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Test Martingales, Bayes Factors
and p-Values
Glenn Shafer , Alexander Shen, Nikolai Vereshchagin and Vladimir Vovk

Abstract. A nonnegative martingale with initial value equal to one
measures evidence against a probabilistic hypothesis. The inverse of its
value at some stopping time can be interpreted as a Bayes factor. If
we exaggerate the evidence by considering the largest value attained so
far by such a martingale, the exaggeration will be limited, and there
are systematic ways to eliminate it. The inverse of the exaggerated
value at some stopping time can be interpreted as a p-value. We give
a simple characterization of all increasing functions that eliminate the
exaggeration.
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1. INTRODUCTION

Nonnegative martingales with initial value 1,
Bayes factors and p-values can all be regarded as
measures of evidence against a probabilistic hypoth-
esis (i.e., a simple statistical hypothesis). In this ar-
ticle we review the well-known relationship between
Bayes factors and nonnegative martingales and the
less well-known relationship between p-values and
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the suprema of nonnegative martingales. Figure 1
provides a visual frame for the relationships we
discuss.
Consider a random process (Xt) that initially has

the value one and is a nonnegative martingale un-
der a probabilistic hypothesis P (the time t may be
discrete or continuous). We call such a martingale
a test martingale. One statistical interpretation of
the values of a test martingale is that they measure
the changing evidence against P . The value Xt is
the number of dollars a gambler has at time t if
he begins with $1 and follows a certain strategy for
betting at the rates given by P ; the nonnegativity of
the martingale means that this strategy never risks
a cumulative loss exceeding the $1 with which it be-
gan. If Xt is very large, the gambler has made a lot
of money betting against P , and this makes P look
doubtful. But then Xu for some later time u may be
lower and make P look better.
The notion of a test martingale (Xt) is related to

the notion of a Bayes factor, which is more familiar
to statisticians. A Bayes factor measures the degree
to which a fixed body of evidence supports P rela-
tive to a particular alternative hypothesis Q; a very
small value can be interpreted as discrediting P . If
(Xt) is a test martingale, then for any fixed time t,
1/Xt is a Bayes factor. We can also say, more gener-
ally, that the value 1/Xτ for any stopping time τ is
a Bayes factor. This is represented by the downward
arrow on the left in Figure 1.
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Fig. 1. The relationship between a Bayes factor and a p-value can be thought of as a snapshot of the dynamic relationship
between a nonnegative martingale (Xt) with initial value 1 and the process (X∗

t ) that tracks its supremum. The snapshot could
be taken at any time, but in our theorems we consider the final values of the martingale and its supremum process.

Suppose we exaggerate the evidence against P by
considering not the current valueXt but the greatest
value so far:

X∗
t := sup

s≤t
Xs.

A high X∗
t is not as impressive as a high Xt, but

how should we understand the difference? Here are
two complementary answers:

Answer 1 (Downward arrow on the right in Fig-
ure 1). Although (X∗

t ) is usually not a martingale,
the final value X∗

∞ := supsXs still has a property as-
sociated with hypothesis testing: for every δ ∈ [0,1],
1/X∗

∞ has probability no more than δ of being δ or
less. For any t, X∗

t , because it is less than or equal
to X∗

∞, has the same property. In this sense, 1/X∗
∞

and 1/X∗
t are p-values (perhaps conservative).

Answer 2 (Leftward arrow at the top of Fig-
ure 1). As we will show, there are systematic ways
of shrinking X∗

t (calibrating it, as we shall say) to
eliminate the exaggeration. There exist, that is to
say, functions f such that limx→∞ f(x) = ∞ and
f(X∗

t ) is an unexaggerated measure of evidence
against P , in as much as there exists a test mar-
tingale (Yt) always satisfying Yt ≥ f(X∗

t ) for all t.

Answer 2 will appeal most to readers familiar with
the algorithmic theory of randomness, where the
idea of treating a martingale as a dynamic measure
of evidence is well established (see, e.g., [25], Sec-
tion 4.5.7). Answer 1 may be more interesting to
readers familiar with mathematical statistics, where
the static notions of a Bayes factor and a p-value
are often compared.

