
CSS Minification via Constraint Solving

(Technical Report)

Matthew Hague1, Anthony W. Lin2,3 and Chih-Duo Hong3

1 Royal Holloway, University of London, UK
2 Technische Universität Kaiserslautern, Germany

3 University of Oxford, UK

Abstract

Minification is a widely-accepted technique which aims at reducing the size of the code transmit-

ted over the web. This paper concerns the problem of semantic-preserving minification of Cascading

Style Sheets (CSS) — the de facto language for styling web documents — based on merging similar

rules.

The cascading nature of CSS makes the semantics of CSS files sensitive to the ordering of rules in

the file. To automatically identify rule-merging opportunities that best minimise file size, we reduce

the rule-merging problem to a problem concerning “CSS-graphs”, i.e., node-weighted bipartite graphs

with a dependency ordering on the edges, where weights capture the number of characters.

Constraint solving plays a key role in our approach. Transforming a CSS file into a CSS-graph

problem requires us to extract the dependency ordering on the edges (an NP-hard problem), which

requires us to solve the selector intersection problem. To this end, we provide the first full formalisa-

tion of CSS3 selectors (the most stable version of CSS) and reduce their selector intersection problem

to satisfiability of quantifier-free integer linear arithmetic, for which highly-optimised SMT-solvers

are available. To solve the above NP-hard graph optimisation problem, we show how Max-SAT

solvers can be effectively employed. We have implemented our rule-merging algorithm, and tested

it against approximately 70 real-world examples (including examples from each of the top 20 most

popular websites). We also used our benchmarks to compare our tool against six well-known mini-

fiers (which implement other optimisations). Our experiments suggest that our tool produced larger

savings. A substantially better minification rate was shown when our tool is used together with these

minifiers.

1 Introduction

Minification [64, Chapter 12] is a widely-accepted technique in the web programming literature that

aims at decreasing the size of the code transmitted over the web, which can directly improve the

response-time performance of a website. Page load time is of course crucial for users’ experience,

which impacts the performance of an online business and is increasingly being included as a ranking

factor by search engines [63]. Minification bears a resemblance to traditional code compilation. In par-

ticular, it is applied only once right before deploying the website (therefore, its computation time does

not impact the page load time). However, they differ in at least two ways. First, the source and target

languages for minification are the same (high-level) languages. The code to which minification can be

applied is typically JavaScript or CSS, but it can also be HTML, XML, SVG, etc. Second, minification

applies various semantic-preserving transformations with the objective of reducing the size of the code.

This paper concerns the problem of minifying CSS (Cascading Style Sheets), which is the de facto

language for styling web documents (HTML, XML, etc.) as developed and maintained by the World

Wide Web Constortium (W3C) [4]. We will minify the CSS without reference to the documents it may

be designed to style. We refer the reader to Section 9 for a discussion of document-independent and

document-dependent related work.

1

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

A CSS file consists of a list of CSS rules, each containing a list of selectors — each selecting nodes

in the Document Object Model (DOM), which is a tree structure representing the document — and a list

of declarations, each assigning values to selected nodes’ display attributes (e.g. blue to the property

color). Real-world CSS files can easily have many rules (in the order of magnitude of 1000), e.g., see

the statistics for popular sites [1] on http://cssstats.com/. As Souders wrote in his book [64],

which is widely regarded as the bible of web performance optimisation:

The greatest potential for [CSS file] size savings comes from optimizing CSS — merg-

ing identical classes, removing unused classes, etc. This is a complex problem, given the

order-dependent nature of CSS (the essence of why it’s called cascading). This area war-

rants further research and tool development.

More and more CSS minifiers have been, and are being, developed. These include YUI Compressor

[61], cssnano [13], minify [16], clean-css [53], csso [19], and cssmin [8], to name a few.

Such CSS minifiers apply various syntactic transformations, typically including removing whitespace

characters and comments, and using abbreviations (e.g. #f60 instead of #ff6600 for the colour

orange).

In this paper, we propose a new class of CSS transformations based on merging similar or duplicate

rules in the CSS file (thereby removing repetitions across multiple rules in the file) that could reduce

file size while preserving the rendering information. To illustrate the type of transformations that we

focus on in this paper (a more detailed introduction is given in Section 2), consider the following simple

CSS file.

#a { color:red; font-size:large }

#c { color:green }

#b { color:red; font-size:large }

The selector #a selects a node with ID a (if it exists). Note that the first and the third rules above have

the same property declarations. Since one ID can be associated with at most one node in a DOM-tree,

we can merge these rules resulting in the following equivalent file.

#a, #b { color:red; font-size:large }

#c { color:green }

Identifying such a rule-merging-based minification opportunity — which we shall call merging oppor-

tunity for short — in general is non-trivial since a CSS file is sensitive to the ordering of rules that may

match the same node, i.e., the problem mentioned in Souders’ quote above. For example, let us assume

that the three selectors #a, #b, and #c in our CSS example instead were .a, .b, and .c, respectively.

The selector .a selects nodes with class a. Since a class can be associated with multiple nodes in a

DOM-tree, the above merging opportunity could change how a page is displayed and therefore would

not be valid, e.g., consider a page with an element that has two classes, .b and .c. This element would

be displayed as red by the original file (since red appears later), but as green by the file after applying

the transformation. Despite this, in this case we would still be able to merge the subrules of the first and

the third rules (associated with the font-size property) resulting in the following smaller equivalent

file:

.a { color:red }

.c { color:green }

.b { color:red }

.a, .b { font-size:large }

2

http://cssstats.com/

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

This example suggests two important issues. First, identifying a merging opportunity in a general way

requires a means of checking whether two given selectors may intersect, i.e., select the same node in

some document tree. Second, a given CSS file could have a large number of merging opportunities at the

same time (the above example has at least two). Which one shall we pick? There are multiple answers to

this question. Note first that merging rules can be iterated multiple times to obtain increasingly smaller

CSS files. In fact, we can define an optimisation problem which, given a CSS file, computes a sequence

of applications of semantic-preserving merging rules that yields a globally minimal CSS file. Finding

a provably globally minimal CSS file is a computationally difficult problem that seems well beyond

the reach of current technologies (constraint solving, and otherwise). Therefore, we propose to use the

simple greedy strategy: while there is a merging opportunity that can make the CSS file smaller, apply

an optimal one, i.e., a merging opportunity that reduces the file size the most1. There are now two

problems to address. First, can we efficiently find an optimal merging opportunity for a given CSS file?

This paper provides a positive answer to this question by exploiting a state-of-the-art constraint solving

technology. Second, there is a potential issue of getting stuck at a local minimum (as is common with

any optimisation method based on gradient descent). Does the greedy strategy produce a meaningful

space saving? As we will see in this paper, the greedy approach could already produce space savings

that are beyond the reach of current CSS minification technologies.

1.1 Contributions

We first formulate a general class of semantic-preserving transformations on CSS files that captures

the above notion of merging “similar” rules in a CSS file. Such a program transformation has a clean

graph-theoretic formulation (see Section 4). Loosely speaking, a CSS rule corresponds to a biclique

(complete bipartite graph) B, whose edges connect nodes representing selectors and nodes representing

property declarations. Therefore, a CSS file F corresponds to a sequence of bicliques that covers all of

the edges in the bipartite graph G which is constructed by taking the (non-disjoint) union of all bicliques

in F . Due to the cascading nature of CSS, the file F also gives rise to an (implicit) ordering ≺ on the

edges of G. Therefore, any new CSS file F ′ that we produce from F must also be a valid covering of

the edges of G and respect the order ≺. As we will see, the above notion of merging opportunity can be

defined as a pair (B, j) of a new rule B and a position j in the file, and that applying this transformation

entails inserting B in position j and removing all redundant nodes (i.e. either a selector or a property

declaration) in rules at position i < j.
Several questions remain. First is how to compute the edge order ≺. The core difficulty of this prob-

lem is to determine whether two CSS selectors can be matched by the same node in some document tree

(a.k.a. the selector intersection problem). Second, among the multiple potential merging opportunities,

how do we automatically compute a rule-merging opportunity that best minimises the size of the CSS

file. We provide solutions to these questions in this paper.

Computing the edge order ≺. In order to handle the selector intersection problem, we first provide

a complete formalisation of CSS3 selectors [15] (currently the most stable version of CSS selectors).

We then give a polynomial-time reduction from the selector intersection problem to satisfiability over

quantifier-free theory of integer linear arithmetic, for which highly optimised SMT-solvers (e.g. Z3

[18]) are available. To achieve this reduction, we provide a chain of polynomial-time reductions. First,

we develop a new class of automata over data trees [9], called CSS automata, which can capture the

expressivity of CSS selectors. This reduces the selector intersection problem to the language intersection

problem for CSS automata. Second, unlike the case for CSS selectors, the languages recognised by

1Not to be confused with the smallest CSS file that is equivalent with the original file, which in general cannot be obtained by

applying a single merging

3

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

CSS automata enjoy closure under intersection. (.b .a and .c .a are individually CSS selectors,

however their conjunction is not a CSS selector2.) This reduces language intersection of CSS automata

to language non-emptiness of CSS automata. To finish this chain of reductions, we provide a reduction

from the problem of language non-emptiness of CSS automata to satisfiability over quantifier-free theory

of integer linear arithmetic. The last reduction is technically involved and requires insights from logic

and automata theory, which include several small model lemmas (e.g. the sufficiency of considering

trees with a small number of node labels that can be succinctly encoded). This is despite the fact that

CSS selectors may force the smallest satisfying tree to be exponentially big.

Formulation of the “best” rule-merging opportunity and how to find it. Since our objective is to

minimise file size, we may equip the graph G by a weight function wt which maps each node to the

number of characters used to define it (recall that a node is either a selector or a property declaration).

Hence, the function wt allows us to define the size of a CSS file F (i.e. a covering of G respecting ≺) by

taking the sum of weights wt(v) ranging over all nodes v in F . The goal, therefore, is to find a merging

opportunity (B, j) of F that produces F ′ with a minimum file size. We show how this problem can be

formulated as a (partially weighted) Max-SAT instance [3] in such a way that several existing Max-SAT

solvers (including Z3 [7] and MaxRes [48]) can handle it efficiently. This Max-SAT encoding is non-

trivial: the naive encoding causes Max-SAT solvers to require prohibitively long run times even on small

examples. A naive encoding would allow the Max-SAT solver to consider any rule constructed from the

nodes of the CSS file, and then contain clauses that prohibit edges that do not exist in the original CSS

file (as these would introduce new styling properties). Our encoding forces the Max-SAT solver to only

consider rules that do not introduce new edges. We do this by enumerating all maximal bicliques in the

graph G (maximal with respect to set inclusion) and developing an encoding that allows the Max-SAT

solver to only consider rules that are contained within a maximal biclique. We employ the algorithm

from [38] for enumerating all maximal bicliques in a bipartite graph, which runs in time polynomial

in the size of the input and output. Therefore, to make this algorithm run efficiently, the number of

maximal bicliques in the graph G cannot be very large. Our benchmarking (using approximately 70
real-world examples including CSS files from each of the top 20 websites [1]) suggests that this is the

case for graphs G generated by CSS files (with the maximum ratio between the number of bicliques

and the number of rules being 2.05). Our experiments suggest that the combination of the enumeration

algorithm of [38] and Z3 [7] makes the problem of finding the best merging opportunity for CSS files

practically feasible.

Experiments We have implemented our CSS minification algorithm in the tool SATCSS which greed-

ily searches for and applies the best merging opportunity to a given CSS file until no more rule-merging

can reduce file size. The source code, experimental data, and a disk image is available on Figshare [29].

The source code is also available at the following URL.

https://github.com/matthewhague/sat-css-tool

Our tool utilises Z3 [18, 7] as a backend solver for Max-SAT and SMT over integer linear arithmetic.

We have tested our tool on around 70 examples from real-world websites (including examples from

each of the top 20 websites [1]) with promising experimental results. We found that SATCSS (which

only performs rule-merging) yields larger savings on our benchmarks in comparison to six popular CSS

minifiers [62], which support many other optimisations but not rule-merging. More precisely, when

run individually, SATCSS reduced the file size by a third quartile of 6.90% and a median value of

3.79%. The six mainstream minifiers achieved savings with third quantiles and medians up to 5.45%

2The conjunction can be expressed by the selector group .b .c .a, .c .b .a, .b.c .a.

4

https://github.com/matthewhague/sat-css-tool

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

and 3.29%, respectively. Since these are orthogonal minification opportunities, one might suspect that

applying these optimisations together could further improve the minification performance, which is

what we discover during our experiments. More precisely, when we run our tool after running any

one of these minifiers, the third quartile of the savings can be increased to 8.26% and the median to

4.70%. The additional gains obtained by our tool on top of the six minifiers (as a percentage of the

original file size) have a third quartile of 5.03% and a median value of 2.80%, Moreover, the ratios

of the percentage of savings made by SATCSS to the percentage of savings made by the six minifiers

have third quartiles of at least 136% and medians of at least 48%. In fact, in the case of cleancss

which has a third quartile saving of 5.26% and median saving of 3.03%, applying SATCSS thereafter

results in a third quartile saving of 9.50% and median saving of 6.10%. These figures clearly indicate

a substantial proportion of extra space savings made by SATCSS. See Table 1 and Figure 15 for more

detailed statistics.

1.2 Organisation

Section 2 provides a gentle and more detailed introduction (by example) to the problem of CSS mini-

fication via rule-merging. Preliminaries (notation, and basic terminologies) can be found in Section 3.

In Section 4 we formalise the rule-merging problem in terms of what we will call CSS-graphs. In Sec-

tion 5, we provide a formalisation of CSS3 selectors and an outline of an algorithm for solving their

intersection problem, from which we can extract the edge order of a CSS-graph that is required when

reducing the rule-merging problem to the edge-covering problem of CSS-graphs. Since the algorithm

solving the selector intersection problem is rather intricate, we dedicate one full section (Section 6) for

it. In Section 7 we show how Max-SAT solvers can be exploited to solve the rule-merging problem

of CSS-graphs. We describe our experimental results in Section 8. Note that a subset of Max-SAT

instances generated using our tool was used in MaxSAT Evaluation 2017 [28]. In Section 9 we give a

detailed discussion of related work. Finally, we conclude in Section 10. Additional details can be found

in the appendix. The Python code and benchmarks for our tool have been included in the supplementary

material, with a brief user guide. A full artefact, including virtual machine image will be included when

appropriate. These are presently available from the URLs above.

2 CSS Rule-Merging: Example and Outline

In this section, we provide a gentler and more detailed introduction to CSS minification via merging

rules, while elaborating on the difficulties of the problem. We also give a general overview of the

algorithm, which may serve as a guide to the article. We begin by giving a basic introduction to HTML

and CSS. Our formal models of HTML and CSS are given in Section 5.

2.1 HTML and CSS

In this section we give a simple example to illustrate HTML and CSS. Note, in this article our analysis

takes as input a CSS file only. We cover HTML here to aid the description of CSS.

An HTML document is given in Figure 1. The format is similar to (but not precisely) XML, and

is organised into a tree structure. The root node is the html element (or tag), and its two children are

the head and body nodes. These contain page header information (particularly the title), which is not

directly displayed, and the main page contents respectively.

The body node contains two children which represent the page content. The first child is a div

element, which is used to group together parts of the page for the convenience of the developer. In this

case, the developer has chosen to collect all parts of the page containing the displayed heading of the

5

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

<html>

<head><title>Shopping List</title></head>

<body>

<div id="heading">

<h1>An Example HTML Document</h1>

</div>

<li id="apple" class="fruit">Apple

<li id="broccoli">Broccoli

</body>

</html>

Figure 1: A simple HTML document.

html

head

title

body

div

id="heading"

img

class="banner"

src="header.jpg"

h1

ul

li

id="apple"

class="fruit"

li

id="broccoli"

Figure 2: The HTML file in Figure 1 drawn as a tree.

page into one div. This div has an id which takes the value heading. Values specified in this way

are called attributes. ID attributes uniquely identify a given node in the HTML, that is, no two nodes

should have the same ID. The div has two children, which are an image (img) element and a textual

heading (h1). The source of the image is given by src, which is also an attribute. The image also

has a class attribute which takes the value banner. The class attribute is used to distinguish nodes

which have the same tag. For example, the developer may want an image with the class banner to be

displayed differently to an image with the class illustration.

The second child of the body node is an unordered list (ul). This lists contains two food items,

with appropriate ID and class attributes.

To emphasize the tree structure, we give in Figure 2 the same HTML document drawn as a tree. We

will give a refined version of this diagram in Section 5 when defining DOM trees formally.

A CSS file consists of a sequence of rules, each of the form

selectors { declarations }

where selectors contains one or more (node-)selectors (separated by commas) and declarations contains

a sequence of (visual) property declarations (separated by semicolons). An example CSS file containing

two rules is given in Figure 3.

The semantics of a rule is simple: if a node can be matched by at least one of the selectors, then label

the node by all the visual properties in the rule. Both rules in Figure 3 have one selector. The selector

6

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

img.banner { width: 100% }

#heading h1 { font-size: 30pt; font-weight: bold }

Figure 3: An example CSS file.

in the first rule img.banner matches all img elements which have the class banner. The notation

. is used to indicate a class. Thus, this rule will match the img node in our example document and will

specify that the image is to be wide.

The second selector demonstrates that selectors may reason about the structure of the tree. The

#heading means that the match should begin at the node with ID heading. Then, the space means

the match should move to any descendent of the #heading node, i.e., any node contained within the

div with ID heading in our example page. Next, the h1 is used to choose h1 elements. Thus, this

selector matches any node with element h1 that occurs below a node with ID heading. The text of

any such match should be rendered in a 30pt bold font.

There are many other features of selectors. These are described in full in Section 5.

2.2 CSS Rule-Merging by Example

We will now discuss more advanced features of CSS files and give an example of rule-merging. Figure

4 contains a simple CSS file (with four rules).

#apple { color:blue; font-size:small }

.fruit, #broccoli { color:red; font-size:large }

#orange { color:blue }

#tomato { color:red; font-size:large;

background-color:lightblue }

Figure 4: A simple example of a CSS file.

The sequence of rules in a file is applied to a node v in a “cascading” fashion (hence the name

Cascading Style Sheets). That is, read the rules from top to bottom and check if v can be matched by

at least one selector in the rule. If so, assign the properties to v (perhaps overriding previously assigned

properties, e.g., color) provided that the selectors matching v in the current rule have higher “values”

(a.k.a. specificities) than the selectors previously matching v. Intuitively, the specificity of a selector

[15] can be calculated by taking a weighted sum of the number of classes, IDs, tag names, etc. in the

selector, where IDs have higher weights than classes, which in turn have higher weights than tag names.

For example, let us apply this CSS file to a node matching .fruit and #apple. In this case, the

selectors in the first (#apple) and the second rules (.fruit) are applicable. However, since #apple

has a higher specificity than .fruit, the node gets labels color:blue and font-size:small.

Two syntactically different CSS files could be “semantically equivalent” in the sense that, on each

DOM tree T , both CSS files will precisely yield the same tree T ′ (which annotates T with visual

information). In this paper, we only look at semantically equivalent CSS files that are obtained by

merging similar rules. Given a CSS rule R, we say that it is subsumed by a CSS file F if each possible

selector/property combination in R occurs in some rule in F . Notice that a rule can be subsumed in a

CSS file F without occurring in F as one of the rules. For example, the rule R1

.fruit, #broccoli, #tomato { color:red; font-size:large }

is subsumed in our CSS file example (not so if background-color:lightblue were added to

R1). A (rule-)merging opportunity consists of a CSS rule subsumed in the CSS file and a position in the

7

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

#apple { color:blue; font-size:small }

.fruit, #broccoli { color:red; font-size:large }

#orange { color:blue }

#tomato { color:red; font-size:large;

background-color:lightblue }

.fruit, #broccoli, #tomato { color:red; font-size:large }

(a) The CSS file in Figure 4 with a rule inserted at the end.

#apple { color:blue; font-size:small }

#orange { color:blue }

#tomato { background-color:lightblue }

.fruit, #broccoli, #tomato { color:red; font-size:large }

(b) The result of trimming the CSS file in Figure 5a.

Figure 5: An example of insertion and trimming.

file to insert the rule into. An example of a merging opportunity in our CSS file example is the rule R1

and the end of the file as the insertion position. This results in a new (bigger) CSS file show in Figure 5a.

We then “trim” this resulting CSS file by eliminating “redundant” subrules. For example, the second

rule is redundant since it is completely contained in the new rule R1. Also, notice that the subrule:

#tomato { color:red; font-size:large }

of the fourth rule in the original file is also completely redundant since it is contained in R1. Removing

these, we obtain the trimmed version of the CSS file, which is shown in Figure 5b. This new CSS file

contains fewer bytes.

We may apply another round of rule-merging by inserting the rule

#apple, #orange { color:blue }

at the end of the second rule (and trim). The resulting file is even smaller. Computing such merging

opportunities (i.e. which yields maximum space saving) is difficult.

Two remarks are in order. Not all merging opportunities yield a smaller CSS file. For example, if

#tomato is replaced by the fruit vegetable

#vigna_unguiculata_subsp_sesquipedalis

the first merging opportunity above would have resulted in a larger file, which we should not apply. The

second remark is related to the issue of order dependency. Suppose we add the selector .vegetable

to the third rule in the original file, resulting in the following rule

.vegetable, #orange { color:blue }

Any node labeled by .fruit and .vegetable but no IDs will be assigned color:blue. How-

ever, using the first merging opportunity above yields a CSS file which assigns color:red to fruit

vegetables, i.e., not equivalent to the original file. To tackle the issue of order dependency, we need to

account for selectors specificity and whether two selectors with the same specificity can intersect (i.e.

can be matched by a node in some DOM tree). Although for our examples the problem of selector in-

tersection is quite obvious, this is not the case for CSS selectors in general. For example, the following

two selectors are from a real-world CSS example found on The Guardian website.

8

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

.commercial--masterclasses .lineitem:nth-child(4)

.commercial--soulmates:nth-child(n+3)

Interested readers unfamiliar with CSS may refer to Section 5.2 for a complete definition of selectors.

The key feature is the use of :nth-child. In the first selector it is used to only match nodes that are

the fourth child of some node. For a node to match the second selector, there must be some n ≥ 0 such

that the node is the (n + 3)th child of some node. I.e. the third, fourth, fifth, etc. These two selectors

have a non-empty intersection, while changing n+3 to 2n+3 would yield the intersection empty!

2.3 CSS Rule-Merging Outline

The component parts of our algorithm are given in the schematic diagram in Figure 6.

From an input CSS file, the first step is to construct a formal model of the CSS that we can manip-

ulate. This involves extracting the selector and property declaration pairs that appear in the file. Then

the edge ordering, which records the order in which selector/declaration pairs should appear, needs to

be built. To compute the edge ordering, it is important to be able to test whether two selectors may

match the same node in some document tree. Thus, computing the edge ordering requires an algorithm

for computing whether the intersection of two selectors is empty. This process is described in detail in

Section 5 and Section 6.

Once a model has been constructed, it is possible to systematically search for semantics-preserving

rule-merging opportunities that can be applied to the file to reduce its overall size. The search is formu-

lated as a MaxSAT problem and a MaxSAT solver is used to find the merging opportunity that represents

the largest size saving. This encoding is described in Section 7. If a merging opportunity is found, it is

applied and the search begins for another merging opportunity. If none is found, the minimised CSS file

is output.

3 Preliminaries

3.1 Maths

As usual, Z denotes the set of all integers. We use N to denote the set {0, 1, . . . , } of all natural numbers.

Let N>0 = N\{0} denote the set of all positive integers. For an integer xwe define |x| to be the absolute

value of x. For two integers i, j, we write [i, j] to denote the set {i, . . . , j}. Similar notations for open

intervals will also be used for integers (e.g. (i, j) to mean {i+1, . . . , j− 1}). For a set S, we will write

S∗ (resp. S+) to denote the set of sequences (resp. non-empty sequences) of elements from S. When

the meaning is clear, if S is a singleton {s}, we will denote {s}∗ (resp. {s}+) by s∗ (resp. s+). Given a

(finite) sequence σ = s1, . . . , sn, i ∈ [0, n], and a new element s, we write σ[s → i] to denote the new

sequence s1, . . . , si, s, si+1, . . . , sn, i.e., inserting the element s right after the position i in σ.

3.2 Trees

We review a standard formal definition of (rooted) unranked ordered trees [22, 39, 49] from the database

research community, which use it to model XML. We will use this in Section 5 to define document trees.

“Unranked” means that there is no restriction on the number of children of a node, while “ordered”

means that the children of each node are linearly ordered from the left-most child to the right-most

child. An unranked ordered tree consists of a tree domain and a labelling, which we define below.

We identify a node by the unique path in the tree to the given node. A tree domain defines the set of

nodes in the tree and is a set of sequences of natural numbers D ⊆ (N>0)
∗
. The empty sequence is the

9

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

CSS File

Build CSS

Model

Find

Merging

Opp.

Construct

Edge Order
Selector

Intersection

Merging

Opp.

Exists?

MaxSAT

Apply

Merging

Opp.

Minified CSS File

uses uses

uses

yes

no

Figure 6: A Schematic Diagram of Our Approach

root node. The sequence 1 would be the first child of the root node, while 2 would be the second child.

The sequence 21 would denote the first child of the second child of the root node, and so on. The tree

in Figure 2 has D = {ε, 1, 2, 11, 21, 22, 211, 212, 221, 222}.

We require that D is both prefix-closed and preceding-sibling closed. By prefix-closed we formally

mean ηι ∈ D implies η ∈ D; this says that the parent of each node is also a node in the tree. By

preceding-sibling closed we formally mean ηι ∈ D implies ηι′ ∈ D for all ι′ < ι; for example, this

means that if a node has a second child, it also has a first. Observe, we write η for a tree node (element

of D) and ι for an element of N>0.

Our trees will also be labelled by items such as element names and attribute values. In general, a

Σ-labelled tree is a pair T = (D,λ) where D is a tree domain, and λ : D → Σ is a labelling function

of the nodes of T with items from a set of labels Σ. A simple encoding of the tree in Figure 2 will have

the labelling

λ(ε) = html

λ(1) = head

λ(2) = body

λ(11) = title

λ(21) = div id="heading"

λ(22) = ul

λ(211) = img class="banner" src="header.jpg"

λ(212) = h1

λ(221) = li id="apple" class="fruit"

λ(222) = li id="broccoli" .

10

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

Note, in Section 5, we will use a more complex labelling of DOM trees to fully capture all required

features.

Next we recall terminologies for relationships between nodes in trees. To avoid notational clutter,

we deliberately choose notation that resembles the syntax of CSS, which we define in Section 5. In the

following, take η, η′ ∈ D. We write η ≫© η′ if η is a (strict) ancestor of η′, i.e., there is some η′′ ∈ N
+
>0

such that η′ = ηη′′. We write η >© η′ if η is the parent of η′, i.e., there is some ι ∈ N>0 such that

η′ = ηι. We write η +© η′ if η is the direct preceding sibling of η′, i.e., there is some η′′ and ι ∈ N>0

such that η = η′′(ι − 1) and η′ = η′′ι. We write η ∼© η′ if η is a preceding sibling of η′, i.e., there is

some η′′ and ι, ι′ ∈ N>0 with ι < ι′ such that η = η′′ι and η′ = η′′ι′.

3.3 Max-SAT

In this paper, we will reduce the problem of identifying an optimal merging opportunity to partial

weighted Max-SAT [3]. Partial weighted Max-SAT formulas are boolean formulas in CNF with hard

constraints (a.k.a. clauses that must be satisfied) and soft constraints (a.k.a. clauses that may be violated

with a specified cost or weight). A minimal-cost solution is the goal. Note that our clauses will not

be given in CNF, but standard satisfiability-preserving conversions to CNF exist (e.g. see [12]) which

straightforwardly extend to partial weighted Max-SAT.

We will present Max-SAT problems in the following form (ΠH ,ΠS) where

• ΠH are the hard constraints – that is, a set of boolean formulas that must be satisfied – and

• ΠS are the soft constraints – that is a set of pairs (ϕ, ω) where ϕ is a boolean formula and ω ∈ N

is the weight of the constraint.

Intuitively, the weight of a soft constraint is the cost of not satisfying the constraint. The partial weighted

Max-SAT problem is to find an assignment to the boolean variables that satisfies all hard constraints and

minimises the sum of the weights of unsatisfied soft constraints.

