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Sediments cored along the southwestern Iberian margin during Integrated Ocean Drilling
Program Expedition 339 provide constraints on Mediterranean Outflow Water (MOW)
circulation patterns from the Pliocene epoch to the present day. After the Strait of
Gibraltar opened (5.33 million years ago), a limited volume of MOW entered the Atlantic.
Depositional hiatuses indicate erosion by bottom currents related to higher volumes of
MOW circulating into the North Atlantic, beginning in the late Pliocene. The hiatuses
coincide with regional tectonic events and changes in global thermohaline circulation
(THC). This suggests that MOW influenced Atlantic Meridional Overturning Circulation
(AMOC), THC, and climatic shifts by contributing a component of warm, saline water to
northern latitudes while in turn being influenced by plate tectonics.

T
ectonic activity exerts primary control on
sedimentation along continental margins
and on seafloor morphology, whereby it also
influences bottom current flow pathways.
Sea level variation and climate also influ-

ence sedimentation along continental margins.
Plate tectonic configuration plays an important
role in climate (1), although uncertainty per-
sists concerning the specific cause-effect rela-
tionships and their relative importance on a
temporal scale. From the late Miocene to the
Pleistocene, Earth experienced major plate tec-
tonic, climatic, and oceanographic shifts that,
along with orbital variation, contributed to
present-day global climate dynamics (2). These
events include the closure and reopening of gate-
ways between the Atlantic and Mediterranean
basins [~5.55 to 5.33 million years ago (Ma) (3)],
the closure of the deep Central American Sea-
way (CAS) [4.5 to 3.0 Ma (4)] and the Indonesian
Seaway [~4 Ma (2)], and the onset of Northern
Hemisphere glacial (NHG) cycles in the late
Pliocene (5). Neogene sedimentary sections also
record Pliocene warming trends that culmi-
nate in the mid-Pliocene warm period [3.3 to
3.0 Ma (6)], the Panama seaway closure [~3.0
to 2.7 Ma (7)], and NHG intensification around
2.72 Ma [Marine Isotope Stage (MIS) G6 (5)].
During this period, increases in evaporation
and precipitation facilitated ice sheet formation,
higher albedo, and increased Atlantic Meridio-
nal Overturning Circulation (AMOC) (4, 8). The
global transition to Quaternary glacial cycles at
2.7 Ma (5, 8), a predicted major glaciation at

2.15 Ma (9), and the recent mid-Pleistocene tran-
sition at ~0.9 to 0.7 Ma (10) also relate to the es-
tablishment and stabilization of present-day
ocean circulation patterns.
Changes in the Mediterranean Outflow Water

(MOW) co-occurred with some of these shifts in
global ocean circulation and climate, but the
exact timing of MOW evolution with respect to
major climate events remains unclear. The Strait
of Gibraltar strongly influences Mediterranean-
Atlantic watermass exchange, contributing warm
and highly saline MOW to the Atlantic Ocean.
MOW currently enters the Strait of Gibraltar with
a density of 29.12 kg/m3 (8); its density is 27.7 kg/m3

in the Gulf of Cadiz and off Brittany (11, 12) and
27.4 kg/m3 further afield along the Rockall Plateau
of the northeastern Atlantic extension (12). MOW
input thus enhances North Atlantic density and
helps drive thermohaline convection. Estimates
suggest that withoutMOW, the AMOCwould decline
by~15%andNorthAtlantic seasurfacetemperatures
would fall by up to 1°C (8). The Gulf of Cadiz and
the western margin of Portugal record critical
aspects of MOW development as well as the inter-
action between MOW and AMOC. Upon exiting
the Strait of Gibraltar, MOW consists of relatively
warm and highly saline water (Fig. 1) that settles
into an intermediate bottom current within the
mid-slope region, between 400 and 1400 m water
depth, at an overflow rate of 0.67 T 0.28 Sv (11). This
region lies beneath AtlanticWater (AW) inflow but
rafts above North Atlantic Deep Water (NADW).
This paper interprets the sequence of events

