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Abstract

We develop a new multiscale Markov segmentation model for multi-
band images. Using quadtree multiple resolution analysis of a multi-
band image, we use both inter-scale and intra-scale spatial Markov
statistical dependencies. Bayesian inference is used to assess the ap-
propriate number of segments. We exemplify the excellent results
which can be obtained with this approach using synthetic images, and
in two case studies involving multiband astronomical image sets.

Keywords: multispectral image, multiband image, multiresolution, mul-
tiscale, quadtree, Markov random field, generalized Gaussian distribution,
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1 Introduction

Image segmentation is a classical problem in computer vision. High quality
image segmentation remains a difficult issue in spite of much work devoted
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to it. Astronomy image processing typifies such a need, given the demanding
signal retrieval and noise obfuscation properties of images in this field.

Motivated by the importance of utilizing information at various scales,
multiresolution approaches have been proposed for astronomical image seg-
mentation [1, 2], mainly to benefit from the computational efficiency that
can be achieved by use of such models.

Statistical approaches have proven fruitful for the design of robust and
efficient segmentation methods [3, 4, 5, 6]. In the context of multispectral
images, handling correlated observed data requires a well-designed modeling
framework [7, 8, 9, 10]. Resorting to a Bayesian scheme based on hierarchical
Markov models is attractive when dealing with a large amount of multispec-
tral observations, because of its ability to take into account simultaneously
the whole set of observed data and its capacity to learn model parameters.
Computationally efficient hierarchical Markov models have been recently pro-
posed [8, 10, 11, 12]. In this work we take hierarchical Markov models further,
in order to address the multispectral image segmentation task.

On the one hand, multiresolution models based on wavelet transforms
provide nonredundant and directionally sensitive features at different scales,
and hence they allow more selective feature extraction in the space-frequency
domain. Such approaches use observation-based transforms at different reso-
lutions in order to better describe the information provided by the observed
data. On the other hand, hierarchical Markovian models incorporate regu-
larization constraints, arising from a priori knowledge about acceptable solu-
tions, directly into the solution space. In our opinion, these two approaches
are very complementary, as a number of recent papers show: see [13, 14].

A separate difficulty to be addressed concerns the quantity of observations
met with in astronomical multispectral imagery. In addition, we have to take
into account explicitly the spectral correlation between observed wavelengths
and within them (spatial redundancy). The lack of clearly defined edges in
astronomical images, and the well-known Hughes phenomenon [15] due to
sparseness of observation space, imply difficulties in interpreting the resulting
segmentation.

In this article, the proposed modeling scheme captures, over a pyramidal
graph and under a Markovian-in-scale assumption, significant intra-scale and
inter-scale statistical dependencies. Our motivation for using such a model
is to provide fast computation, improved robustness and an effective inter-
pretational framework for processing large multispectral and multiresolution
images.



2 Hierarchical Markovian Model

The introduction of spatial dependencies, that have to be inferred, between
hidden random variables was first rigorously formalized in the context of
spatial statistics [16] and image restoration [17], using the so-called Gibbs
distribution. Such a distribution which stems from statistical physics, allows
probability distributions to be specified and manipulated in a flexible way
over huge sets of random variables that interact with each other on a local
basis. From Bayes’ theorem such prior distributions are easily combined with
data models similar to those used in parametric classifiers (and thereby used
for segmentation).

From a statistical point of view, the introduction of a contextual prior
makes each pixel labeling dependent on all others, which might appear as an
unbearable constraint. However, this prior is usually formulated in such a
way that the conditional probability of some pixel label, given the labeling
of all the other pixels, reduces to the conditional probability given only the
labeling of the neighboring pixels. This is the so-called Markov property.
The Markov property then allows simple iterative inference based on local
propagation of information: each pixel is visited a number of times, and it is
each time assigned to the class that is the most probable given the spectral
information it bears and the current assignment of neighboring pixels.

Such Markov models are non-causal [3]. As a consequence, inference
must be conducted iteratively, which might turn prohibitively expensive when
dealing with large data images, such as multispectral images.

