelevant. To test these assumptions, experiments were firstly

applied on three artificial and three natural datasets using ID3 and C4.5 as in-

duction algorithm [84, 85]. Both forward selection and backward elimination

search were used. Accuracy was estimated by using 25-fold cross validation

on training data and a disjoint test set was used for reporting final accura-

cies. Results showed that feature selection did not significantly change ID3

or C4.5’s classification performance. The main e↵ect of feature selection was

to reduce the size of the trees. Then, Caruanna and Freitag [19], Vafaie [94]

and Cherkauer [24] used greedy search and genetic search to improve the

feature subset performance of ID3 and C4.5, respectively.

Langley and Sage [67] noted that the performance with redundant fea-

tures can be improved by removing such features. They used the naive Bayes
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classifier as induction algorithm. Because the naive Bayes classifier assumes

that probability distribution for features are independent of each other for

each class. A forward heuristic search strategy is employed to select features.

The rationale for a forward search is that it should immediately detect de-

pendencies when harmful redundant features are added [46]. The selection

will stop adding features when none of alternatives improves classification

accuracy. Experimental results showed overall improvement and increased

learning rate on three out of six real world datasets, with no change on

the remaining three [67]. The Correlation-Based Feature Selection (CFS)

method is another method selecting feature subsets based on the degree of

redundancy among features [45]. The method evaluates the worth of a subset

of features by considering the individual ability of each feature along with

the degree of redundancy between them, which aims to find the subsets of

features that are individually highly correlated with the labels but have low

inter-correlation [58].

An embedded feature selection method is a machine learning algorithm

that returns a model using a limited number of features. Many algorithms

can be turned into embedded methods for feature selection. Assume that we

have a classifier f(x) = y. First, we parameterize the function by w and add

in the � weights where � 2 {0, 1}m. �
i

= 1 represents the use of feature i or

�
i

= 0 rejection of feature i. For each training example, x = (�1x1, ..., �m

x
m

),

f(x) = f(�1x1, ..., �m

x
m

). For example, a linear classifier could be denoted

as:

(w,x) + b =
mX

i=1

(w
i

, �
i

x
i

) + b =
X

� 6=0

w
i

x
i

+ b

where m is the number of features and b is a constant o↵set. The aim is to
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find w and � that minimize the generalisation error:

min
�,w

R(w, �)

where

R(w, �) =

Z
L(f(w, (�1x1, ..., �m

x
m

)), y)df(x).

where L is a loss function. The evaluation criterion is based on the generation

error. And selection stops when no more changes of the generation error or

user defined stopping criterion is achieved.

To meet the goal of feature selection, methods should be checked by

their ability of removing irrelevant and redundant features and computational

complexity. Wrappers utilize the learning machine of interest as a black box

to score feature subsets according to their predictive power, see as Figure 3.1.

Filters select subsets of features independently of the chosen predictor, see

as Figure 3.2; Embedded methods perform feature selection in the process of

training and are usually specific to given learning machines, see as Figure 3.3.

Among these three methods, filters rank features according to their im-

portance in di↵erentiating examples of di↵erent classes and can be very fast

with the cost of O(N) (where N is the number of features). However, it is

incapable of removing redundant features because redundant features likely

have similar rankings or weightings. A Fast Correlation-Based Filter (FCBF)

solution is proposed to address this problem [99]. In the method the evalu-

ation of individual features is based on the correlation between a feature an

the label. The approach is reported to be very useful when a dataset contains

a very large number of features [64].

The wrapper method o↵ers a simple and powerful way to address the

problem of feature selection. It often gives better prediction results than
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filters because it is optimized for the particular learning algorithm used [72].

Although the wrapper approach does not use a relevance and redundancy

measure directly, it is shown by Kohavi and Sommerfield that the optimal

feature subset obtained must be from the relevant feature subset [58]. But,

wrappers are often criticized because they require massive amounts of compu-

tation [54]. An exhaustive search would definitely find the optimal solution;

however, a search on 2N possible feature subsets (where N is the number of

features) is computationally impractical. Narendra and Fukunaga introduced

the branch and bound algorithm, which finds the optimal feature subset if

the criterion function used is monotonic. However, although the branch and

bound algorithm makes problems more tractable than an exhaustive search,

it becomes impractical for feature selection problems involving more than

30 features [46]. Although heuristic search strategies seem to be particu-

larly computationally advantageous, generally result in an O(N2) worst case

search.

Compared with filters and wrappers, embedded methods o↵er the same

advantages as wrapper methods concerning the interaction between the fea-

ture selection and the classification, and present a better computational com-

plexity since the selection of features is directly included in the classifier con-

structing during the training process. But, the selected features may not

perform well in other classifiers [64].
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Figure 3.1: The feature wrapper approach
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Figure 3.2: The feature filter approach
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Figure 3.3: The embedded approach

3.2 Feature Selection Based on CP

Previous feature selection methods work to maximize accuracies of classifica-

tions. In conformal predictors, accuracy is guaranteed for a given significance

level and e�ciency of region prediction is the main evaluation criterion. So

far there is only one published feature selection method designed for confor-

48



mal predictor, named as Strangeness Minimization Feature Selection [15].

3.2.1 Strangeness Minimisation Feature Selection (SMFS)

SMFS method is specifically designed for conformal predictors. The intuition

for the approach is that reducing overall strangeness implies an increase in

conformity amongst the examples in the sequence [15]. It means that the

feature subset which minimises overall strangeness is the most relevant to

maximising conformity between training examples.

The goal of SMFS is defined in a way similar to a wrapper feature selec-

tion method as a search to minimize the strangeness value across all possible

feature subsets. To reduce the computational complexity in practical imple-

mentations, the method restricts the nonconformity measurement as linear

one, so that the feature subset can be found based on the value of individual

features. This is the way how filter methods find the optimal feature subset.

According to the paper [15], the optimal subset can also be found by the

forward heuristic search method based on the performance of feature subset.

In CP, strangeness examples are computed as ↵-nonconformity values

for each example. BY using linear nonconformity measures, it can compute

strangeness values for each feature. The measurement values are denoted as

�-nonconformity values. The goal of SMFS can be reformulated to minimize

the sum of �-nonconformity values across subsets of features to size t with

feature space F .

S0 = argmin
S2G

X

j2S

�
j

(3.4)

where G is a set of features with size of t, G = {R : R ✓ F, |R| = t} and

49



S ✓ F . The method has two ways to stop. The first one is to pre-set the size

of feature subset. The other is to test the performance of the feature subset

in training set and select the optimal one.

3.2.2 Average Confidence Minimization (ACM) Method

Based on conformal predictors we introduce a wrapper method and hope

to select the features which have more discriminational power for e�cient

region predictions. The method is using the measurement of average confi-

dence to select the features and named as average confidence minimization

method [101].

In online machine learning, if an example has higher confidence, the region

prediction will be more e�cient at the same significance level. For example,

assume that we have three labels, a, b and c, their p-values, calculated by two

di↵erent feature subsets s1 and s2, are p(a) = 0.4, p(b) = 0.3, p(c) = 0.2 and

p(a) = 0.4, p(b) = 0.2, p(c) = 0.2, respectively. The size of region prediction

at di↵erent confidence levels is shown in Figure 3.4. It can be found that the

subset s2 which classifies the example with higher confidence and provides

the classifier more power for e�cient region prediction. Since prediction

accuracy is guaranteed and e�ciency is related to confidence, the average

confidence of all examples is used as evaluation criterion. The feature subset

which provides the highest average confidence will be selected.
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(a) Feature subset s1

(b) Feature subset s2

Figure 3.4: Region predictions using two feature subsets
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As shown in Algorithm 2, ACM method starts from empty feature subset.

Heuristic search, as described in Section 2.3.1, is used to generate candidate

feature subsets for evaluation. In each iteration of this searching procedure,

all remaining features yet to be selected are considered for selection. Then,

the feature subset which leads to the highest average confidence of single

predictions is kept. When the average confidence is reaching the highest

value or remaining unchanged, the selection stops.
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Algorithm 2 Average Confidence Maximisation
Require: training set {z1 = (x1, y1), . . . , zn = (x

n

, y
n

)}, x 2 X, y 2 Y,

D = {1, . . . , d} where d = dim(X)

Require: nonconformity measure A, S = Ø

for f 2 1, . . . , d do

C = D\S

for c 2 {1, . . . , |C|} do

S2 = S
S
C

c

(c
th

element of C)

for i = 1 : n do

for y 2 Y do

z
i

= (x
i

, y),x 2 S2

for j = 1 : n do

↵
j

= A(*z1, . . . , zj�1, zj+1, . . . , zn+, zj)
end for

p(y) = #{j=1,...,n:↵j�↵n}
n

end for

confidence(i) = 1�max
y 6=ŷi p(y)

end for

Con
c

= mean (confidence)

end for

if Con
S

< max{Con
c

} then

S = S
S

C
c:max{Conc}

else

Break

end if

end for

return S
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3.2.3 Issues in ACM

The ACM method is firstly applied on Abdominal Pain dataset. It is not as

good as we expected because the features selected by ACM method are signif-

icantly di↵erent from those features provided by some medical experts [101].

Furthermore, it is hard to find out whether the average confidence is reaching

the highest point or not.

• Evaluation strategy.

Like other wrapper methods, ACM utilizes CP learning framework as a

black box to score feature subsets according to their predictive power.

It does not directly use the characteristics of data as filter methods.

This is why the orders of feature subset selected by ACM are quite

di↵erent from the ones selected by SMFS method and by the medical

experts in previous experiments. So, if we consider the relationship

measure between features and classes along with the evaluation of clas-

sifier, will it find the optimal feature subset? Furthermore, could the

method be used generally?

• Stopping criterion.

In ACM, the selection process will automatically stop when the aver-

age confidence of feature subset achieves the highest value. But our

experimental results show that the selected feature subset may contain

some redundant features. So, what stopping criterion can be used to

avoid such case happening?
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3.2.4 Improved ACM

In conformal predictors, for the object x
i

of an example z
i

, nonconformity

score ↵
i

shows how conformity x
i

with a hypothesis label y is from the old

examples. p-values compare ↵
i

to the other nonconformity scores of the old

examples. If it is small, z
i

is very nonconforming. If it is large, z
i

is very

conforming. Confidence of an example z
i

is calculated by Equation 3.5, shows

how confident x
i

with a hypothesis label y is to be conforming.

confidence
i

= 1�max
yi 6=ŷi

p(y) (3.5)

In IACM, the label for each example is known. {p(y) : y 6= y
i

} shows

how conformity x
i

with the false labels. The confidence confidence
i

of the

example z
i

is calculated by Equation 3.6 and shows how confident z
i

is to

be conforming. Thus, the average confidence confidence
y

demonstrates the

discrimination power of the objects for classifying labels.

confidence
i

= 1�max
y 6=yi

p(y) (3.6)

confidence
y

= mean(
nX

i=1

confidence
i

) (3.7)

For example, in CP underlying KNN, NC and SVM algorithms, the non-

conformity measure of an example is calculated by the comparison of dis-

tances between the class labels. If the examples in di↵erent classes are far

away from each other, the classification of these examples will be accurate

and confident. If the examples in di↵erent classes are close to each other, the

classification of these examples will be indeterminate. The average confidence

in later case must be lower than the one in former case. This example can be
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illustrated using simulated data. In Figure 3.5, the examples with label (+)

in Figure 3.5(b) is clearly further away from the examples of the other class

(*) than that in Figure 3.5(a). So we expect it to have a relatively higher

confidence value, confidence+,⇤. We used Nearest Centroid method (NC)

and Support Vector Machine (SVM) as underlying algorithms for conformal

predictors in on-line mode, respectively. Results are shown in Table 3.1 when

" is 0.05. It can be found that examples in Figure 3.5(b), which have higher

confidence+,⇤ and are more separable than ones in Figure 3.5(a), perfor-

mance of predictions for examples in Figure 3.5(b) are better.
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Figure 3.5: Simulated data for illustrating

57



Table 3.1: Prediction results of the examples in Figure 3.5

NCM
the examples in Figure3.5(a) the examples in Figure3.5(b)

accuracy uncertain predictions confidence+,⇤ accuracy uncertain predictions confidence+,⇤

NC 0.74 0.87 76% 0.95 0.12 96%

SVM 0.68 0.93 58% 0.91 0.72 89%

In our previous works [101], it is assumed that if the average confidence

reaches the highest point, the selection stops and the selected feature subset

is the optimal one. However, our experimental results showed this is not

the case, when the average confidence is nearly to reach the highest point,

the feature subset may start to include some correlated features. Thus the

analysis of irrelevance and redundancy [17] is introduced in our method.