that established an importantMOWcontribution

to North Atlantic thermohaline dynamics, and
makes inferences concerning how these dynamics
relate to Neogene and Quaternary climatic and
tectonic events. Our study combines geophysical
and drill core data acquired along the south-
western Iberianmargin during Integrated Ocean
Drilling Program (IODP) Expedition 339 aboard
the research vessel JOIDES Resolution (Fig. 1).
The southwestern Iberian margin is located

near theAzores-Gibraltar Fracture Zone,which is a
section of the convergent plate boundary between
Eurasia (Iberia subplate) and Africa (Nubia sub-
plate). The plates currently converge at a rate of ~4
to 5 mm/year in a WNW-ESE direction. Counter-
clockwise rotation is accommodated by a series of
thrusts and dextral strike-slip faults (13, 14) active
since at least 1.8 Ma. Starting in the late Miocene,
the southwestern Iberianmargin evolvedby oblique
convergence between the Iberia and Nubia sub-
plates (13) andwestward rollback subduction of an
oceanic lithosphere slab beneath the Gibraltar Arc,
both of which facilitate development of the Cadiz
Allochthonous Unit (CAU) (15) or accretionary
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wedge (16). Distinct periods of crustal defor-
mation, fault reactivation, and halokinesis re-
lated to plate motion have contributed to the
tectonostratigraphic evolution of the area (13).
Sediments within the Gulf of Cadiz record the
opening of the Strait of Gibraltar, and event
that initiated MOW intrusion into the North At-
lantic. Subsequent intensification of MOW es-
tablished along-slope depositional systems and
generated an extensive contourite depositional
system (CDS) (17) that provides a sedimentary
record of the paleoceanographic events analyzed
and interpreted here.

Seismic records and drill cores as
tracers of MOWdynamics from
the late Miocene to the present

Major regional discontinuities appear as high-
amplitude seismic reflections within late Mio-
cene to present-day sediments around theGulf of
Cadiz (Fig. 2 and fig. S1). These discontinuities
provide a record of MOW circulation relative to
coeval tectonic and climatic events. Pliocene de-
posits appear in seismic profiles as sheeted drifts

overlying a weakly reflecting Miocene unit that
progrades downslope (Fig. 2 and fig. S1). The
late Pliocene to lower Quaternary section pro-
vides a record of substantial synsedimentary de-
formation associated with two discontinuities
that define a major truncation surfaces (fig. S2).
Quaternary deposits are distinguished by high-
amplitude seismic reflections and show clear up-
slope progradation.
Closure of the Strait of Gibraltar and the Betic-

Rharb corridors during the Messinian Salinity
Crisis (5.56 to 5.33 Ma) prevented Mediterranean-
Atlantic water exchange (3). Exchange resembling
present-day flows through these channels is thought
to have begun with the opening of the Strait of
Gibraltar and the related onset of the latest Mio-
cene flooding at ~5.33 Ma (3). Widespread discon-
tinuities evident in seismic records and pervasive
hiatuses evident in Expedition 339 drill cores
suggest four major phases of MOW evolution
after the opening of the Strait of Gibraltar (Fig. 2,
Fig. 3, and fig. S1).
The primary phase of downslope activity oc-

curred during the early Pliocene (~5.2 to 4.5 Ma)

as downslope mass transport deposits (slumps
and debrites) and turbidites developed in res-
ponse to widespread tectonic activity. These
deposits overlie a regional discontinuity (Fig. 2
and fig. S1) above the late Miocene hemipelagic
deposits (Fig. 4 and fig. S3). Drill core results sug-
gest only a limited degree of contourite deposi-
tion beginning in the Pliocene. The opening of
the Strait of Gibraltar caused slope instability
(3), leading to gravitational-collapse breccia de-
posits (18).
The second phase began with the onset of

limited MOW circulation between ~4.5 and 3.5 Ma.
Persistent sequences of contourite facies from
4.5 to 4.2Ma show clear evidence of initialMOW
circulation into the Gulf of Cadiz and subse-
quent interaction between MOW and the North
Atlantic.
The third phase is defined by enhanced MOW

circulation from 3.2 to 2.1 Ma. Twomajor hiatuses,
at 3.2 to 3.0 Ma and at 2.4 to 2.1 Ma, indicate
erosion by bottom currents and enhanced interac-
tion between MOW and the North Atlantic. Major
and uninterrupted contourite deposition occurs