More recent studies in image analysis have suggested replacing the purely
spatial priors with hierarchical priors, in which interactions between variables
are not supported by the grid over the image pixels but are defined from scale
to scale. In that case, one is no longer handling a single classification but a
set, of classifications at various scales. Such hierarchical approaches can also
provide substantial gains in speed and quality of results. In the particular
case where the underlying interaction structure is a tree whose leaves fit the
pixels of the image [18, 19, 10, 11], MPM (modes of posterior marginal) infer-
ence is performed exactly, in a noniterative way, by propagating information
first from the leaves to the root, and then in the reverse direction. The final
assignment of each node of the tree is eventually obtained based on all the
data. In the remainder of this section, we will describe the MPM inference
approach.

Let G = (S, L) be a graph composed of a set of nodes S and a set of edges,



L. A tree is a connected graph with no cycles, where as a consequence each
node apart from the root r has a unique predecessor, its parent, on the path
to the root. A quadtree, as illustrated in Fig. 1, is a special case of tree where
each node, apart from the terminal ones, the leaves, has four child nodes. The
set of nodes S can be partitioned into scales, S = S°US!...USE, according
to the path length of each node to the root. Thus, S® = {r}, S" involves
48-m sites, and SO is the finest scale formed by the leaves. We consider a
labeling process z which assigns a class label z; to each node of G:

x = {z"}  with 2" = {z,,s € S}, (1)

where z; takes its values in the set A = {w,...,wk}, of the K classes or
segments. A number of conditional independence properties are assumed.
First, x is supposed to be Markovian in scale, i.e.

P (z"|z* k> n) =P (a" |2"). (2)

To simplify notation, we denote the discrete probability P(X = z) as
P(z). It is also assumed that the probabilities of inter-scale transitions can
be factorized in the following way [10, 20]:

P (2" [z"t1) H P(zg|zs) (3)

SES™

where s~ designates the single father of a site s, as illustrated in Fig. 1.
Finally, the likelihood of the observations y conditionally on z is expressed
as the following product (assuming conditional independence):

P(ylz) = [[ P(y"|z") H 11 P(wlz.), (4)

n=0 s€Sn

where Vs € S, Vn € [0,...,R], P(y,|z; = w;) = = P(y,) captures the likeli-
hood of the data Ys, formed by the vector of values at site or pixel s of scale
n, given label w;.

We obtain a labeling of each pixel at each level of the quadtree, even if
signal of interest to us only lies on the finest level. This is due to the fact
that the two-step computation of posterior marginals propagates available
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information all over the tree. The bottom-up step spreads the influence of
data to other levels up to the root. Then, the top-down step computes the
posterior marginals taking into account this information.

Of course, if observations are available for other nodes of the tree, this
algorithm merges all the observations to obtain a more accurate segmentation
result. The root of the quadtree is also a node of the pyramid.

In this article, data are only available at the finest level (n = 0), and each
pixel is associated with a multiband vector. When no observation exists
(n > 0) or when the site at scale 0 does not belong to an area which is
considered classifiable (e.g. when there is a known erroneous pixel or missing
observation ), the likelihood P[*(y,) is set to 1.

From these assumptions, it can be easily inferred that the joint distribu-
tion P(z,y) follows a Gibbs law, the expression of which is given by [10]:

P(z,y) = P(a,) [ P(a.Ja,-) [] Plwile) (5)

SET seS

One of the interests of this model lies in the possibility of computing ex-
actly the posterior marginals P(z;|Y’) and P(zs,z,|Y) at each node s with
two passes. These computed expressions will be first used in the iterative pa-
rameter estimation step, as described in the next section. The segmentation
label map Z to be determined is finally given by:

T, = arg maicP(xs =wlY =y). (6)
w; €

This approach on a quadtree structure exhibits similarities with Baum-
Welch algorithm usage for hidden Markov chains, which is an iterative update
algorithm that re-estimates parameters of a given hidden Markov model to
produce a new model which has a higher probability of generating the given
observation sequence. This re-estimation procedure is continued until no
more significant improvement in probability can be obtained [9].

