Journal of Computer Security 3 (1994/1995), 255-267 25b
108 Press

DISTRIBUTING TRUST AMONGST MULTIPLE
AUTHENTICATION SERVERS!?2

Liqun Chen, Dieter Gollmann and Christopher J. Mitchell
Information Security Group

Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK

e-mail: {liqun,dieter,cjm} @dcs.rhbnc.ac.uk

Abstract

Some recent research on key distribution systems has focussed on analysing trust
in authentication servers, and constructing key distribution protocols which operate
using a number of authentication servers, a minority of them may be untrusted.
This paper proposes a key distribution protocol with multiple authentication servers
using a cross checksum scheme. In the protocol, multiple untrusted servers generate
candidate session keys for two clients. The clients use the cross checksum scheme for
the verification of these candidate keys. It is not necessary for the clients to trust an
individual server. A minority of corrupted and colluding servers cannot compromise
security, and their inappropriate behaviour can be detected. Comparing our protocel
to similar proposals, we will consider the number of messages exchanged, the length
of messages, and the method of key generation.

1. Imtroduction

In the context of symmetric cryptography, if two entities sharing no secret want
to securely communicate with each other, they typically do so with the assistance
of a third party. This third party is an authentication server which provides an
authentication service including distributing a secure session key to these entities
as clients. Such an authentication server is sometimes referred to as a trusted third
party since every client has to trust it by sharing a secret with it. The security of a
typical key distribution protocol depends on the assumption that the authentication
server is trustworthy. If the authentication server is corrupted, or is compromised,
the security of communications between these clients cannot be guaranteed.

L This work is a part of the DTI/EPSRC Link Personal Communication Programme
project ‘Security Studies for Third Gieneration Mobile Telecommunications Systems’
and is funded by the UK EPSRC under research grant GR/J17173.

? This paper is a revised version of a presentation given at the 8th' IEEE Computer
Security Foundations Workshop, Dromquinna Manor, Ireland, June 13-15, 1995.

256 L. Chen, D. Gollmann and C.J. Mitchell

In order to make a protocol work in an environment where clients do not
want to trust an individual server, it is worthwhile to find robust authentica-
tion schemes which can tolerate corrupted servers. Some recent research [BrSt’88],
[Go’93], [KOB’95], [Pe’91], [YKB’93] has focussed on analysing trust in authen-
tication servers, and constructing secure key distribution protocols which do not
require trusting individual servers. A range of possible approaches have been con-
sidered in which the use of a more complex authentication service results in an
authentication service with higher security and availability.

One approach is to allow a client to choose which server is trustworthy and
which is untrustworthy from a set of authentication servers, typically by apply-
ing a security policy or the history of performance and reliability. Yahalom et al.
[YKB’93] proposed a protocol which allows a client or his agent to choose trust-
worthy authentication servers and avoid untrustworthy ones. One difficulty with
this scheme is that a client may sometimes find it difficult to distinguish between
trustworthy and untrustworthy servers.

Another approach, and one which forms the basis of the schemes in this
baper, uses many servers simultaneously to achieve authentication. In this case,
clients do not trust any individual server, but they believe that some of the servers
will follow the protocol specifications correctly. One example of this case is two
mobile telecommunications users with a set of network operators 3 in a global
mobile telecommunications system. These two mobile users, who are roaming be-
tween different networks, could get security-related assistance from a set of net-
work operators. Neither user necessarily trusts any individual network operator,
but they may have reason to believe that some of the network operators are
‘good’,

Gong [(Go’89] proposed a protocol with multiple authentication servers such
that a minority of corrupted and colluding servers cannot compromise security or
disrupt service. In that protocol one client chooses a session key, and each server
transfers a part of the key to the other client. In order to prevent one client from
Imposing a session key on the other, Gong [(30°93] later proposed another proto-
col, in which two clients participate in choosing- a session key, and each server is
responsible for converting and distributing a part of the key.

For the following two reasons it makes sense that we consider a new protocol
in this paper.
¢ In some environments, it is necessary to let servers, not clients, choose a session
key, for example, where clients cannot randomly and securely generate a session
key or candidate keys. The clients could be capable of generating nonces but
are not authorised to generate session keys, because session keys might need
to be more random and secure than nonces.

o It is attractive to find a new protocol that does not require a secret sharing
scheme for constructing the session key.

