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Using a two-channel Anderson model, we develop a theory of composite pairing in the 115 family of
heavy fermion superconductors that incorporates the effects of f -electron valence fluctuations. Our
calculations introduce “symplectic Hubbard operators”: an extension of the slave boson Hubbard
operators that preserves both spin rotation and time-reversal symmetry in a large N expansion,
permitting a unified treatment of anisotropic singlet pairing and valence fluctuations. We find
that the development of composite pairing in the presence of valence fluctuations manifests itself
as a phase-coherent mixing of the empty and doubly occupied configurations of the mixed valent
ion. This effect redistributes the f -electron charge within the unit cell. Our theory predicts a
sharp superconducting shift in the nuclear quadrupole resonance frequency associated with this
redistribution. We calculate the magnitude and sign of the predicted shift expected in CeCoIn5.

I. INTRODUCTION

The 115 family of superconductors continue to attract
attention for the remarkable rise in the superconducting
transition temperature from 0.2 K in the parent com-
pound CeIn3[1] to 2.3 K in CeCoIn5[2] and finally to
4.9 K and 18.5 K in the actinide analogues, NpPd5Al2[3]
and PuCoGa5[4], respectively. This last rise has often
been attributed to the increasing importance of valence
fluctuations, and here we seek to make this connection
explicit. Although the Ce 115s are local moment sys-
tems, neutron studies of crystal fields indicate broad
quasi-elastic line-widths comparable to the crystal field
splitting, indicating valence fluctuations5. The highest
Tc 115s, the actinides, involve 5f shell electrons, which
are less localized than their 4f Ce counterparts, and
thus are expected to be even more mixed valent. Re-
cent 237Np Mössbauer studies of NpAl2Pd5 suggest that
the valence of the Np ions actually changes as supercon-
ductivity develops6. However, despite different degrees
of mixed valency, both CeCoIn5 and NpPd5Al2 contain
the same unusual transition from local moment param-
agnetism directly into the superconducting state, shown
in Figure 1.

This direct transition suggests that the localized mo-
ments play a direct role in the pairing, which previously
led us to propose that the 115 materials are composite
pair superconductors7,8. Composite pair superconduc-
tivity is a local phenomenon involving the condensation
of bound states between local moments and conduction
electrons9: it can be thought of as an intra-atomic ver-
sion of a d-wave magnetic pairing, between conduction
electrons in orthogonal screening channels rather than
on neighboring sites,

∆SC(j) = 〈ψ†1j~σ(iσ2)ψ†2j · ~Sfj〉. (1)

Here ψ†1,2j create local Wannier states of conduction elec-
trons in two orthogonal symmetry channels at site j, and
~Sfj is the local f -moment on the same site. The com-
posite pair combines a triplet pair of conduction electrons

Ce || c

Np || a

c

FIG. 1. Local moments are seen in the Curie-Weiss suscep-
tibilities: CeCoIn5(Tc = 2.3K)11 and NpPd5Al2(Tc = 4.9K)3

are reproduced and rescaled by χ(Tc) to show their similarity
(data below Tc not shown).

with a spin-flip of the local moment, such that the overall
pair remains a singlet.

While the close vicinity of the Ce 115s to antiferromag-
netic order has led to a consensus that pairing in these
materials is driven by spin fluctuations, the two supercon-
ducting domes in the Ce(Co,Rh,Ir)In5 phase diagram10

suggest that composite pairing may provide a second,
complementary mechanism in the Ce 115s8. The absence
of magnetism in the actinide 115 phase diagrams suggests
that composite pairing may play a more important role.
Composite pairs are predicted to have unique electro-
static signature, resulting in a small redistribution of the
f -electron charge within the unit cell and an associated
change of the f -valence. Understanding these charge as-
pects of composite pairing is essential to disentangling
the relative importance of magnetic and composite pair-
ing in these compounds.

These observations motivate us to develop a theory
of composite pairing incorporating valence fluctuations.
Thus far, composite pairing has been studied within a
two-channel Kondo model7,12, treating only the local spin
degrees of freedom. In this paper, we study compos-
ite pairing within a two-channel Anderson model, which
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permits us to include the charge degrees of freedom and
model the effects of valence fluctuations on the super-
conductivity in the 5f 115 materials. We predict a
sharp shift in both the f -electron valence and quadrupole
moment at the superconducting transition temperature.
The quadrupole moment shift should manifest as a shift
either in the nuclear quadrupole resonance (NQR) fre-
quency, for CeM In5 or the Mössbauer quadrupole split-
ting, for NpPd5Al2, and we make concrete predictions
for these shifts in Section V.

The two-channel Anderson model is the natural exten-
sion of the two-channel Kondo model.

H = Hc +
∑
j

Ha(j) +
∑
j

HV (j). (2)

Here the local atomic Hamiltonian at site j is,

Ha(j) = E0X00(j) + E2X22(j) +
∑
σ

εfXσσ(j), (3)

where the X’s are the Hubbard operators13: X00 =
|0〉〈0|, X22 = |2〉〈2|, and Xσσ = |σ〉〈σ|. The atomic
states |0〉, |σ〉 and |2〉 are shown in Figure 2, where we
take the doubly occupied state to be a singlet containing
f -electrons in two orthogonal channels,

|2〉 ≡ |Γ2 ⊗ Γ1〉s =
1√
2

∑
σ=±1

sgn(σ)f†Γ2σ
f†Γ1 −σ|0〉. (4)

The orthogonality of these two channels is essential to
the superconductivity, and we take the Coulomb energy
for two electrons in the same channel to be infinite, mak-
ing this model closer to two copies of the infinite-U An-
derson model than to the finite-U model14. These f -
electrons hybridize with a bath of conduction electrons,

Hc =
∑

k,σ εkc
†
kσckσ in two different channels

HV (j) =
∑
j

V1ψ
†
1jσX0σ(j)+h.c.+V2ψ

†
2jσσ̃X−σ2(j)+h.c.,

(5)
where the ψΓjσ are Wannier states representing a con-
duction electron in symmetry Γ on site j. X0σ = |0〉〈σ|
and X2σ = |2〉〈σ| are the Hubbard operators between
the singly occupied state and empty or doubly occupied
states, respectively (see Fig. 3). Here we have adopted
the notation of Ce atoms, whose ground state is a 4f1

doublet, but this formalism also applies to Np 5f3 atoms,
where both |0〉 ≡ |5f4〉 and |2〉 ≡ |5f2〉 are J = 4 crys-
tal field singlets, while |σ〉 represents one of the J = 9/2
crystal field doublets of 5f3.