Starting from an initial label map given by a maximum likelihood based
algorithm, parameters of which are estimated by a C-means algorithm [21],
this technique converges to the maximum of the a posteriori pdf which is
highly multi-modal; therefore good initialization is needed to guarantee fast
convergence of the procedure to the global optimum.



This approach is robust and accurate as shown with the label map ob-
tained on some synthetic 3-band images (Fig. 2 and Table 1: see results
in Fig. 3). Two conclusions can be drawn from this analysis: first, the hi-
erarchical Markovian assumption is able per se to provide a homogeneous
segmentation map in the presence of strong noise; second, the usefulness of
an in-scale Markovian model stems from the ability to learn its parameters
through re-estimation on the quadtree (bottom-up step spreading the influ-
ence of data to other levels up to the root; then, the top-down step computing
the posterior marginals taking into account this information), and to provide
a form of context handling in such pattern recognition problems.

3 Parameter Estimation

Segmenting an image into different regions or classes and estimating all the
model parameters are intricate problems. Fixing or estimating correctly
model parameters is crucial in practice to get an accurate and reliable seg-
mentation solution. Here, we are dealing with an unsupervised labeling prob-
lem. We have first to estimate the set of parameters ® = {®,, ®,}, where:

e &, denotes the parameters involved in the data model. The conditional
data likelihood (i.e., data driven term) is entirely defined by P?(y,) =
P(Y, = y,|r, = w;, s € SY) since the only observations available are
associated with the leaves of the label tree x. In this context, several
models of image noise could be used. We consider the generalized
Gaussian distribution (GG) model as described in Section 4, in order
to cope with a large variety of situations.

o &, = ((ay)5_,, (m)E,) is the set of the prior Markov model parame-
ters where a;; = P(X; =w; | Xs- =w;) and m; = P(X, = w).

We estimate these two sets of parameters using an estimation method [9]
termed Iterative Conditional Estimation (ICE). This method requires find-
ing two estimators, namely ®, = ®,(X) and EI\Jy = &,(X,Y). When X is
however unobservable (i.e., incomplete data), the iterative ICE procedure
introduces the estimates ®¥ " and @L’HH at step k£ + 1 defined as the con-

ditional expectations of ®, and ®, given Y = y, and the current parameter
values @ and @Lk}:



P+l = [@ Y =y, ci[’“]] . (7)

They are the best approximations of ®, and ®, with respect to the mean
square error. When E [C/I; /Y = y} is not calculable, but sampling from the

posterior distribution P(X|Y, ®) is feasible, one can use stochastic approxi-
mation (in our case, the tree structure considered enables the exact compu-
tation of the posterior marginals). It is thus possible to determine the exact
update of the prior parameter values, and ?i;w is the maximum likelihood
(ML) estimator:

> Us(irg)
o= e w
pis ®)
T, = fr (Z)
with
N
& (i) =P (X, =w/Y =y, W), (9)
U, (7;,.7) é P(Xs = wj’Xs_ = Wy /Y = y,q)[k])

The complete procedure including the two-pass computation of posterior
marginals U and &; is presented in the Appendix. The ICE algorithm results
in a deterministic estimation of the a priori parameters (Equation 8), whereas
the data-driven parameters ®, are updated in a stochastic way through sam-
pling from P (X|Y =y, o).

4 Noise Modeling

As an image noise model, we consider the family of generalized Gaussian
(GG) distributions G which is well-suited to a large variety of correlated
multispectral data, and is defined as follows:

G(z | p,0”,p) = [2D(1/p)]"'n(p) p exp [~ (n(p)|z — pl)?] (10)



where I'(.) is the gamma function, p is a positive shape parameter governing
the rate of decay (p = 1 for Laplacian noise, p = 2 for Gaussian noise, p > 8
for nearly uniform noise), p is the mean, and

1/2
n(p) = [%} (11)

where o2 is the variance. For small values of p (i.e., p < 2), this probabil-

ity density function has a heavier tail than a Gaussian density. This noise
model is very appropriate for modeling physical data properties, and has
been recently used in many different contexts (watermarking [22], underwa-
ter acoustics [23], multiresolution analysis [24], multispectral analysis [11]).
In particular, it incorporates Gaussian noise, impulse noise, and mixtures of
these.

