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ABSTRACT

Quaternion least-mean-quare (QLMS) algorithm has beeﬁhe_ emergence of quat_ernion a_lgorithms aqd th_eories has
thoroughly investigated in the past for the adaptive fittgri partlgularly sparkgd an mt_erest in the adaptive signat pro
of 3D and 4D signals. However, QLMS is restricted to one-°€ssINY pommum_ty. Nasmmenen al. haye proposed low
channel processing of such 3D and 4D processes. To addres pI_eX|ty adaptlvg filters [_4’ 5], and Liu propos_ed novel
this shortcoming, we proposed the multichannel QLMS s aptwe_z beamforming al_gont_hms [6]. The a”"?"ys's .Of. these
that we can exploit the additional information from the mul_quaternlon-valued adapt_lve filters have b_eer_1 investigated

; e[7]’ whereas Mar&t al. discussed the derivations of quater-

titude of 3D-4D vector sensors. For rigour, we provide th o A
stability bound of the multichannel QLMS and demonstrate'°" adaptive filters [8]. However, the adaptive filtering of
ultiple 3D and 4D processes simultaneously is still lacking

its robustness against noise. Simulations on real world 4 4 is add din thi K in the f f multich |
signals support the analysis. and is addressed in this work in the form of multichanne

QLMS.
Index Terms— hypercomplex, quaternions, adaptive fil-
ters, multichannel processing The remainder of this paper is organised as follows. Fun-
damentals of quaternions are revisited in Section 2. The
1. INTRODUCTION multichannel QLMS is derived in Section 3 followed by

some remarks regarding issues with the implementation of
There are many natural phenomena that are inherently thregultichannel QLMS. Section 4 provides simulation results
dimensional (3D) and four-dimensional (4D), yet it is com-demonstrating the performance of the proposed algorithm
mon to treat these phenomena as multichannel signals éhsteand finally, Section 5 concludes this paper.
of 3D or 4D signals. Perhaps due to convention and conve-
nience or perhaps due to lack of modelling in 3D and 4D.
Learning in the hypercomplex domain enables us us to pro- 2. QUATERNIONS AND THE
cess 3D and 4D data as a single entity rather than modelling INVOLUTION-GRADIENT
as a multichannel entity, hence preserving the integrithef
data. The cross-produatx b is well defined forR3. This A quaternion: = x, + 1z + jzc + ka4 is comprised of a real
simple yet useful mathematical operation indicates the sui(Scalar) part:, and three imaginary components ., zq in

ability of quaternions for 3D modelling, since the quatemi its vector part. The vector product of these three imaginary
product involves the cross product as parts makes the quaternion product betweandy noncom-

mutative, i.e.
T1x9 = Sx15%2 —Va1Vas + SxaVias (1) Yy 7§ YT (2)
+Sx1 Vs +Vay x Vs
—_——

As in the complex case, the conjugate of a quaternion variabl
cross product

is obtained by negating the imaginary parts as

whereS andV denote the scalar and vector part of the quater-

nion variable. To this end, quaternion signal processirgy ha T ==Tq = Wy — JTc — Kld 3)
emerged as a candidate tool to cater specifically for these 3D N

and 4D processes. For instance, quaternion least mearesquafe additional degrees of freedom from complex to quater-
algorithm (QLMS) has been exploited in wind forecastingnion domain means that there exist other useful algebraic op
and 3D audio systems [1], quaternion principal componerﬁ_rat'ons such as the quaternion involutions (self-inverap-
analysis for colour images [2], and weighted linear combinePiNgs)

for modelling 3D tremors [3]. " = —nan, n e {1,7,K} (4)



Alternatively, these involutions can be expressed as where

T = T Uy — JTe — KIg Wpg = [Wpg1 Wpg2 wpq,L]T
¥ = my —mp+ JTe — KXq x,(n) = [z(n) z(n—1) - z(n—L+1)]"
¥ = x4 —xy — )T+ KTq (5)

The superscripts)™ and(-)" denote the Hermitian and trans-
In this way, these involutions enable componentwise conPOSe operator respectively. More generally, the outputovec
jugation. For examplez* means the conjugation of only y(n) can be expressed as

thez—|.mag|n§\ry component of. The relationships between v(n) = WHx(n)

these involutions are governed by

1 y1(n) Wi1 Wi2 ... WiQ x1(n)
* _ _ 2 J K _
€ - 2 (‘T +a+x .I') Y2 (’rL) Wo1 W2o1 e WoQ X9 (n)
1 . = . . . .
x — 5(!TZ* + x]* + xl{* _ x*) (6) . . . . N
yo(n) Wpi Wp2 ... WpQ xp(n)
The pair of relationships in (6) will be used in the derivatio (12)
of the multichannel QLMS algorithms. The error for theth channel can be expressed as

eq(n) :dq(n) _yq(n) q= 17"'7Q (12)
The so called pseudogradient is often employed to calculat-ghe cost function ojth channel can be formulated as [11]
gradients due to its straightforward formulation as the sfim Jy(n) = eq(n)e’(n) (13)
componentwise gradients, i.e. I

g—g-i—z&] + ﬁ—l—maJ

dxr  Ox oz, J@xj 0z,
However, the process of calculating componentwise gradi-
ents is tedious. To address this issue, we introducetilihe whereW is given by
calculus [9], so that derivatives can be obtained directihe