To develop a controlled treatment of superconductiv-
ity in the two-channel Anderson model, we introduce a
large-N expansion. Preserving the time-reversal symme-
tries of spins is essential to capture singlet superconduc-
tivity in the entire family of large N models, and large
N methods based on SU(N) spins, like the usual slave
boson approach, will lose time-reversal symmetry for any
N > 2. Treating superconductivity in the Kondo model

Ce 3+

Np4+

4 4 4

5 5 5

Pu 3+ 5 5 5

FIG. 2. Virtual charge fluctuations of a two channel Ander-
son impurity, where the addition and removal of an f -electron
occur in channels Γ1 and Γ2 of different crystal field symme-
try. The ground state is a Kramer’s doublet, while the excited
states |0〉, |2〉 are singlets. The excited doublet |Γ2 : α〉 rep-
resents a higher lying crystal-field level and is excluded from
the Hilbert space of the problem. The relevant charge states
of Ce3+ (4f1), Np4+ (5f3) and Pu3+ (5f5) are indicated.

therefore requires symplectic spins, the generators of the
SP (N) group7,

Sαβ = f†αfβ − α̃β̃f
†
−βf−α. (6)

Here N is an even integer and the indices

α ∈ {±1,±2, . . .±N/2} (7)

are integers running from −N/2 to N/2, excluding zero.
We employ the notation α̃ ≡ sgn(α). These spin oper-
ators invert under time-reversal S → θSθ−1 = −S and
generate rotations that commute with the time-reversal
operator7.

Physically, the spin fluctuations of a local moment are
generated by valence fluctuations. Theoretically, these
valence fluctuations can be described by Hubbard opera-
tors, and in a symplectic-N generalization of the Ander-
son model, anticommuting two such Hubbard operators
must generate a symplectic spin, satisfying the relations:

{X0α, Xβ0} = Xαβ +X00δαβ (8)

= Sαβ +

(
X00 +

Xγγ

N

)
δα,β ,

where the last equality follows from the traceless defi-
nition of the symplectic spin operator, Sαβ = Xαβ −
Xγγ
N δαβ . In Section II, we show that a proper symplec-

tic representation requires the introduction of two slave
bosons to treat the Hubbard operators in a single chan-
nel:

X0α = b†fα + a†α̃f†−α
X00 = b†b+ a†a. (9)
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As we shall demonstrate, these symplectic Hubbard op-
erators maintain the invariance of the Anderson Hamilto-
nian with respect to the SU(2) particle-hole transforma-

tion, fσ → cos θ fσ + sign(σ) sin θ f†−σ
15. This extension

of the slave boson representation with local SU(2) gauge
symmetry was originally introduced by Wen and Lee as a
mean-field treatment of the t−J model16. Here we show
that these Hubbard operators maintain the SU(2) gauge
symmetry for arbitrary SP (N) versions of the infinite U
Anderson and t−J models. This SU(2) gauge symmetry
is essential for eliminating the false appearance of s-wave
superconductivity in the finite-U Anderson model, where
the two channels are identical.

What do we learn from this Anderson model picture
of composite pairing? A key result is that the amount
of composite pairing can be written in a simple gauge-
invariant form as

∆SC = 〈X02〉 ∝ 〈ψ†1~σ (iσ2)ψ†2 · ~Sf 〉, (10)

where the Hubbard operator X02 = |0〉〈2| mixes the
empty and doubly occupied states. This mixing resem-
bles an intra-atomic version of the negative-U pairing
state, but double occupancy costs a large, positive en-
ergy. The physical consequence of this mixing is a redis-
tribution of the charge in the f -electron orbitals, as the
three charge states: empty, singly and doubly occupied,
all have different charge distributions. Such a rearrange-
ment not only changes the total charge in the f -shell,
a monopole effect, but also will result in a quadrupole
moment associated with the superconductivity. This
quadrupole moment will lead to modified electric field
gradients that should be detectable as a sharp shift in the
nuclear quadrupolar resonance (NQR) frequency at the
neighboring nuclei, or as a sharp shift in the Mössbauer
quadrupolar splitting at the f -electron nuclei.

This paper is organized as follows. First we intro-
duce the symplectic Hubbard operators in section II and
demonstrate that the symplectic-N and SU(N) large-
N limits are identical for a single channel. We then
generalize this formalism to the case of two channels
in Section III and show how composite pairing natu-
rally appears as a mixing of the empty and doubly oc-
cupied states. The mean-field solution is presented in
Section IV, in which we demonstrate how the supercon-
ducting transition temperature increases with increasing
mixed valence. In Section V, we calculate the charge dis-
tribution of the f -orbitals in the state with composite
pairing and make a concrete prediction for a shift in the
NQR frequency at Tc in CeCoIn5. Finally, section VI dis-
cusses the implications for the finite-U Anderson model
and examines the broader implications of our results.

II. SYMPLECTIC HUBBARD OPERATORS

Composite pairing was originally discussed in the
two channel Kondo model12, where it is found in the
symplectic-N limit7, which maintains the time-inversion

properties of spins in the large N limit by using sym-
plectic spins. Correctly including time-reversal symme-
try allows the formation of Cooper pairs, and thus super-
conductivity. In order to treat composite pairing within
a large N Anderson model treatment, we would like to
develop a set of Hubbard operators that maintain this
time-reversal property in the large N limit. Hubbard
operators, like Xab = |a〉〈b|, are projectors between the
local states, |0, σ〉 of the infinite U Anderson model, de-
scribing both charge, X0σ and spin, Xσσ′ fluctuations.

Starting from a spin state |σ〉, hopping an electron off
and back onto the site generates a spin flip: this condition
defines the Hubbard operators within a single channel,
where the Hubbard operators must satisfy a graded Lie
algebra in which the projected hopping operators anti-
commute, satisfying the algebra

{Xα0, X0β} = Xαβ +X00δαβ (11)

Now the traceless part of Xαβ defines a spin operator,

Sαβ = Xαβ −
δαβ
N

Xγγ

so that quite generally, Hubbard operators must satisfy
an algebra of the form

{Xα0, X0β} = Sαβ +

(
X00 +

Xγγ

N

)
δαβ (12)

Thus the commutation algebra of the Hubbard operators
generates the spin operators of the local moments. In the
traditional slave boson approach17, the Hubbard opera-
tors are written X0α = b†fα. The spin operators gen-
erated by this procedure are the generators of SU(N),
since

{f†αb, b†fβ} =

S
SU(N)
αβ︷ ︸︸ ︷

(f†αfβ −
nf
N
δαβ) +

(
b†b+

nf
N

)
δαβ (13)

where S
SU(N)
αβ is the well-known form of SU(N) spins. It

is thus no wonder that this approach cannot treat super-
conductivity in the large N limit, for there are no spin
singlet Cooper pairs for SU(N) with N > 2. We require
instead that the spin fluctuations generated by Hubbard
operators are symplectic spin operators

Sαβ = f†αfβ − sgn(αβ)f†−βf−α (14)

We now show that the Hubbard algebra(8) can be sat-
isfied with symplectic spins, using the introduction of two
slave bosons,

Xα0 = f†αb+ α̃f−αa,

X0β = b†fβ + a†β̃f†−β . (15)

These operators satisfy the Hubbard operator algebra
(11), but now

Xαβ = f†αfβ + α̃β̃f−αf
†
−β = Sαβ + δαβ (16)
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describes a symplectic spin operator while

X00 = b†b+ a†a (17)

is the representation of the empty state operator.
At first sight, the expedience of this new representa-

tion might be questioned: why exchange the simplicity of
the original Hubbard operators, Xab = |a〉〈b| for a pro-
fusion of slave boson fields? However, while the original
Hubbard operators may appear to be simple, they are sin-
gularly awkward to treat in many-body theory18, due to
their noncanonical anti-commutation algebra, (8). The
slave boson representation allows us to represent these
operators in terms of canonical bosons and fermions.
By doubling the number of slave bosons the symplec-
tic character of the spins is preserved at all even val-
ues of N , and we shall see that this process encodes the
hard-to-enforce Gutzwiller projection as a mathemati-
cally tractable SU(2) gauge symmetry.