4.1 Hypothesis

In order to validate the use of GG marginal distributions for image segmen-
tation, the hierarchical Markov algorithm was, firstly, used on 3-spectral-
band synthetic images (Fig. 2) and secondly, on 4- and 6-band multispec-
tral astronomical images. The observed random vector Y;, conditional on
X = wj, described by its positive definite symmetric covariance matrix, X7
(t=1,...,K), admits the Crout (Cholesky) factorization:

YW =1LLI (12)

where L; is a C' X C' unique lower triangular matrix. Then, the correlated
vector Y, can be transformed into an uncorrelated vector:

Directly from equation (13), we have pf = A;u? and the pdfs of Z, and Y;
are related via:

Py s, Wslzs = wi) = [AilPg y (Aiy|zs = wi)

= |4l H = gz'c([Aiys](C)) (14)

Re

where |.| denotes the determinant.



4.2 Moment Based Estimators of the GG Parameters

Let us consider N random samples z;, 2 =1,..., N, assumed to be indepen-
dent and identically distributed (iid) from the pdf given in equation (10).
Three parameters are required to characterize the GG pdf from the samples
of z;. First, the empirical mean i is defined:

| X
MZN;Zi (15)

Secondly, the estimator 2 of o2, based on the second order moment, is
simply the empirical variance:

N

AN 1 A

0t = D (a— @)’ (16)
i=1

Finally, the estimation of the shape parameter p is based on the estimation
of the centered fourth order moment 1(4) of the GG pdf given by the general
relation:

(ntl
u(n) = E[(Z — E[Z]))"] = W for n even. (17)

By substituting equation (11) in equation (17) for n = 4 and using esti-
mators of mean i, variance 62 and centered fourth-order moment 7i(4), we
obtain the following relation:

4 T(5/p)L(1/p) &

n4) =0 TTGR)E &* h(p) (18)
where
) = - (19)

Equation (18) is numerically solved in order to obtain the estimator p of the
shape parameter p. The result is a unique estimate because of the monotonic
decreasing property of function h(p) for p > 0.



5 Model Selection

Through Bayesian inference we will assess output segmentations to decide
on the best number of segments to be retained. There is no need to consider
all parameters resulting from the hierarchical Markov modeling. Instead we
will abstract out the following simpler, more focused and easily analyzed
model: the segmentation maps, X are used; as observed data, Y, we take
the principal component image of the bands used; the conditional likelihood
p(y; | i = wy) is taken as Gaussian; and a spatial Markov random field
model is used, unlike the tree-based Markov model used up to now.

An approximate Bayes factor decision approach will be used to determine
the best segmentation size (i.e., number of classes in the segmentation map).
We take the segmentation, described as above, with a fixed number of classes
K, as our prior. We denote this overall model, which we fit to our data, as
M. My is defined from the distributions used and all parameters, ®x. We
now wish to investigate one such model versus another, i.e. Mg versus Mg
for two choices of numbers of classes, K and K’. The posterior probability
of model Mg, with pixel labeling X, is

p(My | X) = pIgX | Mg)p(M)
> p(X | My)p(M;y)

We can ignore p(Mj) and the influence of M if each model is equilikely
a priori. The Bayes factor is the posterior odds of one hypothesis when the
prior probabilities of the two hypotheses are equal: p(X | Mk)/p(X | Mk).
The term p(X | M) is the integrated likelihood rather than the maximized
likelihood, given by

(20)

p(X | My) = / P(X | e, My )p(®5)dre (21)

We have that p(X | @, M) is the usual likelihood. Finally p(®) is the
prior, which we will assume as equilikely for all M. A good approximation to

the integrated likelihood is given in terms of BIC, Bayes information criterion
(25, 26]:

BIC = 2log p(X | By, Mx)— | Bg | log N (22)

where @ k 1s the maximum likelihood estimator of ® g, i.e. the result of the
Gaussian mixture fitting. N is the dimensionality of the observation vectors,
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and | @ | is the cardinality of the parameter set. Finally the Bayes factor
is approximated by the difference of BIC terms, which in turn are the maxi-
mized likelihood results of model fits for different numbers of classes, K and
K':

p(X | M)

X BIC(K) — BIC(K") (23)

2log
We can also derive the BIC term as a parsimony or minimum information
measure [27, 28]. In the Markov random field spatial interaction situation,

a combinatorial explosion comes about with use of the likelihood. BIC rests
on the likelihood of the observed data:

> p(yi | mi = wj, K)p(zi = w; | K)
J

Since there are KV possible configurations for N pixels we use the more
tractable pseudo-likelihood instead of the likelihood. Rather than summing
over all possible configurations of x, we consider configurations close to the
target estimate of z, Z. We consider each pixel vector y; in turn and condition
on Ty;, i.e. T excluding the value at 7. Then, instead of the likelihood,

K
Zp(yi | @i = wj)p(i = wj)
j=1

we use the pseudo-likelihood,
K
Zp(yi | 7 = w;)p(zi = wj | Vi)
j=1

The first term of this expression is a Gaussian distribution, and the second
term is the conditional distribution used with the Potts prior density.

The pseudo-likelihood of the image (the y; terms are independent, con-
ditional on the underlying hidden states) is then (with ¢ the Potts spatial
dependency value):

K

Hp(yi |ani @) = [[ Doy | 2 = wj)p(ai = w; | N;, 6) (24)

i =1
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This is the likelihood integrated over the approximate posterior distribu-
tion of a set of models near the MAP estimate of . Denoting equation (24)
as PL(Y | K), BIC which addresses the computational implications of the
spatial model becomes [29, 30]:

BICpL(K) =2logPL(Y | K)— | &k | log N (25)

BICpr, or BIC updated to take a Markov spatial model into account,
is used in the same way as BIC, i.e. we vary K = 2,3,... and find a first
relative maximum. The curves produced do not usually increase to a plateau.
Alternative approximations of BIC that take spatial contiguity into account
are studied in [31].

The model selection procedure described provides a principled framework,
which we show in the following sections to be scalable to real problems involv-
ing multiband (and potentially the multi-temporal, multisource data, with
ancillary GIS data, used in [32]).

6 Results

Our motivation for using the hierarchical Markov model is to provide fast
computation and to have an effective framework for processing large multi-
spectral images. Astronomy is an example of just one application field with
burgeoning needs in this direction. More generally, data grids have become a
direction of research which is now seeing considerable attention. Data grids
involve firstly and foremostly the federation of large distributed data stores.
The work described in this paper provides a solution for some problems in
this area.

Our segmentation method was recently applied with success to multispec-
tral images, typically with 32 bit floating point pixel values in each band,
available at Strasbourg Astronomical Observatory. We used this approach
on astronomical images of the M82 region, the nearest starburst galaxy at
a distance of 11 million light years from Earth. Massive stars are forming
and expiring in M82 (nickname: the cigar galaxy) at a rate ten times higher
than in our galaxy. Images come from the Nicmos archive, an instrument on
board the Hubble Space Telescope. The mode and filters used were: NIC3 in
F164N-F166N, Fell band and nearby continuum at wavelengths 1080, 1130,
1640, 1660, 2120 and 2150 nm. In Fig. 4 we show these graylevel images.
The astronomy interest in these 6 bands is to separate the emission of the
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stellar component and of the gas and to detect evidence of starburst activity
in the central region of the galaxy.