Fig. 1. Regional water masses, major tectonic features, and Gulf of Cadiz CDS site locations sampled during IODP Expedition 339.
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only above the upper Pliocene hiatus at 3.2 to
3.0 Ma, where dolostones and debrite deposits
occur (Figs. 2 and 4). Interbedded turbidites
and contourites are also common in the upper
Pliocene section. Dolostone deposits are closely
linked to the aforementioned hiatus, wherein they
may have precipitated as a result of shallow dia-
genetic processes (Fig. 2). That hiatus is the first
major event evident within the sedimentary stack-
ing pattern throughout the northern Gulf of Cadiz
slope (19) and within the Strait of Gibraltar (18).
Quaternary successions show a much more pro-
nounced phase of contourite deposition and drift
development. These deposits consist of sandy and
muddy contourites with periodic turbidite inter-
calations. They also show a considerable phase of
downslope sedimentation at ~2 Ma. A regional

hiatus, which occurs within the Quaternary sec-
tion at ~2.4 to 2.1 Ma, is also associated with
dolostones and debrite deposits (Figs. 2 and 4).
This hiatus appears as an important discontinuity
within drift near the base of the Quaternary. It
records a period of tectonic instability coeval with
erosion by bottom currents and substantially
higher volumes of MOW input into the North
Atlantic relative to flow onset at 4.5 to 4.2 Ma.
The final phase, beginning with the establish-

ment of present-day circulation at 2.1 Ma and
continuing to this day, is evident from increased
sedimentation rates and rapid contourite develop-
ment. A youngermajor regional discontinuitywith
local erosion is clearly evident in the seismic records
(Fig. 2 and fig. S1) and is attributed to the mid-
Pleistocene transition (17, 20), with a tentative age

of 0.9 Ma (17). A pronounced change in the drift
sedimentary stacking pattern appears at this time
horizon as enhanced upslope progradation and
mounded morphology, indicating an intensifi-
cation of MOW (17, 20). A specific hiatus or con-
densed section, however, is not found in all of
the drill core material at the 0.9 to 0.7 Ma time
horizon (Fig. 3). Ongoing analysis seeks to fur-
ther constrain the exact age and duration of this
discontinuity.
Hiatuses, mass transport deposits (debrites,

slumps), and tectonic events occurring at the
end of the Miocene (3), 3.2 to 3.0 Ma (19, 21), 2.4
to 2.0 Ma (13), or ~0.9 Ma (17) around the Gulf
of Cadiz appear to coincide with major climatic
shifts during this period. Tectonic activity has
been a key factor controlling seafloormorphology,

Fig. 2. Stratigraphic section showing major sedi-
mentary stacking patterns from Pliocene sheeted
drift deposits to Quaternary separated drift depos-
its. Core samples of a debrite (left) and dolostone
(right) collected directly beneath the hiatuses are
also shown (mbsf, meters below seafloor). Plane-
polarized (upper) and cross-polarized (lower) light
photomicrographs of dolostone samples show com-
position of almost pure micritic dolomite.
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which in turn influences MOW flow pathways
and, by extension, deep-water sedimentation. The
stratigraphic events thus reflect changes in the
Iberia-Nubia subplate kinematics during the Pli-
ocene and Quaternary, which established the
present-day transpressional regime. Deformation
of the CAU,which initially emplaced in theAlgarve
basin (fig. S2) in the late Miocene, occurred with
reactivation of blind thrusts during the Pliocene
and Quaternary. The CAU could therefore record
tectonic episodes associated with plate reorgani-
zation. Shifts in the Africa-Eurasia plate trajectory
after the Messinian Salinity Crisis contributed to
the deepening of the gateway (13). The NW-SE to
WNW-ESE shift in convergence direction (13, 22)
coincides with tectonic events between 3.2 and
2.0Ma. A hiatus previously described from IODP
Expedition 339 core records reflects these events,
as do other hiatuses identified near the Strait of
Gibraltar (23), in the Alboran Sea (24), and in the
easternAtlantic betweenGibraltar and the equator
(25). The shift in plate convergence direction for

the southwestern Iberian margin coincides with
a decline in westward migration and thrusting
activity for the accretionary wedge. Reactivated
blind thrusts accommodated shortening and
minor sedimentary accretion (16). At ~1.8 Ma,
the oblique convergence between the Iberia and
Nubia subplates reactivates WNW-ESE dextral
strike-slip faults aswell as shallowerWNW-directed
thrusts (14).