3.4 Existential Presburger Arithmetic

In this paper, we present several encodings into existential Presburger arithmetic, also known as the

quantifier-free theory of integer linear arithmetic. Here, we use extended existential Presburger for-

mulas ∃x1, . . . , xk.ϕ where ϕ is a boolean combination of expressions
∑k

i=1 aixi ∼ b for constants

a1, . . . , ak, b ∈ Z and ∼∈ {≤,≥, <,>,=} with constants represented in binary. A formula is sat-

isfiable if there is an assignment of a non-negative integer to each variable x1, . . . , xk such that ϕ is

satisfied. For example, a simple existential Presburger formula is shown below

∃x, y, z . 0 > 2y + z − x ∧ 0 > z − y

which is satisfied by any assignment to the variables x, y, and z such that x < 2y + z and y > z.

The assignment x = 2, y = 3, z = 0 is one such satisfying assignment. Note, when writing existential

Presburger formulas, we will allow formulas that do not strictly match the format specified above. This

is to aid readability and we will always be able to rewrite the formulas into the correct format. The

above example formula may be written

∃x, y, z . x < 2y + z ∧ y < z .

It is well-known that satisfiability of existential Presburger formulas is NP-complete even with the

above extensions (cf. [57]). Such problems can be solved efficiently by SMT solvers such as Z3.

11

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

4 Formal definition of CSS rule-merging and minification

The semantics of a CSS file can be formally modelled as a CSS-graph. A CSS-graph is a 5-tuple

G = (S, P,E,≺,wt), where (S, P,E) is a bipartite graph (i.e. the set V of vertices is partitioned into

two sets S and P with E ⊆ S × P), ≺ ⊆ E × E gives the order dependency on the edges, and

wt : S ∪ P → Z>0 is a weight function on the set of vertices. Vertices in S are called selectors,

whereas vertices in P are called properties. For example, the CSS graph corresponding to the CSS file

in Figure 4 with the selector .vegetable added to the third rule is the following bipartite graph

#apple color:blue

.fruit font-size:small

#broccoli color:red

#orange font-size:large

.vegetable background-color:lightblue

#tomato

such that the weight of a node is 1 + (length of the text), e.g., wt(#orange) = 1 + 7 = 8. The rea-

son for the extra +1 is to account for the selector/property separators (i.e. commas or semi-colons), as

well as the character ‘{’ (resp. ‘}’) at the end of the sequence of selectors (resp. properties). That

is, in a rule, selectors are followed by a comma if another selector follows, or ‘{’ if it is the last

selector, and properties are followed by a semi-color if another property follows, or ‘}’ if it is the

last property declaration. We refer to ≺ as the edge order and it intuitively states that one edge

should appear strictly before the other in any CSS file represented by the graph. In this case we have

(.fruit,color:red) ≺ (.vegetable,color:blue) because any node labeled by .fruit

and .vegetable but no IDs should be assigned the property color:blue. There are no other or-

derings since each node can have at most one ID3 and .fruit and .vegetable are the selectors

of the lowest specificity in the file. More details on how to compute ≺ from a CSS file are given in

Section 5.4.

A biclique in G is a complete bipartite subgraph, i.e., a pair B = (X,Y) of a nonempty set X ⊆ S
of selectors and a nonempty set Y ⊆ P of properties such that X × Y ⊆ E (i.e. each pair of a selector

and a property in the rule is an edge). A (CSS) rule is a pairB = (B,⊳) of a biclique and a total order ⊳

on the set of properties. The reason for the order on the properties, but not on the selectors, is illustrated

by the following example of a CSS rule:

.a, .b { color:red; color:rgba(255,0,0,0.5) }

That is, nodes matching .a or .b are assigned a semi-transparent red with solid red being defined as a

fallback when the semi-transparent red is not supported by the document reader. Therefore, swapping

the order of the properties changes the semantics of the rule, but swapping the order of the selectors

does not. We will often denote a rule as (X,Y) where Y = {pi}
m
i=1 if Y = {p1, . . . , pm} and p1 ⊳

· · · ⊳ pm.

A covering C of G is a sequence of rules that covers G (i.e. the union of all the edges in C equals E).

Given an edge e ∈ E, the index index(e) of e is defined to be the index of the last rule in the sequence

C that contains e. We say that C is valid if, for all two edges e = (s, p), e′ = (s′, p′) in E with e ≺ e′,
either of the following holds:

3Strictly speaking, this is only true if we are only dealing with namespace html (which is the case almost always in web

programming and so is a reasonable assumption unless the user specifies otherwise). A node could have multiple IDs, each with

a different namespace. See Section 5.

12

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

• index(e) < index(e′)

• index(e) = index(e′) and, if (X, {pi}
m
i=1) is the rule at position index(e) in C, it is the case that

p = pj and p′ = pk with j ≤ k.

In the example of Figure 4 with the selector .vegetable in the third rule, we can verify that it

is indeed a valid covering of itself by observing the only ordering is (.fruit,color:red) ≺
(.vegetable,color:blue) and we have

index((.fruit,color:red)) = 2 and index((.vegetable,color:blue)) = 3 .

This last-occurrence semantics reflects the cascading aspect of CSS. To relate this to the world of

CSS, the original CSS file F may be represented by a CSS-graph G, but F also turns out to be a valid

covering of G. In fact, the set of valid coverings of G correspond to CSS files that are equivalent (up to

reordering of selectors and property declarations) to the original CSS file. That is, if two files cover the

same graph, then they will specify the same property declarations on any node of any given DOM.

To define the optimisation problem, we need to define the weight of a rule and the weight of a

covering. To this end, we extend the function wt to rules and coverings by summing the weights of the

nodes. More precisely, given a rule B = (X,Y), define

wt(B) =
∑

w∈X∪Y

wt(w).

Similarly, given a covering C = {Bi}
m
i=1, the weight wt(C) of C is

∑m
i=1 wt(Bi). It is easy to verify

that the weight of a rule (resp. covering) corresponds to the number of non-whitespace characters in a

CSS rule (resp. file). The minification problem is, given a CSS-graph G, to compute a valid covering

with the minimum weight.

(Optimal) Rule-Merging Problem Given a CSS-graph G and a covering C, we define the trim C↓ of

C to be the covering C′ obtained by removing from each rule B = (X,Y) (say at position i) in C all

nodes v ∈ X ∪ Y that are not incident to at least one edge e with index(e) = i (i.e. the last occurrence

of e in C). Such nodes v may be removed since they do not affect the validity of the covering C.

We can now explain formally the file size reduction shown in Figure 5. First observe in Figure 5b

that the second rule

.fruit, #broccoli { color:red; font-size:large }

has been removed. Consider the node .fruit and its incident edges (.fruit,color:red) and

(.fruit,font-size:large). Both of these edges have index 5 (6= 2) since they also appear in the

last rule of Figure 5a. Thus we can remove the .fruit node from this rule. A similar argument can be

made for all nodes in this rule, which means that we remove them, leaving an empty rule (not shown).

In the fourth rule, the node color:red is incident only to (#tomato,color:red) which has index

5 (6= 4). The situation is the same for the node font-size:large, thus both of these nodes are

removed from the rule.

The trim C↓ can be computed from C and G in polynomial time in a straightforward way. More

precisely, first build a hashmap for the index function. Second, go through all rules B in the covering C,

each node v in B, and each edge e incident with v checking if at least one such e satisfies index(e) = i,
where B is the ith rule in C. Note that C↓ is uniquely defined given C.

We define a (rule)-merging opportunity to be a pair (B, j) of rule B and a number j ∈ (0, |C|) such

that C[B → j] is a valid covering of G. The result of applying this merging opportunity is the covering

C[B → j]↓ obtained by trimming C[B → j]. The (rule)-merging problem can be defined as follows:

given a CSS-graph G and a valid covering C, find a merging opportunity that results in a covering with

the minimum weight. This rule-merging problem is NP-hard even in the non-weighted version [74, 54].

13

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

5 CSS Selector Formalisation and its Intersection Problem

In this section, we will show how to efficiently compute a CSS-graph G = (S, P,E,≺,wt) from a given

CSS file with the help of a fast solver of quantifier-free theory of integer linear arithmetic, e.g., Z3 [18].

The key challenge is how to extract the order dependency ≺ from a CSS file, which requires an algorithm

for the (selector-)intersection problem, i.e., to check whether two given selectors can be matched by the

same element in some document. To address this, we provide a full formalisation of CSS3 selectors [15]

and a fast algorithm for the intersection problem. Since our algorithm for the intersection problem is

technically very involved, we provide a short intuitive explanation behind the algorithm in this section

and leave the details to Section 6.

5.1 Definition of Document Trees

We define the semantics of CSS3 in terms of Document Object Models (DOMs), which we also refer to

as document trees. The reader may find it helpful to recall the definition of trees from Section 3.2.

A document tree consists of a number of elements, which in turn may have sub-elements as chil-

dren. Each node has a type consisting of an element name (a.k.a. tag name) and a namespace. For

example, an element p in the default html namespace is a paragraph. Namespaces commonly feature

in programming languages (e.g. C++) to allow the use of multiple libraries whilst minimising the risk of

overloading names. For example, the HTML designers introduced a div element to represent a section

of an HTML document. Independent designers of an XML representation of mathematical formulas

may represent division using elements also with the name div. Confusion is avoided by the designers

specifying a namespace in addition to the required element names. In this case, the HTML designers

would introduce the div element to the html namespace, while the mathematical div may belong to

a namespace math. Hence, there is no confusion between html:div and math:div. As an aside,

note that an HTML file may contain multiple namespaces, e.g., see [32].

Moreover, nodes may also be labelled by attributes, which take string values. For example, an

HTML img element has a src attribute specifying the source of the image. Finally, a node may be

labelled by a number of pseudo-classes. For example :enabled means that the node is enabled and

the user may interact with it. The set of pseudo-classes is fixed by the CSS specification.

We first the formal definition before returning to the example in Section 2.1.

5.1.1 Formal Definition

In the formal definition below we permit a possibly infinite set of element, namespace, and attribute

names. CSS stylesheets are not limited to HTML documents (which have a fixed set of element names,

but not attribute names since you can create custom data-* attributes), but they can also be applied

to documents of other types (e.g. XML) that permit custom element names, namespaces, and attribute

names. Thus, the sets of possible names cannot be fixed to finite sets from the point of view of CSS

selectors, which may be applied to any document.

When it is known that the set of elements or attribute names is fixed (e.g. when only considering

HTML), it is possible to adapt our approach. In particular, the small model property in Proposition 6.4

may be avoided, slightly simplifying the technique.

We denote the set of pseudo-classes as

P =

{

:link,:visited,:hover,:active,:focus,:target,
:enabled,:disabled,:checked,:root,:empty

}

.

Then, given a possibly infinite set of namespaces NS, a possibly infinite set of element names ELE, a

14

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

possibly infinite set of attribute names A, and a finite alphabet4 Γ containing the special characters

and - (space and dash respectively), a document tree is a Σ-labelled tree (D,λ), where

Σ :=
(

NS× ELE ×Ffin(NS×A,Γ∗)× 2P
)

.

Here the notation Ffin(NS×A,Γ∗) denotes the set of partial functions from (NS×A) to Γ∗ whose

domain is finite. In other words, each node in a document tree is labeled by a namespace, an element,

a function associating a finite number of namespace-attribute pairs with attribute values (strings), and

zero or more of the pseudo-classes. For a function fA ∈ Ffin(NS×A,Γ∗) we say fA(s, a) = ⊥ when

fA is undefined over s ∈ NS and a ∈ A, where ⊥ /∈ Γ∗ is a special undefined value. Furthermore, we

assume special attribute names class,id ∈ A that will be used to attach classes (see later) and IDs to

nodes.

When λ(η) = (s, e, fA, P) we define the following projections of the labelling function

λS(η) = s,
λE(η) = e,
λA(η) = fA, and

λP(η) = P.

We will use the following standard XML notation: for an element name e, a namespace s, and an

attribute name a, let s:e (resp. s:a) denote the pair (s, e) (resp. (s, a)). The notation helps to clarify the

role of namespaces as a means of providing contextual or scoping information to an element/attribute.

There are several consistency constraints on the node labellings.

• For each s ∈ NS, there are no two nodes in the tree with the same value of s:id.

• A node cannot be labelled by both :link and :visited.

• A node cannot be labelled by both :enabled and :disabled.

• Only one node in the tree may be labelled :target.

• A node contains the label :root iff it is the root node.

• A node labelled :empty must have no children.

From now on, we will tacitly assume that document trees satisfy these consistency constraints. We write

Trees(NS, ELE, A,Γ) for the set of such trees.

5.1.2 Example

Consider the HTML file in Figure 1. This file can be represented precisely by the tree in Figure 7. In this

tree, each node is first labelled by its type, which consists of its namespace and its element name. In all

cases, the namespace is the html namespace, while the element names are exactly as in the HTML file.

In addition, we label each node with the attributes and pseudo-classes with which they are labelled. The

html:html node is labelled with :root since it is the root element of the tree. The html:div node

is labelled with the ID heading. The html:img node is labelled with the attribute class with value

banner and the attribute html:src with value banner.jpg, as well as the pseudo-class :empty

indicating that the node has no contents. The remaining nodes however are not labelled :empty since

even the leaf nodes contain some text (which is not represented in our tree model as it is not matchable

by a selector). Hence, a node with no child may still be non-empty.

4See the notes at the end of the section.

15

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

html:html,

:root

html:head

html:title

html:body

html:div,

html:id="heading"

html:img,

html:class="banner",

html:src="header.jpg",

:empty

html:h1

html:ul

html:li,

html:id="apple",

html:class="fruit"

html:li,

html:id="broccoli"

Figure 7: A DOM tree representation of the HTML file.

Formally, the DOM tree is (D,λ) where D = {ε, 1, 2, 11, 21, 22, 211, 212, 221, 222} and

λ(ε) = (html,html, ∅, {:root})
λ(1) = (html,head, ∅, ∅)
λ(2) = (html,body, ∅, ∅)
λ(11) = (html,title, ∅, ∅)
λ(21) = (html,div, (html,id) 7→ heading, ∅)
λ(22) = (html,ul, ∅, ∅)

λ(211) =

(

html,img,

(

(html,class) 7→ banner,
(html,src) 7→ header.jpg

)

, {:empty}

)

λ(212) = (html,h1, ∅, ∅)

λ(221) =

(

html,li,

(

(html,id) 7→ apple,
(html,class) 7→ fruit

)

, ∅

)

λ(222) = (html,li, (html,id) 7→ broccoli, ∅) .

5.2 Definition of CSS3 selectors

In the following sections we define CSS selectors syntax and semantics. Informally, a CSS selector con-

sists of node selectors σ — which match individual nodes in the tree — combined using the operators >>,

>, +, and ˜. These operators express the descendant-of, child-of, neighbour-of, and sibling-of relations

respectively. Note that the blank space character is used instead of >> in CSS3, though we opt for the lat-

ter in the formalisation for the sake of readability. So, for example, we use .journal>>.science

(i.e. choose all nodes with class .science that is a descendant of nodes with class .journal) in-

stead of the standard syntax .journal .science. In addition, in order to distinguish syntax from

meaning, we use slightly different notation to their counterpart semantical operators ≫©, >©, +©, and ∼©.

We remark that a comma (,) is not an operator in the CSS selector syntax. Instead a selector group

is a comma-separated list of selectors that is matched if any of its selectors is matched. A CSS rule

thus consists of a selector group and a list of property declarations. For the purposes of rule-merging it

is desirable to treat selectors individually as it allows the most flexibility in reorganising the CSS file.

Hence we treat a selector group simply as a set of selectors that can be separated if needed.

A node selector σ has the form τΘ where τ constrains the type of the node. That is, τ places

16

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

restrictions on the element label of the node, e.g., p for paragraph elements and * (or an empty string)

for all elements. The rest of the selector is a set Θ of simple selectors (written as a concatenation of

strings representing these simple selectors) that assert atomic properties of the node. There are four

types of simple selectors.

Type 1: attribute selectors of the form [s|a op v] for some namespace s, attribute a, operator op ∈
{=,~=,|=,^=,$=,*=}, and some string v ∈ Γ∗. We may write [a op v] to mean that a node can be

matched by [s|a op v] for some s. The operators =,^=,$=, and *= take their meaning from regular

expressions. That is, equals, begins-with, ends-with, and contains respectively. The remaining operators

are more subtle. The ~= operator means the attribute is a string of space-separated values, one of which

is v. The |= operator is intended for use with language identification, e.g., as in the attribute selector

[lang |= "en-GB"] to mean “English” as spoken in Great Britain. Thus |= asserts that either the

attribute has value v or is a string of the form v-v′ where - is the dash character, and v′ is some string.

Note that if the lang attribute value of a node is en-GB, the node also matches the simple selector

[lang |= "en"]. In addition, recall that class and id are two special attribute names. For this rea-

son, CSS introduces the shorthands .v and #v for, respectively, the simple selectors [class ~= v] and

[id = v], i.e., asserting that the node has a class or ID v. An example of a valid CSS selector is the se-

lector h1.fruit.vegetable, which chooses all nodes with class fruit and vegetable, and el-

ement name h1 (which includes the following two elements: <h1 class="fruit vegetable">

and <h1 class="vegetable fruit">).

Type 2. attribute selectors of the form [s|a], asserting that the attribute is merely defined on the node.

As before, we may write [a] to mean that the node may be matched by [s|a] for some namespace s.
As an example, img[alt] chooses all img elements where the attribute alt is defined.

Type 3. pseudo-class label of a node, e.g., the selector :enabled ensures the node is currently enabled

in the document. There are several further kinds of pseudo-classes that assert counting constraints on

the children of a selected node. Of particular interest are selectors such as :nth-child(αn + β),

which assert that the node has a particular position in the sibling order. For example, the selector

:nth-child(2n + 1) means there is some n ≥ 0 such that the node is the (2n + 1)st node in the

sibling order.

Type 4. negations :not(θ) of a simple selector θ with the condition that negations cannot be nested

or apply to multiple atoms. For example, :not(.fruit):not(.vegetable) is a valid selector,

whereas :not(:not(.vegetable)) and :not(.fruit.vegetable) are not a valid selec-

tors.

5.2.1 Syntax

Fix the sets NS, ELE, A, and Γ. We define SEL for the set of (CSS) selectors and NSEL for the set of

node selectors. In the following
∣

∣ will be used to separate syntax alternatives, while | is an item of

CSS syntax. The set SEL is the set of formulas ϕ defined as:

ϕ ::= σ
∣

∣ ϕ>>σ
∣

∣ ϕ>σ
∣

∣ ϕ+σ
∣

∣ ϕ˜σ

where σ ∈ NSEL is a node selector with syntax σ ::= τΘ with τ having the form

τ ::= *
∣

∣ (s|*)
∣

∣ e
∣

∣ (s|e)

where s ∈ NS and e ∈ ELE and Θ is a (possibly empty) set of conditions θ with syntax

θ ::= θ¬
∣

∣ :not(σ¬)

17

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

where θ¬ and σ¬ are conditions that do not contain negations, i.e.:

σ¬ ::= *
∣

∣ (s|*)
∣

∣ e
∣

∣ (s|e)
∣

∣ θ¬

θ¬ ::= [s|a]
∣

∣ [s|a op v]
∣

∣ [a]
∣

∣ [a op v]
∣

∣

:link
∣

∣ :visited
∣

∣ :hover
∣

∣ :active
∣

∣ :focus
∣

∣

:enabled
∣

∣ :disabled
∣

∣ :checked
∣

∣

:root
∣

∣ :empty
∣

∣ :target
∣

∣

:nth-child(αn + β)
∣

∣ :nth-last-child(αn + β)
∣

∣

:nth-of-type(αn + β)
∣

∣ :nth-last-of-type(αn + β)

:only-child
∣

∣ :only-of-type

op ::= =
∣

∣ ~=
∣

∣ |=
∣

∣ ^=
∣

∣ $=
∣

∣ *=

where s ∈ NS, e ∈ ELE, a ∈ A, v ∈ Γ∗, and α, β ∈ Z. Whenever Θ is the empty set, we will denote

the node selector τΘ as τ instead of τ∅.

5.2.2 Semantics

The semantics of a selector is defined with respect to a document tree and a node in the tree. More

precisely, the semantics of CSS3 selectors ϕ are defined inductively with respect to a document tree

T = (D,λ) and a node η ∈ D as follows. (Note: (1) p ranges over the set P of pseudo-classes, (2) vv′

is the concatenation of the strings v and v′, and (3) v-v′ is the concatenation of v and v′ with a “-” in

between.)

T, η |= ϕ>>σ
def
⇔ ∃η′ ≫© η . (T, η′ |= ϕ) and (T, η |= σ)

T, η |= ϕ>σ
def
⇔ ∃η′ >© η . (T, η′ |= ϕ) and (T, η |= σ)

T, η |= ϕ+σ
def
⇔ ∃η′ +© η . (T, η′ |= ϕ) and (T, η |= σ)

T, η |= ϕ˜σ
def
⇔ ∃η′ ∼© η . (T, η′ |= ϕ) and (T, η |= σ)

T, η |= τΘ
def
⇔ (T, η |= τ) and ∀θ ∈ Θ . (T, η |= θ)

T, η |= (s|*)
def
⇔ s = λS(η)

T, η |= *
def
⇔ ⊤

T, η |= (s|e)
def
⇔ s = λS(η) ∧ e = λE(η)

T, η |= e
def
⇔ T, η |= (s|e) for some s ∈ NS

T, η |= p
def
⇔ p ∈ λP(η)

T, η |= :not(θ¬)
def
⇔ ¬ (T, η |= θ¬)

T, η |= [a]
def
⇔ T, η |= [s|a] for some s ∈ NS

T, η |= [a op v]
def
⇔ T, η |= [s|a op v] for some s ∈ NS

T, η |= [s|a]
def
⇔ λA(η)(s, a) 6= ⊥

T, η |= [s|a = v]
def
⇔ λA(η)(s, a) = v

T, η |= [s|a |= v]
def
⇔

(

(λA(η)(s, a) = v) or

∃v′ . (λA(η)(s, a) = v-v′)

)

18

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

T, η |= [s|a ^= v]
def
⇔ ∃v′ ∈ Γ∗ . λA(η)(s, a) = vv′

T, η |= [s|a $= v]
def
⇔ ∃v′ ∈ Γ∗ . λA(η)(s, a) = v′v

T, η |= [s|a *= v]
def
⇔ ∃v1, v2 ∈ Γ∗ . λA(η)(s, a) = v1vv2

with the missing attribute selector being (noting v v′ is the concatenation of v and v′ with the space

character in between)

T, η |= [a ~= v]
def
⇔ λA(η)(s, a) = v or ∃v′ . (λA(η)(s, a) = v v′) or

∃v′ . (λA(η)(s, a) = v′ v) or ∃v1, v2 . (λA(η)(s, a) = v1 v v2)

then, for the counting selectors

T, η |= :nth-child(αn + β)
def
⇔ there is some n ∈ N such that η is the αn+ βth

child

T, η |= :only-child
def
⇔ the parent of η has precisely one child

T, η |= :nth-of-type(αn + β)
def
⇔ there is some n ∈ N such that the parent of η has

precisely αn+ β − 1 children with namespace λS(η)

and element name λE(η) for some n that are (strictly)

preceding siblings of η

T, η |= :only-of-type
def
⇔ the parent of η has precisely one child with

namespace λS(η) and element name λE(η)

Finally, the semantics of the remaining two selectors, which are :nth-last-child(αn + β) and

:nth-last-of-type(αn + β), is exactly the same as :nth-child(αn + β) and respec-

tively :nth-of-type(αn + β), except with the sibling ordering reversed (i.e. the rightmost child

of a parent is treated as the first).

Remark 5.1. Readers familiar with HTML may have expected more constraints in the semantics. For

example, if a node matches :hover, then its parent should also match :hover. However, this is part

of the HTML5 specification, not of CSS3. In fact, the CSS3 selectors specification explicitly states that

a node matching :hover does not imply its parent must also match :hover.

5.2.3 Divergences from full CSS

Note that we diverge from the full CSS specification in a number of places. However, we do not lose

expressivity.

• We assume each element has a namespace. In particular, we do not allow elements without a

namespace. There is no loss of generality here since we can simply assume a “null” namespace

is used instead. Moreover, we do not support default name spaces and assume namespaces are

explicitly given.

• We did not include :lang(l). Instead, we will assume (for convenience) that all nodes are

labelled with a language attribute with some fixed namespace s. In this case, :lang(l) is

equivalent5 to [s|lang |= l].

5The CSS specification defines :lang(l) in this way. A restriction of the language values to standardised language codes is

only a recommendation.

19

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

• We did not include :indeterminate since it is not formally part of the CSS3 specification.

• We omit the selectors :first-child and :last-child, as well as

:first-of-type and :last-of-type, since they are expressible using the other operators.

• We omitted even and odd from the nth child operators since these are easily definable as 2n and

2n+ 1.

• We do not explicitly handle document fragments. These may be handled in a number of ways.

For example, by adding a phantom root element (since the root of a document fragment does not

match :root) with a fresh ID ι and adjusting each node selector in the CSS selector to assert

:not(#ι). Similarly, lists of document fragments can be modelled by adding several subtrees

to the phantom root.

• A CSS selector can be suffixed with a pseudo-element which is of the form ::first-line,

::first-letter, ::before, and ::after. Pseudo-elements are easy to handle and only

provide a distraction to our presentation. For this reason, we relegate them into the appendix.

• We define our DOM trees to use a finite alphabet Γ. Currently the CSS3 selectors specification

uses Unicode as its alphabet for lexing. Although the CSS3 specification is not explicit about

the finiteness of characters appearing in potential DOMs, since Unicode is finite [72] (with a

maximal possible codepoint) we feel it is reasonable to assume DOMs are also defined over a

finite alphabet.

5.3 Solving the intersection problem

We now address the problem of checking the intersection of two CSS selectors. Let us write

[[ϕ]] := {(T, η) : T, η |= ϕ}

to denote the set of pairs of tree and node satisfying the selector ϕ. The intersection problem of CSS

selectors is to decide if [[ϕ]] ∩ [[ϕ′]] 6= ∅, for two given selectors ϕ and ϕ′. A closely related decision

problem is the non-emptiness problem of CSS selectors, which is to decide if [[ϕ]] 6= ∅, for a given

selector ϕ. The two problems are not the same since CSS selectors are not closed under intersection

(i.e. the conjunction of two CSS selectors is in general not a valid CSS selector).

Theorem 5.2 (Non-Emptiness). The non-emptiness problem for CSS selectors is efficiently reducible

to satisfiability over quantifier-free theory over integer linear arithmetic. Moreover, the problem is NP-

complete.

Theorem 5.3 (Intersection). The intersection problem for CSS selectors is efficiently reducible to satisfi-

ability over quantifier-free theory over integer linear arithmetic. Moreover, the problem is NP-complete.

Recall from Section 3 that satisfiability over quantifier-free theory over integer linear arithmetic is in

NP and can be solved by a highly-optimised SMT solver (e.g. Z3 [18]). The NP-hardness in the above

theorems suggests that our SMT-based approach is theoretically optimal. In addition, our experiments

with real-world selectors (see Section 8) suggest that our SMT-based approach can be optimised to be

fast in practice (see Appendix D.1), with each problem instance solved within moments.

20

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

Idea behind our SMT-based approach We now provide the idea behind the efficient reduction to

quantifier-free theory over integer linear arithmetic. Our reduction first goes via a new class of tree

automata (called CSS automata), which — like CSS selectors — are symbolic representations of sets

of pairs containing a document tree and a node in the tree. We will call such sets languages recognised

by the automata. Given a CSS selector ϕ, we can efficiently construct a CSS automaton A that can

symbolically represent [[ϕ]]. Unlike CSS selectors, however, we will see that languages recognised by

CSS automata enjoy closure under intersection, which will allow us to treat the intersection problem as

the non-emptiness problem. More precisely, a CSS automaton navigates a tree structure in a similar

manner to a CSS selector: transitions may only move down the tree or to a sibling, while checking a

number of properties on the visited nodes. The difficulty of taking a direct intersection of two selectors

is that the two selectors may descend to different child nodes, and then meet again after the application

of a number of sibling combinators, i.e., their paths may diverge and combine several times. CSS

automata overcome this difficulty by always descending to the first child, and then move from sibling

to sibling. Thus, the intersection of CSS automata can be done with a straightforward automata product

construction, e.g., see [73].