The Bayes factor approach to model selection provides an objective mea-
sure of a number of classes versus another. In section 5, we described how
the Bayes factor can be approximated by the Bayes information criterion,
BIC, and furthermore how it can be changed to take spatial information into
account. Taking spatial information into account is important, given that a
Markov modeling procedure was used to find class assignments. The result-
ing criterion is called BICpy, [30]. A recent application to multiband data
segmentation (not availing of a multiple resolution scale model) is in [33].

To determine the optimal number of classes, we determined BICp;, for
various numbers of classes, K = 3,4,...,15. We did this with respect to the
first principal component image as an optimal low dimensional representative
of the image, and to avoid instability problems which become common in
higher dimensional, sparse spaces. Fig. 5 shows the outcome. We find that
K = 12 provides for the best segmentation: this corresponds to the largest
value of BICpy. The segmentation map obtained with K = 12 classes is
shown in Fig. 6.

In a second study, we applied our algorithm to 3 infrared images of the
Orion nebula from the Two Micron All Sky Survey, 2MASS, in 3 filter bands:
J (1250 nm), H (1650 nm) and Ks (2170 nm). A color composition of the
3 bands can be seen in Fig. 7(a) and can be compared with the 3 original
image bands in Fig. 7(b,c,d). BICp, values are shown for varying numbers
of segments, K, in Fig. 8, pointing to particular interest in the K = 14 result.
The segmentation map in 14 classes is displayed in Fig. 7(e).

These results are now under evaluation and further discussion with as-
tronomers at Strasbourg Astronomical Observatory. Each detected class is
associated with astronomical regions or objects, using geometrical, statistical
and spectral properties. Of particular interest are faint plume features. In-
terpretation of classes requires astronomer knowledge and the results of the
classification algorithm.

The hierarchical modeling approach described is new, and is very promis-
ing in the field of astronomical image processing [34, 35, 6] because it takes
into account a scale decomposition of the information. Simultaneously the
multiband aspects are managed in a general manner, allowing all observed
information to be taken into account during the segmentation task. In this
work, we have additionally seen how the use of a Bayes factor criterion pro-
vides a way to objectively decide on the number of segments.
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There is a burgeoning need for segmentation in this context of multiband
image data. The number of filters and channels provided by detectors in
astronomy is increasing continually. The fusion of all observed data in a
general model of segmentation can be contrasted with the difficulties involved
in less multidimensional processing [35]. “Multiple wavelength astronomy”
has become the order of the day, with such major national and international
initiatives as the virtual observatory (e.g., National Virtual Observatory:
www.us-vo.org). The approach described in this article is a response to this
growing need.

We conclude this section with a note on the very favorable computational
requirements of our algorithms. The quadtree-based segmentation for images
in Fig. 2, comprising 3 bands, and yielding 2 classes, was about 1 minute.
For Fig. 4 comprising 6 bands, and yielding 12 classes, we required about 20
minutes. For Fig. 7, comprising 3 bands, and yielding 14 classes, we required
about 8 minutes. These timings were on a Pentium 4, 2 GHz, machine. For
images comprising 3 to 6 bands, and yielding 12 to 14 classes, without the
quadtree processing, a number of hours of computational time were required
on a similar machine.

7 Conclusion and Perspectives

This article has addressed the problem of unsupervised multispectral image
segmentation using a quadtree structure which is Markovian in scale. Results
obtained are promising: the relevance and efficiency of the ICE estimation on
the quadtree has been exemplified on real astronomical images, in the con-
text of multispectral segmentation (three and six bands respectively, with 12
and 14 classes). The quadtree approach is computationally faster than the
usual methods based on spatial Markov fields. There is, in fact, no iterative
process in the updating step. Last but not least, we show how this approach
opens the way to multichannel segmentation (with an arbitrary number of
spectral bands), within a well defined Bayesian inference framework. Impor-
tant contributions of this work include taking into account the correlation
coefficients between the different channels for each segmentation class within
an ICE procedure for parameter estimation. The segmentation is thus easily
obtained, according to the well-known Bayesian MPM criterion.
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Appendix: Evaluation of Posterior Marginals

In this Appendix we describe the two-pass computation of posterior marginals
on the quadtree. We use notation from Fig. 1. The algorithm to be de-
scribed provides evaluation of the partial posterior marginals at full resolu-
tion (n = 0).