The selection processing will stop when redundant feature is starting being

included. Now we discuss what are relevance and redundance and how to

use them to analyze features.

Feature relevance and feature redundancy

The notions of relevance and redundance have been formally investigated

in the philosophy literature [49, 18, 38]. Conditional independence among

variables finds its applications in Bayesian belief network [81] and Ovarian

Cancer diagnosis [90, 43], where irrelevance is identified as independence,

and redundancy as conditional independence.

Let’s consider a sequence of training examples:

(x1, y1), ..., (xn

, y
n

),x
i

2 Xd, y
i

2 Y.

Let Xd be the full set of features, F be a set of selected features, F ⇢ Xd

and S = Xd�F . Relevant feature subset indicates that assignment of classes

is depend on features, which can be formalized as follows [6, 100].
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Notation 1. A feature subset F is relevant feature subset to class y if y is

dependent on F

F 6? Y

Notions of feature redundancy are normally defined in terms of feature

correlation. It is widely accepted that two features are redundant to each

other if their values are completely correlated [100]. In reality, it may not be

straightforward to determine feature redundancy when a feature is correlated

(perhaps partially) with a set of features. We now formally define feature

redundancy [6].

Notation 2. Let S be the current set of features, a feature f is defined as

redundancy feature if

{f ? Y }|S

.

In this work, we use two types of statistical tests to realize these two

notions which reject the following two null hypotheses [6]:

1. The null hypothesis: the assignment of labels is independent of feature

subset.

2. The null hypothesis: each of selected features does not contain any

information useful for improving the predictive ability of the feature

subset.

The test statistics are p-values. There are two p-values, the p-value for null

hypothesis 1 is main p-value and the p-value for null hypothesis 2 is condi-

tional p-value [43]. We calculate all these p-values using the Monte-Carlo

method [1].
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The main p-value is based on the null hypothesis that the assignment of

labels is independent of the selected feature subset S, shown as Algorithm 3.

E0 is set as the number of errors occurring in classification with feature

subset. We use k-Nearest Neighbour for classification. Di↵erent k have been

used and the smallest number of errors is selected as E0. The number of

errors occurring in classification for a large number N (we used N = 100) of

times on the same dataset with randomly permuted labels is denoted as E 0.

We then calculate the number Q of times, and note that the statistic is as

good as or better than the statistic E0 computed from the true labels. The

p-value is then estimated as (Q+1)/(N+1). The main p-value could be used

to check the predictive ability of feature subset. If the main p-value does not

exceed 0.05 (significance level), the feature subset is relevant to classification.

Algorithm 3 Main p-value calculation
Require: N = 100, number of trials

Require: E0 := the smallest number of errors caused by di↵erent K.

Require: Q := 0

for j := 1, ..., N do

Randomly assign labels to samples.

Recalculate E 0 := the number of errors occurring in classification on the

dataset with randomly permuted labels.

if E0 � E 0 then

Q := Q+ 1

end if

end for

(Q+ 1)/(N + 1) as the main p-value.
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Suppose that the main p-value is significant. In this case, we wish to use

conditional p-values to demonstrate the contributions of new coming features,

shown as Algorithm 4. The di↵erence from the computation of the main p-

value is the following. At each step of the loop we permute randomly the

m
th

vector of feature subset S, |S| = d and m  d. The labels and remaining

vectors are left intact. If the conditional p-value of a particular feature in

feature subset does not exceed 0.05 (significance level), the feature contains

useful information for classification.

Algorithm 4 Conditional p-value calculation
Require: N = 100, number of trials

Require: S, a feature subset

Require: m, m  |S|

Require: E0 := the smallest number of errors caused by di↵erent K.

Require: Q := 0

for j := 1, ..., N do

Permute randomly m
th

vector of S.

Recalculate E 0 := the number of errors occurring in classification on the

dataset with randomly m
th

vector.

if E0 � E 0 then

Q := Q+ 1

end if

end for

(Q+ 1)/(N + 1) as the conditional p-value.

With change of evaluation criterion and stopping criterion, the feature

selection algorithm based on conformal predictors is summarized as Algo-

61



rithm 5.

3.3 Results and Discussion

The algorithm is firstly applied on Abdominal Pain dataset, shown in Ap-

pendix A.1. The dataset consists of a training set of 4387 patient records and

a test set of 2000 patient records, with 9 categories of diseases and 33 types of

symptoms [42]. For each category of diseases, there is a list of features which

said to be the most associated with corresponding diseases suggested by

medical experts. Both SMFS method and ACM method are applied on this

dataset as well. Features selected by IACM, ACM, SMFS were compared to

the features provided by medical experts. The discrimination power of these

features were also compared.

To show that IACM method is suitable for other di↵erent data types, It is

applied on other 4 datasets from UCI dataset repository [14]. In these experi-

ments, we used four di↵erent feature selection methods to make comparisons,

which are FCBF, SMFS, CFS and IACM. Note that FCBF and SMFS are

two filter methods while CFS and IACM are two wrapper methods. Selected

features are used for classification. Classifications were implemented in both

o↵-line mode and on-line mode.
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Algorithm 5 IACM
Require: training set {z1 = (x1, y1), . . . , zn = (x

n

, y
n

)}, x 2 X, y 2 Y,

D = {1, . . . , d} where d = dim(X)

Require: nonconformity measure A, S = Ø, main p-value calculator MPC

and conditional p-value calculator CPC

for f 2 1, . . . , d do

C = D\S

for c 2 {1, . . . , |C|} do

S2 = S
S
C

c

for i = 1 : n do

for y 2 Y do

z
i

= (x
i

, y),x 2 S2

for j = 1 : n do

↵
j

= A(*z1, . . . , zj�1, zj+1, . . . , zn+, zj)
end for

p(y) = #{j=1,...,n:↵j�↵n}
n

end for

confidence(i) = 1�max
y 6=yi p(y)

end for

Con
c

= mean (confidence)

end for

if MPC(S2max{Conc}) < 0.05 and CPC(C
cmax{ConC},S2) < 0.05 then

S = S
S

C
c:max{Conc}

else

Break

end if

end for

return S
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3.3.1 Results of the Applications for Abdominal Pain

Diagnosis

Data description

The abdominal dataset composed by 33 symptoms, shown in Appendix A.1.

Each of symptoms contains di↵erent numbers of values to show di↵erent kinds

or degrees of the symptom. For example, there are four types of pain, which

are steady, intermittent, colicky and sharp. There could have 135 features in

total when unfold these 33 symptoms. The features is boolean, which means

the patient has this value of one symptom or not, separately. The provided

lists of relevant features were obtained by the purely statistical method and

were then discussed with medical experts. 7 of 9 diseases have the list of

relevant features, APP, DIV, PPU, CHO, INO, RCO and DYS.

Comparison of selected features

Tables 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8 list the features selected for 7

diseases, separately by SMFS, ACM and IACM using NC as underlying al-

gorithm. Features in left columns are all 135 features. Features in right

three columns are optimal ones selected by di↵erent methods. Features in

“Experts” column are approved by medical experts to be relevant for corre-

sponding disease diagnosis. Feature subset significance method [13] is used

to demonstrate how significant the selected features are in relation to expert

knowledge. The method uses the comparison between two feature subsets as

a measure of significance, and the smaller the significance, the less likely the

overlapped features in the two feature subsets are derived just by chance.

A detailed introduction of the method is given in Appendix B. In this ex-
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periment, we respectively compare the feature subsets selected by the three

methods with expert’s features. As it can be seen, none of the three feature

selection methods select the same set of features as experts. Compared with

expert’s feature, features selected by ACM has the largest statistical signif-

icance values; features selected by SMFS have the least significance values

for 5 out of 7 groups; features selected by IACM have the least significance

values for the rest 2 groups. Furthermore, features selected by SMFS for

APP, PPU, CHO and INO contain correlate features. For example, SMFS

select both “rebound absent” and “rebound present” as relevant features to

APP, but these two features are correlated that the symptom only has two

possible values, either absent or present.
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Table 3.2: Features selected for APP

Features Experts SMFS ACM IACM

Site of tenderness: right lower quadrant
p p p p

Site of present pain: right lower quadrant
p p p p

Pain-site onset: right lower quadrant
p

Rebound present
p p p p

Rebound absent
p

Guarding present
p p p p

Guarding absent
p

Rectal examination: tender right side
p p p p

Progress of pain: getting worse
p

Duration of pain: 24-48 hours
p

Age: 10-19 years
p

Duration of pain: 12-24 hours
p p

Pain-site onset: central
p p p

Aggravating factors: coughing
p p

Colour: flushed
p p p

Severity of pain
p

...

Statistical significance 8⇥ 10�5 8⇥ 10�5 2⇥ 10�6
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Table 3.3: Features selected for DIV

Features Experts SMFS ACM IACM

Tenderness in left lower quadrant
p p p

Duration of pain over 48 hours
p

Age 60-69
p p

Age 70 and over
p p

Bowel habit: mucus
p p

Bowel habit: blood
p p

Pain-site onset: lower half
p

Rectal examination: mass felt
p

...

Statistical significance 4⇥ 10�3 1⇥ 10�1 5⇥ 10�2

Table 3.4: Features selected for PPU

Features Experts SMFS ACM IACM

Rigidity present
p p p

Rigidity absent
p

Bowel sounds decreased
p p p

Site of tenderness: general
p p p

Duration of pain: under 12 hours
p

abdominal movement poor
p

Pain-site onset: right loin
p

Relieving factors
p

...

Statistical significance 9⇥ 10�5 1⇥ 10�1 1⇥ 10�3
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Table 3.5: Features selected for CHO

Features Experts SMFS ACM IACM

Murphy’s test positive
p p p p

Murphy’s test negative
p

Tenderness right upper quadrant
p p p p

Colour: jaundiced
p p

Sex: male or female
p

Pain-site present: right upper quadrant
p p

Colour: cyanosed
p

Type of pain: steady
p

Age: 70 and over
p

Pain-site present: upper half
p

...