Next, we show that the non-emptiness of CSS automata can be decided in NP by a polynomial-time

reduction to satisfiability of quantifier-free theory of integer linear arithmetic. In our experiments, we

used an optimised version of the reduction, which is detailed in Appendix D.1. For non-emptiness,

ideally, we would like to show that if a CSS automaton has a non-empty language, then it accepts a

small tree (i.e. with polynomially many nodes). This is unfortunately not the case, as the reader can

see in our NP-hardness proof idea below. Therefore, we use a different strategy. First , we prove three

“small model lemmas”. The first is quite straightforward and shows that, to prove non-emptiness, it

suffices to consider a witnessing automata run of length n for an automaton with n transitions (each

automata transition allows some nodes to be skipped). Second, we show that it suffices to consider

attribute selector values (i.e. strings) of length linear in the size of the CSS automata. This is non-trivial

and uses a construction inspired by [47]. Third, we show that it suffices to consider trees whose sets of

namespaces and element names are linear in the size of the CSS automaton. Our formula ϕ attempts to

guess this automata run, the attribute selector values, element names, and namespaces. The global ID

constraint (i.e. all the guessed IDs are distinct) can be easily asserted in the formula. So far, boolean

variables are sufficient because the small model lemmas allow us to do bit-blasting. Where, then, do

the integer variables come into play? For each position i in the guessed path, we introduce an integer

variable ni to denote that the node at position i in the path is the nith child. This is necessary if we want

to assert counting constraints like :nth-child(αn + β), which would be encoded in integer linear

arithmetic as ∃n : ni = αn+ β.

Proof Idea of NP-hardness We now provide an intuition on how to prove NP-hardness in the above

theorems. First, observe that the intersection is computationally at least as hard as the non-emptiness

problem since we can set the second selector to be *. To prove NP-hardness of the non-emptiness,

we give a polynomial-time reduction from the NP-complete problem of non-universality of unions of

arithmetic progressions [67, Proof of Theorem 6.1]. Examples of arithmetic progressions are 2N +
1 and 5N + 2, which are shorthands for the sets {1, 3, 5, . . .} and {2, 7, 12, . . .}, respectively. The

aforementioned non-universality problem allows an arbitrary number of arithmetic progressions as part

of the input and we are interested in checking whether the union equals the entire set N of natural

numbers. As an example of the reduction, checking N 6= 2N + 1 ∪ 5N + 2 is equivalent to the non-

emptiness of

:not(root):not(:nth-child(2n+2)):not(:nth-child(5n+3))

which can be paraphrased as checking the existence of a tree with a node that is neither the root, nor the

21

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

2n+2nd child, nor the 5n+3rd child. Observe that we add 1 to the offset of the arithmetic progressions

since the selector :nth-child starts counting (the number of children) from 1, not from 0. A full

NP-hardness proof is available in Appendix B.2.

5.4 Extracting the edge order ≺ from a CSS file

Recall that our original goal is to compute a CSS-graph G = (S, P,E,≺,wt) from a given CSS file.

The sets P , S, and E, and the function wt can be computed easily as explained in Section 4. We now

show how to compute ≺ using the algorithm for checking intersection of two selectors. We present an

intuitive ordering, before explaining how this may be relaxed while still preserving the semantics.

An initial definition of ≺ is simple to obtain: we want to order (s, p) ≺ (s′, p′) whenever (s′, p′)
appears later in the CSS file than (s, p), the selectors may overlap but are not distinguished by their

specificity, and p and p′ assign conflicting values to a given property name. More formally, we first

compute the specificity of all the selectors in the CSS file. This can be easily computed in the standard

way [15]. Now, the relation ≺ can only relate two edges (s, p), (s′, p′) ∈ E satisfying

1. s and s′ have the same specificity,

2. we have p 6= p′ but the property names for p and p′ are the same (e.g. p = color:blue and

p′ = color:red with property name color), and

3. s intersects with s′ (i.e. [[s]] ∩ [[s′]] 6= ∅).

If both (1) and (2) are satisfied, Condition (3) can be checked by means of SMT-solver via the reduction

in Theorem 5.3. Supposing that Condition (3) holds, we simply compute the indices of the edges

in the file: m := index((s, p)) and m′ := index((s′, p′)). Recall index(e) was defined formally in

Section 4. We put (s, p) ≺ (s′, p′) iff m < m′. There are two minor technical details with the keyword

!important and shorthand property names; see Appendix B.3.

The ordering given above unfortunately turns out to be too conservative. In the following, we give

an example to demonstrate this, and propose a refinement to the ordering. Consider the CSS file

.a { color:red; color:rgba(255,0,0,0.5) }

.b { color:red; color:rgba(255,0,0,0.5) }

In this file, both nodes matching .a and .b are assigned a semi-transparent red with solid red being

defined as a fallback when the semi-transparent red is not supported. If the edge order is calculated as

above, we obtain

(.a,color:rgba(255,0,0,0.5)) ≺ (.b,color:red) (1)

which prevents the obvious rule-merging

.a, .b { color:red; color:rgba(255,0,0,0.5) }

The key observation is that the fact that we also have

(.b,color:red) ≺ (.b,color:rgba(255,0,0,0.5)) (2)

renders any violations of (1) benign: such a violation would give precedence to right-hand declaration

color:rgba(255,0,0,0.5) over color:red for nodes matching both .a and .b. However,

because of (2) this should happen anyway and we can omit (1) from ≺.

Formally, the ordering we need is as follows. If Conditions (1-3) hold, we computem := index((s, p))
and m′ := index((s′, p′)) and put (s, p) ≺ (s′, p′) iff

22

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

• m < m′, and

• (s′, p) does not exist or index((s′, p)) < m′.

That is, we omit (s, p) ≺ (s′, p′) if (s′, p) appears later in the CSS file (that is, we have index((s′, p′)) <
index((s′, p))). Note, we are guaranteed in this latter case to include (s′, p′) ≺ (s′, p) since (s′, p′) and

(s′, p) can easily be seen to satisfy the conditions for introducing (s′, p′) ≺ (s′, p).

6 More Details on Solving Selector Intersection Problem

In the previous section, we have given the intuition behind the efficient reduction from the CSS selector

intersection problem to quantifier-free theory over integer linear arithmetic, for which there is a highly-

optimised SMT-solver [18]. In this section, we present this reduction in full, which may be skipped on

a first reading without affecting the flow of the paper.

This section is structured as follows. We begin by defining CSS automata. We then provide a

semantic-preserving transformation from CSS selectors to CSS automata. Next we show the closure

of CSS automata under intersection. The closure allows us to reduce the intersection problem of CSS

automata to the non-emptiness problem of CSS automata. Finally, we provide a reduction from non-

emptiness of CSS automata to satisfiability over quantifier-free integer linear arithmetic. We will see that

each such transformation/reduction runs in polynomial-time, resulting in the complexity upper bound

of NP, which is precise due to the NP-hardness of the problem from the previous section.

6.1 CSS Automata

CSS automata are a kind of finite automata which navigate the tree structure of a document tree. Tran-

sitions of the automata will contain one of four labels: ↓, →, →+, and ◦. Intuitively, these transitions

perform the following operations. ↓ moves to the first child of the current node. → moves to the next

sibling of the current node. →+ moves an arbitrary number of siblings to the right. Finally, ◦ reads

the node matched by the automaton. Since CSS does not have loops, we require only self loops in our

automata, which are used to skip over nodes (e.g. .v ˜.v
′ may pass over many nodes between those

matching .v and those matching .v′). We do not allow → to label a loop – this is for the purposes of

the NP proof: it can be more usefully represented as →+.

An astute reader may complain that →+ does not need to appear on a loop since it can already pass

over an arbitrary number of nodes. However, the product construction used for intersection becomes

easier if →+ appears only on loops. There is no analogue of →+ for ↓ because we do not need it:

the use of →+ is motivated by selectors such as :nth-child(αn + β) which count the number of

siblings of a node. No CSS selector counts the number of descendants/ancestors.

Formal Definition of CSS Automata A CSS Automaton A is a tuple
(

Q,∆, qin, qf
)

where Q is a

finite set of states, ∆ ⊆ Q × {↓,→,→+, ◦} × NSEL ×Q is a transition relation, qin ∈ Q is the initial

state, and qf ∈ Q is the final state. Moreover,

1. (only self-loops) there exists a partial order . such that (q, d, σ, q′) ∈ ∆ implies q′ . q,

2. (→+ loops and doesn’t check nodes) for all (q,→+, σ, q
′) ∈ ∆ we have q = q′ and σ = *,

3. (→ doesn’t label loops) for all (q, d, σ, q) ∈ ∆ we have d 6=→ and σ = *,

4. (◦ checks last node only) for all (q, d, σ, q′) ∈ ∆ we have q′ = qf iff d = ◦, and

23

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

5. (qf is a sink) for all (q, d, σ, q′) ∈ ∆ we have q 6= qf .

We now define the semantics of CSS automata, i.e., given an automaton A, which language L(A)
they recognise. Intuitively, the set L(A) contains the set of pairs of document tree and node, which

the automaton A accepts. We will now define this more formally. Write q
d
−→
σ
q′ to denote a transition

(q, d, σ, q′) ∈ ∆. A document tree T = (D,λ) and node η ∈ D is accepted by a CSS automaton A if

there exists a sequence

q0, η0, q1, η1, . . . , qℓ, ηℓ, qℓ+1 ∈ (Q×D)
∗ × {qf}

such that q0 = qin is the initial state, η0 = ε is the root node, qℓ+1 = qf is the final state, ηℓ = η is the

matched node, and for all i, there is some transition qi
d
−→
σ
qi+1 with ηi satisfying σ and if i ≤ ℓ,

1. if d =↓ then ηi+1 = ηi1 (i.e., the leftmost child of ηi),

2. if d =→ then there is some η′ and ι such that ηi = η′ι and ηi+1 = η′(ι+ 1), and

3. if d =→+ then there is some η′, ι and ι′ such that ηi = η′ι and ηi+1 = η′ι′ and ι′ > ι.

Such a sequence is called an accepting run of length ℓ. The language L(A) recognised by A is the set

of pairs (T, η) accepted by A.

6.2 Transforming CSS Selectors to CSS Automata

The following proposition shows that CSS automata are no less expressive than CSS selectors.

Proposition 6.1. For each CSS selector ϕ, we may construct in polynomial-time a CSS automaton Aϕ

such that L(Aϕ) = [[ϕ]].

We show this proposition by giving a translation from a given CSS selector to a CSS automaton.

Before the formal definition, we consider the a simple example. A more complex example is shown

after the translation.

6.2.1 Simple Example

Consider the selector

p+.a

which selects a node that has a class a and is directly a right neighbour of a node with element p.

Figure 8 gives a CSS automaton representing the selector. The automaton begins with a loop that can

navigate down any branch of the tree using the ↓ and →+ transitions from ◦1. Then, since it always

moves from the first child to the last, it will first see the node with the p. When reading this node, it will

move to the next child using → before matching the node with class a, leading to the accepting state.

6.2.2 Formal Translation

Given a CSS selector ϕ, we define Aϕ as follows. We can write ϕ uniquely in the form

σ1 o1 σ2 o2 · · · on−1 σn

where each σi is a node selector, and each oi ∈ {>>,>,+,˜}. We will have a state ◦i corresponding to

each σi, oi. We define

Aϕ = (Q, ELE,∆, ◦1, qf)

24

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

◦1 ◦2 qf

→+, ↓

*

→

p

◦

.a

Figure 8: CSS Automaton for p+.a.

◦i •i ◦i+1 ,

↓

σi
↓

σi
→+

*

→

*

(a) oi = >

◦i •i ◦i+1 ,

↓

σi
↓

σi

→, ↓

*

→+, ↓

*
(b) oi = >>

◦i ◦i+1 ,
→

σi

(c) oi = +

◦i •i ◦i+1

→

σi
→

σi
→+

*

→

*

(d) oi = ˜

Figure 9: Converting selectors to CSS automata.

where Q = {◦i, •i | 1 ≤ i ≤ n} ⊎ {qf} and we define the transition relation ∆ to contain the following

transitions. The initial and final transitions are used to navigate from the root of the tree to the node

matched by σ1, and to read the final node matched by σn (and the selector as a whole) respectively.

That is, ◦1
↓,→+

−−−→
*

◦1 and ◦n
◦

−−→
σn

qf . We have further transitions for 1 ≤ i < n that are shown

in Figure 9. The transitions connect ◦i to ◦i+1 depending on oi. Figure 9a shows the child operator.

The automaton moves to the first child of the current node and moves to the right zero or more steps.

Figure 9b shows the descendant operator. The automaton traverses the tree downward and rightward any

number of steps. The neighbour operator is handled in Figure 9c by simply moving to the next sibling.

Finally, the sibling operator is shown in Figure 9d.

We prove the correctness of this construction in Lemma C.1 (soundness) and Lemma C.2 (complete-

ness) in Appendix C.1.

6.2.3 Complex Example

Figure 10 gives an example of a CSS automaton representing the more complex selector

div>>p˜.b

which selects a node that has class b, is a right sibling of a node with element p and moreover is a

descendent of a div node. This automaton again begins at ◦1 and navigates until it finds the node with

the div element name. The automaton can read this node in two ways. The topmost transition covers

25

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

◦1 •1 ◦2 •2 ◦3 qf

→+, ↓

*

↓

div
↓

div

→, ↓

*

→+, ↓

*

→

p

→

p
→+

*

→

*

◦

.b

Figure 10: CSS Automaton for div>>p ˜.b

the case where the p node is directly below the div node. The lower transition allows the automaton to

match the p node and then use a loop to navigate to the descendent node that will match p. Similarly,

from ◦2 the automaton can read a p node and choose between immediately matching the node with class

b or navigating across several siblings (using the loop at state •2) before matching .b and accepting.

6.3 Closure Under Intersection

The problems of non-emptiness and intersection of CSS automata can be defined in precisely the same

way we defined them for CSS selectors. One key property of CSS automata, which is not enjoyed by

CSS selectors, is the closure of their languages under intersection. This allows us to treat the problem of

intersection of CSS automata (i.e. the non-emptiness of the intersection of two CSS automata languages)

as the non-emptiness problem (i.e. whether a given CSS automaton has an empty language).

Proposition 6.2. Given two CSS automata A1 and A2, we may construct in polynomial-time an au-

tomaton A1 ∩ A2 such that L(A1) ∩ L(A2) = L(A1 ∩ A2).

The construction of the CSS automaton A1∩A2 is by a variant of the standard product construction

[73] for finite-state automata over finite words, which run the two given automata in parallel synchro-

nised by the input word. Our construction runs the two CSS automata A1 and A2 in parallel synchro-

nised by the path that they traverse. We first proceed with the formal definition and give an example

afterwards.

6.3.1 Formal Definition of Intersection

We first define the intersection of two node selectors. Recall node selectors are of the form τΘ where

τ ∈ {*,(s|*), e,(s|e) | s ∈ NS ∧ e ∈ ELE}. The intersection of two node selectors τ1Θ1 and τ2Θ2

should enforce all properties defined in Θ1 and Θ2. In addition, both selectors should be able to agree

on the namespace and element name of the node, hence this part of the selector needs to be combined

26

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

more carefully. Thus, letting Θ = Θ1 ∪Θ2. we define

τ1Θ1 ∩ τ2Θ2 =























































































τ2Θ τ1 = *

τ1Θ τ2 = *

τ2Θ τ1 = (s|*) ∧

(

τ2 = (s|*) ∨

τ2 = (s|e)

)

(s|e)Θ τ1 = (s|*) ∧ τ2 = e

τ1Θ τ1 = (s|e) ∧







τ2 = (s|e) ∨

τ2 = e ∨

τ2 = (s|*)







τ2Θ τ1 = e ∧ (τ2 = (s|e) ∨ τ2 = e)

(s|e)Θ τ1 = e ∧ τ2 = (s|*)

:not(*) otherwise.

We now define the automaton A1 ∩ A2. The intersection automaton synchronises transitions that

move in the same direction (by ↓, →, →+) or both agree to match the current node at the same time

(with ◦). In addition, we observe that a →+ can be used by one automaton while the other uses →.

Given

A1 =
(

Q1, ELE,∆1, q
in
1 , q

1
f

)

and A2 =
(

Q2, ELE,∆2, q
in
2 , q

2
f

)

we define

A1 ∩ A2 =
(

Q1 ×Q2, ELE,∆,
(

qin
1 , q

in
2

)

,
(

q1f , q
2
f

))

where (letting d range over {→,→+, ↓, ◦}) we set ∆ =

{

(q1, q2)
d

−−−−→
σ1∩σ2

(q′1, q
′
2)

∣

∣

∣

∣

q1
d
−→
σ1

q′1 ∧ q2
d
−→
σ2

q′2

}

∪
{

(q1, q2)
→
−→
σ1

(q′1, q2)

∣

∣

∣

∣

q1
→
−→
σ1

q′1 ∧ q2
→+

−−→
*

q2

}

∪
{

(q1, q2)
→
−→
σ2

(q1, q
′
2)

∣

∣

∣

∣

q1
→+

−−→
*

q1 ∧ q2
→
−→
σ2

q′2

}

.

We verify that this transition relation satisfies the appropriate conditions:

1. (only self-loops) for a contradiction, a loop in ∆ that is not a self-loop can be projected to a loop

of A1 or A2 that is also not a self-loop, e.g. if there exists (q1, q2)
d
−→
σ

(q′1, q
′
2)

d′

−→
σ′

(q1, q2) that is

not a self-loop, then either q1 6= q′1 or q2 6= q′2, and thus we have a loop from q1 to q′1 to q1 in A1

or similarly for A2,

2. (→+ loops and doesn’t check nodes) →+ transitions are built from →+ transitions in A1 and A2,

thus a violation in the intersection implies a violation in one of the underlying automata,

3. (→ doesn’t label loops) → transitions are built from at least one → transition in A1 or A2, thus a

violation in the intersection implies a violation in one of the underlying automata,

4. (◦ checks last node only) similarly, a violation of this constraint in the intersection implies a

violation in one of the underlying automata,

5. (qf is a sink) again, a violation of this constraint in the intersection implies a violation in the

underlying automata.

27

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

(◦1, ◦1) (◦1, •1) (◦1, ◦2) (◦1, •2) (◦2, ◦3) (qf , qf)

(◦1, ◦3)

(◦2, ◦1) (◦2, •1) (◦2, ◦2) (◦2, •2) (◦2, •2)

→+, ↓

*

↓

div

↓

div

→, ↓

*

→+, ↓

*

→

p

→

p

→+

*

→

p

◦

.a.b

→p →p

→
p

→
p

→
p

→

p

Figure 11: The intersection of the automaton in Figure 8 (in the first component) and the automaton in Figure 10

(in the second component).

6.3.2 Example of Intersection

Recall the automaton in Figure 8 (equivalent to p+.a) and the automaton in Figure 10 (equivalent to

div>>p˜.b). The intersection of the two automata is given in Figure 11. Each state is a tuple (q1, q2)
where the first component q1 represents the state of the automaton equivalent to p+.a and the second

component q2 the automaton equivalent to div>>p˜.b.

In this example, accepting runs of the automaton will use only the top row of states. The lower

states are reached when the two automata move out of sync and can no longer reach agreement on the

final node matched. Usually this is by the first automaton matching a node labelled p, after which it

must immediately accept the neighbouring node. This leaves the second automaton unable find a match.

Hence, the first automaton needs to stay in state ◦1 until the second has reached a near-final state. Note,

the two automata need not match the same node with element name p.

6.4 Reducing Non-emptiness of CSS Automata to SMT-solving

We will now provide a polynomial-time reduction from the non-emptiness of a CSS automaton to satis-

fiability of quantifier-free theory over integer linear arithmetic. That is, given a CSS automaton A, our

algorithm constructs a quantifier-free formula θA over integer linear arithmetic such that A recognises a

non-empty language iff θA is satisfiable. The encoding is quite involved and requires three small model

properties discussed earlier. Once we have these properties we can construct the required formula of

the quantifier-free theory over linear arithmetic. We begin by discussing each of these properties in

turn, and then provide the reduction. The reduction is presented in a number of stages. We show how

to handle attribute selectors separately before handling the encoding of CSS automata. The encoding

of CSS automata is further broken down: we first describe the variables used in the encoding, then we

28

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

describe how to handle node selectors, finally we put it all together to encode runs of a CSS automaton.

For the remainder of the section, we fix a CSS automaton A =
(

Q,∆, qin, qf
)

and show how to

construct the formula θA in polynomial-time.

6.4.1 Bounded Run Length

The first property required is that the length of runs can be bounded. That is, if the language of A is not

empty, there is an accepting run over some tree whose length is smaller than the derived bound. We will

construct a formula that will capture all runs of length up to this bound. Thanks to the bound we know

that if an accepting run exists, the formula will encode at least one, and hence be satisfiable.

Proposition 6.3 (Bounded Runs). Given a CSS Automaton A =
(

Q,∆, qin, qf
)

, if L(A) 6= ∅, there

exists (T, η) ∈ L(A) with an accepting run of length |∆|.

This proposition is straightforward to obtain. We exploit that any loop in the automaton is a self loop

that only needs to be taken at most once. For loops labelled ↓, a CSS formula cannot track the depth

in the tree, so repeated uses of the loop will only introduce redundant nodes. For loops labelled →+,

selectors such as :nth-child(αn + β) may enforce the existence of a number of intermediate

nodes. But, since →+ can cross several nodes, such loops also only needs to be taken once. Hence,

each transition only needs to appear once in an accepting run. That is, if there is an accepting run of a

CSS automaton with n transitions, there is also an accepting run of length at most n.

6.4.2 Bounding Namespaces and Elements

It will also be necessary for us to argue that the number of namespaces and elements can be bounded

linearly in the size of the automaton. This is because our formula will need keep track of the number of

nodes of each type appearing in the tree. This is required for encoding, e.g., the pseudo-classes of the

form :nth-of-type(αn + β). By bounding the number of types, our formula can use a bounded

number of variables to store this information.

We state the property below. The proof is straightforward and appears in Appendix C.3.1. Intuitively,

since only a finite number of nodes can be directly inspected by a CSS automaton, all others can be

relabelled to a dummy type unless their type matches one of the inspected nodes.

Proposition 6.4 (Bounded Types). Given a CSS Automaton A =
(

Q,∆, qin, qf
)

if there exists (T, η) ∈
L(A) with T = (D,λ), then there exists some (T ′, η) ∈ L(A) where T ′ = (D,λ′). Moreover, let

⇃(ELE) be the set of element names and ⇃(NS) be the set of namespaces appearing in the image of λ′.
Both the size of ⇃(ELE) and the size of ⇃(NS) are bounded linearly in the size of A.

6.4.3 Bounding Attribute Values

We will need to encode the satisfiability of conjunctions of attribute selectors. This is another potential

source of unboundedness because the values are strings of arbitrary length. We show that, in fact, if the

language of the automaton is not empty, there there is a solution whose attribute values are strings of a

length less than a bound polynomial in the size of the automaton.

The proof of the following lemma is highly non-trivial and uses techniques inspired by results in

Linear Temporal Logic and automata theory. To preserve the flow of the article, we present the proof in

Appendix C.3.2.

Proposition 6.5 (Bounded Attributes). Given a CSS Automaton A =
(

Q,∆, qin, qf
)

if there exists

(T, η) ∈ L(A) with T = (D,λ), then there exists some bound N polynomial in the size of A and some

(T ′, η) ∈ L(A) where the length of all attribute values in T ′ is bound by N .

29

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

Given such a bound on the length of values, we can use quantifier-free Presburger formulas to

“guess” these witnessing strings by using a variable for each character position in the string. Then, the

letter in each position is encoded by a number. This process is discussed in the next section.

6.4.4 Encoding Attribute Selectors

Before discussing the full encoding, we first show how our formula can encode attribute selectors. Once

we have this encoding, we can invoke it as a sub-routine of our main encoding whenever we have to

handle attribute selectors. It is useful for readability reasons to present this in its own section.

The first key observation is that we can assume each positive attribute selector that does not specify

a namespace applies to a unique, fresh, namespace. Thus, these selectors do not interact with any other

positive attribute selectors and we can handle them easily. Note, these fresh namespaces do not appear

in ⇃(NS).
We present our encoding which works by identifying combinations of attribute selectors that must

apply to the same attribute value. That is, we discover how many attribute values are needed, and collect

together all selectors that apply to each selector. To that end, let op range over the set of operators

{=,~=,|=,^=,$=,*=} and let τΘ be a node selector. For each s and a, let Θs
a be the set of conditions

in Θ of the form θ or :not(θ) where θ is of the form [s|a] or [s|a op v]. Recall we are encoding

runs of a CSS automaton of length at most n. For a given position i in the run, we define AttsPres(τΘ, i)
to be the conjunction of the following constraints, where the encoding for AttsPress:a(Θ, i) is presented

below. Since a constraint of the form :not([a op v]) applies to all attributes a regardless of their

namespace, we define for convenience Neg(s, a) = {:not([s|a op v]) | :not([a op v]) ∈ Θ}.

• For each s and a with Θs
a non-empty and containing at least one selector of the form [s|a] or

[s|a op v], we enforce

AttsPress:a(Θ
s
a ∪ Neg(s, a), i)

if :not([a]) /∈ Θ and :not([s|a]) /∈ Θ, else we assert false.

• For each [a] ∈ Θ, let s be fresh namespace. We assert

AttsPress:a({[s|a]} ∪ Neg(s, a), i)

and for each [a op v] ∈ Θ we assert

AttsPress:a({[s|a op v]} ∪ Neg(s, a), i)

whenever, in both cases, :not([a]) /∈ Θ. If :not([a]) ∈ Θ in both cases we assert false.

It remains to encode AttsPress:a(C, i) for some set of attribute selectors C all applying to s and a.

We can obtain a polynomially-sized global bound (N − 1) on the length of any satisfying value of

an attribute s:a at some position i of the run from Proposition 6.5 (Bounded Attributes)6. Finally, we

increment the bound by one to allow space for a trailing null character.

Once we have a bound on the length of a satisfying value, we can introduce variables xs:ai,1 , . . . , x
s:a
i,N

for each character position of the satisfying value, and encode the constraints almost directly. That is,

letting θ range over positive attribute selectors, we define7

AttsPress:a(C, i) =
∧

θ∈C

AttsPres(θ, ~x) ∧
∧

:not(θ)∈C

¬AttsPres(θ, ~x) ∧Nulls(~x) .

6Of course, we could obtain individual bounds for each s and a if we wanted to streamline the encoding.
7Note, we allow negation in this formula. This is for convenience only as the formulas we negate can easily be transformed

into existential Presburger.

30

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

where ~x = xs:ai,1 , . . . , x
s:a
i,N will be existentially quantified later in the encoding and whose values will

range8 over Γ ⊎ {0} where 0 is a null character used to pad the suffix of each word. We define

AttsPres(θ, ~x) for several θ, the rest can be defined in the same way (see Appendix C.3.3). Letting

v = a1 . . . am,

AttsPres([s|a], ~x) = ⊤
AttsPres([s|a = v], ~x) =

∧

1≤i≤m

xs:ai,j = aj ∧ x
s:a
i,m+1 = 0

AttsPres([s|a ^= v], ~x) =
∧

1≤j≤m

xs:ai,j = aj

AttsPres([s|a *= v], ~x) =
∨

0≤j≤N−m−1

∧

1≤j′≤m

xs:ai,j+j′ = aj

Finally, we enforce correct use of the null character

Nulls(~x) =
∨

1≤j≤N

∧

j≤j′≤N

xs:ai,j′ = 0 .

6.4.5 Encoding Non-Emptiness

We are now ready to give the main encoding of the emptiness of a CSS automaton using the quantifier-

free theory over integer linear arithmetic. This encoding makes use of a number of variables, which

we explain intuitively below. After describing the variables, we give the encoding in two parts: first we

explain how a single node selector can be translated into existential Presuburger arithmetic. Once we

have this translation, we give the final step of encoding a complete run of an automaton.

Variables Used in the Encoding Our encoding makes use of the following variables for 0 ≤ i ≤ n,

representing the node at the ith step of the run. We use the overline notation to indicate variables.