Global implications

The spatial distribution of these hiatuses can
help to refine our understanding of MOW devel-
opment and its overall effect on thermohaline
circulation (THC) and deep-water sedimentation.
The interpreted sequence of events is summarized
in Fig. 5.
Lower Pliocene sedimentary deposits show no

clear evidence of MOW input into the Atlantic
prior to 4.5 Ma. This time constraint indicates
a lag between the full opening of the Strait of
Gibraltar (~5.33 Ma) and the establishment of

consistent MOW interaction with the North
Atlantic (fig. S4). Similarities in the densities of
Mediterranean seawater and Eastern North At-
lantic CentralWater in the beginning of the early
Pliocene (8) may have contributed to this lag.
By the early Pliocene, Antarctic Bottom Water
(AABW) flowed northward and extended into
the North Atlantic with greater intensity. This in-
tensification coincided with a weaker AMOC, es-
pecially during glacial stages (25).
At ~4.5 Ma, MOW began to circulate into the

North Atlantic as an intermediate and deep-water
circulation (6). Some authors have reported an
additional MOW intensification stage at ~3.8 Ma
(23) and 3.5 Ma (12), which coincides with more
active circulation in the North Atlantic (12). This
second stage demonstrates increasing MOW in-
fluence on the North Atlantic and a sedimentary
signal shared by MOW- and THC-related phe-
nomena. Notably, the CAS (fig. S4) shoaled by
~4.5 to 3.5Ma and began to hinder intermediate-
layer circulation. These events blocked NADW
flow into the Pacific but enhanced NADW flow
into the South Atlantic, initiating the modern-
day deep-water circulation pattern (6). Themodern-
daypattern delivers warmer, saltier surface water
to more northerly locations in the Arctic Ocean,
enhancing evaporation, precipitation, and ice sheet
formation. These factors established the initial con-
ditions for the mid-Pliocene warm period (4, 8).
Around this same time (~4.5 Ma), Labrador Sea
Water (LSW) began to circulate as part of the
North East Atlantic Deep Water (NEADW) layer
(7). This led to increasedAMOC circulation between
4.5 and 4.0 Ma, as well as increased drift sedimen-
tation in the North Atlantic (2).
Two phases of MOW intensification occurred,

one at 3.2 to 3.0 Ma and the other at 2.4 to 2.1 Ma.
The timing of these events correlates with higher-
amplitude phases of temperature and insolation
oscillations related to the 400,000-year, eccentricity-
modulated cycle (6), suggesting a relationship be-
tween orbital changes and MOW production.
The first enhanced MOW period began after

3.2 Ma and coincides with widespread evidence
of NEADW circulation. This event contributed
to the formation of the present-day NADW (4)
through southwarddeflectionof theAABW-NADW
contact (south of the Azores). NADW arrival at
extreme southerly latitudes around Antarctica in
turn cooled the Antarctic water and increased
production of AABW, augmenting its flow into
the southwest Atlantic (26). A coeval decrease in
sedimentary accumulation rates in North Atlantic
drift deposits accompanied these events (2). Model
experiments indicate that NADW production in-
creased around the time of the final CAS closure
at 3 Ma (6). However, the increased strength of
the AMOC also suggests additional saline and
warm water transport to high latitudes in the
North Atlantic. MOW could have supplied this
additional saline water component of the AMOC.
The present study shows that MOW intensifi-
cation between 3.2 and 3.0 Ma contributed salt
water at intermediate depths to northerly lati-
tudes, thus enhancing AMOC and overall North-
ern Hemisphere deep-water formation and