Physical spins are neutral, and thus possess a continu-
ous particle-hole symmetry. This property is maintained
by symplectic spin operators, which can be seen most
naturally by introducing the generalized pair creation op-
erators,

Ψ† =
1

2

∑
α

α̃f†αf
†
−α =

∑
α>0

f†αf
†
−α, (18)

which allow us to construct the isospin vector, ~Ψ =
(Ψ1,Ψ2,Ψ3), where

Ψ1 =
(
Ψ† + Ψ

)
, Ψ2 = −i

(
Ψ† −Ψ

)
Ψ3 =

∑
α>0

(f†αfα − f−αf
†
−α) = ns −N/2, (19)

and ns ≡
∑
α〈α|f†αfα|α〉 is the fermion number in the

singly-occupied states, i.e. ns plays the role of the num-
ber of spins in the above constraint Ψ3. The isospin vec-

tor commutes with symplectic spins,
[
~Ψ, Sαβ

]
= 0, show-

ing that the symplectic spins possess an SU(2) gauge
symmetry: a continuous particle-hole symmetry that al-

lows us to redefine the spinon, fα → ufα + vα̃f†−α. This
symmetry is reflected in the requirement of two types of
bosons, as the empty state does not distinguish between
zero and two fermions, and thus requires two bosons to
keep track of the two ways of representing the empty

state, b†|Ω〉 and a†f†↑f
†
↓ |Ω〉 = a†Ψ†|Ω〉, where |Ω〉 is

the slave-boson vacuum. Of course, there is only one
physical empty state, as becomes clear when we restrict
these Hubbard operators to the physical subspace. In
order to faithfully represent the symplectic spins, the
sum of the spin and charge fluctuations must be fixed,
~S2 + ~Ψ2 = N

2 (N2 + 2)[7]. While this constraint is en-

forced by setting ~Ψ = 0 in the pure spin model, here
we must equate our two types of charge fluctuations, by
setting

Q3 =
∑
α

f†αfα −N/2 + b†b− a†a = 0

Q+ =
∑
α>0

f†αf
†
−α + b†a = 0

Q− =
∑
α>0

f−αfα + a†b = 0. (20)

The three operators (Q±, Q3) commute with the
Hamiltonian, which imposes the constraints associated
with the physical Hilbert space. The constraint reflects
the neutrality of the spins under charge conjugation:
Q3 conserves total electromagnetic charge, and prevents
double occupancy, while Q± kills any states with s-wave
pairs on-site. From the form of Q3, we see that b and a
have opposite gauge charges. The gauge invariant states
satisfying the constraint (for N = 2) are,

|α〉 = f†α|Ω〉
|0〉 =

(
b† + a†Ψ†

)
|Ω〉. (21)

The symplectic Hubbard operators can be written
more compactly by using Nambu notation,

X0α = B†f̃α, X00 = B†B (22)

where

B =

(
b
a

)
, f̃α =

(
fα
α̃f†−α

)
, (23)

The constraint becomes ~Q = B†~τB +
∑
α>0 f̃

†
α~τ f̃α = 0.

For N = 2, these Hubbard operators are the SU(2)
slave bosons introduced by Wen and Lee in the context
of the t − J model16. Here, it becomes clear that the
SU(2) structure is a consequence of symplectic symme-
try, present in both the symplectic-N Kondo and Ander-
son models, not just for N = 2, but for all N . This sym-
metry can be physically interpreted as the result of va-
lence fluctuations in the presence of a particle-hole sym-
metric spin.

The Hamiltonian of the one channel, single impurity
infinite-U Anderson model can now be expressed via sym-
plectic slave bosons as follows:

H =
∑
k,α

εkc
†
kαckα + E0(b†b+ a†a)

+
∑
α

V ψ†α(b†fα + a†α̃f†−α) + h.c. (24)

The SU(2) gauge symmetry of this model becomes
particularly evident in the field-theoretical formulation,
where the partition function is written as a path integral:

Z =

∫
D[ψ̃†, ψ̃, f̃†, f̃ , B†, B]e−S , (25)

where the Euclidean action S is written in Nambu nota-
tion as follows
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S =

β∫
0

dτ
∑

k,α>0

ψ̃†kα(∂τ+εkτ3)ψ̃kα+
∑
j

{
1

2
Tr
[
τ3A†j(∂τ+ E0+ ~λj · ~τ)Aj

]
+
∑
α>0

[
f̃†jα(∂τ + ~λj · ~τ)f̃jα +

(
V ψ̃†jαA

†
j f̃jα + h.c.

)]}
,

(27)

where ψ̃†α = (ψ†α, α̃ψ−α), β = 1/T is the inverse temper-
ature and the SU(2) matrix Aj of slave bosons is defined
as

Aj =

[
bj a†j
aj −b†j

]
. (28)

The first three terms in Eq. (27) describe the dynamics

of conduction electrons ψ̃, f -electrons f̃ and the slave

bosons B respectively, with the constraint ~Q = 0 imposed

by introducing the vector of Lagrange multipliers ~λ. The
last term describes the coupling between the f-atom and
conduction electrons.

The action (27) is manifestly invariant under the
SU(2) gauge transformation via unitary matrix ĝj :

f̃j → ĝj f̃j , ψ̃j → ĝjψ̃j , Aj → ĝjAj (29)

~λj · ~τ → ~λj · ~τ − ĝ†j∂τ ĝj
At first sight, the a hybridization term in the Hamilto-
nian, (24) appears to give rise to 〈c†f†〉 pairing terms,
however, the SU(2) symmetry allows to redefine the
fields, making the substitution

B =

(
b

a

)
→ ĝB =

(
b′

0

)
. (30)

This transformation eliminates the composite s-wave

pairing, b†fα + a†f†−αα̃ → b
′†f ′α, recovering the usual

U(1) slave boson Hamiltonian.
One of the the most important physical consequences

encoded in this local gauge symmetry is the complete
suppression of any s-wave pairing in the single channel
Anderson model. Indeed, the constraint operator Q+ =∑
α>0 f

†
αf
†
−α+b†a may be directly interpreted as the on-

site s-wave pair creation operator plus a term b†a that
can be removed by the above gauge transformation. In
particular, the mean-field constraint

〈Q+〉 ≡ 〈s-wave pair creation operator〉 = 0

hard-wires the strong suppression of local s-wave pair-
ing into the formalism. In the language of superconduc-
tivity, the constraint Q± = 0 plays the role of an infi-
nite Coulomb pseudopotential, or renormalized electron-
electron interaction, µ∗. It is the satisfaction of this con-
straint that drives anisotropic composite pairing.