3 In a mobile system, a network operator allows users to gain access to the network
in order to be able to use the network services. A set of network operators might
collaborate to provide an authentication service and distribute a session key to two
mobile users.

1ell

10t
ca-
8],
M-
10,

an

nd
ly-
al.
st~
th
en

118
se,
TS
wo
ral
e

or,
re

ch
or
er
m
o-
is

ol

rk
ht
70

Distributing Trust Amongst Multiple Authentication Servers 257

One potential problem with letting servers be involved in choosing candidate
session keys is in providing clients with the means to verify that they are provided
with ‘good’ candidate keys. In this paper, a candidate session key is ‘good’ if the
same value is received by both clients. In order to solve this problem, we discuss
a cross checksum scheme, which works on the assumption that more than half the
servers follow the protocol specifications correctly. We let all servers participate
in choosing candidate session keys. Each server randomly and securely generates
a candidate key. Two clients, wishing to check which candidate keys have been
correctly received by both of them, verify this by exchanging the relevant check
values using a globally known one-way hash function [DiHe’76], [Me’90]. The clients
then eliminate the ‘bad’ candidate keys and use the ‘good’ keys to compute a final
session key. It is not necessary for the clients to trust any individual server because
no single server can know the session key.

Based on this scheme we propose a key distribution protocol with an arbitrary
number of authentication servers. In this protocol a minority of corrupted and col-
luding authentication servers cannot compromise security, and their inappropriate
behaviour can be detected. The protocol is arranged in a ‘parallel’ version and a
‘cascade’ version, depending on the flows of exchanged messages. If more than half
the servers follow the protocol specifications correctly, then the following properties
will hold for the session key:

o it will be fresh (i.e. not a replay of an old key) and unpredictable (i.e. not
predictable by any party),

¢ it will be known only to the clients and not to any server,
¢ it can be checked by both clients, and
¢ it will not have been chosen by any individual client or server.

The two versions of the protocol with n servers we discuss in this paper both
possess these four properties, and use 2n+4 and n45 messages respectively, whereas
(Gong’s protocol [(Go’93] which also has these properties uses 4n-+3 messages. Gong’s
other protocol in [(Go’89] uses only 2n+2 messages, but that protocol lets one client
choose a session key, so that the last property does not hold.

The rest of the paper is organised as follows. The relevant notation and as-
sumptions made in this paper are described in the next section. A typical authen-
tication protocol and how trust problems can arise are discussed in Section 3. We
then briefly illustrate Gong’s protocol from [(:0°93] in Section 4. After that we
analyse a cross checksum scheme in Section 5. Based on this scheme we propose a
key distribution protocol in Section 6. We conclude in Section 7.

2. Notation and Assumptions

We now review the main assumptions made in this paper. All protocols considered
here are based on symmetric encipherment. We assume that two clients A and B
wish to communicate securely with each other. For this purpose they need to verify
the identity of one another and to establish a shared session key between them,
but before the authentication processing starts they do not share any secret. Hence
they need to make use of a third party, an authentication server $ (or a set of
servers 51, ..., S,).

258 L. Chen, D. Gollmann and C.J. Mitchell

In the protocols using a multiplicity of servers we also assume that:
¢ A and B do not trust any individual server,

¢ A and B believe that more than half the servers will correctly follow the
protocol specifications, and

¢ A and B share secret keys K45, and Kpgs; respectively with S;.

We assume that the encipherment operation used provides origin authentica-
tion and integrity services, i.e. a received message encrypted using a shared secret
must have been sent by the owner of the secret in the form that it was received. We
also assume that hash functions used are collision resistant against ‘off-line’ search
of pairs.

In the protocol descriptions, A -—» B : m indicates that A sends message m to
B; {m}k denotes m encrypted with thé key K; z,y denotes the concatenation of
¢ and y; g and h are one-way hash functions; [m] denotes the integer part of m;
and [m] denotes the smallest integer greater than or equal to m.

3. A Typical Protocol and an Associated Problem

We now discuss a typical protocol which uses symmetric encryption techniques and
lets an authentication server S choose the session key.

This protocol is similar to a protocol in Clause 6.3 of ISO/IEC 11770-2 [11770-
2). In this protocol we suppose that 4 and S share a secret key Kas, and B and
S share another secret key Kps.