Statistical significance 3⇥ 10�3 9⇥ 10�3 4⇥ 10�5
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Table 3.6: Features selected for INO

Features Experts SMFS ACM IACM

Abdominal distension
p p p p

Abdominal distension absent
p

Pain colicky
p

Vomiting present
p

Abdominal mass present
p p

Previous surgery
p p

No previous surgery
p

pain-site present: central
p p p

Bowel sounds increased
p p

Age: 70 and over
p p

Site of tenderness: central
p p

Site of tenderness: general
p

Abdominal movement
p p p

Bowel sounds normal
p

Pain-site present: upper half
p

Age: 50-59
p

Pain-site present: general
p

Colour: cyanosed
p

...

Statistical significance 3⇥ 10�4 7⇥ 10�2 2⇥ 10�3
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Table 3.7: Features selected for RHO

Features Experts SMFS ACM IACM

Pain onset in right loin
p p p p

Pain onset in left loin
p p p

Micturation: haematuria
p p p p

Aggravating factors: nil
p

Pain-site present: left loin
p p p

Pain-site present: right loin
p p

Pain-site onset: left half
p

Vomiting present
p

Site of tenderness: right loin
p

Bowel habit: mucus
p

...

Statistical significance 9⇥ 10�5 1⇥ 10�3 1⇥ 10�4

70



Table 3.8: Features selected for DYS

Features Experts SMFS ACM IACM

Site of tenderness: epigastric
p p p p

Pain-site present: epigastric
p p p p

Pain-site present: upper half
p p

History of dyspepsia
p p p

No history of dyspepsia
p

Pain-site onset
p p p

Type of pain: steady
p

Pain-site present: right upper quadrant
p p

Vomiting present
p

...

Statistical significance 9⇥ 10�5 2⇥ 10�4 2⇥ 10�4

Comparison of prediction performance

Classifications here are implemented in on-line mode. Conformal predictor

underlying NC algorithm is used for classification. The experiment is re-

peated 10 times and the mean and the standard deviation are showed in

tables. Performances of region predictions with features selected by di↵erent

methods are compared, shown as Table 3.9. Since the PPU and DIV diseases

have too small number of examples, about 100 examples out of 6387, we ap-

ply the method only on the rest 5 diseases. In most cases, features selected by

IACM provide the most e�cient region predictions and the lowest standard

deviation. As it can be seen in Table 3.10, features selected by IACM also

demonstrate the strongest discrimination power for single predictions, as the
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predictions have the least error rates and the highest confidence values,

Table 3.9: Region predictions of Abdominal Pain dataset

Disease Features
" = 0.05 " = 0.10 " = 0.20

error rate uncertain error rate uncertain error rate uncertain

APP Experts 0.04±0.01 0.51±0.08 0.08±0.01 0.32±0.07 0.18±0.02 0.11±0.05

SMFS 0.04±0.01 0.47±0.09 0.08±0.02 0.29±0.10 0.17±0.03 0.13±0.08

ACM 0.04±0.01 0.44±0.07 0.09±0.02 0.28±0.05 0.16±0.02 0.11±0.04

IACM 0.03±0.02 0.45±0.06 0.07±0.03 0.27±0.06 0.17±0.03 0.07±0.03

CHO Experts 0.02±0.01 0.35±0.14 0.07±0.02 0.15±0.07 0.10±0.02 0.10±0.08

SMFS 0.03±0.01 0.27±0.09 0.08±0.02 0.11±0.03 0.16±0.02 0.08±0.03

ACM 0.03±0.03 0.31±0.07 0.07±0.03 0.13±0.03 0.15±0.04 0.08±0.01

IACM 0.04±0.02 0.29±0.01 0.08±0.02 0.10±0.04 0.15±0.03 0.05±0.04

INO Experts 0.04±0.01 0.41±0.11 0.07±0.02 0.27±0.11 0.16±0.02 0.15±0.07

SMFS 0.03±0.01 0.41±0.10 0.07±0.02 0.27±0.14 0.15±0.04 0.19±0.13

ACM 0.03±0.02 0.43±0.20 0.07±0.03 0.19±0.17 0.16±0.04 0.14±0.16

IACM 0.04±0.02 0.29±0.06 0.07±0.01 0.17±0.06 0.15±0.02 0.10±0.06

RHO Experts 0.02±0.01 0.48±0.06 0.03±0.02 0.44±0.08 0.03±0.02 0.42±0.08

SMFS 0.03±0.02 0.40±0.27 0.07±0.02 0.18±0.13 0.10±0.03 0.15±0.13

ACM 0.03±0.02 0.40±0.23 0.07±0.02 0.23±0.16 0.10±0.03 0.20±0.17

IACM 0.03±0.02 0.40±0.16 0.07±0.02 0.12±0.07 0.12±0.02 0.07±0.07

DYS Experts 0.03±0.01 0.40±0.06 0.08±0.01 0.22±0.06 0.14±0.02 0.11±0.05

SMFS 0.04±0.01 0.36±0.08 0.08±0.02 0.19±0.05 0.14±0.04 0.08±0.05

ACM 0.03±0.01 0.37±0.08 0.08±0.01 0.19±0.07 0.17±0.02 0.08±0.04

IACM 0.04±0.01 0.38±0.03 0.07±0.03 0.18±0.09 0.15±0.03 0.06±0.02

Table 3.10: Single predictions of Abdominal Pain dataset

Disease
Experts SMFS ACM IACM

error rate confidence error rate confidence error rate confidence error rate confidence

APP 0.20±0.03 89%±2% 0.19±0.04 88%±4% 0.17±0.01 89%±4% 0.17±0.03 91%±1%

CHO 0.10±0.07 89%±4% 0.09±0.02 89%±3% 0.09±0.07 90%±6% 0.09±0.02 92%±4%

INO 0.13±0.04 84%±7% 0.15±0.07 85%±8% 0.14±0.02 85%±5% 0.11±0.04 89%±6%

RHO 0.25±0.08 76%±3% 0.11±0.09 82%±12% 0.11±0.06 82%±14% 0.09±0.07 90%±6%

DYS 0.15±0.04 90%±3% 0.15±0.04 91%±2% 0.13±0.02 90%±4% 0.12±0.03 92%±2%
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3.3.2 Results of the Applications on Other Datasets

Data description

The 4 datasets are all from UCI dataset repository to provide a wide vari-

ety of application areas, sizes, combinations of feature types, shown in Ap-

pendix A.2. There are no experts’ features for these datasets. Comparison

of prediction performance has been made.

Comparison of predictive performance

Feature selection is performed using NC as we did for Abdominal Pain

dataset. To avoid using the same classifier for prediction, 1-Nearest Neigh-

bour is used to provide estimated accuracies for comparison in o↵-line mode

and conformal predictors underlying 1-Nearest Neighbour is used to make re-

gion predictions and performance of uncertain predictions are compared. We

use the Nearest Neighbour algorithm because it is sensitive to irrelevant and

redundant features [67]. 10-fold cross-validation are applied to each dataset

for finding the feature subset in training set and making classification in test

set. The same division of data into folds is used for each algorithm to ensure

fair comparison. FCBF and CFS are reported to be sensitive to irrelevant

and redundant features [100, 46].

Results of classification in o↵-line mode are shown as Table 3.11. Average

accuracies and standard deviation of single predictions have been calculated.

The features selected by all the methods improve classifier’s predictive power.

Features selected by IACM have the best performance of predictions. Re-

sults of classification in on-line mode are shown as Table 3.12. The uncertain

predictions under di↵erent significance levels have been compared. Selected
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features make the valid region predictions as the percentages of errors never

exceed the pre-set significance level. SMFS and IACM are two feature selec-

tion method which are designed for conformal predictor. Results of SMFS

method are better or at least no worse than FCBF and CFS methods. The

region predictions with features selected by IACM are more e�cient than

the ones with features selected by SMFS. As expected features selected by

IACM achieve the most e�cient region predictions.

Table 3.11: Performance of Nearest Neighbour algorithms for classification

Dataset

All features Filter Wrapper

error rate
FCBF SMFS CFS IACM

error rate error rate error rate error rate

Breast cancer 0.11±0.01 0.11±0.01 0.11±0.13 0.11±0.01 0.09±0.01

Heart disease 0.26±0.04 0.19±0.04 0.22±0.07 0.22±0.02 0.13±0.03

Dermatology 0.14±0.02 0.14±0.02 0.08±0.01 0.08±0.04 0.08±0.02

LSVT 0.08±0.06 0.08±0.03 0.10±0.01 0.08±0.05 0.08±0.03

3.3.3 Discussion

Classification algorithms work to imitate the behave of people about making

decisions. The results of predictions are expected to be close to experts’ opin-

ions. As we have discussed before, the filter methods select features by the

characteristics of their relevance with class labels, while the wrappers select

features based on their performance of predictions for a specific classifier.

In real life problems, doctors select features in the filter way because they

consider symptoms to be important if the features are directly relevant to

diagnostics. This is the reason why features selected by ACM are quite dif-

ferent from the features provided by doctors. Features selected by SMFS are
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much similar to doctors’ selections, but they are included in correlated fea-

tures, because correlated features in filter have same rankings. In the IACM

method, the average confidence of true label is used instead of the average

confidence of the predicted label, because the average confidence of true label

represents how far away the classes are to each other. In some sense, we com-

bine wrapper method with filter method as IACM considers the performance

of predictions along with the characteristics of features. This is why features

selected by IACM were more similar to experts’ than the features selected

by ACM and almost as good as SMFS’s. Wrappers work based on the feed-

back of prediction performance of a particular algorithm while experts and

filters are independent from classifiers. Thus, features selected by IACM had

stronger predictive power.

We also chose other feature selection methods such as FCBF and CFS and

other various datasets to make comparison. The two selection methods, one

filter (FCBF) and one wrapper (CFS), are said to be sensitive to relevance

and redundance features. As it can be seen from the experimental results,

IACM method worked well during these experiments. In o↵-line classifica-

tion, accuracies of predictions with features selected by IACM were no less

than the others. In on-line classification, features selected by IACM always

provided the most e�cient region predictions, which achieved our expected

goal.
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Chapter 4

Conformal Predictors with

Additional Information

Recently, Vapnik introduced a new method called “Learning using privileged

information” (LUPI) which provides a learning paradigm under privileged

(or additional) information [91]. It described the SVM+ technique to process

this information in o↵-line mode. Inspired by the method, we would like to

deal with additional information with conformal predictors in both o↵-line

mode and on-line mode.

4.1 Background

4.1.1 Additional Information

Various data types lead to new types of problems and require the develop-

ment of new types of techniques for analysis [44]. Learning with additional

information is a very common scenario. For example, doctors normally make
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diagnosis for a patient using general testing results. If the diagnosis is still

unclear based on all of the results, they may send the patient for some addi-

tional testing such as blood test and MRI scan. In classroom, students could

learn well with the help of teacher’s comments. And for the following study

he could also use this experience even if there are no teacher’s comments any

more. Both extra testing and teacher’s comments are additional informa-

tion to original data and help the learners improving their learning abilities.

These kinds of additional information have a common characteristic that

there is no corresponding additional information available for the new com-

ing examples. The above description of learning with additional information

can be summarized as Table 4.1 for classification in machine learning.