III. THE TWO CHANNEL ANDERSON
LATTICE MODEL

We turn now to the two channel lattice Anderson
model, where the two channels involve charge fluctua-
tions to the “empty” and “doubly” occupied states; here

we use the language of Ce3+ whose ground state config-
uration is f1, but this model captures any system with
valence fluctuations from fn−1 ⇀↽ fn ⇀↽ fn+1, where n is
odd. For n = 1, the empty state, |0〉 is trivially a singlet,
and we choose the doubly occupied state to be a singlet
formed from electrons in two orthogonal channels,

|2〉 = α̃f†Γ1,α
f†Γ2,−α|0〉, (31)

where |Γ1 : ±〉 ≡ |±〉 is the ground state crystal field
doublet, and |Γ2 : ±〉 is an excited crystal field doublet.
In the finite-U Anderson model, the symmetries of the
electron addition and removal processes are identical, but
here Hund’s rules force the second electron to be placed
in a channel orthogonal to the first.

The local atomic Hamiltonian at site j can be ex-
pressed in terms of Hubbard operators,

Ha(j) = E0X00(j) + E2X22(j) +
∑
σ

εfXσσ(j)

+
∑
σ

∆CFXΓ2σ;Γ2σ, (32)

where the X’s are the Hubbard operators projecting
into the empty, X00 = |0〉〈0| and doubly occupied,
X22 = |2〉〈2| states, as well as the projectors into the
ground state, Xσσ = |Γ1σ〉〈Γ1σ| ≡ |σ〉〈σ|, and excited,
XΓ2σ;Γ2σ = |Γ2σ〉〈Γ2σ| crystal field doublets. If we mea-
sure the energies from the f -electron level, E0 = −εf and
E2 = U12 + εf are both positive, where U12 is the Hub-
bard U for the doubly occupied state with one electron in
Γ1 and the other in Γ2. We take U11, U22 → ∞. The f -
electrons hybridize with a bath of conduction electrons,

Hc =
∑

k,σ εkc
†
kσckσ in two different channels,

HV (j)=
∑
j

V1ψ
†
1jσX0σ(j)+V2σ̃ψ

†
2jσX−σ2(j)+h.c. (33)

The angular momentum dependence is hidden inside the
conduction Wannier states,

ψΓjσ =
∑
k

e−ik·Rj [ΦΓk]σσ′ ckσ′ , (Γ = 1, 2) (34)

where the crystal field form-factors [ΦΓk]σσ′ = 〈kΓσ′|kσ〉
are proportional to unitary matrices. X0σ = |0〉〈Γ1σ|
and X2σ = |2〉〈Γ1σ| are the Hubbard operators between
the singly occupied ground state and empty or doubly
occupied states, respectively.

The symplectic-N Hubbard operators describing
charge fluctuations in the two channels are a simple gen-
eralization of those used for a single channel. For a single
site, these are given by

X0α = b†0fα + a†0α̃f
†
−α, X00 = b†0b0 + a†0a0,
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X2α = b†2fα − a
†
2α̃f

†
−α, X22 = b†2b2 + a†2a2, (35)

which can again be written more compactly by using a
Nambu notation,

X0α = B†0f̃α, X2α = B†2f̃α
X00 = B†0B0, X22 = B†2B2, (36)

where

B0 =

(
b0
a0

)
, B2 =

(
b2
−a2

)
. (37)

We are free to choose the sign of a2, and in the above
we have chosen the negative sign to preserve continuity
with the results from the two channel Kondo model7.
The doubly occupied state is then,

|2〉 =
(
b†2 − a

†
2Ψ†

)
|Ω〉, (38)

where Ψ† =
∑
α>0 f

†
αf
†
−α is the pair creation operator,

as before.
In the two channel model case the constraint becomes,

~Q = B†0~τB0 +B†2~τB2 + f̃†α~τ f̃α = 0. (39)

The intersection of the two Hubbard algebras gives rise
to an extra doublet,

|Γ2α〉 =
(
b†0a
†
2 + b†2a

†
0

)
f†α|Ω〉, (40)

which we interpret as the excited crystal field doublet
because it is reached by destroying a Γ1 electron from
the doubly occupied state, leaving behind the Γ2 elec-
tron. However, this extra doublet is not killed by X00

or X22, which are no longer the projectors within this
larger space. The full Hamiltonian term for this state
must therefore be quartic in the bosons, and subtract off
the contribution from X00, X22 and Xσσ,

[∆CF−(E0+ E2+ εf )]
(
b†0a
†
2 + a†0b

†
2

)
(b0a2+ a0b2) , (41)

where ∆CF is the crystal field effect splitting. We neglect
this term for much of our analysis, as it turns out to be
irrelevant for the superconducting states of interest.

In addition to an extra state, there are two additional
operators,

X20 = {X2α, Xα0} = B†2B0 = b†2b0 − a
†
2a0

XΓ1α;Γ2β = −{X0α, X2β} = B†0(−iτ2)
[
B†2

]T
α̃δα,−β

=
(
b†0a
†
2 − b

†
2a
†
0

)
α̃δα,−β . (42)

The operator XΓ1α;Γ2β mixes the ground state and ex-
cited crystal field doublets, leading to a composite den-

sity wave state, 〈c†1ff†c2〉. As this state mixes two ir-
reducible representations of the point group, it necessar-
ily breaks the crystal symmetry and this phase can also
be called a composite nematic. This mixing resembles

the ordered state proposed for URu2Si2[19], which mixes
ground state and excited singlets.

The operator X20 = |2〉〈0|mixes the empty and doubly
occupied states, and can be thought of as a pair creation
operator. As we show in the next section, this opera-
tor acquires an expectation value when composite pair-
ing develops. The development of an intra-atomic order
parameter 〈X02〉 is reminiscent of pairing in a negative
(attractive)-U atom20, but unlike a negative-U atom, the
empty and doubly occupied sites are excited states of the
atomic Hamiltonian, and they are only partially occu-
pied as a result of valence fluctuations. Furthermore, the
paired state is an anisotropic singlet with nodes. In the
case of the Ce 115 materials, this product has d-wave
symmetry7.

Again, we should consider the question of supressing
s-wave superconductivity. Here,

Q+ =
∑
α>0

f†αf
†
−α + b†0a0 + b†2a2.

We know from the one channel model that a0 can be re-
moved by a gauge transformation, eliminating the mid-

dle term, but the b†2a2 term cannot be uniformly elim-
inated. However, it will only be nonzero in a state
where both 〈X20〉 and 〈XΓ1α;Γ2β〉 are nonzero, imply-
ing coexisting superconducting and composite nematic
order. Under normal circumstances, these two phases re-
pel one another, and s-wave superconductivity is wholly
suppressed.

IV. THE LARGE N TWO CHANNEL
ANDERSON LATTICE MODEL

We are now able to write the symplectic-N two chan-
nel Anderson lattice model in terms of the symplectic
Hubbard operators,

H =
∑
k

εkc
†
kαckα +

∑
j

E0B
†
0(j)B0(j) + E2B

†
2(j)B2(j)

+
V1√
N/2

∑
j

ψ†1jαB
†
0(j)f̃jα + h.c.