For the sake of conceptual completeness, we note
that Answer 1 has a converse. For any random vari-
able p that has probability δ of being δ or less for ev-
ery δ ∈ [0,1], there exists a test martingale (Xt) such
that p= 1/X∗

∞. This converse is represented by the
upward arrow on the right of our figure. It may be
of limited practical interest, because the time scale
for (Xt) may be artificial.
Parallel to the fact that we can shrink the running

supremum of a test martingale to obtain an unex-
aggerated test martingale is the fact that we can
inflate a p-value to obtain an unexaggerated Bayes
factor. This is the leftward arrow at the bottom of
Figure 1. It was previously discussed in [41] and [35].
These relationships are probably all known in one

form or another to many people. But they have re-
ceived less attention than they deserve, probably be-
cause the full picture emerges only when we bring to-
gether ideas from algorithmic randomness and math-
ematical statistics. Readers who are not familiar with
both fields may find the historical discussion in Sec-
tion 2 helpful.
Although our theorems are not deep, we state and

prove them using the full formalism of modern prob-
ability theory. Readers more comfortable with the
conventions and notation of mathematical statistics
may want to turn first to Section 8, in which we
apply these results to testing whether a coin is fair.
The theorems depicted in Figure 1 are proven in

Sections 3–7. Section 3 is devoted to mathemat-
ical preliminaries; in particular, it introduces the
concept of a test martingale and the wider and, in
general, more conservative concept of a test super-
martingale. Section 4 reviews the relationship be-
tween test supermartingales and Bayes factors, while



MARTINGALES AND P -VALUES 3

Section 5 explains the relationship between the su-
prema of test supermartingales and p-values. Sec-
tion 6 explains how p-values can be inflated so that
they are not exaggerated relative to Bayes factors,
and Section 7 explains how the maximal value at-
tained so far by a test supermartingale can be simi-
larly shrunk so that it is not exaggerated relative to
the current value of a test supermartingale.
There are two appendices. Appendix A explains

why test supermartingales are more efficient tools
than test martingales in the case of continuous time.
Appendix B carries out some calculations that are
used in Section 8.

2. SOME HISTORY

Jean Ville introduced martingales into probability
theory in his 1939 thesis [39]. Ville considered only
test martingales and emphasized their betting inter-
pretation. As we have explained, a test martingale
under P is the capital process for a betting strat-
egy that starts with a unit capital and bets at rates
given by P , risking only the capital with which it
begins. Such a strategy is an obvious way to test P :
you refute the quality of P ’s probabilities by making
money against them.
As Ville pointed out, the event that a test martin-

gale tends to infinity has probability zero, and for
every event of probability zero, there is a test mar-
tingale that tends to infinity if the event happens.
Thus, the classical idea that a probabilistic theory
predicts events to which it gives probability equal
(or nearly equal) to one can be expressed by saying
that it predicts that test martingales will not be-
come infinite (or very large). Ville’s idea was popu-
larized after World War II by Per Martin-Löf [27, 28]
and subsequently developed by Claus-Peter Schnorr
in the 1970s [34] and A. P. Dawid in the 1980s [11].
For details about the role of martingales in algorith-
mic randomness from von Mises to Schnorr, see [8].
For historical perspective on the paradoxical behav-
ior of martingales when they are not required to be
nonnegative (or at least bounded below), see [9].
Ville’s idea of a martingale was taken up as a tech-

nical tool in probability mathematics by Joseph Doob
in the 1940s [26], and it subsequently became impor-
tant as a technical tool in mathematical statistics,
especially in sequential analysis and time series [21]
and in survival analysis [1]. Mathematical statistics
has been slow, however, to take up the idea of a mar-
tingale as a dynamic measure of evidence. Instead,

statisticians emphasize a static concept of hypothe-
sis testing.
Most literature on statistical testing remains in

the static and all-or-nothing (reject or accept) frame-
work established by Jerzy Neyman and Egon Pear-
son in 1933 [31]. Neyman and Pearson emphasized
that when using an observation y to test P with re-
spect to an alternative hypothesis Q, it is optimal to
reject P for values of y for which the likelihood ra-
tio P (y)/Q(y) is smallest or, equivalently, for which
the reciprocal likelihood ratio Q(y)/P (y) is largest.
[Here P (y) and Q(y) represent either probabilities
assigned to y by the two hypotheses or, more gener-
ally, probability densities relative to a common refer-
ence measure.] If the observation y is a vector, say,
y1, . . . , yt, where t continues to grow, then the re-
ciprocal likelihood ratio Q(y1, . . . , yt)/P (y1, . . . , yt)
is a discrete-time martingale under P , but math-
ematical statisticians did not propose to interpret
it directly. In the sequential analysis invented by
AbrahamWald and George A. Barnard in the 1940s,
the goal still is to define an all-or-nothing Neyman–
Pearson test satisfying certain optimality conditions,
although the reciprocal likelihood ratio plays an im-
portant role [when testing P against Q, this goal
is attained by a rule that rejects P when Q(y1, . . . ,
yt)/P (y1, . . . , yt) becomes large enough and accepts
P when Q(y1, . . . , yt)/P (y1, . . . , yt) becomes small
enough].
The increasing importance of Bayesian philoso-