Fig. 3. Age curves and sedimentation rates for sites sampled during IODP Expedition 339. Ages
are based on biostratigraphic and magnetostratigraphic dating. These methods identify depositional
hiatuses and boundaries between stratigraphic periods and enable the estimation of sedimentary
accumulation rates.
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reducing pole-to-equator temperature gradients
during the mid-Pliocene warm period. Prior to
3.4 Ma, the density of MOW slightly exceeded
the present-day value of 27.8 kg/m3 (12). Density
increased about 1 kg/m3, maximizing around 3.3
to 3.2Ma and persisting at this level until ~3.0Ma
(12). The temporal boundary of this density event
coincides with the age of the hiatus identified in
the Gulf of Cadiz. MOW intensification therefore
also contributed salt water at intermediate depths
to northerly latitudes, thus enhancing THC, AMOC,
and overall Northern Hemisphere deep-water
formation.
The secondenhancedMOWperiod (2.4 to2.1Ma)

coincidedwith a sizable stratigraphic gap reported
for the northeast Atlantic (24), suggesting syn-
chronous reactivation of the THC andAMOC. This
new event would suggest an additional increase
in MOW density, which is surprisingly coeval with
apparent major glaciation at 2.15 Ma (9).
Present-day MOW dynamics (fig. S4) com-

menced in the earliest Quaternary and coincided

with a shift from long-term global cooling trends
(27) marked by the final NHG intensification
(4). The shift included a decline in atmospheric
CO2 levels, global cooling (27), and a fall in sea
level (28). The 41,000-year obliquity cycle re-
placed the 23,000-year precessional cycle as
the primary orbital mechanism influencing cli-
mate. This shift is also associated with a progres-
sive increase in the amplitude of Earth’s orbital
obliquity (4).
While cooler deep waters formed with the sub-

sequent increase in deep ocean stratification, deep-
water circulation (and sedimentation), upwelling,
and biogenic productivity at low latitudes fol-
lowed a somewhat asymmetric temporal pattern
(29). The present-day NADW configuration de-
flects the AABW-NADW contact southward dur-
ing interglacial periods, whereas AABW deflected
this contact back in a northward direction during
glacial periods (2, 29). These dynamics were re-
inforced by the mid-Pleistocene revolution or
transition (0.9 to 0.7Ma), which established longer

periods for glacial/interglacial cycles. This tran-
sition coincided with an increase in the 100,000-
year cycle amplitude and amajor eustatic drop in
sea level (8, 28), which might relate to the MOW
intensification and the formation of the mid-
Pleistocene discontinuity (17, 20). This increase
in MOW coincides with intensification in the
AMOC (2). After that transition and subsequent
glacial stages, MOW density increased, as it did
during the last glaciation when it exceeded
(~31.29 kg/m3) the present-day values (30). Rates
of MOW flow were also higher (30), as evident
from the morphology of the slope (23).
The aforementioned tectonic events in the Gulf

of Cadiz are coeval with other events recorded
throughout the Northern Hemisphere (31). The
temporal overlap of these events suggests that they
relate to overall plate reorganization in the North
Atlantic (31) or to widespread mantle activity [e.g.,
(32)]. More general hypotheses (33) affirm this re-
lationship, further corroborating the role of plate
tectonics in modulating climate over a wide range

Fig. 4. Lithologic summary of IODP Expedition 339 CDS sample sites, showing major hiatuses. Age model is based on biostratigraphic and
magnetostratigraphic data (ky = 1000 years).
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of time scales (1). These should be reconsidered
in climatic and sea level reconstruction because,
for example, they could explain the discrepancy
between the benthic d18O record and the Gibraltar
relative sea level that assumes no tectonic changes
in the geometry of the Gibraltar Gateway and ad-
jacent areas (9).