My:A—B:A B N,

My :B—S:A B ,Na, Ng

Mg : 85— B {A,NB,[&'AB}KBS,{B,NA, KAB}KAS
Ms:B — A:{B,Na, Kap)k as, {4 Na, Ny ks
Ms:A— B:{B,Ny Natx.,

where N4, Ng and N} are three nonces, and K4p is a session key for 4 and B.

A sends B a message M; containing a nonce N4 as a challenge; B then sends
S a message My including nonces N4 and Npg; S chooses a session key K p and
distributes it to A and B in Ms; by checking the enclosed nonces, A and B verify
that the reply of S is fresh and retrieve K 4p; finally A and B complete a handshake.
After this protocol executes, 4 and B have agreed upon the session key K 4p, and
A and B believe that K 4p has been retrieved by both clients and is appropriate
for use between them,

A possible problem with this protocol is that 4 and B have to trust S in
order to obtain the authentication information and the session key. S keeps total
control over communications between 4 and B because S does all the ‘verification
of identities’ and knows the session key. This protocol is vulnerable to active at-
tacks by an ‘untrustworthy third party’. That is, if S is corrupted, it can intercept
communications between A and B, can impersonate A to B or B to A, and can
leak A’s and B’s secrets.

{itchell

w the

ntica-
secret
d. We

search

:m to
ion of
of m;

s and

1770-
3 and

| B.

sends
- and
rerify
1ake.
, and
riate

S in
total
ation
e at-
‘cept

can

Distributing Trust Amongst Multiple Authentication Servers 259

4. Gong’s Protocol with Multiple Servers

In order to solve the trust problem with the above protocol, Gong [Go’93] pro-
posed a different protocol, again based on symmetric encryption, but with n servers
51,y .., S, instead of one server. Each server is responsible for converting and dis-
tributing a part of the session key. In the following protocol, the steps My;, Moy, Ma;
and Ms; are repeated for ¢ = 1,...,n. Steps My; and Mo; must all be completed
before step Mj; is performed; similarly steps M and Ms; must all be completed
before step Ms.

Miy:A—5.:AB

Mo; : S; — A: Ng,

Ms:A— B:A B, Ny,
Ns,, {A, B, Ns,, 21, C(€)} K 45,5+ -+
Ns,,{A,B,Ns, ,2n,C(2)}k 45,

My : B— S;: A B, N4, Ng,
{A,B,Nsi,m,‘,(}'(a:)}}(ASi,

{B, A, N5, 45, C(9) i s,
Ms;i 2 S; — B {B,Na,yi, C(¥)}k as,
{A,NB,J:,‘,C'(.I:)}KBS'
Me: B — A:{B,Na,y1, C(¥)}kas, - -
{B,Na,yn, C(¥)} K as,.
{Nalkan, NB
Mz:A— B:{Np}k,g

A chooses a candidate session key z and computes z; = fin(2,) for each server
Si. Here f; , is a threshold function [Ko’85] that produces n shadows of z in such a
way that it is easy to recover x from any ¢ shadows, but less than ¢ shadows reveal no
information about z. To compute f; ,(z), A chooses a random polynomial p(x) of
degree t— 1 with p(0) = 2. A then computes &; = f; o(z,1) = p(i),i = 1,...,n. Due
to the property of interpolation, given any ¢ of the z;’s, B can easily determine p(x)
and recover z = p(0) [Sh’79]. Following the same procedure, B chooses a candidate
session key y and A can recover it from any ¢ shadows. With less than ¢ shadows,
no information about # and y can be determined.

In this protocol, a cross checksum scherne is used to verify the legitimacy of
the shadows [BI’79]. Cross checksums for z and y are defined as C'(z) = {g(z}),...
cos g(xn)} and C(y) = {g(n1), ..., 9(yn)} respectively, where g is a one-way hash
function. The session key is computed by Kap = h(=x,y), where h is a pre-
determined one-way hash function. In order to prevent A or B imposing the session
key, the choice of & is limited; for example, it cannot be an exclusive-or operation.
In this protocol, the total number of messages is 4n + 3.