Table 4.1: Classification with additional information

Data Set Content

Usual information Additional information Label

Training examples Known Known Known

Test examples Known Unknown To predict

4.1.2 Current Status of Learning with Additional In-

formation

It is said that incorporation of additional information within machine learn-

ing algorithms became important, since it could help the classifier improve

their classification performance [11, 26]. Traditionally such fusion of infor-

mation was the domain of semi-supervised learning, where techniques such as

co-training were employed in order to fuse separate data to exploit knowledge
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encoded within unlabelled data [33]. Most researches in supervised learning,

both theoretical and empirical, assume that the model is trained and tested

using data drawn from the same distribution. They can not utilize additional

information directly which is not available for testing examples.

Recently a new learning paradigm was proposed by Vapnik for supervised

learning [91], called “Learning Using Privileged Informaiton” (LUPI), which

aims to improve predictive performance of learning algorithms and reduce

the amount of the required training data.

4.2 Learning Using Privileged Information

In these works, Vapnik gave additional information a specific description,

“privileged information”. Unlike traditional paradigm, the data in LUPI is

said to be privileged as it is available only during training and not during

testing [91]. Privileged information denotes the existence of an additional set

of data that provides a higher level information, akin to information provided

by a ’master’ to a pupil, about a specific problem. Vapnik has shown that

privileged information helped to improve the learning performance [95, 93,

91].

4.2.1 Privileged Information

To understand the problem that is to be solved in this work, a description of

privileged information should be given [91]. Vapnik named traditional data

(usual information) “technical data”, as in most cases such data originated

from a technical process, such as a pixel space in the case of a digit recognition
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task or amino-acid space in the case of classification of proteins. To help us

understand what privileged information is, it is useful to discuss examples

where such information can become useful. Vapnik suggested three example

types of privileged information [91]:

• Advanced technical model.

The privileged information can be seen as a high level technical model

of a particular problem to be solved. For example, in the field of bi-

ological information, amino-acid sequences are usually used to classify

the proteins. The 3D-structure is a technical model developed by sci-

entists. When information contained amino-acid sequences along with

the 3D-structures, learning performance was improved.

• Future events.

For a given set of current measurement, a future event or development

can be provided as the privileged information. For example if the task

in hand is the prediction of a particular treatment of a patient in a year’s

time, given his/her current symptoms, a doctor can provide information

about the development of symptoms in three, six and nine month’s

time.

• Holistic description.

The last example type of privileged information relates to holistic de-

scriptions [86] of specific problems. For example, the goal is to classify

biopsy images into two categories, cancer and non-cancer. The classi-

fication is usually based on the individual pixels of each image. How-

ever, along with the picture the doctor has a report about the images
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by pathologists in a high-level holistic language.

The above three example types of privileged information are only a very

small selection of the possible set of additional information that could be

obtained from a number of problem domains. Vapnik stated that almost

any machine learning problem contains some form of privileged information,

which is currently not exploited in the learning process [93].

4.2.2 Learning Procedure

Data representation

Examples in training set are composed by usual object x from usual infor-

mation, additional object x⇤ from additional information and label y, where

examples in test set have x only. This can be summarized as:

Given a set of i.i.d. training examples,

Z = {(x1,x
⇤
1, y1), ..., (xn

,x⇤
n

, y
n

)},x
i

2 Xd,x⇤
i

2 X⇤m

where x
i

represents usual information and x⇤
i

represents additional informa-

tion. x is a d-dimensional feature vector and x⇤ is a m-dimensional feature

vector. Thus, a classifier needs to be trained on training examples and ap-

plied on test examples, {x
n+1, ...,xn+l

}, with the di↵erent dimensional feature

space.

SVM+ algorithm

To realize this advanced type of learning, Vapnik developed the SVM+ al-

gorithm [91], which is based on SVM algorithm. Let f(x) = sign(w · x+ b)
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be a decision function and �(x⇤) = w⇤ · x⇤ + d be a correction function. The

optimization problem of SVM+ is defined as:

min
w,b,w

⇤
,d

1

2
||w||22 +

�

2
||w⇤||22 + C

nX

i=1

(w⇤ · x⇤
i

+ d) (4.1)

81  i  n, y
i

(w · x
i

+ b) � 1� (w⇤ · x⇤
i

+ d)

81  i  n,w⇤ · x⇤
i

+ d � 0

The objective function of SVM+ contains two hyperparameters, C � 0

and � � 0. The term �

2 ||w
⇤||22 in Equation 4.1 is intended to restrict the

capacity of the function space containing �. Then, we can construct the

Lagrangian :

L(w, b,w⇤, d,↵, �) = 1
2 ||w||22 + �

2 ||w
⇤||22 + C

P
n

i=1[(w
⇤ · x⇤

i

) + d]

�
P

n

i=1 ↵i

[y
i

[(w · x
i

) + b]� 1 + [(w⇤ · x⇤
i

) + d]]�
P

n

i=1 �[(w
⇤ · x⇤

i

) + d]

(4.2)

to minimize it with respect of w, b, w⇤, d and maximize with respect to

Lagrange multipliers ↵ � 0, � � 0.

The solution of this problem is defined by the decision function

f(x) = (w · x) + b =
nX

i=1

y
i

↵
i

K(x
i

,x) + b (4.3)

and the corresponding correcting function

�(x⇤) = (w⇤ · x⇤) + d

= 1
�

P
n

i=1(↵i

+ �
i

� C)K⇤(x⇤
i

,x⇤) + d
(4.4)

where K(x
i

,x) and K⇤(x⇤
i

,x⇤) are kernels in X and X⇤ spaces that define

inner products in Z and Z⇤ spaces and ↵, � are the solution of the following
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optimization problem: maximize the function:

R(↵, �) =
P

n

i=1 ↵i

� 1
2

P
n

i,j=1 ↵i

↵
j

y
i

y
j

K(x
i

,x
j

)

� 1
2�

P
n

i,j=1(↵i

+ �
i

� C)(↵
j

+ �
j

� C)K⇤(x⇤
i

,x⇤
j

)
(4.5)

subject to three types of contraints

nX

i=1

(↵
i

+ �
i

� C) = 0

nX

i=1

y
i

↵
i

= 0

↵
i

� 0, �
i

� 0

Experimental results using the above algorithm show the new paradigm

has superiority in terms of performance over the original SVM method. The

task of digit recognition is one of the most frequent machine learning tasks.

Numerous research papers and results have been published on this topic,

particularly within the supervised learning community [63]. The MNIST

database of handwritten digits is an eminent source of such research [62].

Vapnik et al. used a subset of the MNIST dataset comprising 100 digits

from two di↵erent groups. The two groups are 50 variations of the digit

5 and 50 variations of the digit 8. Each digit is originally a 28 ⇥ 28 pixel

gray-scale image, shown in Figure 4.1(a). Thus an image can be thought of

a 784-dimensional feature vector with values in the range of 0 to 255. To

make the task of classification slightly more di�cult, they created a second

dataset, based on scaled down versions of the original images. A set of 100

gray-scale images at a resolution of 10⇥10 pixels has been created, shown in

Figure 4.1(b) [33]. This dataset can again be thought of a 100-dimensional
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dataset with a range of 0 to 255. Subset of the MNIST digit dataset com-

prising of 100 digits at two di↵erent resolutions, providing di↵erent levels of

information. The lower the resolution, the more information is potentially

lost. The dataset comprises two classes of digits, the numbers 5 and 8. There

are 50 examples for each class.

Vapnik et al. showed that a poetic description [91] of a set of images

of hand-written digits provides useful information for learning. A set of

poetic descriptions is obtained with the help of a language expert. By poetic

description we mean a description of what the expert saw and interpreted

using his/her own words in the form of a poem. To make these additional

sets of data usable in computation, the text has been analysed and a set

of keywords that occur across the dataset have been extracted. Finally a

21-dimensional vector has been created for each digit encoding the poetic

description of each digit [91].

We repeat the experiment and the results are presented in Table 4.2.

The kernel to be used is Radial Basis Function(RBF) Kernel, K(x
i

,x
j

) =

exp(��||x
i

� x
j

||2), � � 0. By using cross-validation, we could find the

best parameter C and �. Vapnik et al. [91] did not provide what kernel and

the corresponding parameters they used in the experiments. Given this, the

results we obtained are quiet similar to [91].

An important strength of the SVM+ algorithm is the ability of the system

to reject privileged information in situations when similarity measures in the

correcting space are not appropriate, thus privileged information is only used

when it is deemed beneficial. But it has some drawbacks. One drawback of

the system is the increase in computational requirements due to the necessity
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(a) 28⇥ 28 pixel digit dataset

(b) 10⇥ 10 pixel digit dataset

Figure 4.1: Subset of the MNIST digit dataset comprising of 100 digits at

two di↵erent resolutions, providing di↵erent levels of information
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Table 4.2: Error rate of SVM and SVM+ on the digit recognition task

Training data size � C Error rate by SVM Error rate by SVM+

40 2�13 2�10 0.17 0.14

50 210 2�5 0.13 0.12

60 211 2�1 0.13 0.12

70 2�12 24 0.13 0.11

80 211 2�7 0.11 0.10

90 28 2�14 0.11 0.08

of tuning more parameters than in the original SVM setting [93].

4.3 Conformal Predictors with Additional In-

formation

In this section, we propose a novel method that incorporates additional in-

formation within conformal predictors. Like other traditional machine learn-

ing algorithms, original CP framework works on the dataset where training

examples and test examples are from the same distribution. As CP is a

transductive method while making predictions based on hypothesis testing,

it can be successfully adapted to learning with additional information.

4.3.1 On-line Learning and O↵-line Learning

In Chapter 2 we presented conformal predictors and applied them to on-line

mode. The theory can also be extend to relaxation of the on-line protocol

that makes it close to o↵-line mode [92]. This is important because we
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can not always rely on a teacher to reveal correct labels immediately in

most practical problems. For example, if we deal with hand-written digits

recognizing problem, we can not rely on a teacher to tell us the correct

interpretation of each hand-written digit.

4.3.2 Conformal Predictions with Additional Informa-

tion

When we use CP method, we predict that a new object will have a label that

makes it similar to the old examples in some specific way. When learning with

additional information, we assume the additional information are categorized

and finite and we can make prediction based on how strange a new object

with a hypothetical label and hypothetical additional values are compared

to old examples.

↵
i

= A(*(x1,x
⇤
1, y1), ..., (xi�1,x

⇤
i�1, yi�1), (xi+1,x

⇤
i+1, yi+1), ..., (xn+1,x

⇤, y)+, (x
i

,x⇤
i

, y
i

))

↵
n+1 = A(*(x1,x

⇤
1, y1), . . . , (xn

,x⇤
n

, y
n

), (x
n+1,x

⇤, y)+, (x
n+1,x

⇤, y)), y 2 Y,x⇤
i

2 X⇤m

Then,

p(y,x⇤) =
#{i = 1, ..., n+ 1 : ↵

i

� ↵
n+1}

n+ 1
, y 2 Y,x⇤ 2 X⇤m

Like p-values in conformal predictors, the more likely the hypothesis is,

the higher p-value p(y,x⇤) is. The approach assumed that the additional

information must be categorical and finite, so that we can have finite combi-

nation of the label and additional values to analyse. If the values are contin-

uous, some discretization methods should be used to transform continuous

values to nominal.
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Learning in o↵-line mode

In o↵-line mode, the new test example will not be included in training set.