Notes:

The symbol > s denotes all the descendents of s, s included.

The symbol s* denotes the 4 children (level n — 1) of the site s (level n).
The symbol s~ denotes the single parent (level n + 1) of the site s (level n).

P(Xs = wi)P'O(y) 0
P(X;s = wilys,) = P(X, = wily,) = Sy Vs €S
- > P(Xs = w))P)(ys,)
where P(X; = w;) is recursively evaluated through a top-down pass according
to:

forn=R-1...0
| P(stwi):Z-ajiP(Xs— :w]') Vs € S™

J

Note that the a priori probability P(X, = w;) = m; initializes the procedure

(cf. Fig.1).
1. Bottom-up step on partial posterior marginals
forn=1...R
_ n P(Xs=w;
P(X, = wilys,) = $P(X, = ;) *P(y,) [Lieyr X tirpirmed P(Xe = wily>y)
Vs e S™

where Z is a normalizing factor satisfying the condition ), P(X; = wi|ys) =
1. At the end of the recursion, we obtain the a posteriori probability for the
root &.(i) = P(X, = w;|y), which initializes the next step.

2. Top-down step on posterior marginals

forn=R-1...0
\IIS(Z,]) = P(XS :wjaXs* :wz/y)
. g (Z) P(stwi|yzs)aijP(Xs_ :wi)/P(Xs:w]‘)
= & s PE=aly,, e PIX, - =w) [P (Ko=)

65(.7) = P(XS = wj|y) = Zz \IIS(iﬂj)

Vs € S™
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(Image) class | Mean of each spectral band | Std. dev. of each spectral band
(b) eg 120,120,120 16,16,16
(b) e 136,136,136 16,16,16
() eo 124,124,128 16,16,16
(c) e 132,132,128 16,16,16
(d) e 128,128,128 12,12,24
(d) e 128,128,128 94,2424

Table 1: Means and standard deviations of synthetic three-band images (Fig.
2).
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Scale n+1 X, =t
@R
Scale n X, =y Y,

Scale R — 1

Figure 1: Dependency graph corresponding to a quadtree structure. Black
circles represent labels and white circles represent observations.

(2) ® (©

Figure 2: (a) Original image, 2 classes (background and patterns). (b,c,d)
Observed image in three spectral bands with mean-discriminant generalized
Gaussian noise (b,c) and with variance-discriminant generalized Gaussian
noise (d) (see section 4 for noise model and Table 1 for noise parameters in

each spectral band). The segmentation of these images is reported on in Fig.
3.
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(k) (1) (m)

Figure 3: (e,f,g) Segmentation map based on maximum likelihood criterion
for multiband images (Fig. 2 b,c,d) respectively. (h,i,j) Segmentation map
obtained with Markovian-in-scale algorithm presented in section 3. (k,1,m)
Segmentation map obtained on the larger eigenvalue image, following PCA
of Fig. 2 b,c,d respectively, followed by a Markovian-in-scale segmentation.
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Figure 4: Astronomical image bands from the M82 starburst galaxy M82.
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Figure 5: BICp, values for varying number of segments, for M82 multiband
image. The peak value corresponding to 12 classes was used.
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Figure 6: Hierarchical Markovian segmentation of astronomical 6-spectral
band images from M82 region, into 12 classes. Reversed grayscale display
used.
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(e)

Figure 7: (a) Orion Nebula, observed in three spectral bands and displayed
in red, green, blue colors. (b-d) Orion Nebula, of the 2MASS survey, dis-
played in graylevels for each band J, H, K (b,c,d). (e) Hierarchical Markovian
segmentation into 14 classes of images of Orion Nebula, observed in three
spectral bands (display uses reversedz%rayscale).
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Figure 8: BICp, values for varying number of segments, for Orion multiband
image. The peak value corresponding to 14 classes was used.
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