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ABSTRACT

Quaternion least-mean-quare (QLMS) algorithm has been
thoroughly investigated in the past for the adaptive filtering
of 3D and 4D signals. However, QLMS is restricted to one-
channel processing of such 3D and 4D processes. To address
this shortcoming, we proposed the multichannel QLMS so
that we can exploit the additional information from the mul-
titude of 3D-4D vector sensors. For rigour, we provide the
stability bound of the multichannel QLMS and demonstrate
its robustness against noise. Simulations on real world 4D
signals support the analysis.

Index Terms— hypercomplex, quaternions, adaptive fil-
ters, multichannel processing

1. INTRODUCTION

There are many natural phenomena that are inherently three-
dimensional (3D) and four-dimensional (4D), yet it is com-
mon to treat these phenomena as multichannel signals instead
of 3D or 4D signals. Perhaps due to convention and conve-
nience or perhaps due to lack of modelling in 3D and 4D.
Learning in the hypercomplex domain enables us us to pro-
cess 3D and 4D data as a single entity rather than modelling
as a multichannel entity, hence preserving the integrity ofthe
data. The cross-producta × b is well defined forR3. This
simple yet useful mathematical operation indicates the suit-
ability of quaternions for 3D modelling, since the quaternion
product involves the cross product as

x1x2 = Sx1Sx2 − V x1V x2 + Sx2V x2 (1)

+Sx1V x2 + V x1 × V x2
︸ ︷︷ ︸

cross product

whereS andV denote the scalar and vector part of the quater-
nion variable. To this end, quaternion signal processing has
emerged as a candidate tool to cater specifically for these 3D
and 4D processes. For instance, quaternion least mean square
algorithm (QLMS) has been exploited in wind forecasting
and 3D audio systems [1], quaternion principal component
analysis for colour images [2], and weighted linear combiner
for modelling 3D tremors [3].

The emergence of quaternion algorithms and theories has
particularly sparked an interest in the adaptive signal pro-
cessing community. Nascimentoet al. have proposed low
complexity adaptive filters [4, 5], and Liu proposed novel
adaptive beamforming algorithms [6]. The analysis of these
quaternion-valued adaptive filters have been investigatedin
[7], whereas Marset al. discussed the derivations of quater-
nion adaptive filters [8]. However, the adaptive filtering of
multiple 3D and 4D processes simultaneously is still lacking
and is addressed in this work in the form of multichannel
QLMS.

The remainder of this paper is organised as follows. Fun-
damentals of quaternions are revisited in Section 2. The
multichannel QLMS is derived in Section 3 followed by
some remarks regarding issues with the implementation of
multichannel QLMS. Section 4 provides simulation results
demonstrating the performance of the proposed algorithm
and finally, Section 5 concludes this paper.

2. QUATERNIONS AND THE
INVOLUTION-GRADIENT

A quaternionx = xa+ ıxb+ xc+κxd is comprised of a real
(scalar) partxa and three imaginary componentsxb, xc, xd in
its vector part. The vector product of these three imaginary
parts makes the quaternion product betweenx andy noncom-
mutative, i.e.

xy 6= yx (2)

As in the complex case, the conjugate of a quaternion variable
is obtained by negating the imaginary parts as

x = xa − ıxb − xc − κxd (3)

The additional degrees of freedom from complex to quater-
nion domain means that there exist other useful algebraic op-
erations such as the quaternion involutions (self-inversemap-
pings)

xη = −ηxη, η ∈ {ı, , κ} (4)



Alternatively, these involutions can be expressed as

xı = xa + ıxb − xc − κxd

x = xa − ıxb + xc − κxd

xκ = xa − ıxb − xc + κxd (5)

In this way, these involutions enable componentwise con-
jugation. For example,xı∗ means the conjugation of only
theı−imaginary component ofx. The relationships between
these involutions are governed by

x∗ =
1

2
(xı + x + xκ − x)

x =
1

2
(xı∗ + x∗ + xκ∗ − x∗) (6)

The pair of relationships in (6) will be used in the derivation
of the multichannel QLMS algorithms.

2.1. The Involution Gradient

The so called pseudogradient is often employed to calculate
gradients due to its straightforward formulation as the sumof
componentwise gradients, i.e.