Conformal predictors can be applied in o↵-line mode, but can not have a guar-

antee of validity. In CP, suppose we are given a training set {z1, z2, ..., zn} of

examples z
i

= (x
i

, y
i

) and the problem is to predict the labels y
n+1 for new

example x
n+1. The o↵-line conformal predictor outputs the region prediction:

�"(x1, y1, ...,xn

, y
n

,x
n+1) := {y 2 Y :

|{j = 1, . . . , n+ 1 : ↵
j

� ↵
n+1}|

n+ 1
> "}

(4.6)

where the nonconformity scores are computed from a nonconformity measure

A:

↵
j

= A(*z1, ..., zj�1, zj+1, . . . , zn, (xn+1, y)+, zj) (4.7)

↵
n+1 = A(*z1, ..., zn+, (xn+1, y)) (4.8)

It is true that

P{y
n+1 62 �"(x1, y1, ...,xn

, y
n

,x
n+1)}  " (4.9)

for every example in test set which are drawn independently from the distri-

bution Q, but the events in Equation 4.9 are not independent and

|{m = n+ 1, ..., n+ k : y
m

62 �"(x1, y1, ...,xn

, y
n

,x
m

)}|
k

(4.10)

can be significantly above " even when k is very large. The validity is not

kept. Thus, in o↵-line mode, only single prediction is considered.
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Algorithm 6 Conformal Prediction with Additional Information in O↵-line

Mode
Require: training example sequence {z1 = (x1,x⇤

1, y1), . . . , zn =

(x
n

,x⇤
n

, y
n

)}

Require: new example x
n+1

Require: conformity measure A

Require: significance level "

for y 2 Y do

for x⇤ 2 X⇤ do

z
n+1 = (x

n+1,x⇤, y)

for i = 1 : n do

↵
i

= A(*z1, ..., zi�1, zi+1, . . . , zn, (xn+1, y)+, zi)
end for

↵
n+1 = A(*z1, ..., zn+, (xn+1, y))

p(y,x⇤) = #{i=1,...,n+1:↵i�↵n+1}
n+1

end for

p(y) = max
x

⇤ p(y,x⇤)

end for

return single prediction ŷ
n+1 = argmax

y

p(y)

return region prediction �"

n+1 = {y : p(y) > "}

Learning in on-line mode

In on-line mode, the advantage of CP is its validity. We assume that once

the classifier made the predictions, the true label and additional values of the

new object x are revealed. The challenge of our method is how to combine a

number of extended p-values p(y,x⇤) into p(y) and to maintain the validity
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property.

Since only one of the hypotheses is true, selecting the maximum of the

extended p-values is the only way to hold the validity:

max
x

⇤
p(y,x⇤) � p(y,x

true

), y 2 Y,x⇤ 2 X⇤

Thus:

Prob{max
x

⇤
p(y,x⇤)  "}  Prob{p(y,x

true

)  "}

So:

Prob{max
x

⇤
p(y,x⇤)  "}  "

Region prediction:

�" = {y : p(y) > "}

The procedure of conformal prediction with additional information can be

summarized as Algorithm 7.
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Algorithm 7 Conformal Prediction with Additional Information in On-line

Mode
Require: training example sequence {z1 = (x1,x⇤

1, y1), . . . , zn =

(x
n

,x⇤
n

, y
n

)}

Require: new example x
n+1

Require: conformity measure A

Require: significance level "

for y 2 Y do

for x⇤ 2 X⇤ do

z
n+1 = (x

n+1,x⇤, y)

for i = 1 : n+ 1 do

↵
i

= A(*z1, ..., zi�1, zi+1, . . . , zn, (xn+1, y)+, zi)
end for

p(y,x⇤) = #{i=1,...,n+1:↵i�↵n+1}
n+1

end for

p(y) = max
x

⇤ p(y,x⇤)

end for

return single prediction ŷ
n+1 = argmax p(y)

return region prediction �"

n+1 = {y : p(y) > "}

4.4 Results and Discussion

The algorithm is firstly applied on the Abdominal Pain dataset for binary

classification. Our results in o↵-line mode are compared with the results of

classifications based on SVM+ method. Only CP method is applied to make

predictions in on-line mode, since SVM+ is designed in o↵-line mode.
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To verify that our method is suitable for multiple-class classification prob-

lems, it is applied on the Dermatology data. Classifications are implemented

in both o↵-line mode and on-line mode.

4.4.1 Results of the Applications for Abdominal Pain

Diagnosis

Among 9 diseases in Abdominal Pain dataset, we only make predictions for

APP and DYS disease groups for illustration purposes. APP and DYS are

two diseases which have the largest number of patients. Because we use one-

against-rest method to transfer multiple class problem into a set of binary

classes, this could lead to the situation where there are unbalanced examples

in the two classes. And this will a↵ect the performance of classifications by

SVM and SVM+. For each disease, the features identified by medical experts

are used as additional features and the rest are considered as usual features.

In the experiments, we varied the number of usual features, from 30 to 120,

to provide di↵erent predictive power of usual features. For each trial, usual

features are randomly chosen.

The implementation of conformal predictor is based on Nearest Neighbour

algorithm for classification is performed in both o↵-line and on-line mode.

O↵-line mode

Results of classification on Abdominal Pain dataset in o↵-line mode by CP

method, SVM and SVM+ method are shown in Figures 4.2, 4.4. 4.3, and 4.5.

The experiment is repeated 10 times, and new features are selected as usual

features every time. The accuracy of predictions for APP increased as the
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size of usual features growing. The accuracy of predictions for DYS disease

raised at the beginning and started falling when it reached the highest point.

The changes of accuracy of predictions with additional information always

match the changes of accuracy of predictions without additional information.

Sometimes the accuracy of predictions with additional information slightly

falls when the other one keeps rising. This is caused by the situation that

some of additional features are correlated with some usual features. The

intervals between the accuracy with the help of additional information and

the other is much larger at the beginning when the size of usual features

is smaller than when the size of usual features is big at the end. In these

experiments, both CP method and SVM+ successfully utilize additional in-

formation for better classification performance, compared to the classification

without additional information.

Figure 4.2: Results of classification for APP disease by CP methods
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Figure 4.3: Results of classification for APP disease by SVM and SVM+
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Figure 4.4: Results of classification for DYS disease by CP methods
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Figure 4.5: Results of classification for DYS disease by SVM and SVM+
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On-line mode

Results of classification by conformal predictor in on-line mode are shown as

Table 4.3. When the size of usual features is small, the percentages of errors of

region predictions with usual feature exceed the corresponding significance

level, while region predictions with additional information do not. In the

case when " = 0.2 the region predictions with additional information have

smaller size than the one with usual information only; in other cases the size

of predictions with additional information is no bigger than the other.
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Table 4.3: Region predictions of Abdominal Pain dataset in on-line mode

Disease
Size of Additional " = 0.05 " = 0.10 " = 0.20

usual features information uncertain error uncertain error uncertain

APP 30 Yes 0.04±0.01 0.49±0.15 0.05±0.02 0.46±0.07 0.19±0.02 0.12±0.04

No 0.43±0.12 0.10±0.42 0.38±0.11 0.10±0.21 0.26±0.13 0±0.18

40 Yes 0.05±0.01 0.71±0.05 0.10±0.01 0.28±0.03 0.16±0.03 0.05±0.03

No 0.14±0.15 0.61±0.03 0.19±0.06 0.18±0.17 0.19±0.01 0.18±0.09

50 Yes 0.04±0.02 0.71±0.05 0.08±0.01 0.43±0.06 0.18±0.02 0.04±0.05

No 0.06±0.02 0.71±0.08 0.10±0.03 0.39±0.05 0.19±0.03 0.19±0.06

60 Yes 0.03±0.01 0.57±0.07 0.08±0.02 0.35±0.11 0.15±0.04 0.01±0.05

No 0.04±0.02 0.57±0.05 0.07±0.02 0.35±0.14 0.17±0.03 0.19±0.04

70 Yes 0.02±0.02 0.58±0.06 0.06±0.01 0.33±0.09 0.15±0.01 0.01±0.05

No 0.03±0.02 0.59±0.09 0.10±0.01 0.33±0.15 0.16±0.04 0.13±0.06

80 Yes 0.03±0.02 0.57±0.07 0.07±0.03 0.33±0.05 0.12±0.03 0.01±0.04

No 0.05±0.01 0.57±0.07 0.08±0.01 0.33±0.04 0.14±0.05 0.14±0.02

100 Yes 0.03±0.01 0.48±0.04 0.07±0.01 0.25±0.02 0.17±0.02 0.01±0.05

No 0.05±0.01 0.48±0.04 0.06±0.04 0.25±0.02 0.16±0.02 0.09±0.02

120 Yes 0.03±0.01 0.40±0.03 0.06±0.02 0.20±0.04 0.12±0.01 0.01±0.02

No 0.04±0.01 0.40±0.03 0.06±0.02 0.20±0.03 0.13±0.06 0.07±0.02

DYS 30 Yes 0.05±0.01 0.25±0.14 0.06±0.04 0.22±0.09 0.20±0.01 0.01±0.10

No 0.21±0.17 0.08±0.05 0.21±0.13 0.09±0.08 0.32±0.0 0±0.03

40 Yes 0.04±0.01 0.40±0.04 0.08±0.02 0.16±0.07 0.18±0.02 0.02±0.07

No 0.09±0.03 0.36±0.06 0.12±0.01 0.12±0.05 0.17±0.06 0.07±0.05

50 Yes 0.03±0.02 0.45±0.05 0.08±0.01 0.18±0.04 0.12±0.03 0.01±0.05

No 0.05±0.02 0.45±0.07 0.08±0.02 0.18±0.07 0.10±0.01 0.11±0.03

60 Yes 0.04±0.01 0.33±0.06 0.07±0.02 0.18±0.06 0.15±0.01 0.05±0.03

No 0.04±0.01 0.33±0.06 0.07±0.01 0.18±0.06 0.18±0.06 0.07±0.05

70 Yes 0.03±0.02 0.35±0.05 0.06±0.01 0.19±0.03 0.13±0.04 0.07±0.01

No 0.03±0.02 0.35±0.05 0.06±0.01 0.19±0.03 0.17±0.05 0.08±0.04

80 Yes 0.03±0.01 0.36±0.02 0.06±0.02 0.19±0.04 0.12±0.04 0.05±0.02

No 0.03±0.01 0.36±0.02 0.06±0.02 0.19±0.04 0.13±0.03 0.07±0.03

100 Yes 0.02±0.02 0.33±0.04 0.07±0.01 0.16±0.03 0.15±0.02 0.05±0.01

No 0.02±0.02 0.33±0.04 0.07±0.01 0.16±0.03 0.15±0.01 0.07±0.03

120 Yes 0.02±0.01 0.30±0.04 0.09±0.01 0.11±0.05 0.13±0.02 0.01±0.03

No 0.02±0.01 0.30±0.04 0.09±0.01 0.11±0.05 0.14±0.03 0.05±0.02
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4.4.2 Results of the Applications for Dermatology Di-

agnosis

We apply the CP method on this dataset to demonstrate the advantage of

our method for multiple-class classification. SVM+ just works for binary

classification, so there is no comparison here.