• qi, taking any value in Q, indicating the state of the automaton when reading the ith node in the

run,

• si, taking any value in ⇃(NS) indicating the element tag (with namespace) of the ith node read in

the run,

• ei, taking any value in ⇃(ELE) indicating the element tag (with namespace) of the ith node read

in the run,

• pi, for each pseudo-class p ∈ P \ {:root} indicating that the ith node has the pseudo-class p,

• ni, taking a natural number indicating that the ith node is the nith child of its parent, and

• ns:ei , for all s ∈ ⇃(NS) and e ∈ ⇃(ELE), taking a natural number variable indicating that there are

ns:ei nodes of type s:e strictly preceding the current node in the sibling order, and

• N i, taking a natural number indicating that the current node is the N ith to last child of its parent,

and

• N
s:e

i , for all s ∈ ⇃(NS) and e ∈ ⇃(ELE), taking a natural number variable indicating that there are

N
s:e

i nodes of type s:e strictly following the current node in the sibling order, and

8Strictly speaking, Presburger variables range over natural numbers. It is straightforward to range over a finite number of

values. That is, we can assume, w.l.o.g. that Γ ⊎ 0 ⊆ N and the quantification is suitably restricted.

31

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

• xs:ai,j as used in the previous section for encoding the character at the jth character position of the

attribute value for s:a at position i in the run9.

Note, we do not need a variable for :root since it necessarily holds uniquely at the 0th position of the

run.

Encoding Node Selectors We define the encoding of node selectors below using the variables defined

in the previous section. Note, this translation is not correct in isolation: global constraints such as “no

ID appears twice in the tree” will be enforced later. The encoding works by translating each part of the

selector directly. For example, the constraint e simply checks that ei = e. Even in the more complex

cases of selectors such as :nth-child(αn + β) we are able to use a rather direct translation of

the semantics: ∃n.x = αn + β. For the case of :nth-of-type(αn + β) we have to consider all

possible namespaces s and element names e that the node could take, and use the ns:ei variables to do

the required counting.

In our presentation we allow ourselves to negate existentially quantified formulas of the form ∃n.x =
αn+β where x is a variable, and α and β are constants. Although this is not strictly allowed in existential

Presburger arithmetic, it is not difficult to encode correctly. For completeness, we provide the encoding

of such negated formulas in Appendix C.3.4.

In the following, let NoAtts(Θ) be Θ less all selectors of the form [s|a], [s|a op v], [a], or

[a op v], or :not([s|a]), :not([s|a op v]), :not([a]), or :not([a op v]).

Definition 6.6 (Pres(σ, i)). Given a node selector τΘ, we define

Pres(τΘ, i) =











Pres(τ, i)∧
(

∧

θ∈NoAtts(Θ)

Pres(θ, i)

)

∧

AttsPres(τΘ, i)











where we define Pres(θ, i) as follows:

Pres(*, i) = ⊤
Pres((s|*), i) = (si = s)

Pres(e, i) = (ei = e)
Pres((s|e), i) = (si = s ∧ ei = e)

Pres(:not(σ¬), i) = ¬Pres(σ¬, i)

Pres(:root, i) =

{

⊤ i = 0

⊥ otherwise

∀p ∈ P \ {:root} . Pres(p, i) = pi

and, finally, for the remaining selectors, we have

Pres(:nth-child(αn + β), 0) = ⊥
Pres(:nth-last-child(αn + β), 0) = ⊥

Pres(:nth-of-type(αn + β), 0) = ⊥
Pres(:nth-last-of-type(αn + β), 0) = ⊥

Pres(:only-child, 0) = ⊥
Pres(:only-of-type, 0) = ⊥

9Recall s is not necessarily in ⇃(NS) as it may be some fresh value.

32

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

and when i > 0

Pres(:nth-child(αn + β), i) = ∃n.ni = αn+ β
Pres(:nth-last-child(αn + β), i) = ∃n.N i = αn+ β

Pres(:nth-of-type(αn + β), i) =
∨

s∈⇃(NS)
e∈⇃(ELE)

(

si = s ∧ ei = e ∧
∃n.ns:e

i + 1 = αn+ β

)

Pres(:nth-last-of-type(αn + β), i) =
∨

s∈⇃(NS)
e∈⇃(ELE)

(

si = s ∧ ei = e ∧

∃n.N
s:e

i + 1 = αn+ β

)

Pres(:only-child, i) = ni = 1 ∧N i = 1

Pres(:only-of-type, i) =
∨

s∈⇃(NS)
e∈⇃(ELE)

(

si = s ∧ ei = e ∧

ns:ei = 0 ∧N
s:e

i = 0

)

We are now ready to move on to complete the encoding.

Encoding Runs of CSS Automata Finally, now that we are able to encode attribute and node selec-

tors, we can make use of these to encode accepting runs of a CSS automaton. Since we know that, if

there is an accepting run, then there is a run of length at most n where n is the number of transitions in

∆, we encode the possibility of an accepting run using the variables discussed above for all 0 ≤ i ≤ n.

The shape of the translation is given below and elaborated on afterwards.

Definition 6.7. θA Given a CSS automaton A we define

θA =









q0 = qin

∧
qn = qf



 ∧
∧

0≤i<n





Tran(i)
∨

qi = qf



 ∧ Consistent





where Tran(i) and Consistent are defined below.

Intuitively, the first two conjuncts asserts that a final state is reached from an initial state. Next, we

use Tran(i) to encode a single step of the transition relation, or allows the run to finish early. Finally

Consistent asserts consistency constraints.

We define as a disjunction over all possible (single-step) transitions Tran(i) =
∨

t∈∆

Tran(i, t) where

Tran(i, t) is defined below by cases. There are four cases depending on whether the transition is labelled

↓, →, →+, or ◦. In most cases, we simply assert that the state changes as required by the transition, and

that the variables ni and ns:e
i are updated consistently with the number of nodes read by the transition.

Although the encodings look complex, they are essentially simple bookkeeping.

To ease presentation, we write si:ei = s:e as shorthand for (si = s ∧ ei = e) and si:ei 6= s:e as

shorthand for (si 6= s ∨ ei 6= e).

1. When t = q
↓
−→
σ
q′ we define Tran(i, t) to be

(qi = q) ∧
(

qi+1 = q′
)

∧ ¬:emptyi ∧ Pres(σ, i) ∧
(ni+1 = 1) ∧

∧

s∈⇃(NS)
e∈⇃(ELE)

(

ns:e
i+1 = 0

)

.

33

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

2. When t = q
→
−→
σ

q′ we define Tran(i, t) to be false when i = 0 (since the root has no siblings)

and otherwise

(qi = q) ∧
(

qi+1 = q′
)

∧ Pres(σ, i) ∧
(ni+1 = ni + 1) ∧

(

N i+1 = N i − 1
)

∧

∧

s∈⇃(NS)
e∈⇃(ELE)













(

(si:ei = s:e) ⇒
(

ns:ei+1 = ns:e
i + 1

))

∧
(

(si:ei 6= s:e) ⇒
(

ns:ei+1 = ns:ei

))

∧
(

(si+1:ei+1 = s:e) ⇒
(

N
s:e

i+1 = N
s:e

i − 1
))

∧
(

(si+1:ei+1 6= s:e) ⇒
(

N
s:e

i+1 = N
s:e

i

))













.

3. When t = q
→+

−−→
*

q we define Tran(i, t) to be false when i = 0 and otherwise

(qi = q) ∧
(

qi+1 = q
)

∧
∃δ.
((

ni+1 = ni + δ
)

∧
(

N i+1 = N i − δ
))

∧

∧

s∈⇃(NS)
e∈⇃(ELE)

∃δs:e.





























(

(si:ei = s:e) ⇒
(

ns:e
i+1 = ns:e

i + δs:e + 1
)

)

∧
(

(si:ei 6= s:e) ⇒
(

ns:ei+1 = ns:e
i + δs:e

)

)

∧
(

(si+1:ei+1 = s:e) ⇒
(

N
s:e

i+1 = N
s:e

i − δs:e − 1
)

)

∧

(

(si+1:ei+1 6= s:e) ⇒
(

N
s:e

i+1 = N
s:e

i − δs:e

)

)





























.

4. When t = q
◦
−→
σ
q′ we define Tran(i, t) to be

(qi = q) ∧
(

qi+1 = q′
)

∧ Pres(σ, i) .

To ensure that the run is over a consistent tree, we assert the consistency constraint

Consistent = Consistentn ∧ Consistenti ∧ Consistentp

where each conjunct is defined below.

• The clause Consistentn asserts that the values of ni, N i, n
s:e
i , and N

s:e

i are consistent. That is

∧

1≤i≤n

(

ni = 1 +
∑

s:e∈ELE

ns:e
i

)

∧

(

N i = 1 +
∑

s:e∈ELE

N
s:e

i

)

.

• The clause Consistenti asserts that ID values are unique. It is the conjunction of the following

clauses. For each s for which we have created variables of the form xs:idi,j we assert

∧

1≤i6=i′≤n

∨

1≤j≤N

xs:idi,j 6= xs:idi′,j .

34

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

• Finally, Consistentp asserts the remaining consistency constraints on the pseudo-classes. We

define Consistentp =

∧

0≤i≤n







¬
(

:linki ∧ :visitedi

)

∧
∧

0≤j 6=i≤n

(

¬
(

:targeti ∧ :targetj

))

∧

¬
(

:enabledi ∧ :disabledi

)






.

These conditions assert the mutual exclusivity of :link and :visited, that at most one node

in the document can be the target node, that nodes are not both enabled and disabled.

6.4.6 Correctness of the Encoding

We have now completed the definition of the reduction from the emptiness problem of CSS automata

to the satisfiability of existential Presburger arithmetic. What remains is to show that this reduction is

faithful: that is, the CSS automaton has an empty language if and only if the formula is satisfiable. The

proof is quite routine, and presented in Lemma C.8 and Lemma C.9 in Appendix C.3.5.

Lemma 6.8 (Correctness of θA). For a CSS automaton A, we have

L(A) 6= ∅ ⇔ θA is satisfiable.

We are thus able to decide the emptiness problem, and therefore the emptiness of intersection prob-

lem, for CSS automata by reducing the problem to satisfiability of existential Presburger arithmetic and

using a fast solver such as Z3 [18] to resolve the satisfiability.

7 Rule-Merging to Max-SAT

In this section, we provide a reduction from the rule-merging problem to partial weighted MaxSAT. The

input will be a valid covering C = {Bi}
m
i=1 of a CSS graph G. We aim to find a rule B = (X,Y) and a

position j that minimises the weight of C[B → j]↓.

There is a fairly straightforward encoding of the rule-merging problem into Max-SAT using for each

nodew ∈ S∪P a boolean variablew which is true iff the node is included in the new rule. Unfortunately,

early experiments showed that such an encoding does not perform well in practice, causing prohibitively

long run times even on small examples. The failure of the naive encoding may be due to the search space

that includes a large number of possible pairs (X,Y) that turn out to be invalid rules (e.g. include edges

not in the CSS-graph G). Hence, we will use a different Max-SAT encoding that, by means of syntax,

further restricts the search space of valid rule-merging opportunities.

The crux of our new encoding is to explicitly say in the Max-SAT formula ϕ that the rule B in a

merging opportunity (B, j) is a “valid” sub-biclique of one of the maximal bicliques B = (X,Y) —

maximal with respect to subset-of relations of X and Y components of bicliques — in the CSS-graph

G. By insisting B is contained within a maximal biclique of the CSS-graph, we automatically ensure

that B does not contain edges that are not in G.

The formula ϕ will try to guess a maximal biclique B and which nodes to omit from B. Since the

number of maximal bicliques in a bipartite graph is exponential (in the number of nodes) in the worst

case, one concern with this idea is that the constraint ϕ might become prohibitively large. As we shall

see, this turns out not to be the case in practice. Intuitively, based on our experience, the number of rules

in a real-world CSS file is at most a few thousand. Second, the number of maximal bicliques in a CSS-

graph that corresponds to a real-world CSS file also is typically of a similar size to the number of rules,

and, furthermore, can be enumerated using the algorithm from [38] (which runs in time polynomial in

35

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

.a { color:blue; color:green }

.b { color:green; color:blue }

Figure 12: A CSS file with an unorderable sub-biclique.

the size of the input and the size of the output). To be more precise, the benchmarks in our experiments

had between 31 and 2907 rules, and the mean number of rules was 730. The mean ratio of the number

of maximal bicliques to the number of rules was 1.25, and the maximum was 2.05. As we shall see in

Section 8, Z3 may solve the constraints via this encoding quite efficiently.

In the rest of the section, we will describe our encoding in detail. For convenience, our encoding also

allows bounded integer variables. There are standard ways to encode these in binary as booleans (e.g.

see [55]) by bit-blasting (using a logarithmic number of boolean variables).

7.1 Orderable Bicliques

Our description above of the crux of our encoding (by restricting to containment in a maximal biclique)

is a simplification. This is because not all sub-bicliques of a maximal biclique correspond to a valid rule

B in a merging opportunity (B, j) with respect to the covering C. (A biclique (X ′, Y ′) is a sub-biclique

of a biclique (X,Y) if X ′ ⊆ X and Y ′ ⊆ Y .) To ensure that our constraint ϕ chooses only valid

rules, it needs to ensure that the sub-biclique that is chosen is “orderable”. More precisely, a biclique

B = (X,Y) is orderable at position j if it can be turned into a rule B = (X,Y) (i.e. turning the set Y
of declarations into a sequence Y by assigning an order) that can be inserted at position j in C without

violating the validity of the resulting covering with respect to the order ≺ (from the CSS-graph G). If

there arem rules in C, there arem+1 positions (call these positions 0, . . . ,m) where Y may be inserted

into C. We show below that the position j is crucial to whether B is orderable.

Unorderable bicliques rarely arise in practice (in our benchmarks, the mean percentage of maximal

bicliques that were unorderable at some position was 0.39%), but they have to be accounted for if our

analysis is to find the optimal rule-merging opportunity. A biclique B = (X,Y) is unorderable when

they have the same property name (or two related property names, e.g., shorthands) occuring multiple

times with different values in Y . One reason having a CSS rule with the same property name occuring

multiple times with different values is to provide “fallback options” especially because old browsers

may not support certain values in some property names, e.g., the rule

.c { color:#ccc; color:rgba(0, 0, 0, 0.5); }

says that if rgba() is not supported (e.g. in IE8 or older browsers), then use #ccc. Using this idea, we

can construct the simple example of an unorderable biclique in the CSS file in Figure 12. The ordering

constraints we can derive from this file include

(.a,color:blue) ≺ (.a,color:green)

and

(.b,color:green) ≺ (.b,color:blue) .

The biclique B
({.a,.b}, {color:blue,color:green})

is easily seen to be orderable at position 0 and 1. This is because the final rule in Figure 12 will ensure

the ordering (.b,color:green) ≺ (.b,color:blue) is satisfied, and since B will appear before

this final rule, only (.a,color:blue) ≺ (.a,color:green) needs to be maintained byB (in fact,

at position 0, neither of the orderings need to be respected by B). However, at position 2, which is at the

36

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

end of the file in Figure 12, both orderings will have to be respected by B. Unfortunately, one of these

orderings will be violated regardless of how one may assign an ordering to blue and green. This

contrived example was made only for illustration, however, our technique should still be able to handle

even contrived examples.

We mention that both checking orderability and ordering a given biclique can be done efficiently.

Proposition 7.1. Given a biclique B, a covering C (with m rules) of a CSS-graph G, and a number

j ∈ {0, . . . ,m}, checking whether B is orderable at position j in C can be done in polynomial time.

Moreover, if B is orderable an ordering can be calculated in polynomial time.

The proof of the proposition is easy and is relegated into Appendix A.1.

Maximal Orderable Bicliques

Our Max-SAT encoding ϕ needs to ensure that we only pick a pair (B, j) such that B is an orderable

biclique at position j in the given covering C, i.e.,B corresponds to a rule that can be inserted at position

j in C. Although the check of orderability can be declaratively expressed as a constraint in ϕ, we found

that this results in Max-SAT formulas that are rather difficult to solve by existing Max-SAT solvers.

For this reason, we propose to express the check of orderability in a different way. Intuitively, for each

j ∈ {0, . . . ,m}, we enumerate all orderable bicliques B = (X,Y) that are also maximal, i.e., it is not a

(strict) sub-biclique of a different orderable biclique. Since “orderability is inherited by sub-bicliques”

(as the following lemma, whose proof is immediate from the definition, states), the constraint ϕ needs

to simply choose a sub-biclique of a maximal orderable biclique that appears in our enumeration.

Lemma 7.2. Every sub-biclique B′ = (X,Y) of an orderable biclique B = (X,Y) is orderable.

The above enumeration of maximal orderable bicliques can be described as a pair ({Mi}
µ
i=1,F)

where

• {Mi}
µ
i=1 is an enumeration of all bicliques that are orderable and maximal at some position j,

and

• F forbids certain bicliques at each position. I.e. it is a function from [1,m] to the set of bicliques

in {Mi}
µ
i=1 that are unorderable at position j.

Observe that the set of orderable bicliques at position j in C is a subset of the set of orderable bicliques

at position j + 1 in C. This may be formally expressed as: F(j) ⊆ F(j + 1) for all j ∈ [1,m).
In the majority (54%) of examples that we have from real-world CSS, the function F maps all values

of [1,m] to ∅, i.e., all maximal bicliques are orderable at all positions. The mean percentage of maximal

bicliques that were unorderable at some position was 0.39%, with a maximum of 5.84%.

In our description of the Max-SAT encoding below, we assume that the pair ({Mi}
µ
i=1,F) has been

computed for the input C.

7.2 The Max-SAT Encoding

We present the full reduction of the rule-merging problem to Max-SAT. In particular, the constraints we

produce are

(ΠH ,ΠS)

where ΠH and ΠS are, respectively, hard and soft constraints. First, we describe the variables used in

our encoding. Note, our encoding will rely on the assumption that covering C has already been trimmed.

Recall, the notion of trimming is defined in Section 4 and is the process of removing redundant nodes

from a covering. A node is redundant in a rule if all of its incident edges also appear later in the covering.

37

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

7.2.1 Representing the rule-merging opportunity

We need to represent a merging opportunity (B, j). We use a bounded integer variable j (with range

0 ≤ j ≤ m) to encode j.

For B we select a biclique in {Mi}
µ
i=1 and allow some nodes to be removed (i.e. to produce sub-

bicliques of the Mi). We use a bounded integer variable iM (with range [1, µ]) to select Mi. Next,

we need to choose a sub-biclique of Mi, which can be achieved by choosing nodes Mi to be removed.

To minimise the number of variables used, we number the nodes contained in each biclique in some

(arbitrary) way, i.e., for each i ∈ [1, µ] and biclique Mi = (X,Y), we define a bijection ρi : X ∪ Y →
[1, |X ∪ Y |]. Let χ be the maximum number of nodes in a biclique Mi in the enumeration {Mi}

µ
i=1,

i.e., the maximal integer k such that ρi(w) = k for some w ∈ S ∪ P and 1 ≤ i ≤ µ.

We introduce boolean variables x1, . . . , xχ. Once the maximal orderable biclique Mi is picked, for

a node w with ρi(w) = k, the variable xk is used to indicate that w is to be excluded from selected Mi

(i.e. xk is true iff w is to be excluded from Mi). More precisely, for an edge e = (s, p) in Mi, we define

a predicate HasEdge(e) to be

HasEdge((s, p)) =
∨

1≤i≤µ

iM = i ∧ ¬xρi(s) ∧ ¬xρi(p) .

Note, when Mi = (X,Y) and w /∈ X ∪ Y we let xρi(w) denote the formula “true”.

7.2.2 Hard Constraints

We define

ΠH = {ϕvld, ϕord}

where ϕvld and ϕord are described below.

We need to ensure the rule-merging opportunity is valid, i.e., it has not been forbidden at the chosen

position and inserting it into the covering does not violate the edge order ≺. For the former, we define

F1st, which is used to discover which of the Mi first become unorderable at position j. That is Mi ∈
F1st(j) if j is the smallest integer such that Mi ∈ F(j).

ϕvld =
∧

1≤j≤m





(

j >= j
)

⇒
∧

Mi∈F1st(j)

(

iM 6= i
)



 .

We also need to ensure the edge ordering is respected by the rule-merging opportunity, for which

we define ϕord. If e1 ≺ e2, and e1 = (s1, p1) is in the rule B in the guessed merging opportunity

(B, j), then we need to assert e1 ≺ e2 is respected. It is respected either if e2 = (s2, p2) appears after

the position where j is to be inserted in C, or e2 is also contained in the new rule B (in which case the

ordering can still be respected since B is orderable). That is,

ϕord =





∧

(s1,p1)≺(s2,p2)

HasEdge((s1, p1)) ⇒
(

j < index((s2, p2)) ∨HasEdge((s2, p2))
)



 .

This is because only the last occurrence of an edge in a covering matters (recall the definition of index

of an edge in Section 4). Also note that our use of bicliques ensures that we do not introduce pairs (s, p)
that are not edges in E.

38

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

7.2.3 Soft Constraints

The soft constraints will calculate the weight of C[B → j]↓. Since we want to minimise this weight,

the optimal solution to the Max-SAT problem will give an optimal rule-merging opportunity. Our soft

constraints are

ΠS = ΠB
S ∪ΠSels

S ∪ΠProps
S

where ΠB
S counts the weight of the B, and ΠSels

S and ΠProps
S counts the weight of the remainder (not

including B) of the stylesheet by counting the remaining selectors and properties respectively after

trimming. These are defined below.

To count the weight of B, we count the weight of the non-excluded nodes of Mi = (Xi, Yi). We

have

ΠB
S =

{

(ϕi
w,wt(w))

∣

∣ 1 ≤ i ≤ µ ∧ w ∈ Xi ∪ Yi
}

where

ϕi
w =

((

iM = i
)

⇒ xρi(w)

)

.

Note that ϕi
w is true iff, whenever Mi is picked, the node w is omitted from Mi in the guessed B.

Furthermore, the cost of not omitting w from Mi is wt(w).

Next, we count the remaining weight of C[B → j] (i.e. excluding the weight of B). Assume that C
has already been trimmed, i.e., C↓ = C. The intuition is that a node v can be removed from Bi in C if

all edges e incident to v appear in a later rule in C, i.e., index(e) > i. In particular, let Bi = (Xi, Y i) in

{Bi}
m
i=1. To count the weight of the untrimmed selectors we use the clauses

ΠSels
S =

{

(ψi
s,wt(s))

∣

∣ 1 ≤ i ≤ m ∧ s ∈ Xi

}

where

ψi
s =











i ≤ j ∧
∧

index((s,p))=i

p∈Y

HasEdge((s, p))











.

The idea is that ψi
s will be satisfied whenever s can be removed fromBi. We assume C has already been

trimmed, so s can only become removable because of the application of rule-merging. This explains

the first conjunct which asserts that nodes can only be removed from rules appearing before j. Next, s
can be removed after rule-merging if none of its incident edges (s, p) are the final occurrence of (s, p)
in C[B → j]. The crucial edges in this check are those such that index((s, p)) = i, which means Bi

contains the final occurrence of (s, p) in C. For these edges, if HasEdge((s, p)) holds, then the new rule

contains (s, p) and Bi will no longer contain the final occurrence of (s, p) after rule-merging.

Similarly, to count the weight of the properties that cannot be removed we have

ΠProps
S =

{

(ψi
p,wt(p))

∣

∣ 1 ≤ i ≤ m ∧ p ∈ Y i

}

where

ψi
p =









i ≤ j ∧
∧

index((s,p))=i
s∈X

HasEdge((s, p))









.

39

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

7.3 Generated Rule-Merging Opportunity

The merging opportunity (B, j) is built from an optimal satisfying assignment to (ΠH ,ΠS). First,

j is the value assigned to j. Then B = (X,Y) where, letting iM be the value of iM , and letting

MiM = (X ′, Y ′),

• s ∈ X iff s ∈ X ′ and xρiM
(s) is assigned the value false, and

• Y = {pi}
m
i=1, where {pi}

m
i=1 is obtained by assigning an ordering to Y ′ such that (B, j) is a valid

merging opportunity.

That the ordering of Y ′ above exists is guaranteed by the fact that MiM is orderable at j, and Lemma

7.2. We can compute the ordering in polynomial time via Proposition 7.1. We argue the following

proposition in Appendix A.3.

Proposition 7.3. The merging opportunity (B, j) generated from the maximal solution to (ΠH ,ΠS) is

the optimal merging opportunity of C.

8 Experimental Results

We implemented a tool SATCSS (in Python 2.7) for CSS minification via rule-merging which can be

found in our supplementary material [29]. The source code is also available at the following URL.

https://github.com/matthewhague/sat-css-tool

It constructs the edge order following Section 5 and discovers a merging opportunity following Sec-

tion 7. We use Z3 [18] as the back end SMT and Max-SAT solver. As an additional contribution, our

tool can also generate instances in the extended DIMACS format [3] allowing us to use any Max-SAT

solvers. This output may also provide a source of industrially inspired examples for Max-SAT compe-

tition benchmarks.

304

0

50

100

150

200

250

Figure 13: Box plot of

the file sizes in kilo-

bytes

Our benchmarks comprise 72 CSS files coming from three different sources

(see Appendix D.2 for a complete listing):

• We collected CSS files from each of the top 20 websites on a global rank-

ing list [1].

• CSS files were taken from a further 12 websites selected from the top 20-

65 websites from the listing above.

• Finally, CSS files were taken from 11 smaller websites such as DBLP.

These were examples used during the development of the tool.

This selection gives us a wide range of different types of websites, including

large scale industrial websites and those developed by smaller teams. Note, sev-

eral websites contained more than one CSS file and in this case we took a se-

lection of CSS files from the site. Hence, we collected more examples than the

number of websites used. Figure 13 gives the file-size distribution of the CSS files we collected.

In the following, we describe the optimisations implemented during the development of SATCSS.

We then describe the particulars of the experimental setup and provide the results in Figure 15.

40

https://github.com/matthewhague/sat-css-tool

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

8.1 Optimisations

We give an overview of the optimisations we used when implementing SATCSS. In section 8.4 we

provide a detailed evaluation of the proposed optimisations.

• We introduce variables xk only for nodes appearing in the edge order, rather than for all nodes

in a biclique. This is enough to be able to define sub-bicliques of any Mi that can appear at any

position in the covering, but means that the smallest rule-merging opportunity cannot always be

constructed. However, this reduces the search space and leads to an improvement to run times.

For example, given a biclique

.a { color: red; background: blue }

where the property color: red appears in some pair of the edge ordering, but the property

background: blue does not, we introduce a variable xk which is true whenever the dec-

laration color: red is excluded from the biclique, but do not introduce a similar variable

for background: blue. Since background: blue does not appear in the edge order,

its presence can never cause a violation of the edge ordering. This is not the case for color:

red, hence we still need the allow the possibility of removing it to satisfy the edge order.

• For a rule-merging application to reduce the size of the file, it must remove at least two nodes

from the covering. Hence, for each Mi let jil be the index of the second rule in C containing some

edge in Mi (not necessarily the same edge), and jih be the index of the last rule containing some

edge in Mi Without loss of generality we assert

iM = i⇒
(

j ≥ jil ∧ j ≤ jih
)

.

• We performed the following optimisation when calculating ({Mi}
µ
i=1,F). The majority (58.4%)

of benchmarks all maximal bicliques are orderable at all positions, and the mean percentage

of maximal bicliques that were unorderable at some position was 0.39%, with a maximum of

5.84%. However, there are one or two of the largest examples of our experiments where this

enumeration took a minute or so. Since the number of maximal bicliques that are unorderable at

some position is so small, we decided in our implementation to simply remove all such bicliques

from the analysis. In this case {Mi}
µ
i=1 is an enumeration of all maximal bicliques that are

orderable at all positions j, and F maps all values of [1,m] to ∅. This means that we may not

be able find the optimal rule-merging opportunity as not all bicliques are available, but since the

amount of time required to find a rule-merging opportunity is reduced, we are able to find more

merging opportunities to apply.

• Finally, we allowed a multi-threaded partitioned search. This works as follows. The search space

is divided across n threads, and each thread partitions its search space into m partitions. During

iteration j, thread k allows only those Mi where i = k ∗m + (j mod m). If the fastest thread

finds a merging opportunity in t seconds, we wait up to 0.1t seconds for further instances. We

take the best merging opportunity of those that have completed. A thread reports “no merging

opportunities found” only if none of its partitions contain a merging opportunity.

For the experiments we implemented a simple heuristic to determine the number of threads and

partitions to use. We describe this heuristic here, but first note that better results could likely be

obtained with systematic parameter tuning rather than our ad-hoc settings. The heuristic used was

to count the number of nodes in the CSS file; that is, the total number of selectors and property

declarations (this total includes repetitions of the same node – we do not identify repetitions of

41

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

the same node). The tool creates enough partitions to give up to 750 nodes per partition. If only

two partitions are needed, only one thread is used. Otherwise SATCSS first creates new threads

– up to the total number of CPUs on the machine. Once this limit is reached, each thread is

partitioned further until the following holds: number of threads∗partitions per threads∗750 ≤
number of nodes .