It was said in Gong’s paper [Go’93] that in fact there is a major difficulty in
letting servers be involved in choosing the session key, because clients do not have

260 L. Chen, D. Gollmann and C.J. Mitchell

a secure communication channel for verification purposes before authentication
completes, and thus they cannot easily reach an agreement on what they have
received from which servers. As mentioned in Section 1, in some environments it
is useful to let servers, not clients, choose a session key. In the next section, we
propose a cross checksum scheme which is the basis for the new protocol given in
this paper. Using this cross checksum scheme, all servers can participate in choosing
candidate session keys, and two clients are able to verify them and use all ‘good’
candidate keys to compute a session key.

5. Cross Checksums of Candidate Keys

Cross checksum schemes were used by Gong [Go’93] and Klein et al. [KOB’95]
in key distribution protocols. This section discusses a particular cross checksum
scheme which can be used for authenticated key establishment. We ignore for the
moment the issue of verifying the ‘freshness’ of the keys, i.e. we ignore the entity
authentication issues. In the next section we describe an authentication protocol
which uses this cross checksum technique, and thus provides verified session key
establishment between A4 and B.

Algorithm 1. The cross checksum scheme works as follows.

1. .5; generates candidate session keys Kai and Kp;, and sends them encrypted
under Kag; and Kgg; to A and B respectively. If K4; and Kpg; are good
candidate keys, they satisfy K 4; = Kg;.

2. B computes the check values 9(Kpi) of the candidate keys Kp;, where g is a
globally known one-way hash function, then performs the following calculations
and sends G'y(1),...,(y(n) to A.

9(Kgi) if B believes that it has received
9 (Kgi) = the candidate key Kp,
EMI1 otherwise,

Gp=g¢'(Kp1),...,¢'(Kgn),
{GB}kys, if B believes that it has received

Gp() = the candidate key Kp,
EM?2 otherwise,

where EM1 and EM2 are error messages.

3. On receipt of (5(1),...,G(n) from B, A computes the check values g(K 4;)

of the candidate keys K 4;, then performs the following calculations and sends
Ga(1),...,G"(n) to B.

9(Kas) if A believes that both A and B have
¢ (Kai) = received the same key K4, = Kp,
EM1 otherwise,
Ga=g"(Ka1),...,d'(Kan),
{GaYka, if A believes that both A and B have
() =

received the same key Ka, = Kp,
EM?2 otherwise.

Witchell

ication
y have
ents it
on, we
iven in
oosing
‘good’

JB’95]
cksum
‘or the
entity
otocol
n key

ypted
r good

gIs a
ations

[]X’A,')

sends

Distributing Trust Amongst Multiple Authentication Servers 261

A possible set of message exchanges is then as follows, where the first step My;
is repeated for i = 1,...,n. Steps My; must all be completed before step My,

M“‘ IS,‘ - B {KBi}Kasi) {KAi}KAs
Mg :B—A: {KAl}KAsl {[{A"}hAq.’('B() ..,GIB(H)
Mz : A B:G(1),..., rA('Il)

We now show how A and B can use the exchanged information to agree on a
session key. In order for this process to work, A and B must trust at least {n/2+1]
of the servers to behave correctly, i.e. at least [n/2 + 1] of the pairs (K4i, Kpi)
satisfy K4; = Kp;.

On receipt of My; (or waiting a time-out period if an expected message does
not arrive), B firstly checks whether a message with correct syntax has been re-
ceived from every server, and then creates a sequence Gip = ¢'(Kpg1),...,9'(Kpn).
Because ¢ is a one-way hash function it does not disclose the secret of the cor-
responding candidate key. B now wants to show (/g to A. However it is nec-
essary to guarantee that any server can read (7g but cannot modify it without
being detected. The solution we propose here is for B to send A another sequence

(D), .., ().

Upon receiving M, A generates a similar sequence (/4 (1),..., %y (n) by check-
ing whether both A and B have received the same keys. A ﬁrstly decrypts each
(7’5 (%) using K 4i. Because more than half the servers follow the protocol specifica-
tions correctly, at least [n/241] of the values K 4; will be equal to the corresponding
values K pg;; A may not get all values G g encrypted by B, but A can decrypt at least
[n/2 + 1] copies of (Fp; some copies may not be the same as others, but at least
[n/2+ 1] copies must be same. Checking these copies, A eliminates the minority of
different copies and keeps the majority, so long as the majority contains > n/2 ele-
ments. A then computes the values of (K 4;), and compares them with the values
of g(Kpi) included in (7. Thereafter, A creates (74 and G/,(1),...,("(n).