The dataset contains 34 features and 6 classes. The diseases in this data

are psoriasis, seboreic dermatitis, lichen planus, pityriasis rosea, cronic der-

matitis and pityriasis rubra pilaris. Patients were first evaluated clinically

with 12 features. Afterwards, skin samples were taken for the evaluation of

22 histopathological features. The values of the histopathological features

are determined by an analysis of the samples under a microscope.

In the dataset constructed for this domain, the family history feature has

the value 1 if any of these diseases has been observed in the family, and 0

otherwise. The age feature simply represents the age of the patient. Every

other feature (clinical and histopathological) was given a degree in the range

of 0 to 3, where, 0 indicates that the feature was not present, 3 indicates the

largest amount possible, and 1, 2 indicate the relative intermediate values.

In Chapter 2, we selected a relevant feature subset for this dataset.

In this experiment, we assume these selected features are additional and

the unselected ones are usual. We increase the number of usual features,

from 5 to 20, to provide di↵erent predictive power of usual features. For each

trial, usual features are randomly chosen. Conformal predictor underlying 1-

Nearest Neighbour algorithm is used for classification in both o↵-line and on-

line mode. 10-fold cross-validation is used to divide the dataset into training

set and test set to reduce the classification bias.
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O↵-line mode

Results are shown by Figure 4.6. The accuracy of classification with addi-

tional information is much higher than the accuracy of classification without

one. And the increasing of accuracy of predictions with additional informa-

tion keeps in line with the increasing of the other one.
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Figure 4.6: Results of predictions on Dermatology dataset in o↵-line mode

On-line mode

Results of classification in on-line mode are shown as Table 4.4. With the

help of additional information, the percentages of errors in region predictions

never exceed the corresponding significance level, and the size of predictions

are always smaller.
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Table 4.4: Region predictions of Dermatology dataset in on-line mode
Size of Additional " = 0.05 " = 0.10 " = 0.20

usual features information error uncertain error uncertain error uncertain

5 Yes 0±0 1±0 0.05±0.01 0.79±0.06 0.11±0.01 0.57±0.03

No 0±0.04 1±0 0.55±0.06 0.53±0.14 0.66±0.05 0±0

10 Yes 0.02±0.01 0.84±0.11 0.09±0.04 0.41±0.01 0.19±0.04 0.06±0.02

No 0.03±0.02 0.84±0.12 0.11±0.04 0.42±0.02 0.16±0.05 0.22±0.03

20 Yes 0.05±0.01 0.23±0.02 0.09±0.03 0.04±0.02 0.17±0.06 0.01±0.01

No 0.05±0.01 0.23±0.02 0.07±0.02 0.13±0.02 0.19±0.06 0.12±0.01

4.4.3 Discussion

Learning with additional information, which is only available in training

set, is a challenge for traditional machine learning system. Based on SVM

algorithm, Vapnik developed SVM+ method to realize it. In SVM+, the

additional information is used to generate a correction function to help find

a better hyperplane for separating. We repeated Vapnik’s experiments for

hand-written digits recognition. Results showed SVM+ utilized additional

information to improve the performance of predictions. We are interested in

incorporating additional information within conformal predictors. Based on

the rationale of conformal predictions, the new method treat the additional

information as unknown label and calculate the level of conformity of the

example with hypothetical additional information and class label are com-

pared to old examples to make prediction. It assumes that the additional

information is discrete and finite.

In the experiments, the method was applied in both o↵-line and on-line

mode, for binary classification and multiple-class classification. In o↵-line

mode, the method utilized the additional information for more accurate pre-
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dictions. Results showed that additional information provide more help when

usual features do not carry enough information for separating and if addi-

tional information was correlated with usual features, utilizing this informa-

tion may not have too much advantages. Thus, the performance of learning

with additional information can be a↵ected by its quality. In on-line mode, it

had been proved that the validity is kept. Furthermore, when region predic-

tions with usual features only were not valid, the predictions with additional

information can still hold the validity. With the help of additional informa-

tion, the e�ciency of region predictions had been improved.

Our method successfully incorporates additional information within con-

formal predictors to improve the predictive performance for binary and multiple-

class classification in both on-line and o↵-line mode.
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Chapter 5

Conformal Predictors with

Missing Information

In many practical applications, some feature values in a dataset may be

missing and learning algorithms should be able to deal with such missing

information. However, most existing algorithms are designed under the as-

sumption that there are no missing values in datasets. Traditional ways deal

with features with missing values in the pre-processing step, either ignoring

them or imputing them. In this chapter, we propose a novel method which

embeds missing information imputation method in the conformal predictor

for directly making classification.
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5.1 Background

5.1.1 Missing Information

Incomplete data is an unavoidable problem in dealing with most of the real

world data sources. In this chapter, we address the problem when missing

values only exist in test set. Additional information for training examples

discussed in Chapter 3 could be considered as missing values in test exam-

ples. The algorithm we used for dealing with missing values is similar to

Algorithm 6. The di↵erence between additional information and missing

information is that the additional information is usually related to a fixed

subset of features, but missing information could happen to any features.

Data quality is a major concern in machine learning, as even a small

amount of missing information in the features can cause serious problems

and may lead to wrong conclusions [88]. Little and Rubin discussed three

types of missing values and their underlying mechanisms [66]:

• Missing completely at random (MCAR). It occurs when the probability

of an example having a missing value for an attribute does not depend

on either the known values or the missing data.

• Missing at random (MAR). When the probability of an example having

a missing value for an attribute may depend on the known values, but

not on the value of the missing data itself.

• No missing at random (NMAR). When the probability of an example

having a missing value for an attribute could depend on the value of

that attribute.
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In case of the MCAR mode, the assumption is that the distributions of

missing and complete data are the same, while for MAR mode they are di↵er-

ent, and the missing data can be predicted by using the complete data [66].

MAR mechanism is assumed by most of the existing missing data imputation

methods [65]. Furthermore, considering these three mechanisms, it is only

in the MCAR case where the analysis of the remaining complete data could

give a valid inference (classification) due to the assumption of same distri-

butions. In the case where the underlying mechanism is unknown, the user

can perform a statistical test introduced by Chen and Little to determine

whether the missing values were introduced as MCAR [20].

5.1.2 Existing Methods of Treating Features with Miss-

ing Values

In general, missing data treatment methods can be divided into the following

two categories, ignoring/discarding method and imputation method [66].

Ignoring / Discarding methods

Ignoring is the most simple and low cost solution of handling missing value.

However, this method is practical only when the dataset contains relatively

small number of examples with missing values [36]. There are two main

ways to discard data with missing values. Many researchers studied these

two methods and used di↵erent notions [97, 40, 88, 16]. In this chapter we

use Ignoring for deleting examples and Discarding for deleting attributes.

The first one is to completely ignore examples with missing values. The key

disadvantage of this method is the waste of the training data. The second
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method is known as discarding attributes. This method first determines the

extent of missing values on each attribute, and then deletes the attributes

with high level of missing values. Before deleting any attribute, it is neces-

sary to evaluate its relevance to the classification. Unfortunately, relevant

attributes should be kept even though they have high degree of missing val-

ues [16]. Both methods should be applied only if missing data are missing

completely at random (MCAR) where the features are independent from each

other.

Imputation methods

Imputation is a class of procedures that aims to fill in the missing values

with estimated ones. Single imputation is the filling in of a single value for

each missing observation. However, it has two disadvantages, 1) imputing a

single value does not capture the sample variability, 2) there is uncertainty

associated with the model used for imputation. Multiple imputation proce-

dures suggest multiple, usually likelihood ordered, choices for each missing

value. They are computationally more expensive compared to single impu-

tation procedures, but are not associated with the two drawbacks mentioned

above. Simultaneous imputation is the filling in of missing values for multiple

features in an example at the same time [36].

Imputation methods are traditionally developed based on statistical al-

gorithms [36]. Statistical methods range from simple data driven methods

such as mean imputation to complex model based methods that perform

parameter estimation, such as likelihood based imputation [36].

Mean imputation is the most common imputation method which replaces
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missing values of discrete attributes by the most common value (i.e. the mode

value), and missing values of continuous attributes by their average value (i.e.

the mean value [36]). Hot-decking imputation [36, 16] is the simplest statis-

tical imputation method. In the method, the missing value is filled in with a

value from an estimated distribution for the missing value from the current

data. Hot-decking is typically implemented in two stages. In the first stage,

the data are partitioned into clusters. In the second stage, each example with

missing data is associated with one cluster. The complete cases in a cluster

are used to fill in the missing values. This can be done by calculating the

mean or mode of the attribute within a cluster. Imputation with parameter

estimation is based on non-missing attributes as well. Maximum likelihood

procedures are used to estimate the parameters of a model defined for the

complete data. In the presence of missing data maximum likelihood proce-

dures use variants of the expectation-maximization algorithm for parameter

estimation [30].

In recent years, machine learning algorithms have been employed to de-

velop imputation methods [65, 35]. Machine learning algorithms are applied

to find a predictive model to produce values that will substitute the miss-

ing data. The methods assume the missing values are missing at random

(MAR) [65]. Several di↵erent types of machine learning algorithms were

used, such as decision trees [65, 37], probabilistic methods [21, 34], and rule-

based methods [41], however the underlying methodology was the same. One

of the most recent developments was a missing data imputation framework

that was developed to improve the quality of imputation methods [35]. This

framework serves as a wrapper that can be applied with most existing im-
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putation methods (referred to as base methods) to improve their accuracy

of imputation while preserving the asymptotic computational complexity of

the base method.

Imputation using k-Nearest Neighbour algorithm is the most basic and

widely used machine learning method [16, 88]. Given an example x with

missing values, this method selects the k closest cases that do not have miss-

ing values for the attributes to be imputed. The basic version of the k-nearest

neighbour algorithm assumes that all instances correspond to points in the

n-dimensional space of X. The nearest neighbours of an example are often

defined in terms of the standard Euclidean distance. The example x can be

described by the feature vector (x1, x2, ..., xn

) where x
r

denotes the value of

the rth feature of the example x. In k-Nearest Neighbour learning the con-

cept function can be either discrete-valued or real-valued [16]. Let us first

consider learning discrete-valued concept functions of the form f : X ! Y ,

where Y is the finite set {y1, ..., ys} of class values. To estimate missing value

with kNN, consider xq represents an example having missing value on the qth

input feature. Before making prediction, x
q

is treated as an unknown label

and then looking for the k examples that are nearest to x
q

. Let x1, ...,xk

denote the k examples that are nearest to xq,

ŷ
q

= max
y2Y

kX

i=1

�(y, y
i

)

where �(y, y
i

) = 1 if y = y
i

and �(y, y
i

) = 0 otherwise.

The value ŷ
q

returned by this function as its estimate of y
q

is just the

mode of the true concept function f among k training examples nearest to

xq. The kNN algorithm can be adapted to approximating real-valued concept

functions [16]. To accomplish this, we have the algorithm calculating the
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mean value of the k nearest examples, rather than calculating their most

common value. More precisely, to approximate a real-value target function

f : X ! R we replace the function by

ŷ
q

=

P
k

i=1 yi
k

.

5.1.3 Issues in Handling Missing Value Methods

There are several techniques to address the problem of missing informa-

tion, but no one is absolutely better than the others. Di↵erent solutions are

needed for di↵erent situations. The choice between the di↵erent approaches

discussed above largely depends upon the nature and quantity of the avail-

able data, the intended use of the data, and the underlying mechanism of

the missing data problem [65].