+
V2√
N/2

∑
j

ψ†2jαα̃f̃
†
j−αB2(j) + h.c. (43)

In order to keep the Hamiltonian extensive in N , we have
rescaled the hybridization terms by (N/2)−1/2, so that
they recover the correct N = 2 form, (33). This rescaling
implicitly assumes that the slave bosons fields Bl (l =

0, 2) will acquire a magntitude of order O(
√
N). Since

there are only two flavors of bosons, for the bosons to
play a role in the large N limit, they must condense.

Following the construction that led to the path integral
description of the single-channel Anderson model (27)
above, one can write down the Euclidean action that cor-
responds to this Hamiltonian:
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E

0

FIG. 3. The six physical states in the Hilbert space of the N = 2 two channel Anderson model, representing the ground state
and excited crystal field doublets, and the empty and doubly occupied singlets. Arrows show the operators that move between
states in the Hilbert space.

S2[ψ̃, f̃ ,A0,A2] =

β∫
0

dτ
∑

k,α>0

ψ̃†kα(∂τ + εkτ3)ψ̃kα

+
∑
j

{
1

2
Tr
[
τ3A†0j(∂τ + E0 + ~λj · ~τ)A0j

]
+

1

2
Tr
[
τ3A†2j(∂τ + E2 + ~λj · ~τ)A2j

]}

+
∑
α>0

{
f̃†jα(∂τ + ~λj · ~τ)f̃jα +

(
V1√
N/2

ψ̃†1jαA
†
0j f̃jα +

V2√
N/2

ψ̃†2jαA
†
2j f̃jα + h.c.

)}
, (44)

where ψ̃†Γjα = (ψ†Γjα, sgn(α)ψΓj−α) are Nambu spinors
for the Wannier states in each channel. Above, we have
collected the slave bosons into the SU(2) matrices,

A†0 =

[
b†0 a†0
a0 −b0

]
, A†2 =

[
a2 b2
b†2 −a

†
2

]
. (45)

The action (44) remains manifestly invariant under the
SU(2) gauge symmetry Bl → ĝjBl, where ĝj is an SU(2)
matrix. The matrices A0,A2 transform under this gauge
symmetry as Al → ĝjAl, leaving the product

A†2A0 =

[
b0a2 + b2a0 a†0a2 − b†0b2
b†2b0 − a

†
2a0 b†2a

†
0 + a†2b

†
0

]
(46)

gauge invariant.

The off-diagonal components of the product A†2A0

have the physical meaning of composite pairing between
conduction and f -electrons. Indeed, in the Kondo limit,
E0, E2 � πρV 2, we can connect the two channel An-
derson model results to those from the two channel
Kondo model7. A Schrieffer-Wolff transformation maps
b0 → V1, a0 → ∆1, b2 → ∆2 and a2 → V2, where VΓ and

∆Γ are the particle-hole and particle-particle hybridiza-
tions, respectively. We can now identify the off-diagonal

components of A†2A0 ∝ V1∆2 − V2∆1 with composite

pairing. More generally, the components of A†2A0 can be
identified with the state mixing operators,

A†2A0 =

[
XΓ1Γ2 −X02

X20 XΓ2Γ1

]
, (47)

which confirms the identification of 〈X02〉 with composite
pairing, and implies that the composite pair state con-
tains an admixture of the empty and doubly occupied
states.

To write down a translationally invariant Hamiltonian,
we assume that the expectation values of the slave bosons
are uniform, which allows us to write down the Hamil-
tonian in momentum space. To simplify this step, we
temporarily drop the spin-orbit dependence of the Wan-
nier functions, treating the form factors as spin-diagonal,
ψΓjα =

∑
k ckαφΓke−ik·Rj . This allows us to absorb the

momentum dependence of the form-factors into the hy-
bridizations by defining VΓk ≡ VΓ√

N/2
φΓk. To obtain the

d-wave symmetry which arises naturally from the spin-
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orbit form factors7, now we must explicitly make V1kV2k

d-wave. The full spin-orbit dependence can be restored
in a similar manner to the two channel Kondo model7.
The Hamiltonian is,

H=
∑
kα

(
εkc
†
kαckα+ V1kc

†
kαB

†
0f̃kα+ V2kc

†
kαα̃f̃

†
k−αB2+ h.c.

)
+Ns

(
E0B

†
0B0 + E2B

†
2B2

)
, (48)

where Ns is the number of lattice sites. As before, the
SU(2) constraint is implemented with a vector of La-

grange multipliers, ~λ,

~λ ·

(∑
k

f̃†kα~τ f̃
†
kα +B†0~τB0 +B†2~τB2

)
, (49)

where we have also assumed that ~λ is translationally in-
variant, enforcing the constraint on average. This ap-
proximation becomes exact in the large N limit.

The Hamiltonian can be re-written in the compact
form with Nambu spinors,

H=
∑
kα

(
c̃†kα f̃

†
kα

)[
εkτ3 V1kA†0+ V2kA†2

V1kA0+ V2kA2
~λ · ~τ

](
c̃kα
f̃kα

)
+
[
E0B

†
0B0 + E2B

†
2B2 + ~λ ·

(
B†0~τB0 +B†2~τB2

)]
, (50)

We note that while in the one-channel infinite-U An-
derson model (27), the spurious superconducting s-wave
state was eliminated by fixing the SU(2) gauge transfor-
mation, the two-channel model (44) generally possesses
a composite superconducting ground state, which can-
not be eliminated by a gauge fixing procedure. However
we can always define a transformation ĝ such that a0

vanishes, so that B†0 → (b
′†
0 , 0). In this new basis, the

composite pairing operator X02 = B†0B2 (42) takes on

the simple form, X02 = b
′†
0 b
′
2.

A. The mean field solution

In order to study the effects of mixed valence on the
superconductivity, we examine the mean field solution of
the composite pair state in the symplectic-N limit. The
bosons are replaced by their expectation values, Bl →
〈Bl〉 ∼ O(

√
(N)), and the Hamiltonian (50) becomes

quadratic in the fermions, which may be integrated out
exactly, leading to the effective action Seff [B0, B2] in
terms of the boson fields only. The mean-field solution is
then obtained as a saddle-point of this action:

δSeff [B0, B2]

δBl
= 0. (51)

We use the SU(2) gauge symmetry to eliminate the a0

boson, and now the composite pair state is defined by the

nonzero expectation value of 〈X02〉 = 〈b†0b2〉. While the
a2 boson can in principle acquire an expectation value,

it would lead to a uniform composite density wave so-
lution, which is generally unstable to the composite pair
solution. Therefore in what follows, we shall set 〈a2〉 = 0.
The resulting free energy can be rewritten in terms of our
mean field parameters, where we replace 〈bl〉/

√
N/2 with

bl for clarity, (however keep in mind that these have lost
their dynamics),

F = −NT
∑
k±

log 2 cosh
βωk±

2

+
NNs

2

[
b20(E0 + λ3) + b22(E2 + λ3)

]
. (52)

Ns is the number of sites, and the dispersion of the heavy
electrons is given by four branches: ωk± and−ωk±, where
ωk± =

√
αk ± Γk, and

αk = b2+ +
1

2
(ε2k + λ2

3 + λ2
1), Γk =

√
α2
k − γ2

k

γ2
k =

[
εkλ3 − b2−

]2
+ [2V1kb0V2kb2 − εkλ1]

2
. (53)

We have also defined

b2± = V 2
1kb

2
0 ± V 2

2kb
2
2.