For the edge ordering:

• We do not support attribute selectors in full, but perform simple satisfiability checks on the most

commonly occurring types of constraints. These cover all constraints in our benchmarks. How-

ever, we do support shorthand properties.

• Instead of doing a full Existential Presburger encoding, we do a backwards emptiness check of

the CSS automata. This backwards search collects smaller Existential Presburger constraints

describing the relationship between siblings in the tree, and checks they are satisfiable before

moving to a parent node. Global constraints such as ID constraints are also collected and checked

at the root of the tree. This algorithm is described in Appendix D.1.

8.2 Results

The experiments were run on a Dell Latitude e6320 laptop with 4Gb of RAM and four 2.7GHz Intel

i7-2620M cores. The Python interpreter used was PyPy 5.6 [56] and the backend version of Z3 was 4.5.

Each experiment was run up to a timeout of 30 minutes. In the case where CSS files used media queries

(which our techniques do not yet support), we used stripmq [31] with default arguments to remove the

media queries from CSS files. Also, we removed whitespaces, comments, and invalid CSS from all the

CSS files before they were processed by the minifiers and our tool.

We used a timeout of 30 minutes because minification only needs to be applied once before deploy-

ment of the website. We note that the tool finds many merging opportunities during this period and a

minified stylesheet can be produced after each application of rule-merging. This means the user will be

able to trade time against the amount of size reduction made. Moreover, applications of rule-merging

tend to show a “long-tail” where the first applications found provide larger savings and the later appli-

cations show diminishing returns (see Figure 14). The returns are diminishing because our MaxSAT

encoding always searches for the rule merging opportunity with the largest saving.

8.3 Main Results

Table 1 and Figure 15 summarise the results. We compared our tool with six popular minifiers in current

usage [62]. There are two groups of results: the first set show the results when either our tool or one

of the minifiers is used alone on each benchmark; the second show the results when the CSS files are

run first through a minifier and then through our tool. This second batch of results shows a significant

improvement over running single tools in isolation. Thus, our tool complements and improves existing

minification algorithms and our techniques may be incorporated into a suite of minification techniques.

Table 1 shows the savings, after whitespaces and comments are removed, obtained by SATCSS

and the six minifiers when they are used alone and together. The table presents the savings in seven

percentile ranks that include the minimal (0th), the median (50th), and the maximal values (100th).

The upper half of the table shows the savings obtained in bytes, while the lower half shows the sav-

ings as percentages of the original file sizes. The first seven columns in the table show the savings

when either our tool or one of the minifiers is used alone; the rest of the columns show the results

when the CSS files are processed first by a minifier and then by our tool. Figure 15 shows the same

data in visual form. It can be seen that SATCSS tends to achieve greater savings than each of the

42

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

Tool

Percentile
satcss csso cssnano cleancss minify yui cssmin

satcss +

csso

satcss +

cssnano

satcss +

cleancss

satcss +

minify

satcss +

yui
satcss +

cssmin

0th 0 -70 9 9 0 0 0 37 32 45 22 24 24
20th 320 258 100 199 5 13 3 467 444 562 362 366 369
40th 1011 877 462 738 28 35 24 1942 1353 1733 1241 1082 1158
50th 2013 1527 1042 1354 72 92 61 4025 3022 4253 2518 2290 2736
60th 3065 2955 1556 2081 153 157 117 5007 4370 4677 3264 3279 3304
80th 4820 5656 3822 5449 355 326 212 8268 7202 8595 5108 4765 5127
100th 81693 86367 76238 69573 3501 3464 3224 100734 97710 90710 78245 82101 77827

0th 0.00 -0.56 0.02 0.10 0.00 0.00 0.00 0.14 0.12 0.33 0.09 0.09 0.09
20th 1.79 1.45 0.75 1.21 0.02 0.04 0.01 2.96 2.65 3.60 2.00 2.04 2.04
40th 2.90 2.54 1.47 2.55 0.10 0.17 0.09 4.90 3.94 5.05 3.47 3.41 3.41
50th 3.79 3.29 1.84 3.03 0.15 0.21 0.18 5.78 4.90 6.10 4.03 4.10 4.15
60th 4.62 4.40 2.42 3.64 0.22 0.26 0.21 6.50 5.64 7.45 4.68 4.70 4.68
80th 8.12 6.13 5.18 6.04 0.56 0.64 0.49 10.11 10.98 10.42 8.21 8.09 8.39
100th 26.44 27.95 24.67 25.68 6.44 6.38 3.56 32.60 31.62 29.54 25.59 26.57 25.66

Table 1: Percentile ranks of the savings in bytes (above) and in percentages (below)

six minifiers on our benchmarks. Furthermore, even greater savings can be obtained when SATCSS

is used in conjunction with any of the six minification tools. More precisely, when run individually,

SATCSS achieves savings with a third quartile of 6.90% and a median value of 3.79%, while the

six minifiers achieve savings with third quantiles and medians up to 5.45% and 3.29%, respectively.

When we run SATCSS after running any one of these minifiers, the third quartile of the savings can

be increased to 8.26% and the median to 4.70%. The additional gains obtained by SATCSS on top

of the six minifiers (as a percentage of the original file size) have a third quartile of 5.03% and a

median value of 2.80%. Moreover, the ratios of the percentage of savings made by SATCSS to the

percentage of savings made by the six minifiers have third quartiles of at least 136% and medians of

at least 48%. These figures clearly indicate a substantial proportion of extra space savings made by

SATCSS. We comment in the next section on how our work may be integrated with existing tools.

0 500 1000 1500

0
5

1
0

1
5

Time (s)

S
a
v
in

g
 %

Figure 14: Savings against time for SATCSS

on each benchmark

In Figure 14 we plot for each benchmark, the savings

made as time progresses. Each line represents one bench-

mark. Our algorithm repeatedly searches for and applies

merging opportunities. Once one opportunity has been

found, the search begins again for another. Hence, the

longer SATCSS is run, the more opportunities can be found,

and the more space saved. Since we search for the opti-

mal merging opportunities first, we can observe a long-tail,

with the majority of the savings being made early in the run.

Hence, SatCSS could be stopped early while still obtaining

a majority of the benefits. We further note that in 43 cases,

SATCSS terminated once no more merging opportunities

could be found. In the remaining 29 cases, the timeout was

reached. If the timeout were extended, further savings may

be found.

Finally, we remark on the validation of our tool. First,

our model is built upon formal principles using techniques that are proven to maintain the CSS seman-

tics. Moreover, our tool verifies that the output CSS is semantically equivalent to the input CSS. Thus

we are confident that our techniques are also correct in practice. A reliable method for truly comparing

whether the rendering of webpages using the original CSS and the minified CSS is identical is a matter

for future work, for which the recent Visual Logic of Panchekha et al. [51] may prove useful. In lieu of

a systematic validation, for each of our experiment inputs, we have visually verified that the rendering

remains unchanged by the minification. Such a visual inspection can, of course, only be considered a

43

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

81693 86367
76238 69573

100734 97710 90710
78245 82101 77827

0

2000

4000

6000

8000

10000

12000

14000

16000

s
a

tc
s
s

c
s
s
o

c
s
s
n

a
n

o

c
le

a
n

c
s
s

m
in

if
y

y
u

i

c
s
s
m

in

s
a

tc
s
s
 +

 c
s
s
o

s
a

tc
s
s
 +

 c
s
s
n

a
n

o

s
a

tc
s
s
 +

 c
le

a
n

c
s
s

s
a

tc
s
s
 +

 m
in

if
y

s
a

tc
s
s
 +

 y
u

i

s
a

tc
s
s
 +

 c
s
s
m

in

B
y
te

s

3501 3464 3224

26.4
28

24.7 25.7

32.6 31.6
29.5

25.6 26.6 25.7

0

4

8

12

16

20

s
a

tc
s
s

c
s
s
o

c
s
s
n

a
n

o

c
le

a
n

c
s
s

m
in

if
y

y
u

i

c
s
s
m

in

s
a

tc
s
s
 +

 c
s
s
o

s
a

tc
s
s
 +

 c
s
s
n

a
n

o

s
a

tc
s
s
 +

 c
le

a
n

c
s
s

s
a

tc
s
s
 +

 m
in

if
y

s
a

tc
s
s
 +

 y
u

i

s
a

tc
s
s
 +

 c
s
s
m

in

P
e

rc
e

n
t

6.4 6.4

3.6

Figure 15: Box plots of the savings in bytes (above) and in percentages (below)

44

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

sanity-check.

8.4 Evaluations of Optimisations

For each of our optimisations, we ran SATCSS on the unminified 72 benchmarks with the optimisation

disabled. The results are shown in Figure 16 and Figure 17. In Figure 17, the “satcss” column shows the

performance of SATCSS implemented as described above. As described above, of the 72 benchmarks,

SATCSS completed within the timeout (no more merging-opportunities could be found) in 43 cases, and

was stopped early due to the timeout in the remaining 29. The comparison with the effect of disabling

optimisations is shown in Table 2.

Figure 16 shows the time taken by SATCSS to construct the edge order for each benchmark using

the optimised emptiness of intersection algorithm presented in Appendix D.1 and the non-optimised en-

coding presented in Section 6. The timeout was kept at 30 minutes. The optimised algorithm completed

the edge order construction on all benchmarks, while the timeout was reached in 19 cases by the unopti-

mised algorithm. A clear advantage can be seen for the optimised approach.

1775.1

0

100

200

300

400

500

600

700

800

900

1000

o
p

ti
m

is
e

d

u
n

o
p

ti
m

is
e

d

T
im

e
 (

s
)

216.4

Figure 16: Box plots of the time taken

to construct the CSS edge order with the

optimised and unoptimised emptiness of

intersection tests

Next we compared the straightforward encoding of the rule-

merging problem into Max-SAT discussed at the start of Sec-

tion 7 with the biclique encoding which was the main topic

of Section 7. SATCSS using the straightforward encoding ap-

pears as “nobicliques” in Figure 17. With the straightforward

encoding, the tool completed within the timeout in 45 cases, and

reached the timeout in the remaining 27. It can been seen that

there is a clear benefit to the biclique encoding.

We also consider the optimisation that introduces variables

xk only for nodes appearing in the edge order, rather than for

all nodes in a biclique. Disabling this optimisation appears as

“fullexc” in Figure 17. With this optimisation disabled, the tool

completed within the timeout in 36 cases, and reached the time-

out in the remaining 36. We can see a modest gain from this

simple optimisation.

We then study the effect of removing all unorderable bi-

cliques. The “unlimbicliques” column in Figure 17 shows the effect of allowing ({Mi}
µ
i=1,F) to be

calculated in full. That is, unorderable bicliques are split into orderable sub-bicliques. With full biclique

enumeration, the tool completed within the timeout in 42 cases, and reached the timeout in the remain-

ing 30. This had only a small effect on performance, which is expected. The purpose of this limiting

biclique generation in SATCSS is to prevent the rare examples of unorderable bicliques from having a

large effect on performance in some cases.

The next optimisation in Figure 17, “nothread”, shows the performance of SATCSS with multi-

threading and partitioning disabled. That is, the search space is not split up across several Max-SAT

encodings. Without multi-threading or partitioning, the tool completed within the timeout in 40 cases,

and reached the timeout in the remaining 32. There is a noticeable degradation in performance when

this optimisation is disabled. The final column in Figure 17 studies the following hypothetical scenario.

The reader may wonder whether CSS developers may be able to improve performance by specifying

invariants of the documents to which the CSS will be applied. For example, the developer may specify

that a node with class a will never also have class b. In this case pairs such as (.a,.b) can be removed

from the edge-order. Thus, document-specific knowledge may improve performance by reducing the

number of ordering constraints that need to be maintained. The column “noord” shows the performance

45

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

81693
68733

119483

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

s
a

tc
s
s

n
o

b
ic

liq
u

e
s

fu
lle

x
c

u
n

lim
b

ic
liq

u
e

s

n
o

th
re

a
d

n
o

o
rd

B
y
te

s

1098

21317

13509

26.4

22.2
25.5 25.6

38.7

0

4

8

12

16

20

s
a

tc
s
s

n
o

b
ic

liq
u

e
s

fu
lle

x
c

u
n

lim
b

ic
liq

u
e

s

n
o

th
re

a
d

n
o

o
rd

P
e

rc
e

n
t

14.7

Figure 17: The savings in bytes (above) and in percentages (below) with certain optimisations disabled

46

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

of SATCSS when the edge-ordering is empty, i.e., there is no edge ordering. Without the edge order-

ing, the tool completed within the timeout in 50 cases, and reached the timeout in the remaining 22.

This represents a best-case scenario if document invariants were considered. Thus, if we were to ex-

tend SATCSS to also take a set of invariants, we could see a large improvement in the savings found.

However, we also note that these savings do not dwarf the performance of SATCSS without invariants.

Optimisation Terminated

satcss 43

nobicliques 45

fullexc 36

unlimbicliques 42

nothread 40

noord 50

Table 2: The number of examples termi-

nating with no more discovered merging

opportunities in standard mode and with

certain optimisations disabled

9 Related Work

CSS minification started to receive attention in the web program-

ming community around the year 2000. To the best of our knowl-

edge, the first major tools that could perform CSS minification

were Yahoo! YUI Compressor [61] and Microsoft Ajax Minifier,

both of which were developed around 2004–2006. This is fol-

lowed by the development of many other CSS minifiers including

(in no particular order) cssmin [8], clean-css [53], csso

[19], cssnano [13], and minify [16]. Such minifiers mostly

apply syntactic transformations including removing whitespace

characters, comments, and replacing strings by their abbrevia-

tions (e.g. #f60 by #ff6600). More and more advanced op-

timisations are also being developed. For example, cssnano

provides a limited support of our rule-merging transformations, wherein only adjacent rules may be

merged. The lack of techniques for handling the order dependencies of CSS rules [64] was most likely

one main reason why a more general notion of rule-merging transformations (e.g. that can merge rules

that are far away in the file) is not supported by CSS minifiers.

In our experiments, we ran SATCSS after running the existing minifiers described above. It is

likely that the order of execution is important: the rewrites applied by existing minifiers will put the

CSS into a more normalised format, which will improve the possibility of selectors sharing the same

declarations. Moreover, these minifiers implement ad-hoc techniques, such as the limited rule-merging

transformations of cssnano described above. After an application of our tool it is possible that some

of these ad-hoc techniques may become applicable, leading to further savings. Thus, we posit that our

techniques could be combined with the techniques of existing minifiers in a combined minification loop,

which is run until a fixed point or timeout is reached.

Although the importance of CSS minification is understood in industry, the problem received little

attention in academia until very recently. Below we will mention the small number of existing work on

formalisation of CSS selectors and CSS minification, and other relevant work.

The lack of theories for reasoning about CSS selectors was first mentioned in the paper [25], wherein

the authors developed a tree logic for algorithmically reasoning about CSS selectors, i.e., by developing

algorithms for deciding satisfiability of formulas in the logic. This formalisation does not capture the

whole class of CSS3 selectors; as remarked in their follow-up paper [11], the logic captures 70% of

the selectors in their benchmarks from real-world CSS files. In particular, they do not fully support

attribute selectors (e.g. [l*="bob"]). Our paper provides a full formalisation of CSS3 selectors. In

addition, their tree logic can express properties that are not expressible in CSS. Upon a closer inspection,

their logic is at least as expressive as µ-calculus, which was a well-known logic in database theory for

formalising query languages over XML documents, e.g., see [39, 49] for two wonderful surveys. As

such, the complexity of satisfiability for their tree logic is EXPTIME-hard. Our formalisation captures

no more than the expressive power of CSS3 selectors, which helps us obtain the much lower complexity

NP and enables the use of highly-optimised SMT-solvers. There is a plethora of other work on logics

47

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

and automata on unranked trees (with and without data), e.g., see [42, 6, 27, 69, 70, 68, 43, 33, 5, 50,

23, 40, 24, 21, 59, 17, 26] and the surveys [39, 49, 9]. However, none of these formalisms can capture

certain aspects of CSS selectors (e.g. string constraints on attribute values), even though they are much

more powerful than CSS selectors in other aspects (e.g. navigational).

There are a handful of research results on CSS minification that appeared in recent years. Loosely

speaking, these optimisations can be categorised into two: (a) document-independent, and (b) document-

dependent. Document-independent optimisations are program transformations that are performed com-

pletely independently of the web documents (XML, HTML, etc.). On the other hand, document-

dependent optimisations are performed with respect to a (possibly infinite) set of documents. Existing

CSS minifiers only perform document-independent optimisations since they are meant to preserve the

semantics of the CSS file regardless of the DOMs to which the CSS file is applied. Our work in this

paper falls within this category too. Such optimisations are often the most sensible option in practice

including (1) the case of generic stylesheets as part of web templates (e.g. WordPress), and (2) the case

when the DOMs are generated by a program. Case (2) requires some explanation. A typical case of

DOMs being generated by programs occurs in HTML5 web pages. An HTML5 application comes with

a finite set of HTML documents, JavaScript code, and CSS files. The presence of JavaScript means

that potentially infinitely many possible DOM-trees could be generated and displayed by the browser.

Therefore, a CSS minification should not affect the rendering of any such tree by the browser. Al-

though a document-dependent optimisation (that take these infinitely many trees into account) seems

appropriate, this is far from realistic given the long-standing difficulty of performing sound static anal-

ysis for JavaScript especially in the presence of DOM-trees [58, 65, 2, 36, 35, 30]. This would make

an interesting long-term research direction with many more advances on static analysis for JavaScript.

However, the problem is further compounded by the multitude of frameworks deployed on the server-

side for HTML creation (e.g. PHP, Java Server Pages, etc.), for which individual tools will need to

be developed. Until then, a practical minifier for HTML5 applications will have to make do with

document-independent optimisations for CSS files.

The authors of [45] developed a document-dependent dynamic analysis technique for detecting and

removing unused CSS selectors in a CSS file that is part of an HTML5 application. A similar tool,

called UnCSS [41], was also later developed. This is done by instrumenting the HTML5 application

and removing CSS selectors that have not been used by the end of the instrumentation. The drawback

of this technique is that it cannot test all possible behaviours of an HTML5 application and may may

accidentally delete selectors that can in reality be used by the application. It was noted in [30] that such

tools may accidentally delete selectors, wherein the HTML5 application has event listeners that require

user interactions. The same paper [30] develops a static analysis technique for overapproximating the set

of generated DOM-trees by using tree rewriting for abstracting the dynamics of an HTML5 application.

The technique, however, covers only a very small subset of JavaScript, and is difficult to extend without

first overcoming the hard problem of static analysis of JavaScript.

The authors of [11] applied their earlier techniques [25] to develop a document-independent CSS

minification technique that removes “redundant” property declarations, and merges two rules with se-

mantically equivalent selectors. The optimisations that they considered are orthogonal to and can be

used in conjunction with the optimisation that we consider in this paper. More precisely, they developed

an algorithm for checking selector subsumption (given two selectors S1 and S2, whether the selector S1

is subsumed by the selector S2, written S1 ⊆ S2). A redundant property declaration p in a rule R1 with

a selector S1 can, then, be detected by finding a rule R2 that also contains the declaration p and has a

selector S2 with a higher specificity than S1 and that S1 ⊆ S2. As another example, whenever we can

show that the selectors S1 and S2 of two rules R1 and R2 to be semantically equivalent (i.e. S1 ⊆ S2

and S2 ⊆ S1), we may merge R1 with R2 under certain conditions. The authors of [11] provided suffi-

cient conditions for performing this merge by relating the specificities of S1 and S2 with the specificities

48

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

of other related selectors in the file (but not accounting for the order of appearances of these rules in the

file). In general, a CSS rule might have multiple selectors (a.k.a. selector group), each with a different

specificity, and it is not clear from the presentation of the paper [11] how their optimisations extend to

the general case.

The authors of [44] developed a document-dependent10 CSS minification method with an advanced

type of rule merging as one of their optimisations. This is an ambitious work utilising a number of

techniques from areas such as data mining and constraint satisfaction. Although their work differs from

ours because of its document-dependence, the use of rule-merging is closely related to our own, hence

we will describe in detail some key differences with our approach. The techniques presented in this

paper can be viewed as a substantial generalisation of their rule merging optimisation. Loosely speaking,

in terms of our graph-theoretic framework, their technique first enumerates all maximal bicliques with at

least two selectors. This is done with the help of an association rule mining algorithm (from data mining)

with a set of property declarations viewed as an itemset. Second, for each such maximal biclique B,

a value n is computed that reflects how much saving will be obtained if B could somehow be inserted

into the file and every occurrence of each property declaration in B is erased from the rest of the CSS

file. Note that n is independent of where B is inserted into the CSS file. Third, for each such maximal

biclique B (ranked according to their values in a non-increasing order), a solver for the (finite-domain)

constraint satisfaction problem is invoked to check whether B can be placed in the file (with every

occurrence of each property declaration in B is erased from the rest of the CSS file) while preserving

the order dependency. If this check fails, the solver will also be invoked to check if one can insert sub-

bicliques of B (with a maximal set S of selectors with |S| ≥ 2) in the file. Possible positions in the

file to place each selector of B are encoded as variables constrained by the edge order dependency that

is relativised to the provided HTML documents. To test whether two edges should be ordered in this

relativised edge order, the selectors are not subject to a full intersection test, but instead a relativised

intersection test that checks whether there is some node in the given finite set of html documents that

is matched by both selectors. Their techniques do not work when the HTML documents are not given,

which we handle in this paper. Another major difference to our paper is that their algorithm sequentially

goes through every maximal bicliqueB (ranked according to their values) and checks if it can be inserted

into the file, which is computationally too prohibitive especially when the (unrelativised) edge order ≺
is used. Our algorithm, instead, fully relegates the search of an appropriate B and the position in the file

to place it to a highly-optimised Max-SAT solver, which scales to real-world CSS files. In addition, their

type of rule merging is also more restricted than ours for two other reasons. First, the new rule inserted

into the file has to contain a maximal set of selectors. This prohibits many rule-merging opportunities

and in fact does not subsume the merging adjacent rule optimisation of cssnano [13] in general. For

example, consider the CSS file

.class1 { color:blue }

.class2 { color:blue }

.class3 { color:red }

.class4 { color:blue }

Notice that we cannot group together the first, second, and fourth rules since this would change the

colour of a node associated with the classes class2 and class3, or with the classes .class3 and

class4. On the other hand, the first two rules can be merged resulting in the new file

.class1, .class2 { color:blue }

.class3 { color:red }

.class4 { color:blue }

10More precisely, dependent on a given finite set of HTML documents

49

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

However, this is not permitted by their merging rule since .class1,.class2{color:blue} does

not contain a maximal set of selectors. Second, given a maximal biclique B, their merging operation

erases every occurrence of the declarations ofB everywhere else in the file. This further rules out certain

rule-merging opportunities. For example, consider the CSS file

.class1 { color:blue; font-size: large }

.class2 { color:blue; font-size: large }

.class4 { font-size: large }

.class3 { color:red }

.class4 { color:blue }

and observe the following maximal biclique in the file.

.class1, .class2, .class4 { color:blue; font-size: large }

Unfortunately, this is not a valid opportunity using their merging rule since this CSS file is not equivalent

to

.class1, .class2, .class4 { color:blue; font-size: large }

.class3 { color:red }

nor to the following file.

.class3 { color:red }

.class1, .class2, .class4 { color:blue; font-size: large }

In this paper, we permit duplicate declarations, and would insert this maximal biclique just before the

fourth rule in the file (and perform trim) resulting in the following equivalent file.

.class1, .class2, .class4 { color:blue; font-size: large }

.class3 { color:red }

.class4 { color: blue }

Finally, each maximal biclique in the enumeration of [44] does not allow two property declarations

with the same property name. As we explained in Section 7, CSS rules satisfying this property are

rather common since they support fallback options. Handling such bicliques (which we do in this

paper) requires extra technicalities, e.g., the notion of orderable bicliques, and adding an order to the

declarations in a biclique.

We also mention that there have been works [46, 52, 34] on solving web page layout using constraint

solvers. These works are orthogonal to this paper. For example, [52] provides a mechanised formali-

sation of the semantics of CSS for web page layout (in quantifier-free linear arithmetic), which allows

them to use an SMT-solver to automatically reason about layout. Our work provides a full formalisation

of CSS selectors, which is not especially relevant for layout. Conversely, the layout semantics of various

property declarations is not relevant in our CSS minification problem.

Finally, we also mention the potential application of rule-merging to CSS refactoring. This was

already argued in [44], wherein the metric of minimal file size is equated with minimal redundancies.

More research is required to discover other classes of CSS transformations and metrics that are more

meaningful in the context of improving the design of stylesheets. Constraint-based refactoring has also

been studied in the broader context of programming languages, e.g., see [66, 71]. It would be interesting

to study how refactoring for CSS can be cast into the framework of constraint-based refactoring as

previously studied (e.g. in [66]).

50

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

10 Conclusion and Future Work

We have presented a new CSS minification technique via merging similar rules. Our techniques can

handle stylesheets composed of CSS rules which contain a set of CSS Level 3 selectors and list of prop-

erty declarations. This technique exploits the fact that new rules may be introduced that render other

parts of the document redundant. After removing the redundant parts, the overall file size may be re-

duced. Such a solution has required the development of a complete formalisation of CSS selectors and

their intersection problem as well as a formalisation of the dependency ordering present in a stylesheet.

This intersection problem was solved by means of an efficient encoding to quantifier-free integer lin-

ear arithmetic, for which there are highly-optimised SMT solvers. Moreover, we have formalised our

CSS rule-merging problem and presented a solution to this problem using an efficient encoding into

MaxSAT formulas. These techniques have been implemented in our tool SATCSS which we have com-

prehensively compared with state-of-the-art minification tools. Our results show clear benefits of our

approach.

Both our formalisation and our tool strictly follow the W3C specifications. In practice, web de-

velopers may not always follow these guidelines, and implement convenient abuses that do not trouble

existing web browsers. One particular example is the use of ID values that are not necessarily unique.

In this example case, it would be possible to treat ID values similarly to classes, and relax our analy-

sis appropriately. In general, one may wish to adapt our constraints to handle other common abuses.

However, this is beyond the scope of the current work.

CSS preprocessors such as Less [60] and Sass [14] — which extend the CSS language with useful

features such as variables and partial rules — are commonly used in web development. Since Less and

Sass code is compiled into CSS before deployment, our techniques are still applicable.

There are many technologies involved in website development and deployment. These technologies

provide a variety of options for further research, some of which we briefly discuss here.

First, we may expand the scope of the CSS files we target. For example, we may expand our defini-

tion of CSS selectors to include features proposed in the CSS Selectors Level 4 working draft [20] (i.e.

still not stable). These features include extensions of the negation operator to allow arbitrary selectors

to be negated. It would be interesting to systematically investigate the impact of these features on the

complexity of the intersection problem. We believe that such a systematic study would be informative

in determining the future standards of CSS Selectors.

Another related technology is that of media queries that allow portions of a CSS file to only be

applied if the host device has certain properties, such as a minimum screen size. This would involve

defining semantics of media queries (not part of selectors), and extending our rule-merging problem to

include media queries and rules grouped under media queries.

Second, we could also consider additional techniques for stylesheet optimisation. Currently we take

a greedy approach where we search for the “best” merging opportunity at each iteration. Techniques

such as simulated annealing allow a proportion of non-greedy steps to be applied (i.e. choose a merging

opportunity that does not provide the largest reduction in file size). This allows the optimisation process

to explore a larger search space, potentially leading to improved final results. Another approach might

be to search for multiple simultaneous rule-merging opportunities.

Finally, our current optimisation metric is the raw file size. We could also attempt to provide an

encoding that seeks to find the best file size reduction after gzip compression. [Gzip is now supported

by many web hosts and most modern browsers (though not including old IE browsers).] One simple

technique that could help bring down the compressed file size is to sort the selectors and declarations in

each rule after the minification process is done [37].

51

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

Acknowledgements

We are grateful for the support that we received from the Engineering and Physical Sciences Research

Council [EP/K009907/1], Google (Faculty Research Award), and European Research Council (grant

agreement no. 759969). We also thank Davood Mazinanian for answering questions about his work,

and anonymous reviewers for their helpful comments.

References

[1] Alexa Internet. Alexa top 500 global sites. https://www.alexa.com/topsites, 2017. Referred in

April 2017.