∂J

∂x
=

∂J

∂x
+ ı

∂J

∂xı

+ 
∂J

∂x

+ κ
∂J

∂xκ

(7)

However, the process of calculating componentwise gradi-
ents is tedious. To address this issue, we introduced theHR-
calculus [9], so that derivatives can be obtained directly in the
quaternion space. For example,(∂x∗)/(∂x∗) = 1, whereas
based on (6) we have

∂x∗

∂x
=

∂[0.5(xı + x + xκ − x)]

∂x
= −0.5x (8)

Due to the relationships in (6), we can also take quaternion
gradients with respect to the involutions (5), which was re-
ferred as the involution-gradient, i.e.

∇xηJ =
∑

η={ı,,κ}

∂J

∂xη
(9)

It was shown in [10] that the steepness of the involution-
gradient was marginally greater than theHR

∗−derivative, yet
both lead to the same solution at the local minima. It is the
involution-gradient that we will adopt to derive multichannel
QLMS algorithms.

3. THE MULTICHANNEL QLMS ALGORITHM

For the multichannel QLMS algorithm, theqth output can be
expressed in terms of its inputsx and filter coefficientsw as

yq(n) =
P∑

p=1

wH
pqxp(n) q = 1, . . . , Q (10)

where

wpq = [wpq,1 wpq,2 · · · wpq,L]
T

xp(n) = [x(n) x(n− 1) · · · x(n− L+ 1)]T

The superscripts(·)H and(·)T denote the Hermitian and trans-
pose operator respectively. More generally, the output vector
y(n) can be expressed as

y(n) = WHx(n)








y1(n)
y2(n)

...
yQ(n)







=








w11 w12 . . . w1Q

w21 w21 . . . w2Q

...
...

. . .
...

wP1 wP2 . . . wPQ








H 






x1(n)
x2(n)

...
xP (n)








(11)
The error for theqth channel can be expressed as

eq(n) = dq(n)− yq(n) q = 1, ..., Q (12)

The cost function ofqth channel can be formulated as [11]

Jq(n) = eq(n)e
∗
q(n) (13)

For theqth channel, the update for its coefficients can be com-
puted using the steepest descent:

Wq(n+ 1) = Wq(n)− µ∇Jq(n) (14)

whereWq is given by







w1q,1 w1q,2 . . . w1q,L

w2q,1 w2q,2 . . . w2q,L

...
...

.. .
...

wPq,1 wPq,2 . . . wPq,L








The derivative in (14) can be formulated based on the involu-
tion gradient as

∇Jq(n) =
∑

η={ı,,κ}

eq(n)
∂e∗q(n)

∂Wη
q (n)

+
∂eq(n)

∂Wη
q (n)

e∗q(n) (15)

As the conjugate of the error (12) is given by

e∗q(n) = d∗q(n)−

P∑

p=1

xH
p (n)wpq q = 1, ..., Q (16)

the involution relationship (6) means that
∂e∗

q
(n)

∂W
η

q (n)
= 0,

since Eq. (16) is dependent ofWη∗
q (n), but independent

of Wη
q (n). Similarly, the other derivative in (15) can be

calculated as
∂eq(n)

∂Wη
q (n)

= −0.5x(n) (17)

Based (14)-(15), the coefficients corresponding to theqth
channel output of multichannel QLMS can be learnt as

Wq(n+ 1) = Wq(n) + µX(n)e∗q(n) (18)
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Fig. 1. The left plot (a) shows the learning curves of QLMS (‘-’) andmultichannel QLMS(‘-*’). The right plot (b) shows the
stability range of the learning rate or stepsize.

where any constant has been absorbed in the learning rate/step
size andX(n) is given by








x1(n) x1(n− 1) . . . x1(n− L+ 1)
x2(n) x2(n− 1) . . . x2(n− L+ 1)

...
...

. . .
...

xP (n) xP (n− 1) . . . xP (n− L+ 1)








Instead of updating eachqth adaptive filter individually (18),
we can generalise the update of the multichannel QLMS as

W(n+ 1) = W(n) + µx(n)eH(n) (19)

where the variablesW(n) andx(n) have the same dimen-
sionality as in (11), and the error vector is given by

e(n) = [e1(n) e2(n) · · · eq(n)]
T

Each learning coefficient of (19) can be expressed as

wpq,l(n+ 1) = wpq,l(n) + ∆wpq,l(n+ 1) (20)

= wpq,l(n) + µxp(n− l)e∗q(n) l = 1, ..., L

Remark 1: At first sight from (20), it looks like each update
of theqth adaptive filter does not depend on the other filters,
since its update depends only on theqth error. However, on
expanding theqth error, we have

∆wpq,l(n+1) = µxp(n)[d
∗
q(n)−

P∑

i=1

x
H
i (n)wiq(n)]

(21)
Notice that each learning coefficient is updated based onall
input channels{xp}

P
p=1. This leads to the ‘dependency’ be-

tween each channel adaptive filter, as observed in [11].