As mentioned earlier, ignoring/discarding method is feasible only in sit-

uations where these examples with missing values constitute a negligible

percentage of the total data, and no significant bias is introduced by their

elimination. Imputation method needed to employ the relationships that

can be identified in the valid values of the dataset to assist in estimating

the missing values. Mean or mode imputation method is usually regarded as

inadequate, because the standard deviation of the sample is underestimated

even when data are MCAR [41]. Imputation with the prediction model ap-

proach requires that there is correlation among the attributes. If there are

no relationships among attributes in the dataset, then the model will not be

precise for estimating missing values. Furthermore, the distributions of miss-

ing and complete data could be di↵erent and this may lead to the generation

of an incorrect classifier.
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5.2 Conformal Predictors with Missing Infor-

mation

In this work, we propose a novel method to deal with missing values. The

method is designed to embed the imputation of missing value in Conformal

Predictors for the cases when missing values are in test set. The imputation

procedure will be treated as a part of classification. Therefore it does not need

to train anther classifier for producing substitutes or make any assumptions

on the mechanism of the missing values.

5.2.1 Data Representation

Examples in training set are composed by object x and label y. Objects of

examples in test set have non-missing part x⇤1 and missing part x⇤2 .

The problem with missing values in test set can be summarized as fol-

lowing:

Given a set of i.i.d. training examples,

Z = {(x1, y1), ..., (xn

, y
n

)},x
i

2 Xd, y
i

2 Y

where x
i

is a d-dimensional vector. The problem is to map the test example

x⇤1
s

with missing attributes x⇤2
s

to a predicted label ŷ
s

, where x⇤1
s

2 Xp,

x⇤2
s

2 Xm, Xp

S
Xm = Xd, p + m = d and 1  m, p < d. We will extend

conformal predictors to solve it in the following section.
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5.2.2 Conformal Predictions with Missing Information

in O↵-line Mode

The prediction of conformal predictors is based on the hypothesis testing.

Based on the rationale of CP, if we know a set of values containing the miss-

ing value, we could calculate the probability of each hypothesis value. When

making predictions for a test example x⇤1
s

, firstly, the attributes which are

missing are treated as target attributes X⇤2 . According to the target at-

tributes values in the training set, we could obtain a set of candidate values

for each missing attribute in the testing examples. Then, each candidate

value is combined with a label and the nonconformity score about how sim-

ilar the example with a combination (x⇤1
s

,x⇤2 , y) is to the entire training

examples will be calculated as ↵
s

, shown in Equation 5.1. For each example

in training set, its nonconformity score is computed as ↵
i

, i = 1, ..., n, shown

as Equation 5.2. Finally, extended p-values for all candidates (y,x⇤2) are

calculated to show the relevance of the example x
s

with hypothesis values to

the training examples.

↵
s

= A(*z1, ..., zn+, (x⇤1
s

,x⇤2 , y)) (5.1)

↵
i

= A(*z1, ..., zi�1, zi+1, . . . , zn, (x
⇤1
s

,x⇤2 , y)+, z
i

) (5.2)

p(y,x⇤2) =
#{i = 1, ..., n, s : ↵

i

� ↵
s

}
n+ 1

, y 2 Y,x⇤2 2 X (5.3)

The procedure of conformal predictions with missing information in o↵-

line mode can be summarized as Algorithm 8. The algorithm assumes the

target attribute values must be finite and discrete. The more target attribute
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values we have, the more complex the combination will be. The complexity

will a↵ect the speed of the processing.

Algorithm 8 Learning with Missing Information
Require: training example sequence {z1 = (x1, y1), ..., zn = (x

n

, y
n

)}

Require: new example x
s

= (x⇤1
s

)

Require: nonconformity measure A

X⇤2 = X/X⇤1
s

for y 2 Y do

for x⇤2 2 X⇤2 do

z
s

= (x⇤1
s

,x⇤2 , y)

for i = 1 : n do

↵
i

= A(*z1, . . . , zi�1, zi+1, . . . , zn, (x⇤1
s

,x⇤2 , y)+, z
i

)

end for

↵
s

= A(*z1, . . . , zn+, (x⇤1
s

,x⇤2 , y))

p(y,x⇤2) = #{i=1,...,n,s:↵i�↵s}
n+1

end for

end for

return single prediction ŷ
s

= argmax{x⇤2
,y} p(y,x⇤2)

5.3 Results and Discussion

In order to evaluate the e↵ectiveness of our approach, we have conducted ex-

tensive experiments on Abdominal Pain dataset and SPECT heart dataset

for binary classification, on Dermatology dataset and Nursery School Rank-

ing dataset for multiple-class classification. It has been pointed out that

numerous datasets have significant number of missing values, in some cases
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up to 50% [65, 53]. For ease of comparison, we use completely random miss-

ing mechanism to generate missing values with missing rates of 15%, 30%,

and 50%, respectively. As discussed in Section 4.2, only mean or mode im-

putation method could be applied if data are missing completely at random

(MCAR). The results have been compared with the results by mode imputa-

tion method. Our result was also compared with the results of the methods

which discard all of the attributes with missing values.

5.3.1 Results for Abdominal Pain Diagnosis and SPECT

Heart Diagnosis

We evaluate our algorithm for binary classification on Abdominal Pain dataset

and SPECT heart dataset. As we described earlier in Section 2.4.1, Abdom-

inal Pain dataset contains 6387 examples with 135 attributes. All attributes

have two possible values, 0 or 1. SPECT heart dataset is about diagnosis

of cardiac Single Proton Emission Computed Tomography (SPECT) images.

The database of 267 SPECT image sets (patients) was processed to extract

features that summarize the original SPECT images. 44 continuous feature

patterns were created for each patient. The patterns were further processed

to obtain 13 discrete feature patterns. The features in this dataset have

more than two possible values. kNN algorithm is used as the underlying

algorithm for conformal predictions. 10-fold cross-validation is applied to

reduce classification bias and repeated 10 times.

Figure 5.1 shows the results of applications for APP disease diagnosis

and DYS disease diagnosis. Figure 5.2 shows the results for SPECT heart

diagnosis. As it can be seen, the classifications by our method always have
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the highest accuracy.
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(a) Results of classification for APP disease
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(b) Results of classification for DYS disease

Figure 5.1: Results of predictions on Abdominal Pain dataset in o↵-line mode
(a) the classification for APP disease and (b) the classification for DYS disease
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Figure 5.2: Results of predictions on SPECT Heart dataset in o↵-line mode

5.3.2 Results for Dermatology Diagnosis and Nursery

Schools Ranking

These two datasets are used to test the performance of multiple-class classi-

fication by our approach. The Dermatology dataset has been used in Section

3.4.2. It contains 34 features and 6 classes. The Nursery dataset was derived

from a hierarchical decision model originally developed to rank applications

for nursery schools. It is composed by 12960 examples, 8 features and 5

classes. The feature values range from 1 to 5. For our experiments kNN

algorithm is used as the underlying algorithm for conformal predictions. 10-

fold cross-validation is applied to reduce classification bias and repeated 10

times.

Results for Nursery School Ranking and Dermatology are showed by Fig-

ures 5.3 and 5.4, respectively. It can be seen that the classifications by our
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method always have the higheset accuracy. The accuracy of classifications

by mode imputation drops quickly when the missing rate is growing from

30% to 50%.
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Figure 5.3: Results for Nursery dataset in o↵-line mode
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Figure 5.4: Results for Dermatology dataset in o↵-line mode
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5.3.3 Discussion

Features with missing values are a common problem in real-world datasets.

Most current algorithms treat features with missing values in the pre-processing

step, either discarding them or imputing them. In machine learning, imputa-

tion method with prediction model has been well developed and successfully

applied on industrial and medicine datasets [65, 48]. However, missing val-

ues in these methods are assumed to be in MAR mode. Furthermore, an

extra classifier is needed for imputation of missing values. In this chapter,

we propose an embedded method for dealing with missing values based on

Conformal Predictors. We assume missing values are only existing in test set.

One advantage of our approach is making predictions directly with missing

values. Furthermore, there is no assumption on the mechanism on missing

values.

Our method was compared with both mode imputation method and dis-

carding on four datasets. These datsets provide a wide variety of sizes, feature

types, and the number of classes. Experimental results show our method per-

formed better than these methods. Our method successfully embedded the

processing of dealing with missing value in making conformal predictions in

the o↵-line mode.
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Chapter 6

Conclusion and Future Works

This chapter summarizes the contributions of the thesis and discusses some

issues that could be investigated in the future as an extension of this research.

6.1 Summary of Outcomes

Feature selection by conformal predictors

Feature subset selection aims to find the optimal feature subset by elimi-

nating as many irrelevant and redundant features as possible for reducing

dimensionality and maximizing accuracies of classifications. CP outputs va-

lidity region predictions in on-line mode and performance is evaluated by the

e�ciency. We presented IACM method which is specifically designed for CP

to find the feature subset to help with improving classification e�ciency. In

our method, average confidence measurement of true label is used as evalu-

ation criterion since it shows how well class groups are separated from each

other. Meanwhile, the analysis of irrelevancy and redundancy is introduced

as stopping criterion. We tested the e↵ectiveness of IACM on Abdominal
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Pain data set and four other data sets from UCI. Results showed that classi-

fication using features selected by IACM always provided the most e�cient

region predictions.

Conformal predictors with additional information

Dealing with additional information is a challenge for current machine learn-

ing framework. Inspired by LUPI, we proposed a novel method to incorporate

additional information within CP. We introduced additional information to

individual example in test set by analyzing how familiar the example with

additional values is to the entire examples in training set. The method is not

only available for classification in o↵-line mode but also proved to be valid

in on-line mode. But it restricts that the additional information must be

discrete and finite. The results of the applications showed that our method

successfully utilize additional information to improve the predictive perfor-

mance for binary and multiple-class classification in both on-line and o↵-line

mode.

Conformal predictors with missing information

Incomplete data is a common problem in the applications on real-life data

source. Existing methods deal with missing information before classifica-

tion. Methods based on machine learning algorithms need to train an extra

classifier for imputing missing values and require the missing features are

correlated with each other. The method was applied on four di↵erent data

sets. Results demonstrated that our method do not need to impute missing

values and can directly make predictions with them.

117



6.2 Main Contributions

To the best of author’s knowledge, the following pieces of work represent

original contribution to the field:

• Using the measurement of confidence as a criterion to select feature

subset, which is specificly designed for e�cient region predictions of

Conformal Predictors.

• Creation of a new method for incorporating additional information

within conformal predictors. Such method can utilize additional in-

formation to provide better classification performance in both o↵-line

and on-line modes.

• Dealing with missing information in a new way, which embeds the

imputation of missing information in conformal predictors.

6.3 Future Prospects

There are various issues in the applications of machine learning algorithm for

real-life problems. The contributions in this work attempt to adapt conformal

predictions to address the problems related to feature handling. The main

purpose of the near future work is: 1) to find theoretical proofs for IACM

feature selection method; 2) to study how the training data size can a↵ect the

performance of learning with additional information; 3) to apply the proposed

method for handling additional information and missing information in“lazy

teacher” mode.