On receipt of M3z, B decrypts each (/4(¢) using Kp,. Whether M3 has been
corrupted by untrustworthy servers or not, as long as at least [n/2 4+ 1| copies of
(7 4 are the same and the majority value of (7 4 contains > n/2 values of g(K4,), B
then compares the values of g(K4,) with g(Kp,) and retrieves all candidate keys
which A has retrieved. Thus A and B can share all ‘good’ candidate keys which
are used to construct a session key K4p = h(all the good candidate keys), where
h is a pre-determined one-way hash function.

Theorem 2. Using the above cross checksum scheme, A and B can successfully
establish a session key K g, given the following assumptions.

1. m servers out of a total n servers follow the protocol specifications correctly,
where m > [n/2 + 1].
2. A and B both correctly follow the protocol specifications.
3. The n — m ‘bad’ servers can only do the following:
o fail to send messages to either A or B, or send messages with the wrong
syntax;
o send different candidate keys to A and B;

262 L. Chen, D. Gollmann and C.J. Mitchell

¢ eavesdrop on G4(1), ..., G'y(n) and Gx(1), ..., G'y(n); and
o modify (4(1), ..., G/y(n) or G’y(1), ..., G'%(n) in transit between A
and B.

Note that the system will clearly fail to establish a session key if malicious
entities (either dishonest servers or other third parties) interfere with communica-
tions between A4 and B (or between B and the honest servers). We therefore assume
that 4 and B will request messages to be sent again until the protocol succeeds.

PROOF. Suppose that m is the number of ‘good’ servers, where m > |n/2+ 1],
and j is the number of pairs (K 4;, Kp;) which are received by A and B and satisfy
Kai = Kpg;.

1. On the above assumptions, and the property of the encipherment algorithms
assumed in Section 2, j must satisfy j > m > (n/2 + 1] > n/2.

2. If G(1), ..., G’z(n) have not been modified by bad servers, A obtains j copies
of G'p encrypted by B. A combination of the n ~ j corrupted servers can only
construct at most n — j consistent values of an ‘incorrect’ (g, because of the
use of encryption and n —j <n—(n/2+ 1] = [n/2 - 1] < n/2.

3. Hence A retrieves j > n/2 values K 4; which are also received by B. Further-
more (7,4 includes j check values and n — j error messages EM1, and G (1),
.y (4 (n) includes j copies of (74 encrypted by A and n — j error messages
EM2.

4. For the same reasons as mentioned in items 2 and 3, B obtains (74 generated
by A and retrieves j copies of Kg; which are also retrieved by A.°
We arrive at the conclusion that A and B can obtain > n/2 pairs (K a;, Kp;)

satisfying K4; = Kpg;, which will be used to compute a resultant session key
Kanp. a

Theorem 3. The above cross checksum scheme allows a group of collaborating
servers to learn the session key (or force A and B to agree on different session keys)
#m < [nf2 -1 If [n/2 - 1] <m < [n/2+4 1] (ie.m = n/2) then colluding
servers can always prevent A and B agreeing on a session key.

PROOF. We first suppose that m < [n/2~1], and hence n—m > (n/2+1] > n/2.

Suppose that the m ‘good’ servers are S1, .+, Sm, and the n —m ‘bad’ servers
are Syuy1,...,.5, (and that the ‘bad’ servers are all colluding). The n servers send
n pairs (K4, Kpi) to A and B (which may not agree). B creates G'g(1), ..., Gy (n)
where

Gy(1) = {¢'(Kp1), .. 9 (Kpa) Yk (1<i< n).

The n— m ‘bad’ servers then modify (/y(1), ..., ((n) to T'g(1), ..., y(n),
where

;o G(7) ifl<i<m
Mp(d) = B
B {EML,.., EM1L,g(Ka(miny)s - 9(Kan) ke, fm+1<i<n.

There are two simple ways in which Sm41, .-, 5, can invalidate the protocol
with this strategy. Firstly, if they follow the protocol correctly and put K4; = Kp;
(m < ¢ < n), then, on receipt of ['p(1),...,T4(n), A will deduce that the first m

litchell

een A

licious
unica-
ssume
seds.