Conclusions

Our results show that the initial MOW circula-
tion into the Atlantic after the opening of the
Strait of Gibraltar was relatively weak. Meaning-
ful interaction between MOW and the North
Atlantic did not begin until the late Pliocene. The
establishment of MOW added relatively salty
water at intermediate depths and contributed to
enhanced THC and AMOC. The addition of the
warm, salty MOW component reduced pole-to-
equator temperature gradients during the mid-
Pliocene warm period (3.2 to 3.0 Ma), during the
early Quaternary (2.4 to 2.0 Ma), and at 0.9 to
0.7 Ma. These climatic events coincide with wide-
spread depositional hiatuses, pronounced changes
in the sedimentary stacking pattern, and establish-
ment of the present-day seafloor morphology.
Hiatuses and shifts in depositional processes are
related to regional tectonic events and margin
instability. Similar changes in deep-water sedi-
mentation and tectonics have been described in
association with other margins and basins around
the same time in both the Northern and South-
ern hemispheres, demonstrating that the relation-
ship between climatic shifts and plate tectonic
events operates over a wide range of time scales.
The relationship between climate and plate tec-
tonic events is especially relevant for this geo-
graphic locality because of its role as the site of
major events in hominid migration and evolu-
tion (34).
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NEURONAL REPAIR

Asynchronous therapy restores motor
control by rewiring of the rat
corticospinal tract after stroke
A. S. Wahl,1,2* W. Omlor,2 J. C. Rubio,3 J. L. Chen,2 H. Zheng,3 A. Schröter,4 M. Gullo,1,2

O. Weinmann,1,2 K. Kobayashi,5 F. Helmchen,2 B. Ommer,3 M. E. Schwab1,2*

The brain exhibits limited capacity for spontaneous restoration of lost motor functions
after stroke. Rehabilitation is the prevailing clinical approach to augment functional
recovery, but the scientific basis is poorly understood. Here, we show nearly full recovery
of skilled forelimb functions in rats with large strokes when a growth-promoting
immunotherapy against a neurite growth–inhibitory protein was applied to boost the
sprouting of new fibers, before stabilizing the newly formed circuits by intensive
training. In contrast, early high-intensity training during the growth phase destroyed
the effect and led to aberrant fiber patterns. Pharmacogenetic experiments identified
a subset of corticospinal fibers originating in the intact half of the forebrain,
side-switching in the spinal cord to newly innervate the impaired limb and restore
skilled motor function.

S
troke is a major cause of severe disability
in the elderly population, and recovery
after large strokes is limited (1, 2). Current
strategies to improve long-term outcome
in humans include mostly rehabilitative

training and, in experimental models, electri-
cal stimulation and pharmacological interven-
tions (3). However, all of these treatment options
have had only limited success thus far (4, 5).
Here, we show that rehabilitative training, if
preceded by a nerve growth–promoting anti-
body therapy, almost completely restored skilled

forelimb functions after cortical strokes in adult
rats. Sequential application of the treatments
was essential: When growth promotion by
blockade of the neurite growth–inhibitory pro-
tein Nogo-A was simultaneously applied with
intensive forced-use training of the forelimb
during the first 2 weeks after the stroke, func-
tional outcome was poorer compared with train-
ing, immunotherapy alone, or no treatment at
all (6). Anatomically, Nogo-A neutralization pro-
moted growth of corticospinal fibers from the
intact forebrain motor cortex across the mid-
line of the cervical spinal cord. In rats with sim-
ultaneous antibody treatment and training, fiber
branching was abundant with anatomically ab-
errant terminations. In contrast, in animals trained
for forelimb function subsequent to antibody
treatment, axonal fibers originally terminating
in the intact spinal hemicord crossed the mid-
line and innervated the ventral motor regions
of the spinal hemicord that had lost its input
from the motor cortex. To prove the functional

relevance of these newly grown, “side-switched”
descending corticospinal tract (CST) fibers, we
selectively and temporarily blocked these fibers
by two different pharmacogenetic techniques,
both of which suppressed the restored forelimb
function. Our results demonstrate that a sequen-
tial strategy of first promoting fiber growth to
enhance the low endogenous plastic potential
of the brain and spinal cord, followed by reha-
bilitative training–induced selection and stabili-
zation of functionally meaningful connections
can lead to much higher levels of functional
restoration after the formation of large brain
lesions than currently obtained in conventional
rehabilitation medicine.