In a nodal composite pair superconductor, the ~λ con-
straint reduces to λ3, as the λ1 constraint acts as a
Coulomb pseudo-potential21 eliminating s-wave pairing,
and it is thus unnecessary when we choose V1kV2k such
as to give nodal superconductivity. However, if we were
to treat the finite U model, where V1k = V2k, this con-
straint is essential to eliminate the appearance of a false
s-wave superconducting phase.

The mean field parameters are determined by minimiz-
ing the free energy with respect to b0, b2, λ3 and λ1. To
understand their implications, we first present the mean
field equations in real space,

〈b1j〉 =
V 2

1

E0

∑
α

〈f†jαψ1jα〉

〈b2j〉 =
V 2

2

E2

∑
α

〈α̃fj−αψ2jα〉∑
α

〈f†jαfjα〉 = N/2− 〈b0j〉2 − 〈b2j〉2∑
α

〈α̃f†jαf
†
j−α〉 = 0. (54)

These equations bear a strong resemblance to the two
channel Kondo equations, where 〈b0〉 plays the role of
the hybridization V1 in channel one, while 〈b2〉 plays
the role of the pairing field ∆2 in channel two; here
the hybridizations are explicitly identified as the magni-
tude of the valence fluctuations to the empty and doubly
occupied states. The number of singly-occupied levels,
ns =

∑
α f
†
αfα, is no longer fixed to N/2 and instead

decreases as hybridization and pairing develop.
To calculate the phase diagram, we return to the mo-

mentum space picture, and derive the three equations rel-
evant for composite pair superconductivity with a nodal
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order parameter. The last two equations in (54) impose

the constraint ~Q = 0, fixing ns = N/2− b20 − b22 and an-
nihilating any s-wave pairs, while the first two equations
determine the magnitude of the valence fluctuations to
the empty and doubly occupied states, respectively:

∑
±

∫
k

tanh βωk±
2

2ωk±


 λ3

λ1

2V 2
1k

2V 2
2k

± A

Γk

 =

 b20 + b22
0

2(E0 + λ)
2(E2 + λ)

 ,

(55)
where

A =


λ3αk + εk

[
b2− − λ3εk

]
λ1αk + εk [2V1kV2kb0b2 − εkλ1]

V 2
1k

[
(εk + λ3)2 + λ2

1

]
+ 2λ1V1kV2kεkb2

V 2
2k

[
(εk − λ3)2 + λ2

1

]
+ 2λ1V1kV2kεkb0

 .(56)

In addition to these four equations, we must also fix the
total electromagnetic charge in the system by keeping
the total number of conduction electrons plus physical
f -electrons constant. Notice that the number of physical
f -electrons, nf = N/2 − b20 + b22 counts the electrons in
both the singly and doubly occupied states, and differs
from the occupation of the spin states, ns = N/2−b20−b22
by 2b22.

These equations can be solved numerically for a sim-
ple two-dimensional model where we take an s-wave
V1k = V and a d-wave V2k = V (cos kx − cos ky), and
take the two-dimensional conduction electron dispersion,
εk = −2t(cos kx + cos ky)− µ, where µ is adjusted to fix
the total charge, nf +nc. λ1 can be set to zero here since
by construction, we are not considering s-wave composite
pairing. This model contains three non-trivial phases:

• For E0 � E2, a heavy Fermi liquid develops be-
low the temperature T ∗1 . In this phase, b0 becomes
nonzero and the hybridization has symmetry Γ1

due to screening of f -spins by conduction electrons
in this channel. The f -electron valence will be less
than N/2, and these results will be identical to the
infinite-U Anderson model discussed in the intro-
duction.

• For E2 � E0, a heavy Fermi liquid develops at
T ∗2 , where b2 becomes nonzero. This Fermi liquid
will have the symmetry of the excited doublet, Γ2

and the f -electron valence will be larger than N/2.
Again, these results should be identical to the ap-
propriate infinite-U Anderson model.

• Below the superconducting temperature, Tc, a
phase with d-wave composite pairing develops out
of the heavy Fermi liquid, where b0b2 becomes
nonzero. Tc ≤ {T ∗1 , T ∗2 } is maximal where Tc =
T ∗1 = T ∗2 and here the composite pair superconduc-
tor develops directly out of the high-temperature
state of free spins, bypassing the heavy Fermi liq-
uid. As superconductivity is driven by the Cooper
channel in the heavy electron normal states, Tc is

FIG. 4. The superconducting transition temperature is
plotted against the occupancy of the empty, n0 and dou-
bly occupied, n2 states, showing that Tc typically increases
with increasing mixed valency. The black line indicates the
maximal Tc, where T ∗

1 = T ∗
2 , and its curve is due to the

d-wave nature of the second channel. Two different phys-
ical paths are shown: (1) The cost of doubly occupancy,
U12 = E2 − E0 − 2|εf | is tuned while fixing the f -level, εf
(blue, solid path). Here, E0 is fixed and E2 increases from
left to right. (2) Alternatively, the hybridization, V can be
increased, as by pressure or by exchanging 4f for 5f ions
(green, dashed path). Tc is scaled by ∆ = πV 2

1 , and we have
fixed nc = 1.8 in units of N/2.

always finite and the ground state will always be
superconducting. The f -electron valence will gen-
erally differ from N/2, with nonzero contributions
of both f0 and f2.

Note that in the full model, the Kondo temperatures T ∗1
and T ∗2 mark crossovers into the heavy Fermi liquids. The
appearance of phase transitions associated with conden-
sation of 〈b1〉 and 〈b2〉 here is a spurious consequence of
the mean-field large-N treatment and is resolved with
1/N corrections17. However, the superconducting phase
transition is not spurious and will survive to finite N .

In Figure 4, we plot the superconducting transition
temperature versus the proportion of empty states, n0 =
b20 and that of doubly occupied states, n2 = b22. Larger
n0 and n2 indicate a greater degree of mixed valency,
which may be obtained by varying V , E0 and E2. We
show two possible paths for tuning real materials: (1)
By varying U12, E2 = εf + U12 will change, while E0 re-
mains fixed. This path is qualitatively identical to that
of the two channel Kondo model when J2/J1 is varied:
there is a superconducting dome with maximal Tc where
T ∗1 = T ∗2 ; (2) By changing the hybridization, V and keep-
ing E0/E2 fixed, Tc can increase monotonically with in-
creasingly mixed valence, as it does between CeCoIn5

and PuCoGa5. A similar increase slightly away from the
maximal Tc can explain the non-monotonic change in Tc
with increasing pressure in CeCoIn5[31].
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V. CHARGE REDISTRIBUTION