[2] E. Andreasen and A. Møller. Determinacy in static analysis for jQuery. In OOPSLA, pages 17–31, 2014.

[3] Josep Argelich, Chu Min Li, Felip Manyà, and Jordi Planes. Max-sat’16 competition.

http://maxsat.ia.udl.cat/, 2016. Referred in April 2017.

[4] Tab Atkins Jr., Elika J. Etemad, and Florian Rivoal. Css snapshot 2017.

https://www.w3.org/TR/css-2017, 2017. Referred in August 2017.

[5] Michael Benedikt, Wenfei Fan, and Floris Geerts. XPath satisfiability in the presence of dtds. In Proceedings

of the Twenty-fourth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June

13-15, 2005, Baltimore, Maryland, USA, pages 25–36, 2005.

[6] Michael Benedikt, Wenfei Fan, and Gabriel M. Kuper. Structural properties of XPath fragments. In Database

Theory - ICDT 2003, 9th International Conference, Siena, Italy, January 8-10, 2003, Proceedings, pages

79–95, 2003.

[7] Nikolaj Bjørner and Nina Narodytska. Maximum satisfiability using cores and correction sets. In Proceedings

of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,

Argentina, July 25-31, 2015, pages 246–252, 2015.

[8] Johan Bleuzen. cssmin. https://www.npmjs.com/package/cssmin, 2017. Referred August 2017.

[9] Mikołaj Bojańczyk. Automata for data words and data trees. In Proceedings of the 21st International Con-

ference on Rewriting Techniques and Applications, RTA 2010, July 11-13, 2010, Edinburgh, Scottland, UK,

pages 1–4, 2010.

[10] Bert Bos. Cascading style sheets level 2 revision 2 (css 2.2) specification.

https://www.w3.org/TR/CSS22/, 2016. Referred August 2017.

[11] Martí Bosch, Pierre Genevès, and Nabil Layaïda. Reasoning with style. In Proceedings of the Twenty-Fourth

International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,

2015, pages 2227–2233, 2015.

[12] Aaron R. Bradley and Zohar Manna. The Calculus of Computation: Decision Procedures with Applications

to Verification. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[13] Ben Briggs and Contributors. cssnano. http://cssnano.co, 2015. Referred in August 2017.

[14] Hampton Catlin, Natalie Weizenbaum, Chris Eppstein, and Contributors. Sass.

http://sass-lang.com/, 2006. Referred in August 2017.

[15] T. Çelik, E. J. Etemad, D. Glazman, I. Hickson, P. Linss, and J. Williams. Selectors level 3: W3c recommen-

dation 29 september 2011. http://www.w3.org/TR/2011/REC-css3-selectors-20110929/,

2011. Referred in August 2017.

[16] Steve Clay and Contributors. minify. https://github.com/mrclay/minify, 2017. Referred in

August 2017.

[17] Claire David, Leonid Libkin, and Tony Tan. Efficient reasoning about data trees via integer linear program-

ming. ACM Trans. Database Syst., 37(3):19:1–19:28, 2012, doi:10.1145/2338626.2338632.

[18] L. Mendonça de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, 2008.

[19] Roman Dvornov and Contributors. csso. https://github.com/css/csso, 2017. Referred in August

2017.

52

https://www.alexa.com/topsites
http://maxsat.ia.udl.cat/
https://www.w3.org/TR/css-2017
https://www.npmjs.com/package/cssmin
https://www.w3.org/TR/CSS22/
http://cssnano.co
http://sass-lang.com/
http://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://github.com/mrclay/minify
https://github.com/css/csso

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

[20] Elika J. Etemad and Tab Atkins Jr. Selectors level 4: W3c working draft 2 may 2013.

http://www.w3.org/TR/2013/WD-selectors4-20130502/, 2013.

[21] Diego Figueira. Reasoning on words and trees with data: On decidable automata on data words and data

trees in relation to satisfiability of LTL and XPath. PhD thesis, Ecole Normale Superieure de Cachan, 2010.

[22] Ferenc Gécseg and Magnus Steinby. Handbook of formal languages, vol. 3. chapter Tree Languages, pages

1–68. Springer-Verlag New York, Inc., New York, NY, USA, 1997.

[23] Floris Geerts and Wenfei Fan. Satisfiability of XPath queries with sibling axes. In Database Programming

Languages, 10th International Symposium, DBPL 2005, Trondheim, Norway, August 28-29, 2005, Revised

Selected Papers, pages 122–137, 2005.

[24] Pierre Genevès and Nabil Layaïda. A system for the static analysis of XPath. ACM Trans. Inf. Syst., 24(4):475–

502, 2006, doi:10.1145/1185882.

[25] Pierre Genevès, Nabil Layaïda, and Vincent Quint. On the analysis of cascading style sheets. In Proceedings

of the 21st World Wide Web Conference 2012, WWW 2012, Lyon, France, April 16-20, 2012, pages 809–818,

2012.

[26] Pierre Genevès, Nabil Layaïda, Alan Schmitt, and Nils Gesbert. Efficiently deciding µ-calculus with converse

over finite trees. ACM Trans. Comput. Log., 16(2):16:1–16:41, 2015, doi:10.1145/2724712.

[27] Georg Gottlob and Christoph Koch. Monadic queries over tree-structured data. In 17th IEEE Symposium

on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings, pages

189–202, 2002.

[28] Matthew Hague and Anthony Widjaja Lin. Maxsat benchmarks: Css refactoring. In MaxSAT Evaluation

2017: Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of

Publications B, University of Helsinki, 2017.

[29] Matthew Hague, Anthony Widjaja Lin, and Chih-Duo Hong. Data and Source Code for Sat CSS.

https://figshare.com/articles/Data_and_Source_Code_for_Sat_CSS/7277324,

2018, doi:10.17637/rh.7277324.v1.

[30] Matthew Hague, Anthony Widjaja Lin, and C.-H. Luke Ong. Detecting redundant CSS rules in HTML5

applications: a tree rewriting approach. In Proceedings of the 2015 ACM SIGPLAN International Conference

on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH

2015, Pittsburgh, PA, USA, October 25-30, 2015, pages 1–19, 2015.

[31] Jake Hickenlooper. stripmq. https://www.npmjs.com/package/stripmq, 2014. Referred in Au-

gust 2017.

[32] Ian Hickson, Robin Berjon, Steve Faulkner, Travis Leithead, Erika Doyle Navara, Edward O’Connor, and

Silvia Pfeiffer. Html5. https://www.w3.org/TR/html5/, 2014. Referred August 2017.

[33] Jan Hidders. Satisfiability of XPath expressions. In Database Programming Languages, 9th International

Workshop, DBPL 2003, Potsdam, Germany, September 6-8, 2003, Revised Papers, pages 21–36, 2003.

[34] Thibaud Hottelier and Rastislav Bodik. Synthesis of layout engines from relational constraints. In Proceedings

of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,

and Applications, OOPSLA 2015, pages 74–88, New York, NY, USA, 2015. ACM.

[35] S. H. Jensen, M. Madsen, and A. Møller. Modeling the HTML DOM and browser API in static analysis of

JavaScript web applications. In SIGSOFT/FSE, pages 59–69, 2011.

[36] S. H. Jensen, A. Møller, and P. Thiemann. Type Analysis for JavaScript. In SAS, pages 238–255, 2009.

[37] Meitar Moscovitz Joseph R. Lewis. AdvancED CSS. APress, 2010.

[38] Enver Kayaaslan. On enumerating all maximal bicliques of bipartite graphs. In 9th Cologne-Twente Workshop

on Graphs and Combinatorial Optimization, Cologne, Germany, May 25-27, 2010. Extended Abstracts, pages

105–108, 2010.

[39] Leonid Libkin. Logics for unranked trees: An overview. Logical Methods in Computer Science, 2(3), 2006,

doi:10.2168/LMCS-2(3:2)2006.

[40] Leonid Libkin and Cristina Sirangelo. Reasoning about XML with temporal logics and automata. J. Applied

Logic, 8(2):210–232, 2010, doi:10.1016/j.jal.2009.09.005.

53

http://www.w3.org/TR/2013/WD-selectors4-20130502/
https://figshare.com/articles/Data_and_Source_Code_for_Sat_CSS/7277324
https://www.npmjs.com/package/stripmq
https://www.w3.org/TR/html5/

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

[41] Glacomo Martino and Contributors. Uncss. https://github.com/giakki/uncss, 2013. Referred

April 2017.

[42] Maarten Marx. Conditional xpath. ACM Trans. Database Syst., 30(4):929–959, 2005,

doi:10.1145/1114244.1114247.

[43] Maarten Marx and Maarten de Rijke. Semantic characterizations of navigational xpath. SIGMOD Record,

34(2):41–46, 2005, doi:10.1145/1083784.1083792.

[44] Davood Mazinanian, Nikolaos Tsantalis, and Ali Mesbah. Discovering refactoring opportunities in cascading

style sheets. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014, pages 496–506, 2014.

[45] Ali Mesbah and Shabnam Mirshokraie. Automated analysis of CSS rules to support style maintenance. In

34th International Conference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland,

pages 408–418, 2012.

[46] Leo A. Meyerovich and Rastislav Bodík. Fast and parallel webpage layout. In Proceedings of the 19th

International Conference on World Wide Web, WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010,

pages 711–720, 2010.

[47] A. Muscholl and I. Walukiewicz. An np-complete fragment of LTL. Int. J. Found. Comput. Sci., 16(4):743–

753, 2005, doi:10.1142/S0129054105003261.

[48] Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using core-guided maxsat resolution. In

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City,

Québec, Canada., pages 2717–2723, 2014.

[49] Frank Neven. Automata theory for xml researchers. SIGMOD Rec., 31(3):39–46, September 2002,

doi:10.1145/601858.601869.

[50] Frank Neven and Thomas Schwentick. On the complexity of xpath containment in the presence of disjunction,

dtds, and variables. Logical Methods in Computer Science, 2(3), 2006, doi:10.2168/LMCS-2(3:1)2006.

[51] Pavel Panchekha, Adam T. Geller, Michael D. Ernst, Zachary Tatlock, and Shoaib Kamil. Verifying that

web pages have accessible layout. In Proceedings of the 39th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, pages 1–14,

2018.

[52] Pavel Panchekha and Emina Torlak. Automated reasoning for web page layout. In Proceedings of the 2016

ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Ap-

plications, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November 4,

2016, pages 181–194, 2016.

[53] Jakub Pawlowicz. clean-css. https://github.com/jakubpawlowicz/clean-css, 2017. Re-

ferred in August 2017.

[54] René Peeters. The maximum edge biclique problem is np-complete. Discrete Applied Mathematics,

131(3):651–654, 2003, doi:10.1016/S0166-218X(03)00333-0.

[55] Justyna Petke. Bridging Constraint Satisfaction and Boolean Satisfiability. Artificial Intelligence: Founda-

tions, Theory, and Algorithms. Springer, 2015.

[56] Armin Rigo and Contributors. Pypy. http://pypy.org/, 2007. Referred in August 2017.

[57] B. Scarpellini. Complexity of subcases of presburger arithmetic. Trans. of AMS, 284(1):203–218, 1984.

[58] M. Schäfer, M. Sridharan, J. Dolby, and F. Tip. Dynamic determinacy analysis. In PLDI, pages 165–174,

2013.

[59] Helmut Seidl, Thomas Schwentick, Anca Muscholl, and Peter Habermehl. Counting in trees for free. In

Automata, Languages and Programming: 31st International Colloquium, ICALP 2004, Turku, Finland, July

12-16, 2004. Proceedings, pages 1136–1149, 2004.

[60] Alexis Sellier and Contributors. Less. http://lesscss.org/, 2009. Referred in August 2017.

[61] Thomas Sha and Contributors. Yui compressor. http://yui.github.io/yuicompressor/, 2014. Referred August

2017.

[62] Slant. Eight best css minifiers as of 2017. https://www.slant.co/topics/261/~best-css-minifiers,

54

https://github.com/giakki/uncss
https://github.com/jakubpawlowicz/clean-css
http://pypy.org/
http://lesscss.org/
https://www.slant.co/topics/261/~best-css-minifiers

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

2017. Referred in April 2017.

[63] Jennifer Slegg. Google mobile first index: Page speed included as a ranking factor. The SEM Post, March

2017.

[64] Steve Souders. High Performance Web Sites: Essential Knowledge for Front-End Engineers. O’Reilly Media,

2007.

[65] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip. Correlation tracking for points-to analysis of

JavaScript. In ECOOP, pages 435–458, 2012.

[66] Friedrich Steimann. Constraint-based refactoring. ACM Trans. Program. Lang. Syst., 40(1):2:1–2:40, 2018,

doi:10.1145/3156016.

[67] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time: Preliminary report.

In Proceedings of the 5th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1973, Austin,

Texas, USA, pages 1–9, 1973.

[68] Balder ten Cate, Tadeusz Litak, and Maarten Marx. Complete axiomatizations for XPath fragments. J. Applied

Logic, 8(2):153–172, 2010, doi:10.1016/j.jal.2009.09.002.

[69] Balder ten Cate and Maarten Marx. Navigational XPath: calculus and algebra. SIGMOD Record, 36(2):19–26,

2007, doi:10.1145/1328854.1328858.

[70] Balder ten Cate and Maarten Marx. Axiomatizing the logical core of XPath 2.0. Theory Comput. Syst.,

44(4):561–589, 2009, doi:10.1007/s00224-008-9151-9.

[71] Frank Tip, Robert M. Fuhrer, Adam Kiezun, Michael D. Ernst, Ittai Balaban, and Bjorn De Sut-

ter. Refactoring using type constraints. ACM Trans. Program. Lang. Syst., 33(3):9:1–9:47, 2011,

doi:10.1145/1961204.1961205.

[72] Unicode, Inc. The unicode standard, version 9.0. http://www.unicode.org/versions/Unicode9.0.0,

2016. Referred in August 2017.

[73] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for Concurrency -

Structure versus Automata (8th Banff Higher Order Workshop, August 27 - September 3, 1995, Proceedings),

pages 238–266, 1995.

[74] Mihalis Yannakakis. Node- and edge-deletion np-complete problems. In Proceedings of the 10th Annual ACM

Symposium on Theory of Computing, May 1-3, 1978, San Diego, California, USA, pages 253–264, 1978.

Appendix

A Additional Material for Max-SAT Encoding

Recall, given a valid covering C = {Bi}
m
i=1 of a CSS graph G, we aim to find a rule B = (X,Y) and a

position j that minimises the weight of C[B → j]↓.

In this section we give material omitted from Section 7. We begin with a definition of orderability

that will be useful for the remainder of the section. Then we will discuss how to produce the pair

({Mi}
µ
i=1,F). Finally we will show that our encoding is correct.

A.1 Orderable Bicliques

To insert a biclique B = (X,Y) into the covering, we need to make sure the order of its edges respects

the edge order. We can only order the edges by ordering the properties in the biclique. More precisely,

if we insert the biclique at position j, we need all edges in B that do not appear later in the file (i.e.

in {Bi}
m
i=j+1) to respect the edge order. This is because it is only the last occurrence of an edge that

influences the semantics of the stylesheet. Thus, let

EB
j = {e ∈ B | index(e) ≤ j} .

55

http://www.unicode.org/versions/Unicode9.0.0

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

The edge ordering implies a required ordering of EB
j , which implies an ordering on the properties in Y .

This ordering is defined as follows. For all p1, p2 ∈ Y we have

p1 ≪B
j p2 ⇔ ∃(s1, p1), (s2, p2) ∈ EB

j . (s1, p1) ≺
∗ (s2, p2) .

That is, we require p1 to appear before p2 if there are two edges (s1, p1) and (s2, p2) in B that must be

ordered according to the transitive closure of ≺. A biclique is orderable iff its properties can be ordered

in such a way to respect ≪B
j .

Definition A.1 (Orderable Bicliques). The biclique B is orderable at j if ≪B
j is acyclic. That is, there

does not exist a sequence (s1, p1), . . . , (sn, pn) such that (si, pi) ≪
M
j (si+1, pi+1) for all 1 ≤ i < n

and (s1, p1) = (sn, pn).

This can be easily checked in polynomial time. Moreover, if a biclique is orderable at a given

position, a suitable ordering can be found by computing ≪B
j , also in polynomial time. Thus, this proves

Proposition 7.1.

A.2 Enumerating Maximal Rules

Fix a covering C = {Bi}
m
i=1 of a CSS graph G = (S, P,E,≺,wt). We show how to efficiently create

the pair ({Mi}
µ
i=1,F). In fact, we will create the pair ({Mi}

µ
i=1,F

1st) where F1st(j) is set of Mi for

which j is the smallest position such that Mi is unorderable at position j. Computing F from this is

straightforward (though unnecessary since our encoding uses F1st directly).

Our algorithm begins with an enumeration of the maximal bicliques that are orderable at position

0, and iterates up to position m, extending the enumeration at each step and recording in F1st which

maximal bicliques become unorderable at each position. In fact, we will construct a pair (M,F1st)
where M is a set of bicliques rather than a sequence. To construct a sequence we apply any ordering to

the elements of M.

A.2.1 Initialisation

At position 0, all maximal bicliques (X,Y) with X × Y ⊆ E are orderable. This is because all edges

appearing in (X,Y) also appear in {Bi}
m
i=1, hence, the semantics of C[B → 0] will be decided by edges

already in C, and thus the ordering of the properties does not matter. Hence, we begin with a set of all

maximal bicliques M0. That is, all bicliques (X,Y) such that X × Y ⊆ E where there is no (X ′, Y ′)
with X ′ × Y ′ ⊆ E and X × Y ⊂ X ′ × Y ′. Algorithms for generating such an enumeration are known.

For example, we use the algorithm from Kayaaslan [38].

For an initial value F1st
0 of F1st, we can simply take the empty function ∅.

A.2.2 Iteration

Assume we have generated (Mj ,F
1st
j). We show how to generate the extension (Mj+1,F

1st
j+1).

The idea is to find all elements of Mj that are not orderable at position j + 1. Let χ be this set. We

first define

F1st
j+1 = F1st

j ∪ {(j + 1, χ)} .

Then, for each biclique M ∈ χ, we search for smaller bicliques contained within M that are maximal

and orderable at position j + 1. This results in the extension {Mi}
µj+1

i=1 giving us ({Mi}
µj+1

i=1 ,F
1st
j+1).

Thus, the problem reduces to finding bicliques contained within some M that are maximal and

orderable at position j + 1. We describe a simple algorithm for this in the next section.

56

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

A.2.3 Algorithm for (M,F1st)

We write Orderable(M, j) to assert that a biclique M is orderable at position j. For now, assume we

have the subroutine OrderableSub(M, j) which returns a set M′ of all orderable maximal bicliques at

position j contained within M . We use the following algorithm to generate (M,F1st).

M := M0

F1st := ∅
for j := 1 to m do

χ := ∅
for all M ∈ M do

if ¬Orderable(M, j) then

χ := χ ∪ {M}
M := M∪OrderableSub(M, j)

end if

end for

F1st := F1st ∪ {(j + 1, χ)}
end for

return (M,F1st)

Note, we can improve the algorithm by restricting the nested for all loop over elements M ∈ M to

only those M that are not orderable at m. This is because an ordering at position m is also an ordering

at position j <= m. Hence, these bicliques will never be unorderable and do not need to be checked

repeatedly.

A.2.4 Generating Orderable Sub-Bicliques

We now give an algorithm for implementing the subroutine OrderableSub(M, j). Naively we can sim-

ply generate all sub-bicliques M ′ of M and check Orderable(M ′, j). However, to avoid the potentially

high cost of such an iteration, we first determine which selectors and properties contribute to ≪M
j . Re-

moving nodes outside of these sets will not affect the orderability, hence we do not need to try removing

them. Then we first attempt only removing one node from this set, computing all sub-bicliques that have

one fewer element and are orderable. Then, for all nodes for which this fails, we attempt to remove two

nodes, and so on. Note, if removing node w renders M orderable, we do not need to test any bicliques

obtained by removing w and some other node w′, since this will not result in a maximal biclique.

Hence, we define the sets of candidate selectors and properties that may be removed to restore

orderability. These are all selectors and nodes that contribute to ≪M
j . That is

∆ =
{

s1, s2, p1, p2
∣

∣ ∃(s1, p1), (s2, p2) ∈ EM
j . (s1, p1) ≺

∗ (s2, p2)
}

.

We define OrderableSub(M, j) = OrderableSub(M, j,∆) where OrderableSub(M, j,∆) generates

a set Ω of orderable sub-bicliques and is defined below. When M = (X,Y) we will abuse notation and

write M \ {w} for (X \ {w} , Y) when w is a selector, and (X,Y \ {w}) when w is a property. When

defining the algorithm, we will collect all orderable bicliques in a set Ω. We will further collect in ∆′

the set of all nodes which fail to create an orderable biclique when removed by themselves. We define

OrderableSub(M, j,∆) recursively, where the recursive call attempts the removal of an increasing

number of nodes. It is

Ω := ∅
∆′ := ∅
for all w ∈ ∆ do

M ′ :=M \ {w}

57

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

if Orderable(M ′, j) then

Ω := Ω ∪ {M ′}
else

∆′ := ∆′ ∪ {w}
end if

end for

for all w ∈ ∆′ do

Ω := Ω ∪OrderableSub(M \ {w} , j,∆′ \ {w})
end for

return Ω

A.3 Correctness of the Encoding

We argue Proposition 7.3 which claims that the encoding (ΠH ,ΠS) is correct. To prove this we need to

establish three facts.

1. If (B, j) is a valid merging opportunity of C and B = (B,⊳) , then (B, j) is a solution to the

hard constraints.

2. If (B, j) is generated from a solution to the hard constraints, it is a valid merging opportunity.

3. The weight of a solution generating (B, j) is the size of C[B → j]↓.

We argue these properties below.

1. Take a valid merging opportunity (B, j) and let B = (B,⊳). We construct a solution to the hard

constraints. First, we assign j = j. Next, since the merging opportunity is valid, we know B
contains only edges in E. That is, it is contained within a maximal biclique. Furthermore, since

C[B → j] is valid, we know that B is orderable at position j. Thus, it is a sub biclique of some

Mi in ({Mi}
µ
i=1,F

1st), and, moreover, it is not the case that Mi ∈ F1st(j′) for some j′ ≤ j.
Thus, we assign iM = i and we know that

∧

1≤j≤m+1





(

j >= j
)

⇒
∧

Mi∈F1st(j)

(

iM 6= i
)





is satisfied.

Additionally, for all w appearing in B but not in Mi, we set xρi(w) to false, otherwise we set it to

true. Thus HasEdge((s, p)) holds only if (s, p) is an edge in B.

Next, we argue





∧

(s1,p1)≺(s2,p2)

HasEdge((s1, p1)) ⇒
(

j ≤ index((s2, p2)) ∨HasEdge((s2, p2))
)





is satisfied. This follows from C[B → j] being valid. To see this, take some (s1, p1) ≺ (s2, p2).
If (s1, p1) does not appear in B, then there is nothing to prove. If it does, we know (s2, p2) must

appear later in the file. There are two cases. If j ≤ index((s2, p2)) then the clause is satisfied.

Otherwise we must have (s2, p2) inB or edge order would be violated. Thus the clause also holds

in this case.

58

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

2. We need to prove that if the hard constraints are satisfied, then then generated merging opportunity

(B, j) is valid. Let B = (B,⊳). For C[B → j] to be valid, we first have to show that B
introduces no new edges to the stylesheet. This is immediate since B is a sub biclique of some

Mi in ({Mi}
µ
i=1,F

1st), which can only contain edges in E.

Next, we need to argue that we can create the ordering ⊳ for the properties in B. First note that

Mi is orderable at position j. In particular, for any (s1, p1) ≺
∗ (s2, p2) with (s1, p1) and (s2, p2)

appearing in Mi, we have p1 ≪Mi

j p2. Since all edges in B also appear in Mi, the existence of

an ordering is immediate.

Finally, we need to argue that C[B → j] respects the edge order. Suppose (s1, p2) ≺ (s2, p2). To

violate this ordering, we need to introduce a copy of (s1, p1) after the last copy of (s2, p2). Thus,

we must have (s1, p1) in B. However, from




∧

(s1,p1)≺(s2,p2)

HasEdge((s1, p1)) ⇒
(

j ≤ index((s2, p2)) ∨HasEdge((s2, p2))
)





we are left with two cases. In the first j ≤ index((s2, p2)) and the edge order is maintained.

In the second, we also have (s2, p2) in B. However, the edge order is maintained because B is

orderable. Thus we are done.

3. Finally, we argue that the weight of a satisfying assignment accurately reflects the size of C[B → j]↓.

This is fairly straightforward. The size of C[B → j]↓. comprises two parts: the size of B, and the

size of C after the trim operation. It is immediate to see that the size of B is equal to the size of

all of its nodes. In particular, this is the size of all nodes of Mi that appear in B. That is, have not

been excluded. Thus the clause with weight wt(w)
(

iM = i
)

⇒ xρi(w) .

for each w appearing in Mi accurately computes the size of B.

For the size of C after the trim operation, we first use the assumption that C has already been

trimmed before applying the merging opportunity. Thus, any further nodes removed in C[B → j]↓
from a rule Bi′ must be removed because some edge e in B also appears in Bi′ and, moreover, it

was the case i′ = index(e) and i′ ≤ j. In particular, we can only remove a node w from Bi′ if

all edges e incident to w with i′ = index(e) have e appearing in B (else there will still be some

edge preventing w from being trimmed after applying the merging opportunity). Thus, for each

selector node s, we know it is not removed if the clause with weigth wt(s)

i ≤ j ∧
∧

index((s,p))=i

p∈Y

HasEdge((s, p))

is not satisfied. Similarly for property nodes p. Thus, these clauses accurately count the size of

the covering after trimming.

B Additional Material for Section 5

B.1 Handling Pseudo-Elements

CSS selectors can also finish with a pseudo-element. For example ϕ::before. These match nodes

that are not formally part of a document tree. In the case of ϕ::before the selector matches a

59

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

phantom node appearing before the node matched by ϕ. These can be used to insert content into the

tree for stylistic purposes. For example

.a::before { content:">" }

places a “>” symbol before the rendering of any node with class a.

We divide CSS selectors into five different types depending on the pseudo-element appearing at the

end of the selector. We are interested here in the nodes matched by a selector. The pseudo-elements

::first-line, ::first-letter, ::before, and ::after essentially match nodes inserted

into the DOM tree. The CCS3 specification outlines how these nodes should be created. For our

purposes we only need to know that the five syntactic cases in the above grammar can never match the

same inserted node, and the selectors ::first-letter and ::first-line require that the node

matched by ϕ is not empty.

Since we are interested here in the non-emptiness and non-emptiness-of-intersection problems, we

will omit pseudo-elements in the remainder of this article, under the assumptions that

• selectors of the form ϕ::first-line or ϕ::first-letter are replaced by a selector

ϕ:not(:empty), and

• selectors of the form ϕ, ϕ::before, or ϕ::after are replaced by ϕ, and

• we never take the intersection of two selectors ϕ and ϕ′ such that it’s not the case that either

– ϕ and ϕ′ were derived from selectors containing no pseudo-elements, or

– ϕ and ϕ′ were derived from selectors ending with the same pseudo-element.

In this way, we can test non-emptiness of a selector by testing its replacement. For non-emptiness-of-

intersection, we know if two selectors end with different pseudo-elements (or one does not contain a

pseudo-element, and one does), their intersection is necessarily empty. Thus, to check non-emptiness-

of-intersection, we immediately return “empty” for any two selectors ending with different pseudo-

elements. To check two selectors ending with the same pseudo-element, the problem reduces to testing

the intersection of their replacements.

B.2 NP-hardness of Theorem 5.2

Lemma B.1. Given a CSS selector ϕ, deciding ∃T, η . T, η |= ϕ is NP-hard.

Proof. We give a polynomial-time reduction from the NP-complete problem of non-universality of

unions of arithmetic progressions [67, Proof of Theorem 6.1]. To define this, we first fix some no-

tation. Given a pair (α, β) ∈ N × N, we define [[(α, β)]] to be the set of natural numbers of the form

αn + β for n ∈ N. That is, [[(α, β)]] represents an arithmetic progression, where α represents the

period and β represents the offset. Let E ⊆ N × N be a finite subset of pairs (α, β). We define

[[E]] =
⋃

(α,β)∈E [[(α, β)]]. The NP-complete problem is: given E (where numbers may be represented

in unary or in binary representation), is [[E]] 6= N? Observe that this problem is equivalent to checking

whether [[E+1]] 6= N>0 whereE+1 is defined by adding 1 to the offset β of each arithmetic progression

(α, β) inE. By complementation, this last problem is equivalent to checking whether N>0\[[E+1]] 6= ∅.