Success of rehabilitation depends
on timing

We compared four different therapy and reha-
bilitation schedules for promoting functional
recovery of fine motor skills of forelimbs in a
thrombotic stroke model in rats. Using the well-
established technique of photothrombosis (6), we
induced blood vessel blockade by multiple micro-
thrombi, which destroyed >90% of the sensory-
motor cortex of adult rats. Rats were then treated
with intrathecal anti-Nogo-A or control antibody
for 2 weeks (6, 7). In addition, we trained rats in-
tensely in skilled forelimb reaching (100 reaches
per day), either simultaneously with antibody
application (parallel groups) or during the 2 weeks
after antibody treatment (sequential groups)
(Fig. 1A). To avoid a training effect of testing
itself, we did not reassess the sequential groups
(anti-Nogo-A/sequential and control sequential)
during the first 2 weeks after lesion formation.
When the growth-enhancing anti-Nogo-A treat-
ment was followed by the rehabilitative train-
ing (anti-Nogo-A/sequential group), animals
improved their performance from day 16 post-
stroke onwards, and their skilled reaching abil-
ities almost completely recovered [reaching 86.3 T
2.0% of prestroke level; significantly better than
all other groups; P < 0.001, two-way repeated
measures analysis of variance (ANOVA) with
post hoc Bonferroni] (Fig. 1, A and B). This group
also performed best in two skilled forelimb
use tasks tested at the end of the experiment
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Materials and Methods 

This study synthesized geophysical and drill core data from the southwestern Iberian margin to 

decode the ancient processes related to MOW evolution. Seismic interpretations refer to regional 

geophysical data compiled from studies conducted over previous decades (17, 19, 20, 35-37). 

Stratigraphic correlation and specific age constraints were established during IODP Expedition 339 

using (38, Table S1): I) lithostratigraphy, II) biostratigraphy, III) paleomagnetic data, IV) sediment 

core description, V) geochemical analysis and VI) borehole measurements. Biostratigraphic 

analysis marked the first and last occurrences of key marker species of calcareous nanofossils and 

planktonic foraminifera, along with one benthic foraminifer occurrence. The paleomagnetic age 

model derived from depth and timing of magnetic reversal events (38). Biostratigraphic and 

magnetostratigraphic ages showed very close correspondence. Age data were used for determining: 

the ages of key horizons (including several depositional hiatuses and stratigraphic boundaries) and 

the sedimentary accumulation rates (detail from IODP Expedition 339 can be accessed at 

http://iodp.tamu.edu/scienceops/expeditions/mediterranean_outflow.html). 

 
 
Table S1 (Excel data tables). Late Miocene, Pliocene and Quaternary chronostratigraphy for the 

sedimentary sections sampled during IODP Expedition 339 (cited references 39-47. 
Updated and revised from 38). 

 

Fig. S1. Seismic profile showing the major sedimentary stacking pattern, from the Pliocene sheeted 
drift to the Quaternary elongate and mounded drift, based on the correlation between Sites 
U1386 and U1387 and the multichannel seismic reflection line P74-45. The hiatuses and 
main type of contourite drifts are indicated (data courtesy of REPSOL). Profile location 
shown in Figure 1. 

Fig. S2. Seismic profile showing deformation of Pliocene deposits caused by olistostrome 
emplacement (the Cádiz Allochthonous Unit, CAU) within the Algarve basin, and by 
compressive tectonic events at ~2.1-2.4 Ma (data courtesy of TGS-NOPEC Geophysical 
Company, ASA). Profile locations shown in Figure 1. 

Fig. S3. Examples of the main sedimentary facies for Pliocene and Quaternary sections sampled 
during IODP Expedition 339. 

Fig S4. Diagram illustrating the circulation of the major water masses in the Central and North-
Atlantic (adapted from 48-61). AABW- Antarctic Bottom Water; CC- Canary Current; 
DSOW- Denmark Strait Overflow Water; LDW- Lower Deep Water (or modified AABW); 
ISOW- Iceland Scotland Overflow Water; LSW- Labrador Sea Water; MOW- 
Mediterranean Outflow Water; NACW- North Atlantic Central Water; NADW- North 
Atlantic Deep Water; NBC- North Brazil Current; NEC- North Equatorial Current NECC- 
North Equatorial Counter Current; PSW- Polar Surface Water. 
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