+ 1,
atisfy

ithms

:opies
1 only
of the

rther-
(1),

isages
rated

I{B,')
1 key
0O

ating
keys)
1ding

n/2.
rvers
send

B(n)

'i(”)v‘

0col
]\I’Bi
st m

Distributing Trust Amongst Multiple Authentication Servers 263

candidate keys are bad and the last n — m candidate keys are good (this will follow
since n—m > n/2). A will then eliminate the ‘bad keys’ and keep the ‘good keys’
in G (1),...,G"(n), where

() = EM?2 fl<i<m
“a(i) = {EMI,‘..,E’Ml,g(I{A(m+1)),...,g(KAn)}KM ifm+1<i<n.

After receiving G4(1),...,G"(n), B believes that A has retrieved the same
last n — m candidate keys. A and B use these candidate keys to compute the final
session key, which means that the n — m colluding servers can obtain the session
key.

Secondly, the ‘bad servers’ can choose K 4; # Kpi (m < i < n). By changing
Kpi to K4; in the appropriate places in the message from B to A (as above), and
then changing them back in the return message, the ‘bad servers’ can force 4 and
B into the situation where they believe they have agreed on a key, but in fact they
have different keys; to make matters even worse, both the key held by A and the
key held by B will be known to the colluding ‘bad servers’.

Put simply, in both attacks the majority of ‘bad’ servers can shut out the
minority of ‘good’ servers and either make 4 and B agree on different keys and/or
make them agree on a key known to all the ‘bad’ servers.

Finally, if [n/2 — 11 < m < [n/2+4 1] (i.e. m = n/2), then, by failing
to follow the protocol correctly, the ‘bad servers’ can prevent the protocol ever
operating correctly, even if they do not interfere with communications between
A and B (or between B and the ‘good’ servers), by preventing a majority of
candidate keys ever being established. O

6. The New Protocol

We now present a key distribution protocol based on the cross checksum method of
the previous section. The protocol can be arranged in two different ways, depending
on the flow of messages exchanged.

The first is a ‘parallel’ version. A initiates the protocol by sending a request
to B in M.
M1 ZA-—)B:A,B,NA

B then contacts every server S; to request a candidate session key K;. The
following steps My; and My, are repeated for i = 1,. .. , M.
Mzi ' B —?Sz': A,B,NA,NB
Mg,‘ : Si — B: {A, NB, I{i}f\'as,v {B, NA,]{i}KAs,
After receiving answers from the n servers (or waiting a time-out period if
an expected message does not arrive), B organises two sequences (7p = g'(K1),

oo §'(Kn) and G(1),...,('g(n), as defined in Algorithm 1, and then sends the
following message to A.

My:B— A: {B,NA,Kl}KASl,...,{B,NA,I\"n}KASn,
Gg(1),...,Gy(n)

264 L. Chen, D. Gollmann and C.J. Mitchell

On receipt of My, A checks it and organises two similar sequences (74 =
g (K1), ..., ¢'(Ky) and Go%(1),...,G%(n), as specified in Algorithm 1. A then
sends (7%4(1),...,G"%(n) to B in Ms. B checks it in the same way. A and B thus
obtain the same good candidate keys to construct a session key Kap = h(all the
good candidate keys). The last two steps are a handshake to inform each other that
the correct session key has been retrieved.

Ms: A= B:GYy(1),...,G4(n),{B,Ng, N}k,
Mg :B— A: {A,NA,NB}KAB

The second is a ‘cascade’ version. The authentication request generated by A
and B is sent to n servers via a cascade chain from 9, to Sy. Every server randomly
and securely chooses a candidate session key which is sent to A and B via the same
cascade chain. The message exchanges are as follows:

M] ZA"*BZA,B,NA
MQ:B""*‘SH:A,B,NA,NB

The following step is repeated for 1 <1 < n:

Miyo 0 Si — Siy1: A, B, N4, Np,
{A, NB, 1\"1}}"351 s {B,NA, I\/l}KAsl"",’
{A> Ng,]{i}R’BS.i {B: Na, I\I’i}}"AS"

The last four steps are as follows:

Mn+2 :‘S'n — B {AaNB; IX’]}KBS‘){BaNAyl\"l}l\'Asl Yty
{A> Ng, K’n}KBs,,) {B, Na, Kn}KAS,,
M,H_g B — A : {B,NA,1{1}}(/‘51,...,{B,NA,K”}KASn,

Gg(1),...,G(n)
Maps: A— B : GY(D),.. ., Ga(),{B, No, N ko
Mn+5 . B —-—*A . {A,N;‘,NB}KAB

In either version of this protocol, if at least one good K; is random and fresh
it is guaranteed that the session key K 4p is unpredictable and fresh. Because ounly
A and B know all the good candidate session keys, the session key Kap is known
only to A and B and not to any server (as long as n > 2). Since K4 results from
the verification between A and B, it is verifiable for both 4 and B. No one armong
the n servers and the two clients can impose K 45. So the session key Kap in this
protocol satisfies the four properties mentioned in Section 1, on the assumption
that more than half the servers follow the protocol specifications correctly.

Note that the second version works on the assumption that no server refuses
to cooperate. A major advantage of this version is that the number of messages
1s only n + 5. Another advantage is that the clients do not need to signal back to
every server. However the disadvantage of the version is that it is possible for a

Ttchell
T4 =

then
? thus
ull the
r that

by A
lomly
same

fresh
> only
nown

from
mong
n this
ption

>fuses
sages
ick to

for a

Distributing Trust Amongst Multiple Authentication Servers 265

server to ‘break’ the procedure either maliciously or by mistake. For example, if a
server simply refuses to cooperate, authentication and key distribution cannot be
completed. One solution is to use this protocol with a control mechanism which
can detect any server refusing to provide service.

We summarize the properties of our protocol.

1. The numbers of messages in the two versions of the protocol are 2n + 4 and
n+5 respectively, compared to 2n+2 messages in GGong’s first protocol [Go’89]
and 4n + 3 messages in Gong’s second protocol [(i0’93].

2. The number of rounds in the first version is lower than in Gong’s second
protocol, in particular, client A does not make contact with the servers. It
would be potentially useful in mobile telecommunications systems (e.g. Aisa
mobile user and communicates with a ‘base station’ B, and B communicates
with service providers 5;).

3. Because the candidate session keys are chosen by servers and no individual
client can impose the resultant session key, the choice of & is less limited than
in Gong’s second protocol; for instance, an exclusive-or operation can be used
here, which cannot be used in (Gong’s protocol. Also, we do not require a secret
sharing scheme in the construction of the session key.

4. A possible disadvantage of this protocol is the potential length of messages
with G7(1),..., G (n) and G(1),...,G(n). Gp (or (14) will contain nt
bits (given g outputs a t-bit value) and hence (¥ (i) (or (*,(¢)) will contain
at least this number of bits. Hence (74(1),..., G (n) and G'y(1),...,(y(n)
will contain > n?t bits. However, for practical applications, a typical choice
for ¢ might be 200 and n might be 20. This gives a message length of ap-
proximately 10 kbytes, which is not a particularly large value. Moreover,
the total size of messages here is less than in (fong’s second protocol. The
reason is that the size of (4 ((7p) is comparable with the size of ('(x)
(C(y)), so the size of (74 (1), ..., G (n) (((1),. .., ('g(n)) is comparable with
{G(m)}KASU rey {('-/'(m)}h'ASn ({C(y)}f(am AR {C(y)}KBSn)' In this protocol,
such messages have to be transmitted once; however, in (GGong’s protocol, such
messages are transmitted three times.

7. Conclusions

Key distribution protocols without the assumption of trusting an individual au-
thentication server are needed in some environments where clients have no reason
to trust individual servers. A cross checksum scheme for the verification of candi-
date keys is analysed in this paper. These candidate keys are generated by multiple
servers in an environment where no individual server is trusted. A protocol with an
arbitrary number of authentication servers using the cross checksumn scheme is pro-
posed here. On the assumption that more than half the servers follow the protocol
specifications correctly, four desirable properties about the session key are guar-
anteed. The session key is (1) unpredictable and fresh, (2) known only to clients
and not to any server, (3) verifiable for every client, and (4) not imposed by any
individual client or server. A minority of corrupted and colluding servers cannot
compromise security in either version of the protocol, and cannot break the pro-
cedure in the parallel version of the protocol. The number of exchanged messages

266 L. Chen, D. Gollmann and C.J. Mitchell

and the size of total messages in the first version of the protocol are lower than
the protocol proposed by Gong [Go’93] with the same highly secure and available
properties. The number of messages in the second is lower than in the first, with
the same property of high security.
Possible future topics for research in this area include the following.
e Can efficient protocols be designed for the case where n/2 or fewer of the
authentication servers are trustworthy?