As the development of composite pairing mixes the
empty and doubly occupied states, each develops a non-
zero occupation, and the charge density changes. The
link between the f -electron charge and the development
of the Kondo effect in the one-channel Anderson model
was explored by Gunnarsson and Schoenhammer22, who
showed that the f -electron valence, nf decreases grad-
ually with temperature through the Kondo crossover,
nf (T ) = 1− b20(T ). The mixing of the empty and doubly
occupied states adds a new element to this relationship,
and the consideration of real, non-s-wave hybridizations
allows us to explore the higher angular momentum com-
ponents of the charge distribution. The charge density

can be written, ρ̂(x) = ψ̂†α(x)ψ̂α(x), where ψ̂†α(x) creates
a physical electron of spin α at x. The electron field x
can be approximately decomposed as a superposition of
two orbitals Γ1 and Γ2 at nearby lattice sites j,

ψ̂α(x)=
∑
j

[Φ1]αβ(x−Rj)f̂1jβ + [Φ2]αβ(x−Rj)f̂2jβ ,

(57)

where we have reintroduced the spin-orbit form factor,
[ΦΓ]αβ in order to model real materials. The charge den-
sity of an f -electron located at the origin in channel Γ is
ρΓ(x) = Tr|ΦΓ(x)|2R(x)2, where R(x) is the radial func-
tion for the f -electron, and |ΦΓ(x)|2 is a diagonal matrix.
If we assume that the overlap of electrons at neighbor-
ing sites is negligible, the total charge density has three
different terms,

ρ̂(x) =
∑
j

ρ1(x−Rj)f
†
1jβf1jβ + ρ2(x−Rj)f

†
2jβf2jβ

+
[
Φ†1Φ2

]
αβ

(x−Rj)f
†
1jαf2jβ + h.c., (58)

where we have kept the spin indices of
[
Φ†1Φ2

]
αβ

, as it

may not be diagonal in spin space. In terms of the Hub-
bard operators, we can replace,

f†1jβf1jβ = X22(j) + ns(j) = B†2jB2j + ns(j)

f†2jβf2jβ = X22(j) +XΓ2βΓ2β(j) = B†2jB2j + γ†γ

f†1jαf2jβ = XΓ1αΓ2β(j), (59)

where as before, the number of singly occupied states

on site j, ns(j) = N/2 − B†0jB0j − B†2jB2j , and γ† =

B†0(−iσ2)[B†2]T = b†0a
†
2 + b†2a

†
0 is the operator from equa-

tion (41), so that γ†f†α creates an electron in the ex-
cited single-electron crystal field state |Γ2α〉, see Fig. 3.
The third term, XΓ1α;Γ2β = |Γ1, α〉〈Γ2, β| mixes the two
crystal field states, shifting charge from Γ1 to Γ2. In
the large-N mean-field theory, this state corresponds to

non-vanishing diagonal elements of the matrix 〈A†2A0〉 in
Eq. (46), 〈XΓ1αΓ2β〉 ∼ a0b2 + a2b0. Since Γ1 and Γ2 are
two different representations of the crystal point group,
such mixing implies that the crystal symmetry is sponta-
neously broken: in Ce-115 materials it would correspond

to orthorhombic “nematic” density wave state, which has
not been observed. We are primarily interested in super-
conducting instability, and therefore ignore such a state
by setting a2 = 0 in what follows, assuming we have al-
ready gauge fixed a0 = 0. Any occupation of the excited
crystal field state, 〈XΓ2βΓ2β〉 is also eliminated by this
Ansatz.

In the heavy Fermi liquid and superconducting states,

we may use the constraint to rewrite f†1jβf1jβ = N/2 −
X00(j). The charge distribution becomes,

ρ̂(x)=
∑
j

ρ1(x−Rj)

[
N

2
−X00(j)

]
+ρ2(x−Rj)X22(j).(60)

Integrating this charge density around a single site gives
us the f -electron valence, nf = 1−b20 +b22, which we plot
as a function of T in Figure 5 for two different E2/E0.
The phase transition at T ∗ is an artifact of the large N
limit and becomes a crossover for any finite N , but the
sharp kink in nf at the superconducting transition tem-
perature remains for all N . Experimentally determining
the f -electron valence may be possible using core-level
valence spectroscopy for Ce compounds or the Mössbauer
isomer shift for NpPd5Al2, where current measurements
do indicate a small, positive change in the isomer shift
through Tc [6]. If Np is in the 5f3 valence state, with
dominant fluctuations between 5f3 ⇀↽ 5f4, then the iso-
mer shift will increase with decreasing temperature down
to Tc, where it will begin to decrease sharply as 5f2 states
mix in, as the black curve in Figure 5 shows. Experimen-
tally, the isomer shift was measured at 10K, well above
Tc and then below Tc, so the observed positive shift could
just be due to the increase above Tc, and further mea-
surements are necessary. The clear observation of a sharp
negative shift precisely at the superconducting transition
temperature would indicate the presence of composite
pairing.

As superconductivity develops, the occupation of the
doubly occupied state acquires an expectation value,
leading to an increase in the Γ2 charge density. This
redistribution of the f -electron charge results in a
quadrupole moment associated with superconductivity.
Again, since the development of superconductivity is
a phase transition, the quadrupole moment changes
sharply at Tc. The quadrupole charge component has
an indirect effect on the superconducting transition tem-
perature through its linear coupling to strain, leading to
a linear dependence of Tc on the tetragonal strain, c/a.
Such a linear increase of Tc with c/a has been observed in
both the Ce and Pu 115s, although it is conventionally
attributed to dimensionality effects23. The quadrupole
moment of the composite condensate provides an alter-
nate explanation, and, in addition, leads to the develop-
ment of electric field gradients around the f -lattice sites,
which can also be measured directly as a shift in the
nuclear quadrupole resonance frequency, ∆νNQR at the
nuclei of the nearby atoms.

To make contact with potential experiments, we exam-
ine CeCoIn5 in more detail. 115In atoms have a nuclear
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FIG. 5. The f -electron valence, nf changes as the Kondo
effect and composite pair superconductivity develop. Two
examples are shown - the black curve has T ∗

2 > T ∗
1 , as ex-

pected for NpPd5Al2, so that the valence increases below T ∗
2 ,

and then sharply decreases for T < Tc. For the dashed gray
curve, T ∗

1 > T ∗
2 , as expected for CeMIn5 and a sharp in-

crease in the valence is seen at Tc. The sharp kinks at T ∗
1 , T

∗
2

are artifacts of the mean field calculation, becoming smooth
crossovers in real materials, while the superconducting kinks
should be observable in real materials.

moment I = 9/2, which results in a quadrupole moment,
Q = 8.3 × 10−29m2, making them NQR active24. The
symmetry of the ground state doublet is Γ+

7 [25], whose
angular dependence is given by,

|ΦΓ+
7
|2(θ, φ) =

3

16
sin2 θ

[
2
√

5 cos 4φ sin2 θ sin 2ξ (61)

+ 11 + 6 cos 2ξ + 5 cos 2θ(1 + 2 cos 2ξ)]

where ξ is a crystal-field parameter depending on the
microscopic details that can be measured with inelastic
neutron scattering, and we set ξ ≈ .25 for CeCoIn5 [25].
We take the symmetry of the second channel to be Γ2 =
Γ6, whose angular dependence is,

|ΦΓ6
|2(θ, φ) =

3

32
[12 cos 2θ + 5(3 + cos 4θ)] . (62)

We can now use the real charge distributions of the two
orbitals to estimate the magnitude of the electric field
gradient, Vab = −∂Ea/∂xb, where

ρΓ(x) = |ΦΓ|2(θ, φ)R(r)2. (63)

R(r) is the 4f radial function,

R(r) =
1

96
√

35

(
Z3/2r

2aB

)3

exp

(
− Zr

4aB

)
. (64)

aB = .53Å is the Bohr radius, and Z = 6
√

10aB/rCe
is adjusted so that the atomic radius is that of Ce3+,
〈r〉 = rCe = 1.15 Å[26].