2.1. The Involution Gradient

For theqth channel, the update for its coefficients can be com-
(7)  puted using the steepest descent:

Wy(n+1) = Wy(n) — pVJy(n) (14)

quaternion space. For exampl&z*)/(0z*) = 1, whereas Wig1 Wig2 ... WiglL
based on (6) we have W2q,1 W22 ... W2q,L
ox*  0[0.5(x" + 2 + 2" — x)] : : ' :
ox O Wpq1 Wpq2 --- WPqL
= —0.5z (8)

The derivative in (14) can be formulated based on the involu-
Due to the relationships in (6), we can also take quaternioHon gradient as

gradients with respect to the involutions (5), which was re- e (n) (n)
ferred as the involution-gradient, i.e. VJy(n) = eq(n 1 + % 15
Vard = ) Oz © asthe conjugate of the error (12) is given by

n={v,3,x}

It was shown in [10] that the steepness of the involution- e (n) = d(n ZX
gradient was marginally greater than fHi&* —derivative, yet a(n) =
both lead to the same solution at the local minima. It is the

involution-gradient that we will adopt to derive multichet 4. iqvolution relationship (6) means th%iezwgzz) — 0
q

Wy, q¢=1,...,Q (16)

QLMS algorithms. since Eq. (16) is dependent & /*(n), but independent
of Wi(n). Similarly, the other derivative in (15) can be
3. THE MULTICHANNEL QLMS ALGORITHM calculated as
Oeq(n)
For the multichannel QLMS algorithm, thgh output can be WM = —0.5x(n) 17)

expressed in terms of its inputsand filter coefficientsv as Based (14)-(15), the coefiicients corresponding to tre

channel output of multichannel QLMS can be learnt as

P
= wh x,(n =1,... 10
D W) g=1...Q (10 W,(n+1) = Wy(n) +pX(n)es(n)  (18)
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Fig. 1. The left plot (a) shows the learning curves of QLMS (*-') amdlltichannel QLMS(‘-*"). The right plot (b) shows the
stability range of the learning rate or stepsize.

where any constant has been absorbed in the learning egte/sQLMS exploits cross-channel correlation between 3D or 4D
size andX(n) is given by processes, since the update depends on the correlation term
E{zp(n) Zfil x;(n)} upon taking its expectation.

z1(n) x1(n—=1) ... x(n—L+1)
z2(n)  w2(n—1) ... x2(n—L+1) Remark 3: The correlation termi{z,(n) 3.7 | x;}, how-

: : : ever, does not guarantee that the coupling within each gquate
zp(n) zp(n—1) ... ap(n—L+1) nion input channelr;(n) is exploited. To do so, we can

take advantage of advances in quaternion statistics by aug-
Instead of updating eaqfth adaptive filter individually (18), menting the input vector with the three involutions, i.e.
we can generalise the update of the multichannel QLMS as z%(n) = [z «* 27 "] [12].

W(n+1) = W(n) + px(n)e(n) (19)  Remark 4: The blockbase implementation in (19) is faster
than channelwise implementation in (18), if implemented in
Matlab. The latter requires loop-based coding, whereas the
former can be computed much faster due to the ‘vectorisa-

where the variable¥V (n) andx(n) have the same dimen-
sionality as in (11), and the error vector is given by

e(n) = [er(n) ex(n) - eq(n)]” tion’ facility implemented in Matlab.
Each learning coefficient of (19) can be expressed as Remark 5: It is straighforward to show that the range of
values of the learning rate for multichannel QLMS (19) is
Wpgi(n+1) = wpgi(n) + Awpg(n+ 1) (20) 0 < p < 52, wheremax is maximum eigenvalue of the

Wpq,(n) + pap(n —ej(n)  1=1,..,L multichannel correlation matrixE{xx*}. A more practical
o . _ bound ofAmax is & SN 25:1 z2(n — i), whereN is the
of the gth adaptive filter does not depend on the other filtersjepgn,

since its update depends only on ik error. However, on
expanding theth error, we have
» 4. SIMULATION
Awpgi(n+1) = pxy(n)|d;(n) —ZXZH(n)W,-q(n)] The performance and convergence properties of our pro-
i=1 posed multichannel QLMS was assessed against QLMS in a
(21) forecasting application with a prediction horizon of onepst
Notice that each learning coefficient is updated basedllon ahead. For this forecasting task, wind data which comprised
input channels{x,,}f,’:l. This leads to the ‘dependency’ be- of two anemometers (sensors) recordings of wind speeds
tween each channel adaptive filter, as observed in [11]. (East-West, North-South, Vertical direction) and tempae
(degree Celsius) was considered. Hence, the total number
Remark 2: Remark 1 also demonstrates that the multichannedf channels for quaternion-valued processes were two. For
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