¢ As is common in the design and analysis of distributed protocols, it would
be useful to distinguish between failed authentication servers, which fail to
take part in protocols, and corrupted authentication servers, which participate
in a dishonest way. Protocols could then be designed to deal with various
proportions of failed and dishonest servers.

¢ The derivation of lower bounds on the number of messages 11 various types of
protocol would give a measure on how efficient specific protocols are.

e It would be of interest to see if more efficient protocols could be designed based
on the use of timestamps and synchronised clocks (as is normally the case).

Acknowledgements

The authors would like to acknowledge the valuable comments and encouragement
of their colleagues in the UK DTI/EPSRC LINK PCP 3(iS3 project. The anony-
mous referees are also to be thanked for a number of important corrections and
clarifications.

References

[BI’79] G.R. Blakley, “Safegnarding cryptographic keys”, in Proceedings of AFIPS
1979 NCC, Vol. 48, Arlington,Va., 1979.

[BrSt’88] E.F. Brickell and D.R. Stinson, “Authentication codes with multiple arbiters”,
pp. 51-54 in Advances in Cryptology: Proc. Eurocrypt 88 (C. G. Giinther,
ed.), Lecture Notes in Computer Science 330, Berlin: Springer-Verlag, 1988.

[DiHe’76] W. Diffie and M.E. Hellman, “New directions in cryptography”, IEEE Trans-
actions on Information Theory 22, (1976), 644-654.

[Go’89] L. Gong, “Securely replicating authentication services”, pp. 85-91 in Proceed-
ings: IEEE 9th International Conference on Distributed Computing Systems,
Newport Beach, California, 1989.

[Go'93] L. Gong, “Increasing availability and security of an authentication service”,
IEEE Journal on Selected Areas in Communications 11, (1993), 657-662.

[11770-2] ISO/IEC, 11770-2, Information technology — Security techniques — Key
management — Part 2: Mechanisms using symmetric techniques, (1996).

[KOB’95] B. Klein, M. Otten, and T. Beth, “Conference key distribution protocols in
distributed systems”, pp. 225-241 in Codes and Cyphers, Proceedings of the
Fourth IMA Conference on Cryptography and Coding (P. Gi. Farrell, ed.},
Formara Limited. Southend-on-sea. Essex, 1995.

[Ko'85] 5.C. Kothari, “Gieneralized linear threshold scheme”, pp. 231-241 in Advances
in Cryptology: Proc. Crypto 84 (Gi. R. Blakley and D. Chaum, ed.), Lecture
Notes in Computer Science 196, Springer-Verlag, 1985,

Aitchell

1 than
ailable
b, with

of the

would
fail to
icipate
7arious

/pes of

based
ase).

ement
nony-
1s and

AFIPS

nters”,
inther,
1988.

Trans-

‘oceed-
rstems,

rvice”,
362.

~ Key
6).

cols in
of the
l, ed.),

vances
ecture

Distributing Trust Amongst Multiple Authentication Servers 267

[Me’90]

[Pe’91]

[Sh'79)

[YKB93]

R.C. Merkle, “A fast software one way hash function”, Journal of Cryptology
3(1), (1990), 43-58.

T.P. Pedersen, “A threshold cryptosystem without a trusted party”, pp. 522—
526 in Advances in Cryptology: Proc. Eurocrypt ’91 (D. W. Davies, ed.),
Lecture Notes in Computer Science 547, Berlin: Springer-Verlag, 1991.

A. Shamir, “How to share a secret”, Communications of the ACM 22, (1979),
612-613.

R. Yahalom, B. Klein, and T. Beth, Trust-based navigation in distributed sys-
tems, European Institute for System Security, Karlsruhe University, Technical
Report 93/4, (1993).