Since N>0 \ [[E + 1]] =
⋂

(α,β)∈E [[α, β + 1]], the problem can be seen to be equivalent to testing the

non-emptiness of

* {:not(:nth-child(αn + (β + 1))) | (α, β) ∈ E} .

Thus, non-emptiness is NP-hard.

60

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

B.3 Handling !important and shorthand property names

Our approach handles the !important keyword and shorthand property names. In this section we explain

the steps we take to account for them.

B.3.1 The !important Keyword

First, the keyword !important in property declaration as is used in the rule

div { color:red !important }

can be used to override the cascading behaviour of CSS, e.g., in our example, if a node is matched

by div, as well as a later rule R that assigns a different color, then assign red to color (unless R
also has the keyword !important next to its color property declaration). To handle this, we can

extend the notion of specificity of a selector to the notion of specificity of a pair (s, p) of selector and

property declaration, after which we may proceed as before (i.e. relating only two edges with the same

specificity). Recall from [15] that the specificity of a selector is a 3-tuple (a, b, c) ∈ N × N × N where

a, b, and c can be obtained by calculating the sum of the number of IDs, classes, tag names, etc. in the

selector. Since the lexicographic order is used to rank the elements of S := N× N× N, the specificity

of a pair (s, p) can now be defined to be (i, a, b, c), where (a, b, c) is the specificity of s, and i = 1
if !important can be found in p (otherwise, i = 0). In particular, this also handles the case where

multiple occurrences of !important is found in the CSS file.

B.3.2 Shorthand Property Names

Shorthand property names [10] can be used to simultaneously set the values of related property names.

For example, border: 5px solid red is equivalent to

border-width: 5px; border-style: solid; border-color:red

In particular, this implies that (s, p) and (s, p′) can be related in ≺ if p defines border, while the other

property p′ defines border-width. One way to achieve this is to simply list all pairs of comparable

property names, which can be done since only around 100 property names are currently officially related.

[Incidentally, a close enough approximation is that one property name is a prefix of the other property

name (e.g., border is a prefix of border-style), but this is not complete (e.g. font can be used

to define line-height)]

C Additional Material for Section 6

C.1 Correctness of Aϕ in Proposition 6.1

We show both soundness and completeness of Aϕ.

Lemma C.1. For each CSS selector ϕ and tree T , we have

(T, η) ∈ L(Aϕ) ⇒ T, η |= ϕ .

Proof. Suppose (T, η) ∈ L(Aϕ). By construction of Aϕ we know that the accepting run must pass

through all states ◦1, . . . , ◦n where ϕ = σ1 o1 · · · on−1 σn. Notice, in order to exit each state ◦i a

transition labelled by σi must be taken. Let ηi be the node read by this transition, which necessarily

satisfies σi. Observe ηn = η. We proceed by induction. We have η1 satisfies σ1. Hence, assume ηi
satisfies σ1 o1 · · · oi−1 σi. We show ηi+1 satisfies σ1 o1 · · · oi σi+1.

We case split on oi.

61

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

• When oi = >> we need to show ηi+1 is a descendant of ηi. By construction of Aϕ the run reaches

ηi+1 in one of two ways. If it is via a single transition ◦i
↓
−→
σi

◦i+1 then ηi+1 is immediately a

descendant of ηi. Otherwise the first transition is ◦i
↓
−→
σi

•i. The reached node is necessarily a

descendant of ηi. To reach ηi+1 a path is followed applying →+ and ↓ arbitrarily, which cannot

reach a node that is not a descendant of ηi. Finally, the transition to ηi+1 is via → or ↓ and hence

ηi+1 must also be a descendant of ηi.

• When oi = > we need to show ηi+1 is a descendant of ηi. By construction of Aϕ the run reaches

ηi+1 in one of two ways. If it is via a single transition ◦i
↓
−→
σi

◦i+1 then ηi+1 is immediately a

child of ηi. Otherwise the first transition is ◦i
↓
−→
σi

•i. The reached node is necessarily a child of

ηi. To reach ηi+1 only transitions labelled →+ and → can be followed. Hence, the node reached

must also be a child of ηi.

• When oi = + we need to show ηi+1 is the next neighbour of ηi. Since the only path is a single

transition labelled → the result is immediate.

• When oi = ˜ we need to show ηi+1 is a sibling of ηi. By construction of Aϕ the run reaches ηi+1

in one of two ways. If it is via a single transition ◦i
→
−→
σi

◦i+1 then ηi+1 is immediately a sibling of

ηi. Otherwise the first transition is ◦i
→
−→
σi

•i. The reached node is necessarily a sibling of ηi. To

reach ηi+1 only transitions labelled →+ and → can be followed. Hence, the node reached must

also be a sibling of ηi.

Thus, by induction, ηn = η satisfies σ1 o1 · · · on−1 σn = ϕ.

Lemma C.2. For each CSS selector ϕ and tree T , we have

T, η |= ϕ ⇒ (T, η) ∈ L(Aϕ)

Proof. Assume T, η |= ϕ. Thus, since ϕ = σ1 o1 · · · on−1 σn, we have a sequence of nodes η1, . . . , ηn
such that for each i we have T, ηi |= σ1 o1 · · · oi−1 σi. Note ηn = η. We build a run of Aϕ from σ1
to ◦i by induction. When i = 1 we have the run constructed by taking the loops on the initial state ◦1
labelled ↓ and →+ to navigate to η1. Assume we have a run to ◦i. We build a run to ◦i+1 we consider

oi.

• When oi = >> we know ηi+1 is a descendant of ηi. We consider the construction of Aϕ. If ηi+1

is the first child of ηi, we construct the run to ◦i+1 via the transition ◦i
↓
−→
σi

◦i+1, noting that we

know ηi satisfies σi. Otherwise we take ◦i
↓
−→
σi

•i and arrive at either an ancestor or sibling of

ηi+1. In the case of a neighbour, we can take the transition labelled → to reach ηi+1. For an

indirect sibling we can take the transition labelled →+ followed by the transition labelled →. For

an ancestor, we take the transition labelled ↓ and arrive at another sibling or ancestor of ηi+1 that

is closer. We continue in this way until we reach ηi+1 as needed.

• When oi = > we know ηi+1 is a child of ηi. We consider the construction of Aϕ. If ηi+1 is the

first child of ηi, we construct the run to ◦i+1 via the transition ◦i
↓
−→
σi

◦i+1, noting that we know

ηi satisfies σi. Otherwise we take ◦i
↓
−→
σi

•i and arrive at a preceding sibling of ηi+1. We can

62

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

take the transition labelled →+ to reach the preceding neighbour of ηi+1 if required, and then the

transition labelled → to reach ηi+1 as required.

• When oi = + we know ηi+1 is the neighbour of ηi. We consider the construction of Aϕ and take

the only available transition ◦i
→
−→
σi

◦i+1, noting that we know ηi satisfies σi. Thus, we reach ηi+1

as required.

• When oi = ˜ we know ηi+1 is a sibling of ηi. We consider the construction of Aϕ. If ηi+1 is the

neighbour of ηi, we construct the run to ◦i+1 via the transition ◦i
↓
−→
σi

◦i+1, noting that we know

ηi satisfies σi. Otherwise we take ◦i
→
−→
σi

•i and arrive at a preceding sibling of ηi+1. We can

take the transition labelled →+ to reach the preceding neighbour of ηi+1 is required, and then the

transition labelled → to reach ηi+1 as required.

Thus, by induction, we construct a run to ηn ending in state ◦n. We transform this to an accepting run

by taking the transition ◦n
◦

−−→
σn

qf , using the fact that ηn satisfies σn.

C.2 Proof of Proposition 6.2

We show that

(T, η) ∈ L(A1) ∧ (T, η) ∈ L(A2) ⇔ (T, η) ∈ L(A1 ∩ A2) .

We begin by observing that that all runs of a CSS automaton showing acceptance of a node η in T
must follow a sequence of nodes η1, . . . , ηn such that

• η1 is the root of T , and

• when ηj = η′ι then either ηj+1 = η′(ι+ 1) or ηj+1 = ηj1 for all j, and

• ηn = η

that defines the path taken by the automaton. Each node is “read” by some transition on each run. Note

a transition labelled →+ may read sequence nodes that is a factor of the path above. However, since

these transitions are loops that do not check the nodes, without loss of generality we can assume each

→+ in fact reads only a single node. That is, →+ behaves like →. Recall, →+ was only introduced to

ensure the existence of “short” runs.

Because of the above, any two runs accepting η in T must follow the same sequence of nodes and

be of the same length.

We have (T, η) ∈ L(A1) ∧ (T, η) ∈ L(A2) iff there are accepting runs

qi1
di
1−→

σi
1

· · ·
di
n−−→

σi
n

qin+1

of Ai over T reaching node η for both i ∈ {1, 2}. We argue these two runs exist iff we have a run

(

q11 , q
2
1

) d1−→
σ1

· · ·
dn−−→
σn

(

q1n+1, q
2
n+1

)

of A1 ∩ A2 where each dj and σj depends on
(

d1j , d
2
j

)

.

• When (↓, ↓) we have dj =↓ and σj = σ1
j ∩ σ

2
j .

• When (→,→) we have dj =→ and σj = σ1
j ∩ σ

2
j .

63

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

• When (→,→+) we have dj =→ and σj = σ1
j .

• When (→+,→) we have dj =→ and σj = σ2
j .

• When (→+,→+) we have dj =→+ and σj = *.

• When (◦, ◦) we have dj = ◦ and σj = σ1
j ∩ σ

2
j .

• The cases (↓,→+), (↓,→), (↓, ◦), (→, ↓), (→, ◦), (→+, ↓), (→+, ◦), (◦, ↓), (◦,→), and (◦,→+)
are not possible.

The existence of the transitions comes from the definition of A1∩A2. We have to argue that ηj satisfies

both σi
j iff it also satisfies σj . By observing σ ∩ * = * ∩ σ = σ we always have σj = σ1

j ∩ σ
2
j .

Let σi
j = τiΘi and σj = τΘ. It is immediate that ηj satisfies Θ = Θ1 ∪Θ2 iff it satisfies both Θi.

To complete the proof we need to show ηj satisfies τ iff it satisfies both τi. Note, we must have

some s and e such that τ, τ1, τ2 ∈ {*,(s|*),(s|e), e} else the type selectors cannot be satisfied

(either τ = :not(*) or τ1 and τ2 assert conflicting namespaces or elements).

If some τi = * the property follows by definition. Otherwise, if τ = τ2 then in all cases the

conjunction of τ1 and τ2 is equivalent to τ2 and we are done. The situation is similar when τ = τ1.

Otherwise τ = (s|e) and τ1 = (s|*) and τ2 = e or vice versa, and it is easy to see τ is equivalent to

the intersection of τ1 and τ2. Thus, we are done.

C.3 Proofs for Non-Emptiness of CSS Automata

C.3.1 Bounding Namespaces and Elements

We show Proposition 6.4 (Bounded Types). We need to define the finite sets ⇃(ELE) and ⇃(s). To this

end, we write

1. ELEA to denote the set of namespaced elements s:e such that there is some transition q
d
−→
σ
q′ ∈ ∆

with σ = (s|e)Θ for some s, e, and Θ,

2. SA is the set of transitions q
d
−→
σ
q′ ∈ ∆ with σ 6= * and |A|σ denotes the cardinality of SA.

Let
{

τ1, . . . , τ|A|
σ

}

be a set of fresh namespaced elements and

⇃(ELEA) = ELEA ⊎
{

τ1, . . . , τ|A|
σ

}

⊎ {⊥}

where there is a bijection θ : SA →
{

τ1, . . . , τ|A|
σ

}

such that for each t ∈ SA we have θ(t) = τ and

1. τ = s:e if σ can only match elements s:e,

2. τ = s:e for some fresh element e if σ can only match elements of the form s:e′ for all elements

e′, and

3. τ = s:e for some fresh namespace s if σ can only match elements of the form s′:e for all names-

paces s′, and

4. τ = s:e for fresh s and fresh e if σ places no restrictions on the element type.

64

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

Thus, we can define bounded sets of namespaces and elements

⇃(ELE) = {e | ∃s . s:e ∈ ⇃(ELEA)}
⇃(NS) = {s | ∃e . s:e ∈ ⇃(ELEA)} .

It remains to show ⇃(ELEA) is sufficient. That is, if some tree T is accepted A, we can define another

tree T ′ that also is accepted by A but only uses types in ⇃(ELEA).
We take (T, η) ∈ L(A) with T = (D,λ) and we define T ′ = (D,λ′) satisfying the proposition. Let

q0, η0, q1, η1, . . . , qℓ, ηℓ, qℓ+1

be the accepting run of A, by the sequence of transitions t0, . . . , tℓ. As noted above, we can assume

each transition in ∆ appears only once in this sequence. Let
{

σ1, . . . , σ|A|
σ

}

be the set of selectors

appearing in A. We perform the following modifications to λ to obtain λ′.
We obtain λ′ from λ by changing the element labelling. We first consider all 0 ≤ i ≤ ℓ such that ηi

is labelled by some element s:e ∈ ELEA. Let Nodess:e be the set of nodes labelled by s:e in λ. In λ′

we label all nodes in Nodess:e by s:e. That is, we do not relabel nodes labelled by s:e. Let Nodes be

the union of all such Nodess:e.

Next we consider all 0 ≤ i ≤ ℓ such that ηi /∈ Nodes (i.e. was not labelled in the previous case) and

ti = qi
d
−→
σ
qi+1 with σ 6= *. Let s:e /∈ ELEA be the element labelling of ηi in λ. Moreover, take τ such

that θ(ti) = τ . In λ′ we label all nodes in Nodess:e (i.e. labelled by s:e) in λ by τ . That is, we globally

replace s:e by τ . Let Nodes ′ be Nodes union all such Nodese.

Finally, we label all nodes not in Nodes ′ with the null element ⊥.

To see that

q0, η0, q1, η1, . . . , qℓ, ηℓ, qℓ+1

via t0, . . . , tℓ is an accepting run of (D,λ′) we only need to show that for each ti = qi
d
−→
σ
qi+1 that

ηi satisfies σ. This can be shown by induction over σ. Most atomic cases are straightforward (e.g.

the truth of :hover is not affected by our transformations). The case of e, (s|*), or (s|e) ap-

pearing positively follows since in these cases the labelling remained the same or changed to some

τ consistent with the selector. When such selectors appear negatively, the result follows since we

only changed elements and namespaces to fresh ones. The truth of attribute selectors remains un-

changed since we did not change the attribute labelling. The cases of :nth-child(αn + β) and

:nth-last-child(αn + β) follow since we did not change the number of nodes. For the se-

lectors :nth-of-type(αn + β) and :nth-last-of-type(αn + β) there are two cases. If

we did not change the element label s:e of ηi, then we also did not change the label of its siblings.

Moreover, we did not add any s:e labels elsewhere in the tree. Hence the truth of the formulas remains

the same. If we did change the label from s:e to τ for some τ then observe that we also relabelled all

other nodes in the tree labelled by s:e. In particular, all siblings of ηi. Moreover, since θ is a bijection

and each transition appears only once in the run, we did not label any node not labelled s:e with τ .

Hence the truth of the formulas also remains the same. Similar arguments hold for :only-child and

:only-of-type.

Thus, (D,λ′) is accepted, and only uses elements in ⇃(ELEA) as required.

C.3.2 Proof of Polynomial Bound on Attribute Value Lengths

We prove Proposition 6.5 (Bounded Attributes). That is we argue the existence of a polynomial bound

for the solutions to any finite set C of constraints of the form [s|a op v] or :not([s|a op v]), for

some fixed s and a. We say that C is a set of constraints over s and a.

65

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

In fact, the situation is a little more complicated because it may be the case that a is id. In this

case we need to be able to enforce a global uniqueness constraint on the attribute values. Thus, for

constraints on an ID attribute, we need a bound that is large enough to allow to all constraints on

the same ID appearing throughout the automaton to be satisfied by unique values. Thus, for a given

automaton, we might ask for a bound N such that if there exists unique ID values for each transition,

then there exist values of length bounded by N .

However, the bound on the length must still work when we account for the fact that not all transitions

in the automaton will be used during a run. Consider the following illustrative example.

qin q qf

→

[s|id = v]
↓

[s|id = v]

◦

*

In this case we have two transitions with ID constraints, and hence two sets of constraints C1 = C2 =
{[s|id = v]}. Since these two sets of constraints cannot be satisfied simultaneously with unique

values, even the bound N = 0 will satisfy our naive formulation of the required property (since the

property had the existence of a solution as an antecedent). However, it is easy to see that any run of the

automaton does not use both sets of constraints, and that the bound N = |v| should suffice. Hence, we

formulate the property of our bound to hold for all sub-collections of the collection of sets of constraints

appearing in the automaton.

Lemma C.3 (Bounded Attribute Values). Given a collection of constraints C1, . . . , Cn over some s
and a, there exists a bound N polynomial in the size of C1, . . . , Cn such that for any subsequence

Ci1 , . . . , Cim if there is a sequence of words v1, . . . , vm such that all vj are unique and vj satisfies the

constraints in Cij , then there is a sequence of words such that the length of each vj is bounded by N ,

all vj are unique, and vj satisfies the constraints in Cij ,

The proof uses ideas from Muscholl and Walukiewicz’s NP fragment of LTL [47]. We first, for

each set of constraints C, construct a deterministic finite word automaton A that accepts only words

satisfying all constraints in C. This automaton has a polynomial number of states and can easily be seen

to have a short solution by a standard pumping argument. Given automata A1, . . . ,An with at most

Ns states and Nc constraints in each set of constraints, we can again use pumping to show there is a

sequence of distinct words v1, . . . , vn such that each vi is accepted by Ai and the length of vi is at most

n ·Ns ·Nc.

The Automata We define a type of word automata based on a model by Muscholl and Walukiewicz

to show and NP upper bound for a variant of LTL. These automata read words and keep track of which

constraints in C have been satisfied or violated. They accept once all positive constraints have been

satisfied and no negative constraints have been observed.

In the following, let Prefs(C) be the set of words v′ such that v′ is a prefix of some v with

[s|a op v] ∈ C or :not([s|a op v]) ∈ C. Moreover, let ˆ and $ be characters not in Γ that

will mark the beginning and end of the word respectively. Additionally, let ε denote the empty word.

Finally, we write v � v′ if v is a factor of v′, i.e., v′ = v1vv2 for some v1 and v2.

66

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

Definition C.4 (AC). Given a set C of constraints over s and a, we define AC = (Q,∆, C) where

• Q is the set of all words a1va2 such that

– v ∈ Prefs(C), and

– a1, a2 ∈ Γ ∪ {ε, ˆ, $}.

• ∆ ⊆ Q × (Γ ∪ {ˆ, $}) × Q is the set of transitions v
a
−→ v′ where v′ is the longest suffix of va

such that v′ ∈ Q.

Observe that the size of the automaton AC is polynomial in the size of C.

A run of AC over a word with beginning and end marked a1 . . . an ∈ ˆΓ∗$ is

(v0, S0, V0)
a1−→ (v1, S1, V1)

a2−→ · · ·
an−−→ (vn, Sn, Vn)

where v0 = ε and for all 1 ≤ i ≤ n we have vi−1
ai−→ vi and Si, Vi ⊆ C track the satisfied and violated

constraints respectively. That is S0 = V0 = ∅, and for all 1 ≤ i ≤ n we have (noting ˆv � vi implies

ˆv is a prefix of vi, and similar for v$) Si =

Si−1 ∪ {[s|a = v] ∈ C | ˆv$ = vi} ∪
{[s|a ~= v] ∈ C | ∃a1 ∈ {ˆ, } , a2 ∈ { , $} . a1va2 � vi} ∪
{[s|a |= v] ∈ C | ∃a2 ∈ {$, -} . ˆva2 � vi} ∪
{[s|a ^= v] ∈ C | ˆv � vi} ∪ {[s|a $= v] ∈ C | v$ � vi} ∪
{[s|a *= v] ∈ C | v � vi}

and Vi =
Vi−1 ∪ {:not([s|a = v]) ∈ C | ˆv$ = vi} ∪
{

:not([s|a ~= v]) ∈ C

∣

∣

∣

∣

∃
a1 ∈ {ˆ, } ,
a2 ∈ { , $}

. a1va2 � vi

}

∪

{:not([s|a |= v]) ∈ C | ∃a2 ∈ {$, -} . ˆva2 � vi} ∪
{:not([s|a ^= v]) ∈ C | ˆv � vi} ∪
{:not([s|a $= v]) ∈ C | v$ � vi} ∪
{:not([s|a *= v]) ∈ C | v � vi} .

Such a run is accepting if Sn = {[s|a op v] | [s|a op v] ∈ C} and Vn = ∅. That is, all positive

constraints have been satisfied and no negative constraints have been violated.

Short Solutions We show the existence of short solutions via the following lemma. The proof of this

lemma is a simple pumping argument which appears below. Intuitively, if a satisfying word is shorter

than Ns ·Nc we do not change it. If it is longer than Ns ·Nc any accepting run of the automaton on this

word must contain a repeated (v, S, V). We can thus pump down this word to ensure that it is shorter

than Ns ·Nc. Then, to ensure it is unique, we pump it up to some unique length of at most n ·Ns ·Nc.

Lemma C.5 (Short Attribute Values). Given a sequence of sets of constraint automata AC1
, . . . ,ACn

each with at most Ns states and at most Nc constraints in each Ci, if there is a sequence of pairwise

unique words v1, . . . , vn such that for all 1 ≤ i ≤ n there is an accepting run of ACi
over vi, then there

exists such a sequence where the length of each vi is at most n ·Ns ·Nc.

To obtain Lemma C.3 (Bounded Attribute Values) we observe that for any subsequenceCi1 , . . . , Cim
we have m ·N ′

s ·N
′
c ≤ n ·Ns ·Nc since m ≤ n and the max number of states N ′

s and constraints N ′
c in

the subsequence have N ′
s ≤ Ns and N ′

c ≤ Nc.

67

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

We give the proof of Lemma C.5. That is, given a sequence of sets of constraint automata AC1
, . . . ,ACn

each with at most Ns states and at most Nc constraints in each Ci, if there is a sequence of pairwise

unique words v1, . . . , vn such that for all 1 ≤ i ≤ n there is an accepting run of ACi
over vi, then there

exists such a sequence where the length of each vi is at most n ·Ns ·Nc.

To prove the lemma, take a sequence v1, . . . , vn such that each vi is unique and accepted by ACi
.

We proceed by induction, constructing v′1, . . . , v
′
i such that each v′j is unique, accepted by ACj

, and of

length ℓ such that either

• ℓ ≤ Ns ·Nc and v′j = vj , or

• i ·Ns ·Nc ≤ ℓ ≤ (i+ 1) ·Ns ·Nc.

When i = 0 the result is vacuous. For the induction there are two cases.

When the length ℓ of vi is such that ℓ ≤ Ns · Nc we set v′i = vi. We know v′i is unique amongst

v′1, . . . , v
′
i since for all j < i either v′j is longer than v′i or is equal to vj and thus distinct from vi.

When ℓ > Ns ·Nc we use a pumping argument to pick some v′i of length ℓ′ such that i ·Ns ·Nc ≤
ℓ′ ≤ (i + 1) ·Ns ·Nc. This ensures that v′i is unique since it is the only word whose length lies within

the bound. We take the accepting run

(u0, S0, V0)
a1−→ (u1, S1, V1)

a2−→ · · ·
an−−→ (uℓ, Sn, Vℓ)

of vi and observe that the values of Sj and Vj are increasing by definition. That is Sj ⊆ Sj+1 and

Vj ⊆ Vj+1. By a standard down pumping argument, we can construct a short accepting run containing

only distinct configurations of length bound by Ns · Nc. We construct this run by removing all cycles

from the original run. This maintains the acceptance condition. Next we obtain an accepted word of

length i · Ns · Nc ≤ ℓ′ ≤ (i + 1) · Ns · Nc. Since ℓ > Ns · Nc we know there exists at least one

configuration (u, S, V) in the short run that appeared twice in the original run. Thus there is a run of the

automaton from (u, S, V) back to (u, S, V) which can be bounded by Ns · Nc by the same downward

pumping argument as before. Thus, we insert this run into the short run the required number of times to

obtain an accepted word v′i of the required length.

Thus, by induction, we are able to obtain the required short words v′1, . . . , v
′
n as needed.

C.3.3 Missing definitions for AttsPres(θ, ~x)

AttsPres([s|a ~= v], ~x) =



























∧

1≤j≤m









xs:ai,j = aj ∧




xs:ai,m+1 = 0
∨

xs:ai,m+1 =













∨

∨

1≤j≤N−m−1







xs:ai,j−1 = ∧
∧

1≤j′≤m

xs:ai,j+j′ = aj ∧
(

xs:ai,j+m+1 = 0 ∨ xs:ai,j+m+1 =
)

































AttsPres([s|a |= v], ~x) =
∧

1≤j≤m

xs:ai,j = aj ∧
(

xs:ai,m+1 = 0 ∨ xs:ai,m+1 = -
)

AttsPres([s|a $= v], ~x) =
∨

0≤j≤N−m−1

(
∧

1≤j′≤m

xs:ai,j+j′ = aj ∧

xs:ai,j+m+1 = 0

)

68

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

C.3.4 Negating Positional Formulas

We need to negate selectors like :nth-child(αn + β), For completeness, we give the definition

of the negation below.

We decompose β according to the period α. I.e. β = αβ1 + β2, where β1 and β2 are the unique

integers such that |β2| < |α| and β1α < 0 implies β2 ≤ 0 and β1α > 0 implies β2 ≥ 0.

Definition C.6 (NoMatch(x, α, β)). Given constants α, β, β1, and β2 as above, we define the formula

NoMatch(x, α, β) to be

(0 ≥ α ∧ x < β) ∨ (0 ≤ α ∧ x > β) ∨


















∃n . ∃β
′

2.



















∣

∣

∣
β
′

2

∣

∣

∣
< |α| ∧

(

β1α < 0 ⇒ β
′

2 ≤ 0
)

∧
(

β1α > 0 ⇒ β
′

2 ≥ 0
)

∧

β
′

2 6= β2 ∧

x = αn+ αβ1 + β
′

2





































In the following, whenever we negate a formula of the form ¬ (∃n.x = αn+ β) we will use the

formula NoMatch(x, α, β). One can verify that the resulting formula is existential Presburger. We

show that our negation of periodic constraints is correct.

Proposition C.7 (Correctness of NoMatch(x, α, β)). Given constants α and β, we have

¬ (∃n.x = αn+ β) ⇔ NoMatch(x, α, β) .

Proof. We first consider α = 0. Since there is no β′
2 with |β′

2| < 0 we have to prove

¬ (x = β) ⇔ (x < β) ∨ (x > β)

which is immediate.

In all other cases, the conditions on β2 and β′
2 ensure that we always have 0 < |β2 − β′

2| < |α|.
If ∃n.x = αn + αβ1 + β2 then if α > 0 it is easy to verify that we don’t have x < β (since n = 0

gives x = β as the smallest value of x) and similarly when α < 0 we don’t have x < β. To disprove

the final disjunct of of NoMatch(x, α, β) we observe there can be no n′ s.t. x = αn′ + αβ1 + β′
2 since

x = αn+ αβ1 + β2 and 0 < |β2 − β′
2| < |α|.

In the other direction, we have three cases depending on the satisfied disjunct of NoMatch(x, α, β).
Consider α > 0 and x < β. In this case there is no n such that x = αn + αβ1 + β2 = αn + β since

n = 0 gives the smallest value of x, which is β. The case is similar for the second disjunct with α < 0.

The final disjunct gives some n′ such that x = αn′ + αβ1 + β′
2 with 0 < |β2 − β′

2| < |α|. Hence,

there can be no n with x = αn+ αβ1 + β2.

C.3.5 Correctness of Presburger Encoding

We prove soundness and completeness of the Presburger encoding of CSS automata non-emptiness in

the two lemmas below.

Lemma C.8. For a CSS automaton A, we have

L(A) 6= ∅ ⇒ θA is satisfiable.