Remark 2: Remark 1 also demonstrates that the multichannel

QLMS exploits cross-channel correlation between 3D or 4D
processes, since the update depends on the correlation term
E{xp(n)

∑P
i=1 xi(n)} upon taking its expectation.

Remark 3: The correlation termE{xp(n)
∑P

i=1 xi}, how-
ever, does not guarantee that the coupling within each quater-
nion input channelxi(n) is exploited. To do so, we can
take advantage of advances in quaternion statistics by aug-
menting the input vector with the three involutions, i.e.
xa(n) = [x xı x xκ] [12].

Remark 4: The blockbase implementation in (19) is faster
than channelwise implementation in (18), if implemented in
Matlab. The latter requires loop-based coding, whereas the
former can be computed much faster due to the ‘vectorisa-
tion’ facility implemented in Matlab.

Remark 5: It is straighforward to show that the range of
values of the learning rate for multichannel QLMS (19) is
0 < µ < 2

λmax
, whereλmax is maximum eigenvalue of the

multichannel correlation matrixE{xxH}. A more practical
bound ofλmax is L

N

∑N
i=0

∑P
p=1 x

2
p(n − i), whereN is the

number of samples that has been processed, andL is the filter
length.

4. SIMULATION

The performance and convergence properties of our pro-
posed multichannel QLMS was assessed against QLMS in a
forecasting application with a prediction horizon of one step
ahead. For this forecasting task, wind data which comprised
of two anemometers (sensors) recordings of wind speeds
(East-West, North-South, Vertical direction) and temperature
(degree Celsius) was considered. Hence, the total number
of channels for quaternion-valued processes were two. For



rigour, two performance metrics were used, i.e. the traditional
mean-square error (MSE) and the prediction gainRp, which
can computed as

Rp = 10 log10(σ
2
x/σ

2
n) [dB]

whereσ2
x andσ2

n are the estimated sample variances of the
input and the additive white Gaussian noise of all channels.
To assess the robustness of the algorithms against noise, 50
Monte Carlo simulations were run and averaged out for each
value of signal-noise-ratio (SNR) and shown in the left plot
of Fig. 1. As expected, when the SNR was decreased, the
performance of multichannel QLMS (denoted as ‘-*’) and
QLMS (denoted as ‘-’) deteriorated.

Remark 6: The cross-correlation between the two quaternion-
valued channels benefited the multi-channel QLMS and made
it more robust against noise, whereas the QLMS could not
exploit this correlation due to its inherent uni-channel pro-
cessing. This was expected due toRemark 2.

To investigate the convergence and stability properties of
QLMS and multichannel QLMS, an experiment was carried
out to measure the prediction gain of both algorithms over a
range of stepsizes/learning rates, and the results are shown in
the right plot of Fig. 1. If we consider the performance of
both algorithms to be ‘reasonable’ when the prediction gain
is greater than 0 dB, then the range of stepsize for QLMS is

0 < µ < 0.68× 10−3

whereas for the multichannel QLMS, the range is

0 < µ < 0.35× 10−3

Remark 7: In our simulation, the range of values of step-
size for QLMS is approximately twice that of multichannel
QLMS. This observation confirmsRemark 5 (i.e. 0 < µ <
2

λmax
), since thetwo channels of multichannel QLMS makes it

likely that itsλmax is twice that of theone channel of QLMS.

5. CONCLUSION

We have proposed the multichannel QLMS algorithm that can
process 3D and 4D processes simultaneously. It was shown
that the additional information of the multichannel processing
over the unichannel processing made our proposed algorithm
more robust against noise. However, the cost of processing
more channels means that the stability range of the multi-
channel QLMS is likely to be much less than that of QLMS.
This is due to the dependency between channels, i.e. the er-
ror of one channel can affect the other channels as well, fol-
lowing Remark 2. Future work will involve the investigation
of augmented statistics in deriving the multichannel QLMS,
however, we expect the same results as in this paper, when
comparing it against the widely linear QLMS.
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