CeCoIn5 In(1) Vzz In(2) Vzz

Γ+
7 −1.5q7+ · 1020 V/m2 +5.0q7+ · 1019 V/m2

Γ6 +1.4q6 · 1020 V/m2 −3.6q6 · 1019 V/m2

TABLE I. Estimated electronic field gradients at the two In
sites in CeCoIn5 due to eqΓ charge in the f -electron orbital,
Γ = Γ+

7 ,Γ6, where e is the charge of an electron.

The NQR frequency measures the electric field gradi-
ents at two different indium sites in the crystal: the in-
plane, high symmetry In(1) sites, which sit in the center
of a square of Ce atoms, and the lower symmetry out-of-
plane In(2) sites, which are above and in-between two Ce
atoms. The NQR frequency is given by27,

νNQR =
3eVzzQ

2hI(2I − 1)
Hz. (65)

At the In(2) site, there is a nonzero asymmetric contri-
bution, η = |Vxx−Vyy|/Vzz, which can be independently
determined from experiment. Now that we have an ac-
curate expression for the charge distribution of the two
orbitals, we may calculate the electric field gradient at x
associated with a charge q in orbital Γ at Rj :

V Γ
aa(x,Rj)=

q

4πε0

∫
x′
ρΓ(x′−Rj)

[
3(a−a′)2

|x−x′|5
− 1

|x−x′|3

]
.(66)

Summing over the eight neighboring Ce sites is sufficient
to estimate the magnitude of the NQR shift, where we
use the lattice constants of CeCoIn5, a = 4.6Å, and c =
7.4Å[2]. The electric field gradients for a charge eqΓ in
channel Γ are shown in Table I.

For equal channel strengths, the total charge of the
f -ion remains unity, and the increasing occupations of
the empty and doubly occupied sites cause holes to build
up with symmetry Γ+

7 and electrons with symmetry Γ6,
q ≡ q6 = −q7+. If we define q(T ) to be the temper-
ature dependent occupation of the empty/doubly occu-
pied states, in the mean field q(T ) = 〈b20〉 = 〈b22〉 will be
proportional to Tc − T just below Tc, and we can define,

q(T ) = q0
Tc − T
Tc

, (67)

where q0 is the ground state occupation of the
empty/doubly occupied states. In terms of q0, the su-
perconducting NQR frequency shift will be,

∆ν1
NQR(T ) = −7.6q0

(Tc − T )

Tc
kHz

∆ν2
NQR(T ) = +11q0

(Tc − T )

Tc
kHz (68)

Even assuming a reasonably large 5% change in the
single-occupancy (q0 = .05) for CeCoIn5 with Tc = 2.3K

will lead to a small shift in ν1,2
NQR with a slope of ≈

−.16,+.24 kHz/K, beginning precisely at Tc. We could
also consider the case of unequal channel strengths, where
the Ce exchanges charge with the conduction electrons,
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sitting in the In p-orbitals, however this term will be sim-
ilarly small in any clean sample. If this shift could be dis-
tinguished, it would be an unambiguous signal of compos-
ite pairing. As this shift is quite small, Mössbauer spec-
troscopy, which directly probes the f -ions may be a more
likely technique to observe the development of a conden-
sate quadrupole moment. Given that the crystal fields
for NpPd5Al2 are unknown, we can only make a rough
estimate of the magnitude of the quadrupolar splitting,
following [28]. The f -ion contribution to the splitting will
originate from a redistribution of charge eq within the f -
orbitals, and can be as large as 0.2q mm/s. The lattice
contribution to the quadrupole splitting, which originates
from the change in f -valence redistributing change within
the lattice, will likely be a larger effect.

VI. CONCLUSIONS

Our two-channel Anderson model treatment has shown
how composite pairing arises as the low energy conse-
quence of valence fluctuations in two competing symme-
try channels, which in turn manifests itself as a mixing
of the empty and doubly occupied states,

∆SC ∝ 〈|0〉〈2|〉. (69)

Composite pairing is primarily a local phenomena, where
the pairing occurs within a single unit cell. The mixing
is reminiscent of an intra-atomic antiferromagnetism, in-
volving d-wave singlet formation between the |Γ1〉 and
|Γ2〉 states. It is the atomic physics of the f -ions, tuned
by their local chemical environment that drives the super-
conductivity. Such chemically driven d-wave pairing is a
fascinating direction for exploring higher temperature su-
perconductors in even more mixed valent 3d materials, as
the strength of the composite pairing increases monotoni-
cally with increasing valence fluctuations, which accounts
for the difference in transition temperatures between the
cerium and the actinide 115 superconductors, and for the
effects of pressure.

The local nature of composite pairing should make
it less sensitive to disorder than more conventional
anisotropic pairing mechanisms. Such insensitivity is ob-
served in the doped Ce-115 materials, where supercon-
ductivity survives up to approximately 25% substitution

on the Ce site29, while neither Ce-site nor In-site dis-
order behave according to Abrikosov-Gorkov, suggesting
instead a percolative transition30.

The redistribution of charge due to the mixing of
empty and doubly occupied states provides a promising
direction to experimentally test for composite pairing,
which should appear as a sharp redistribution of charge
associated with the superconducting transition. Both
monopole (f -valence) and quadrupole (electric field gra-
dients) charge effects should be observable, with core-
level X-ray spectroscopy and the Mössbauer isomer shift
or as a shift in the NQR frequency at surrounding nu-
clei, respectively. We predict a shift with slope of or-
der ±0.3kHz/K in the NQR frequency of In nuclei in
CeCoIn5.

Deriving these results in an exact, controlled mean field
theory required the introduction of symplectic Hubbard
operators, which maintain the time-reversal properties
of SU(2) electrons in the large N limit. While our re-
sults are obtained in the large-N limit, it should also be
possible to use these Hubbard operators to develop a dy-
namical mean field theory treatment of the two-channel
Anderson lattice, enabling us to examine composite pair-
ing for N = 2.

In addition to the two-channel Anderson model, the de-
velopment of symplectic-Hubbard operators allows a con-
trolled treatment of the finite-U Anderson model, which
is potentially useful as an impurity solver for dynamical
mean field theory. We identify the finite-U model as a
special case of our two channel model when the electron
and hole fluctuations occur in the same symmetry chan-
nel, Γ1 = Γ2. At first sight, this model appears to give s-
wave superconductivity, however, the SU(2) constraint,
λ1 forbids any on-site pairing and completely kills the
superconductivity, leaving only the simple Fermi liquid
solution. We expect 1/N corrections to this mean field
limit will differ from the SU(N) approach, and an inter-
esting future direction is to use the Gaussian fluctuations
to examine the charge fluctuation side peaks.
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