69

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

Proof. We take a run of A and construct a satisfying assignment to the variables in θA. That is take a

document tree T = (D,λ), node η ∈ D, and sequence

q0, η0, q1, η1, . . . , qℓ, ηℓ, qℓ+1 ∈ (Q×D)
∗ × {qf}

that is an accepting run. We know from Proposition 6.4 (Bounded Types) that T can only use names-

paces from ⇃(NS) and elements from ⇃(ELE). Let t0, . . . , tℓ be the sequence of transitions used in

the accepting run. We assume (w.l.o.g.) that no transition is used twice. We construct a satisfying

assignment to the variables as follows.

• qi = qi for all i ≤ ℓ+ 1 and qi = qf for all i > ℓ+ 1.

• si = λS(ηi) for all i ≤ ℓ+ 1 (si can take any value for other values of i).

• ei = λE(ηi) for all i ≤ ℓ+ 1 (ei can take any value for other values of i).

• pi = (p ∈ λP(ηi)), for each pseudo-class p ∈ P \ {:root} and i ≤ ℓ + 1 (these variables can

take any value for i > ℓ+ 1).

• ni = ι, when ηi = η′ι for some η′ and ι and 1 ≤ i ≤ ℓ+ 1, otherwise ni can take any value.

• ns:ei = j, where j is the number of nodes of type s:e preceding ηi in the sibling order. That is

ηi = η′ι for some η′ and ι and

j =

∣

∣

∣

∣

∣

∣







η′ι′

∣

∣

∣

∣

∣

∣

ι′ < ι ∧ η′ι′ ∈ D ∧
λS(η

′ι′) = λS(η) ∧
λE(η

′ι′) = λE(η)







∣

∣

∣

∣

∣

∣

.

When i = 0 or i > ℓ+ 1 we can assign any value to ns:ei .

• N i = N − ι where i ≤ ℓ + 1 and η = η′ι for some η′ and ι and N is the smallest number such

that η′N /∈ D. For i = 0 or i > ℓ+ 1 the variable N i can take any value.

• N
s:e

i = j, where j is the number of nodes of type s:e suceeding ηi in the sibling order. That is

ηi = η′ι for some η′ and ι and

j =

∣

∣

∣

∣

∣

∣







η′ι′

∣

∣

∣

∣

∣

∣

ι′ > ι ∧ η′ι′ ∈ D ∧
λS(η

′ι′) = λS(η) ∧
λE(η

′ι′) = λE(η)







∣

∣

∣

∣

∣

∣

.

When i = 0 or i > ℓ+ 1 we can assign any value to N
s:e

i .

• Assignments to xs:ai,j are discussed below.

It remains to prove that the given assignment satisfies the formula.

Recall

θA =







q0 = qin ∧ qn = qf∧
∧

0≤i<n

(Tran(i) ∨ qi = qf)∧

Consistent






.

The first two conjuncts follow immediately from our assignment to qi and that the chosen run was

accepting. Next we look at the third conjunct and simultaneously prove Consistentn. When i ≥ ℓ + 1
we assigned qf to qi and can choose any assignment that satisfies Consistentn. Otherwise we show we

satisfy Tran(i) by showing we satisfy Tran(i, ti). We also show Consistentn is satsfied by induction,

noting it is immediate for i = 0 and that for i = 1 we must have either the first orlast case which do not

depend on the induction hypothesis. Consider the form of ti.

70

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

1. When ti = qi
↓
−→
σ

qi+1 we immediately confirm the values of qi, qi+1, ni+1, ns:ei+1 satisfy the

constraint. Similarly for ¬:emptyi since we know :empty /∈ λP(ηi). We defer the argument

for Pres(σ, i) until after the case split. That Consistentn is satisfied can also be seen directly.

2. When ti = qi
→
−→
σ

qi+1 we know ηi = η′ι and ηi+1 = η′(ι + 1) for some η′ and ι. We can

easily check the values of qi, qi+1, ni+1, N i, n
s:e
i+1, and N

s:e

i+1 satisfy the constraint. We defer

the argument for Pres(σ, i) until after the case split. To show Consistentn we observe ni+1 is

increased by 1 and only one ns:e
i+1 is increased by 1, the others being increased by 0. Similarly for

N i and ns:e
i+1. Hence the result follows from induction.

3. When ti = qi
→+

−−→
*

qi+1 we know ηi = η′ι and ηi+1 = η′(ι′) for some η′, ι, and ι < ι′. We

can easily check the values of qi, qi+1, ni+1, N i, n
s:e
i+1, and N

s:e

i+1 satisfy the constraint. We defer

the argument for Pres(σ, i) until after the case split. To satisfy the constraints over the position

variables, we observe that values for δ and δs:e can be chosen easily for the specified assignment.

Combined with induction this shows Consistentn as required.

4. When ti = qi
◦
−→
σ
qi+1

We can easily check the values of qi and qi+1. We defer the argument for Pres(σ, i) until after

the case split. By induction we immediately obtain Consistentn.

We show Pres(σ, i) is satisfied for each ηi and σ labelling ti. Take a node η and σ = τΘ from this

sequence. Note η satisfies σ since thw run is accepting. Recall

Pres(τΘ, i) =











Pres(τ, i)∧
(

∧

θ∈NoAtts(Θ)

Pres(θ, i)

)

∧

AttsPres(τΘ, i)











.

From the type information of η we immediately satisfy Pres(τ, i).
For a positive θ ∈ Θ there are several cases. If θ = :root then we know we are in η0 and the

encoding is ⊤. If θ is some other pseudo class p then the encoding of θ is pi and we assigned true to

this variable. For :nth-child(αn + β) and :nth-last-child(αn + β) satisfaction of the

encoding follows immediately from η satisfying θ and our assignment to ni and N i. We satisfy the en-

codings of :nth-of-type(αn + β), :nth-last-of-type(αn + β), :only-child, and

:only-of-type similarly. The latter follow since an only child is position 1 from the start and end,

and an only of type node has 0 strict predecessors or successors of the same type.

For a negative θ ∈ Θ there are several cases. If θ = :not(:root) then we know we are not

in η0 and the encoding is ⊤. If θ is the negation of some other pseudo class p then the encoding of

θ is ¬pi and we assigned false to this variable. For the selectors :not(:nth-child(αn + β))
and the opposite selector :not(:nth-last-child(αn + β)) satisfaction of the encoding fol-

lows immediately from η satisfying θ, our assignment to ni and N i as well as Proposition C.7 (Cor-

rectness of NoMatch(x, α, β)). We satisfy encodings of :not(:nth-of-type(αn + β)) and

of :not(:nth-last-of-type(αn + β)) in a likewise fashion. For the remaining cases of

:not(:only-child), and :not(:only-of-type) the property follows since, for the former

the node must either not be position 1 from the start or end, and for the latter a not only of type node has

more than 0 strict predecessors or successors of the same type.

Next, to satisfy AttsPres(τΘ, i) we have to satisfy a number of conjuncts. First, if we have a word

a1 . . . an we assign it to the variables xs:ai,j (where η is the ith in the run and j ranges over all word

positions within the cimputed bound) ny assigning xs:ai,j = aj when j ≤ n and xs:ai,j = 0 otherwise.

71

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

In all cases below, it is straightforward to observe that it a word (within the computed length

bound) satisfies [s|a op v] or :not([s|a op v]) then the encoding AttsPress:a([s|a op v], i) or

¬AttsPress:a([s|a op v], i) is satisfied by our variable assignment. Similarly Nulls(~x) is straightfor-

wardly satisfied. Hence, if a word satisfiesC then our assignment to the variables means AttsPress:a(C, i)
is also satisfied.

There are a number of cases of conjuncts for attribute selectors. The simplest is for sets Θs
a where

we see immediately that all constraints are satisfied for λA(η)(s, a) and hence we assign this value to

the appropriate variables and the conjuct is satisfied also. For each [a] and [a op v] ∈ Θ we have

in the document some namespace s such that λA(η)(s, a) satisfies the attribute selector and all negative

selectors applying to all namespaces. Let s′ be the fresh name space assigned to the selector during the

encoding and C be the full set of constraints belonging to the conjunct (i.e. including negative ones).

We assign to the variable xs:ai,j the jth character of λA(η)(s, a) (where η is the ith in the run) and satisfy

the conjuct as above. Note here that a single value of s:a is assigned to several s′:a. This is benign with

respect to the global uniqueness required by ID attributes because each copy has a different namespace.

Finally, we have to satisfy the consistency constraints. We showed Consistentn above. The re-

maining consistency constraints are easily seen to be satisfied: Consistenti because each ID is unique

causing at least one pair of characters to differ in every value; Consistentp since it encodes basic con-

sistency constraints on the appearence of pseudo elements in the tree.

Thus, we have satisfied the encoded formula, completing the first direction of the proof.

Lemma C.9. For a CSS automaton A, we have

θA is satisfiable. ⇒ L(A) 6= ∅

Proof. Take a satisfying assignment ρ to the free variables of θA. We construct a tree and node (T, η)
as well as a run of A accepting (T, η).

We begin by taking the sequence of states q0, . . . , qℓ+1 which is the prefix of the assignment to

q0, . . . , qn where qℓ is the first occurrence of qf . We will construct a series of transitions t0, . . . , tℓ with

ti = qi
di−→
σi

qi+1 for all 0 ≤ i ≤ ℓ. We will define each di and σi, as well as construct T and η by

induction. We construct the tree inductively, then show σi is satisfied for each i.
At first let T0 contain only a root node. Thus η0 is necessarily this root. Throughout the proof we

label each ηi as follows.

• λS(ηi) = ρ(si) (i.e. we assign the value given to si in the satisfying assignment).

• λE(ηi) = ρ(ei).

• λP(ηi) =

(

{p | p ∈ P \ {:root} ∧ ρ(pi) = ⊤}∪
{:root | i = 0}

)

.

• λA(ηi)(s, a) = ρ
(

xs:ai,1 . . . x
s:a
i,N

)

where ρ
(

xs:ai,1 . . . x
s:a
i,N

)

is the word obtained by stripping all of

the null characters from ρ
(

xs:ai,1

)

. . . ρ
(

xs:ai,N

)

.

We pick ti as the transition corresponding to a satisfied disjunct of Tran(i) (of which there is at least

one since qi 6= qf when i ≤ ℓ). Thus, take ti = qi
di−→
σi

qi. We proceed by a case split on di. Note only

cases di =↓ and di = ◦ may apply when i = 0.

• When di =↓ we build Ti+1 as follows. First we add the leaf node ηi+1 = ηi1. Then, if i > 0,

we add siblings appearing after ηi with types required by the last of type information. That is, we

add ρ
(

N i

)

− 1 =
∑

s:e∈ELE

ρ
(

N
s:e

i

)

siblings appearing after ηi. In particular, for each s and e we

72

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

add ρ
(

N
s:e

i

)

new nodes. Letting ηi = ηι each of these new nodes η′ will have the form ηι′ with

ι′ > ι. We set λS(η
′) = s, λE(η

′) = e, λP(η
′) = ∅, λA(η

′) = ∅.

• When di =→ we build Ti+1 by adding a single node to Ti. When ηi = ηι we add ηi+1 =
η (ι+ 1) with the labelling as above.

• When di =→+ we build Ti+1 as follows. We add ρ
(

δ
)

= (ρ(ni+1)− ρ(ni)) new nodes of the

form ηι′ where ηi = ηι and ρ(ni) = ι < ι′ ≤ ρ(ni). Let ηi+1 be ηρ(ni) labelled as above. For

the remaining new nodes, for each s and e, we label ρ
(

δs:e
)

of the new nodes η′ with λS(η
′) = s,

λE(η
′) = e, λP(η

′) = ∅, λA(η
′) = ∅. Note Consistentn ensures we have enough new nodes to

partition like this.

• When di = ◦ and i = 0 we have completed building the tree. If i > 0, we add siblings appearing

after ηi with types required by the last of type information exactly as in the case of d =↓ above.

The tree and node we require are the tree and node obtained after reaching some di = ◦, for which we

necessairily have i = ℓ since ◦ must be and can only be used to reach qf . In constructing this tree we

have almost demonstrated an accepting run of A. To complete the proof we need to argue that all σi are

satisfied by ηi and that the obtained is valid. Let τΘ = σi.

To check τ we observe that Pres(τ, i) constrains si and ei to values, which when assigned to ηi as

above mean ηi directly satisfies τ .

Now, take some θ ∈ Θ. In each case we argue that Pres(τ, i) ensures the needed properties. Note

this is straightforward for the attribute selectors due to the directness of the Presburger encoding. Con-

sider the remaining selectors.

First assume θ is positive. If it is :root then we must have i = 0 and ηi is the root node as required.

For other pseudo classes p we asserted pi hence we have p ∈ λP(ηi). The encoding of the remaining

positive constraints can only be satisfied when i > 0. That is, ηi is not the root node.

For :nth-child(αn + β) observe we constructed T such that ηi = ηρ(ni) for some η. From

the defined encoding of Pres(:nth-child(αn + β), i) we directly obtain that ηi satisfies the se-

lector :nth-child(αn + β). Similarly for :nth-last-child(αn + β) as we always pad

the end of the sibling order to ensure the correct number of succeeding siblings.

For :nth-of-type(αn + β) and :nth-last-of-type(αn + β) selectors, by similar

arguments to the previous selectors, we have ensured that there are enough preceeding or succeeding

nodes (along with the directness of their Presburger encoding) to ensure these selectors are satisfied by

ηi in T .

For :only-child we know there are no other children since ρ(ni) = ρ
(

N i

)

= 1. Finally for

the selector :only-of-type we know there are no other children of the same type since ρ(ns:ei) =

ρ
(

N
s:e

i

)

= 0 where ηi has type s:e.

When θ is negative there are several cases. If it is :not(:root) then we must have i > 0 and ηi is

not the root node. For other pseudo classes p we asserted ¬pi hence we have p /∈ λP(ηi). The encoding

of the remaining positive constraints are always satisfied on the root node. That is, i = 0. When ηi is

not the root node we have i > 0.

For :not(:nth-child(αn + β)) observe we constructed T such that ηi = ηρ(ni) for some

η. From the definition of Pres(:not(:nth-child(αn + β)), i) we obtain that ηi does not satisfy

the required selector :nth-child(αn + β) via Proposition C.7 (Correctness of NoMatch(x, α, β)).
Similarly for the last child selector

:not(:nth-last-child(αn + β)) .

73

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

For :not(:nth-of-type(αn + β)) and :not(:nth-last-of-type(αn + β)), by

similar arguments to the previous selectors, we have ensured that there are enough preceeding or suc-

ceeding nodes (along with their Presburger encodings and Proposition C.7 (Correctness of NoMatch(x, α, β)))
to ensure these selectors are satisfied by ηi in T .

For :not(:only-child) we know there are some other children since ρ(ni) > 1 or ρ
(

N i

)

>
1. Finally for :not(:only-of-type) we know there are other children of the same type since

ρ(ns:e
i) > 0 or ρ

(

N
s:e

i

)

> 0 where ηi has type s:e.

Thus we have an accepting run of A over some (T, η). However, we finally have to argue that T is

a valid document tree. This is enforced by Consistenti and Consistentp.

First, Consistenti ensures all IDs satisfying the Presburger encoding are unique. Since we trans-

ferred these values directly to T our tree also has unique IDs.

Next, we have to ensure properties such as no node is both active and inactive. These are all directly

taken care of by Consistentp. Thus, we are done.

D Additional Material for the Experiments Section

D.1 Optimised CSS Automata Emptiness Check

The reduction presented in Section 5 proves membership in NP. However, the formula constructed is

quite large even for the intersection of two relatively small selectors. Moreover, selectors generally do

no assert complex properties, so for most transitions, the full power of existential Presburger arithmetic

is not needed. Hence, only a small part of each formula requires complex reasoning, while the remainder

of the problem is better and easily solved with direct knowledge of the automata.

In this section we present an alternative algorithm. In essence it is a backwards reachability algo-

rithm for deciding non-emptiness of a CSS automaton. Instead of constructing a single large query that

requires a non-trivial solve time, the backwards reachability algorithm only makes small queries to the

SAT solver to enforce constraints that are not simply enforced by a standard automaton algorithm.

The idea is that the automaton collects constraints on the node positions required to satisfy the nth-

child (sibling) constraints as it performs its backwards search. It also tracks extra information to ensure

it does not get stuck in a loop, at most one node is labelled :target, and all ids are unique. Each

time the automaton takes a transition labelled ↓ it checks whether the current set of sibling constraints

is satisfiable. If so, the automaton can move up to the parent node and begin with a fresh set of sibling

constraints. If not, the automaton cannot execute the transition. Once the initial state has been reached,

it just remains to check whether the id constraints are satisfiable. If they are, a witness to non-emptiness

has been found.

The algorithm is a worklist algorithm, where the worklist consists of tuples of the form

(q, broot, bsib, btarg,Ts, Cid, Cpos, i)

where

• q is the state reached so far,

• broot is a boolean indicating whether the current node has to be the root,

• bsib is a boolean indicating whether the current node has to have siblings,

• btarg is a boolean indicating whether a node marked :target has been seen on the run so far,

74

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

• Ts is the set of transitions seen on the current state (recall all loops are self-loops, so cycle detec-

tion can be implemented using Ts),

• Cid is the set of constraints on id attributes in the run so far,

• Cpos is the set of constraints on node positions on the current level of the tree (that is, for the

assertion of nth-child constraints),

• i is the index position in the run (akin to the use of indices in the Presburger encoding).

The initial worklist contains a single element

(qf ,⊥,⊥,⊥, ∅, ∅, ∅, n)

where n is the number of transitions of the CSS automaton. Note, the final element of the tuple will

always range between 1 and n since we decrement this counter whenever we take a new transition, and

each transition may only be visited once.

In the following, we partition sets of node selector elements into sets containing pseudo-classes,

attribute selectors, and positional selectors. That is, given a node selector τΘ we write

• Atts(Θ) for the elements of Θ of the form θ or :not(θ) where θ is of the form [s|a] or

[s|a op v],

• Pos(Θ) for the elements of Θ of the form θ or :not(θ) where θ is of the form

:nth-child(αn + β),
:nth-last-child(αn + β),
:nth-of-type(αn + β),

:nth-last-of-type(αn + β)
,:only-child, or

:only-of-type,

• Pseudo(Θ) for the elements of Θ of the form θ or :not(θ) where θ is of the form

:link,:visited,:hover,:active,:focus,:target,
:enabled,:disabled,:checked,:root, or :empty .

If the worklist is empty, we terminate, and return that the automaton is empty.

If it is not empty, we take an arbitrary element

(q′, broot, bsib, btarg,Ts, Cid, Cpos, i)

and for each transition

t = q
d
−→
σ
q′

with σ = τΘ we add to the worklist

(

q, b′root, b
′
sib, b

′
targ,Ts

′, C ′
id, C

′
pos, i

′
)

where i′ = i−1 is a fresh index, and when certain conditions are satisfied. We detail these conditions and

the definition of the new tuple below. We begin with general conditions and definitions, then describe

those specific to the value of d.

In all cases, we can only add a new tuple if

75

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

1. t /∈ Ts,

2. AttsPres(τΘ, i′) is satisfiable,

3. Pseudo(Θ) is satisfiable – that is, we do not have p ∈ Θ and :not(p) ∈ Θ for some pseudo-class

p, and, moreover, we do not have

• :link ∈ Θ and :visited ∈ Θ, or

• :enabled ∈ Θ and :disabled ∈ Θ, or

• :root ∈ Θ and bsib = ⊤.

In all cases, we define

• b′root =











⊤ :root ∈ Θ

broot d = ◦

⊥ otherwise,

• b′sib =











⊤ d ∈ {→,→+}

bsib d = ◦

⊥ otherwise,

• b′targ = btarg ∨ (:target ∈ Θ),

• Ts′ =

{

Ts ∪ {t} q = q′

∅ otherwise,

• C ′
id = Cid∪C

′′
id whereC ′′

id is the set of all clauses AttsPress:id(C, i
′) appearing in AttsPres(τΘ, i′)

for some s and C.

Next, we give the conditions and definitions dependent on d. To do so we need to define the set of

positional constraints derived from Pos(Θ). We use a slightly different encoding to the previous section.

We use a variable ni encoding that the node is the nith child of the parent, and ns:a
i counting the number

of nodes of type s:a to the left of the current node (exclusive). To encode “last of” constraints, we use

the variableN to encode the total number of siblings of the current node (inclusive), andNs:a to encode

the total number of siblings of the given type (inclusive).

That is, when b′root = ⊤ let

• C ′′
pos = {⊥} if b′sib = ⊤,

• C ′′
pos = {⊥} if there is some θ ∈ Pos(Θ) that is not of the form :not(θ’) for some θ′, and

• C ′′
pos = {⊤} otherwise,

76

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

and when b′root = ⊥ let C ′′
pos =

{∃n . ni′ = αn+ β | :nth-child(αn + β) ∈ Θ} ∪
{

∃n . N − ni′ − 1 = αn+ β
∣

∣ :nth-last-child(αn + β) ∈ Θ
}

∪
{

si′ :ei′ = s:e⇒
∃n . ns:e

i′ = αn+ β

∣

∣

∣

∣

s ∈ ⇃(NS) ∧ e ∈ ⇃(ELE) ∧
:nth-of-type(αn + β) ∈ Θ

}

∪
{

si′ :ei′ = s:e⇒
∃n . Ns:e − ns:e

i′ − 1 = αn+ β

∣

∣

∣

∣

s ∈ ⇃(NS) ∧ e ∈ ⇃(ELE) ∧
:nth-last-of-type(αn + β) ∈ Θ

}

∪

{NoMatch(ni′ , α, β) | :not(:nth-child(αn + β)) ∈ Θ} ∪
{

NoMatch
(

N − ni′ − 1, α, β
) ∣

∣ :not(:nth-last-child(αn + β)) ∈ Θ
}

∪
{

si′ :ei′ = s:e⇒
NoMatch(ns:e

i′ , α, β)

∣

∣

∣

∣

s ∈ ⇃(NS) ∧ e ∈ ⇃(ELE) ∧
:not(:nth-of-type(αn + β)) ∈ Θ

}

∪
{

si′ :ei′ = s:e⇒
NoMatch

(

Ns:e − ns:ei′ − 1, α, β
)

∣

∣

∣

∣

s ∈ ⇃(NS) ∧ e ∈ ⇃(ELE) ∧
:not(:nth-last-of-type(αn + β)) ∈ Θ

}

∪

{

N > ni′
}

∪











ni′ =
∑

s∈⇃(NS)
e∈⇃(ELE)

ns:e
i′











∪

{

si′ :ei′ = s:e⇒ Ns:e > ns:e
i′

∣

∣ s ∈ ⇃(NS) ∧ e ∈ ⇃(ELE)
}

∪
{

si′ :ei′ 6= s:e⇒ Ns:e ≥ ns:e
i′

∣

∣ s ∈ ⇃(NS) ∧ e ∈ ⇃(ELE)
}

.

Then we have the following.

• When d = ◦, we set

C ′
pos = Cpos ∪ C

′′
pos ∪

{ni′ = ni} ∪ {si′ :ei′ = si:ei} ∪
{ns:e

i′ = ns:e
i | s ∈ ⇃(NS) ∧ e ∈ ⇃(ELE)} .

• When d =↓,

– we require Cpos is satisfiable, ¬broot, and :empty /∈ Θ,

– we set C ′
pos = C ′′

pos.

• When d =→,

– we require ¬broot and :root /∈ Θ,

– we set

C ′
pos = Cpos ∪ C

′′
pos ∪ {ni = ni′ + 1} ∪

{si′ :ei′ = s:e⇒ ns:e
i = ns:e

i′ + 1 | s ∈ ⇃(NS) ∧ e ∈ ⇃(ELE)} ∪
{si′ :ei′ 6= s:e⇒ ns:e

i = ns:e
i′ | s ∈ ⇃(NS) ∧ e ∈ ⇃(ELE)} .

• When d =→+

– we require ¬broot and :root /∈ Θ,

77

CSS Minification via Constraint Solving M. Hague, A. W. Lin, and C.-H. Hong

– we set

C ′
pos = Cpos ∪ C

′′
pos ∪































∃δ,
(

δs:e
)

s∈⇃(NS)
e∈⇃(ELE)

.

















ni = ni′ + δ ∧ δ ≥ 1 ∧
∧

s∈⇃(NS)
e∈⇃(ELE)

(

ns:ei = ns:ei + δs:e ∧
(si′ :ei′ = s:e) ⇒ δs:e ≥ 1

)

∧

δ =
∑

s∈⇃(NS)
e∈⇃(ELE)

δs:e















































.

Moreover, if we were able to add the tuple to the worklist, and we have

• q = qin,

• C ′
pos is satisfiable, and

• The ID constraints are satisfiable,

then the algorithm terminates, reporting that the automaton is non-empty. To check the ID constraints

are satisfiable, we test satisfiability of the following formula. Let N be the bound on the length of ID

values, as derived in the previous section. We assert

∧

θ∈C′

id

θ ∧
∧

s∈NS
1≤i1,i2≤n

∨

1≤j≤N

xs:idi1,j
6= xs:idi2,j

.

That is, we assert all ID conditions are satisfied, and all IDs are unique.

D.2 Sources of the CSS files used in our experiments

We have collected 72 CSS files from 41 global websites for our experiments. These websites cover the

20 most popular sites listed on Alexa [1], which are Google, YouTube, Facebook, Baidu, Wikipedia,

Yahoo!, Reddit, Google India, Tencent QQ, Taobao, Amazon, Tmall, Twitter, Google Japan, Sohu,

Windows Live, VK, Instagram, Sina, and 360 Safeguard. Note that we have excluded Google India

and Google Japan from our collection as we found the two sites share the same CSS files with Google.

We have further collected CSS files from 12 well-known websites ranked between 21 and 100 on the

same list, including LinkedIn, Yahoo! Japan, Netflix, Imgur, eBay, WordPress, MSN, Bing, Tumblr,

Microsoft, IMDb, and GitHub. Our examples also contain CSS files from several smaller websites,

including Arch Linux, arXiv, CNN, DBLP, Google News, Londonist, The Guardian, New York Times,

NetworkX, OpenStreetMap, and W3Schools. These examples were used in the testing and development

of our tool.

78

	Introduction
	Contributions
	Organisation

	CSS Rule-Merging: Example and Outline
	HTML and CSS
	CSS Rule-Merging by Example
	CSS Rule-Merging Outline

	Preliminaries
	Maths
	Trees
	Max-SAT
	Existential Presburger Arithmetic

	Formal definition of CSS rule-merging and minification
	CSS Selector Formalisation and its Intersection Problem
	Definition of Document Trees
	Formal Definition
	Example

	Definition of CSS3 selectors
	Syntax
	Semantics
	Divergences from full CSS

	Solving the intersection problem
	Extracting the edge order from a CSS file

	More Details on Solving Selector Intersection Problem
	CSS Automata
	Transforming CSS Selectors to CSS Automata
	Simple Example
	Formal Translation
	Complex Example

	Closure Under Intersection
	Formal Definition of Intersection
	Example of Intersection

	Reducing Non-emptiness of CSS Automata to SMT-solving
	Bounded Run Length
	Bounding Namespaces and Elements
	Bounding Attribute Values
	Encoding Attribute Selectors
	Encoding Non-Emptiness
	Correctness of the Encoding

	Rule-Merging to Max-SAT
	Orderable Bicliques
	The Max-SAT Encoding
	Representing the rule-merging opportunity
	Hard Constraints
	Soft Constraints

	Generated Rule-Merging Opportunity

	Experimental Results
	Optimisations
	Results
	Main Results
	Evaluations of Optimisations

	Related Work
	Conclusion and Future Work
	Additional Material for Max-SAT Encoding
	Orderable Bicliques
	Enumerating Maximal Rules
	Initialisation
	Iteration
	Algorithm for (M, F1st)
	Generating Orderable Sub-Bicliques

	Correctness of the Encoding

	Additional Material for Section 5
	Handling Pseudo-Elements
	NP-hardness of Theorem 5.2
	Handling !important and shorthand property names
	The !important Keyword
	Shorthand Property Names

	Additional Material for Section 6
	Correctness of A in Proposition 6.1
	Proof of Proposition 6.2
	Proofs for Non-Emptiness of CSS Automata
	Bounding Namespaces and Elements
	Proof of Polynomial Bound on Attribute Value Lengths
	Missing definitions for AttsPres(,)
	Negating Positional Formulas
	Correctness of Presburger Encoding

	Additional Material for the Experiments Section
	Optimised CSS Automata Emptiness Check
	Sources of the CSS files used in our experiments