• Theoretical proofs.
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The e↵ectiveness of IACM feature selection method was studied em-

pirically, more stronger theoretical proofs are needed to guarantee that

IACM could work well on other datasets.

• Additional information.

In Chapter 3, additional information was incorporated within CP and

expected to help improve the discrimination power of the classifier.

In Section 3.4, experimental results showed that for region predictions

additional information only helped when " is 0.2. It would be inter-

esting to investigate the dependence between the training set size and

classification performance using additional information.

• “Lazy teacher” mode.

In previous work we studied conformal predictors and applied it in

on-line mode and o↵-line mode. In the on-line mode, the feedback

is assumed to be given immediately for every object, when prediction

was made. This has not always happened in real world applications as

there is no such an expert to give the right answer for each question.

Although the proposed method could be extended to o↵-line mode,

the validity of prediction would not be guaranteed. Thus, it would be

more practical if the method could still work well when the feedback is

given with a delay. Our method could be developed further for a new

learning protocol, so called lazy teacher [92] where labels are assumed

to come with a delay.
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Appendix A

Datasets

In this appendix, we list all datasets used for this thesis.

A.1 Abdominal Pain Dataset

The dataset consists of a training set of 4387 patient records and a test

set of 2000 patient records, with 9 categories of diseases and 33 types of

symptoms [42]. List of diagnostic groups of Abdominal Pain data set and

list of all 33 symptoms and their values are shown as below:

Group Diagnosis Number of Examples

1 Appendicitis (APP) 844

2 Diverticulitis (DIV) 143

3 Perforates Peptic Ulcer (PPU) 130

4 Non-Specific Abdominal Pain (NAP) 2835

5 Cholecystitis (CHO) 572

6 Intestinal Obstruction (INO) 417

7 Pancreatitis (PAN) 96

8 Renal Colic (RCO) 473

9 Dyspepsia (DYS) 877
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Symptom Values

Sex male, female

Age 0-9,10-19,20-29,30-39,40-49,50-59,60-69,70+

Pain-site onset right upper quadrant, left upper quadrant, right lower quadrant

left lower quadrant, upper half, lower half, right half, left half

central, general, right loin, left loin, epigastric

Pain-set present right upper quadrant, left upper quadrant, right lower quadrant

left lower quadrant, upper half, lower half, right half, left half

central, general, right loin, left loin, epigastric

Aggravating factors movement, coughing, inspiration, food, other, nil

Relieving factors lying still, vomiting, antacids, milk/food, other, nil

Progress of pain getting better, no chance, getting worse

Duration of pain under 12 hours, 12-24 hours, 24-48 hours, over 48 hours

Type of pain steady, intermittent, colicky, sharp

Severity of pain moderate, severe

Nausea nausea present, no nausea

Vomiting present, no vomitting

Anorexia present, normal appetite

Indigestion history of dyspepsia, no history of dyspepsia

Jaundice history of jaundice, no history of jaundice

Bowel habit no change, constipated, diarrhoea, blood, mucus

Micturition normal, frequent, dysuria, haematuria, dark urine

Previous pain similar pain before, no similar pain before

Previous Surgery yes, no

Drugs being taken, not being taken

Mood normal, distressed, anxious

Colour normal, pale, flushed, jaundiced, cyanosed

Abdominal scar present, absent

Abdominal distension present, absent

Site of Tenderness right upper quadrant, left upper quadrant, right lower quadrant

left lower quadrant, upper half, lower half, right half, left half

central, general, right loin, left loin, epigastric,noe

Rebound present, absent

Guarding present, absent

Rigidity present, absent

Abdominal masses present, absent

Murphy’s test positive, negative

Bowel sounds normal, decreased/absent, increased

Rectal examination tender left side, tender right side, generally tender, mass felt, normal
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A.2 Datasets from UCI Dataset Repository

The following data sets we used are all from UCI Machine Learning Reposi-

tory [14], shown as Table A.2.

Table A.1: Summary of data sets

Number of Number of Number of

Name Feature Type Features Examples Classes

Breast Cancer real 30 500 2

SPECT Heart categorical 13 267 2

LSVT Voice rehabilitation real 310 126 2

Dermatology categorical 34 366 6

Nursery school categorical 8 12960 5
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Appendix B

Feature Subset Significance

In this appendix, we introduce the Feature Subset Significance method [13].

Letm be the total number of features available and denote F = {1, . . . ,m}.

Let A and B are two feature subsets derived from independent processes,

A ✓ F and B ✓ F . Denote a = |A| and b = |B|. Let c = |A \ B| be the

number of overlapped features between A and B. The significance of the

process that generate B is calculated as:

P
FS

(m, a, b, c) =
min(a,b)X

i=c

0

@b

i

1

A (a)
i

(m� a)(b�i)

(m)
b

where (n)
k

= (n)!
(n�k)! and

0

@n

k

1

A = n!
k!(n�k)! are the number of permutations and

combinations of k from n items.

The smaller the significance, the less likely that B is derived just by

chance, with respect to reference subset A.
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Appendix C

Classification Algorithms

In this appendix, we briefly discuss all classification algorithms used in this

thesis.

C.1 k-Nearest Neighbor Algorithm

k-Nearest Neighbor (kNN) is based on the principle that the examples within

a dataset will generally exist in close proximit to other examples that have

similar properties. If the examples are tagged with a classification label,

then the value of the label of an unclassified example can be determined by

observing the class of its nearest neighbor. The kNN locates the k nearest

examples to the query example and determines its class by identifying the

single most frequent class label. There are three methods used commonly

for calculating distance, which are City block metric, Euclidean distance and

Chebyshev distance.

• City Block Metric: d
st

=
P

n

j=1 |xsj

� x
tj

|
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• Euclidean Distance: d
st

= 2

qP
n

j=1 |xsj

� x
tj

|2

• Chebyshev Distance: d
st

= max
j

|x
sj

� x
tj

|

C.2 Nearest Centroid Classifier and NCM Un-

derlying NC Classifier

C.2.1 Nearest Centroid Classifier

Nearest Centroid algorithm is similar to the kNN algorithm. A centroid is

computed for each class label as the mean position of the training examples

with the label. Then an object is labeled by the nearest class.

Given a set of n training examples (x
i

, y
i

), x
i

2 X, y
i

2 Y . The centroid

for each class label y could be calculated as:

µ
y

=
1

|C
y

|
X

i2Cy

x
i

(C.1)

where C
y

= {i : y
i

= y}. Then, given a new example x
n+1, we predict its

classification by measuring the distance between object and centroid as:

ŷ = argmin
y

D(µ
y

,x
n+1)

where D is a distance metric.

C.2.2 NCM Underlying NC Classifier

In Nearest Centroid algorithm, the prediction for a new object x
i

is the label

of the closest centroid from training examples. If D is a distance metric,
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the nonconformity measure underlying NC classifier for an example (x
i

, y) is

defined as [13]:

↵y

i

=
Dy(x

i

, µ
y

)

min�y

D�y(x
i

, µ�y

)

where Dy(x
i

, µ
y

) denotes the distance between an example x
i

and the cen-

troid of examples with the same label, µ
y

. D�y(x
i

, µ�y

) denotes the distance

between an example x
i

and the centroid of examples with the other labels,

µ�y

.

C.3 Support Vector Machines and NCM Un-

derlying SVM Classifier

C.3.1 Support Vector Machines

Support Vector Machines (SVMs) are the widely used supervised machine

learning algorithms. Suppose given examples belonging to two classes, in

SVMs, we want to know whether we can separate these examples with a

(d � 1)-dimensional hyperplane. This is called a linear classifier. There are

many hyperplanes that might classify the examples. One reasonable choice

as the best hyperplane is the one that represents the largest separation, or

margin, between two classes [25]. So we choose the hyperplane so that the

distance from it on the nearest example on each side is maximized [25].

Given some training examples {(x1, y1), ..., (xn

, y
n

)}, x
i

2 Xd and y
i

2

{1,�1}. If the training examples are linear separable, we can select two

hyperplanes in a way that they separate the examples and there are no points
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between them and then try to maximize their distance. The hyperplanes can

be described by the equations:

(w · x)� b = 1; (w · x)� b = �1; (C.2)

By using geometry, we find the distance between these two hyperplanes

is 2
||w|| , so we want to minimize ||w||. As to prevent examples from falling

into margin, the following constraint are added: for all 1 < i < n,

y
i

(w · x
i

� b) � 1

The optimization problem presented in the preceding section is di�cult

to solve because it depends on ||w||, so we alter ||w|| with 1
2 k w k2. This

is a quadratic programming optimization problem. By introducing Lagrange

multipliers ↵, the previous constrained problem can be expressed as:

argmin
(w,b)

1

2
||w||2

for any i = 1, ..., n, subject to

y
i

(w · x
i

� b) � 1

In 1995, Cortes and Vapnik suggested a modified maximum margin idea

that allows for mislabeled examples [25]. If there exists no hyperplane that

can completely split the examples, the soft margin method will choose a hy-

perplane that splits the examples as cleanly as possible, while still maximizing

the distance to the nearest cleanly split examples. The method introduces

non-negative slack variables, ⇠
i

, which measure the degree of misclassification

of examples, as described as following equation:
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y
i

(w · x
i

)� b � 1� ⇠
i

, 1  i  n (C.3)

The objective function is then increased by a function which penalizes

non-zero ⇠
i

, and the optimization becomes a trade o↵ between a large margin

and a small error penalty. If the penalty function is linear, the optimization

problem becomes:

arg min
(w,⇠,b)

{1
2
k w k2 +C

nX

i=1

⇠
i

}

for any i = 1, ..., n, subject to

y
i

(w · x
i

� b) � 1� ⇠
i

⇠
i

� 0

The constant C here is a parameter responsible for the trade-o↵ between

||w||2 and
P

l

i=1 ⇠i. If C = +1, the separation do not tolerate any slack, if

C = 0, we do not care about slack at all, thus any w satisfies the constraints.

In 1992, Boser and Vapnik suggested a way to create nonlinear classifiers

by applying the kernel trick [2] to maximum-margin hyperplane [7]. In

the method, every example is replaced by a nonlinear kernel function. This

allows the algorithm to fit the maximum-margin hyperplane in a transformed

feature space. The transformation may be nonlinear and the transformed

space high dimensional; thus though the classifier is a hyperplane in the

high-dimensional feature space, it may be nonlinear in the original input

space. Here we introduce some popular kernels.

• Linear Kernel,

K(x
i

,x
j

) = xT

i

· x
j
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• Polynomial Kernel,

K(x
i

,x
j

) = (1 + xT

i

· x
j

)p

• Gaussian Kernel,

K(x
i

,x
j

) = exp

✓
� ||x

i

� x
j

||2

2�2

◆

C.3.2 NCM Underlying SVM Classifier

When solving SVM as a dual form problem, we derive solutions in terms

of Lagrange multiplies ↵
i

for each training example x
i

of which ↵ � 0 is

true only for support vectors. Support vectors can be considered the most

strange examples as they are the boundary cases that define the shape of

the hyperplane. So the Lagrange multipliers can be used as strangeness

measure [92]. If an example x
i

is one of the support vectors, 0 < ↵
i

< c; if

an example x
i

is between the margin of the two classes, ↵
i

= c; if an example

x
i

is out of the margin of the two classes, ↵
i

= 0.
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