phy and practice starting in the 1960s has made
the likelihood ratio P (y)/Q(y) even more impor-
tant. This ratio is now often called the Bayes fac-
tor for P against Q, because by Bayes’s theorem,
we obtain the ratio of P ’s posterior probability to
Q’s posterior probability by multiplying the ratio of
their prior probabilities by this factor [20].
The notion of a p-value developed informally in

statistics. From Jacob Bernoulli onward, everyone
who applied probability theory to statistical data
agreed that one should fix a threshold (later called
a significance level) for probabilities, below which a
probability would be small enough to justify the re-
jection of a hypothesis. But because different people
might fix this threshold differently, it was natural, in
empirical work, to report the smallest threshold for
which the hypothesis would still have been rejected,
and British statisticians (e.g., Karl Pearson in 1900
[32] and R. A. Fisher in 1925 [16]) sometimes called
this borderline probability “the value of P .” Later,
this became “P -value” or “p-value” [3].
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After the work of Neyman and Pearson, which em-
phasized the probabilities of error associated with
significance levels chosen in advance, mathematical
statisticians often criticized applied statisticians for
merely reporting p-values, as if a small p-value were
a measure of evidence, speaking for itself without
reference to a particular significance level. This dis-
dain for p-values has been adopted and amplified
by modern Bayesians, who have pointed to cases
where p-values diverge widely from Bayes factors
and hence are very misleading from a Bayesian point
of view [35, 43].

3. MATHEMATICAL PRELIMINARIES

In this section we define martingales, Bayes fac-
tors and p-values. All three notions have two ver-
sions: a narrow version that requires an equality and
a wider version that relaxes this equality to an in-
equality and is considered conservative because the
goal represented by the equality in the narrow ver-
sion may be more than attained; the conservative
versions are often technically more useful. The con-
servative version of a martingale is a supermartin-
gale. As for Bayes factors and p-values, their main
definitions will be conservative, but we will also de-
fine narrow versions.
Recall that a probability space is a triplet (Ω,F ,P),

where Ω is a set, F is a σ-algebra on Ω and P is
a probability measure on F . A random variable X
is a real-valued F -measurable function on Ω; we al-
low random variables to take values ±∞. We use the
notation E(X) for the integral of X with respect to
P and E(X|G) for the conditional expectation of X
given a σ-algebra G ⊆ F ; this notation is used only
when X is integrable [i.e., when E(X+) < ∞ and
E(X−) < ∞; in particular, P{X = ∞} = P{X =
−∞} = 0]. A random process is a family (Xt) of
random variables Xt; the index t is interpreted as
time. We are mainly interested in discrete time (say,
t = 0,1,2, . . .), but our results (Theorems 1–4) will
also apply to continuous time (say, t ∈ [0,∞)).

3.1 Martingales and Supermartingales

The time scale for a martingale or supermartin-
gale is formalized by a filtration. In some cases, it
is convenient to specify this filtration when intro-
ducing the martingale or supermartingale; in others,
it is convenient to specify the martingale or super-
martingale and derive an appropriate filtration from
it. So there are two standard definitions of martin-
gales and supermartingales in a probability space.
We will use them both:

(1) (Xt,Ft), where t ranges over an ordered set
({0,1, . . .} or [0,∞) in this article), is a supermartin-
gale if (Ft) is a filtration (i.e., an indexed set of sub-
σ-algebras of F such that Fs ⊆Ft whenever s < t),
(Xt) is a random process adapted with respect to
(Ft) (i.e., each Xt is Ft-measurable), each Xt is in-
tegrable, and

E(Xt|Fs)≤Xs a.s.

when s < t. A supermartingale is a martingale if, for
all t and s < t,

E(Xt|Fs) =Xs a.s.(1)

(2) A random process (Xt) is a supermartingale
(resp. martingale) if (Xt,Ft) is a supermartingale
(resp. martingale), where Ft is the σ-algebra gener-
ated by Xs, s≤ t.

For both definitions, the class of supermartingales
contains that of martingales.
In the case of continuous time we will always as-

sume that the paths of (Xt) are right-continuous
almost surely (they will then automatically have
left limits almost surely; see, e.g., [13], VI.3(2)). We
will also assume that the filtration (Ft) in (Xt,Ft)
satisfies the usual conditions, namely, that each σ-
algebra Ft contains all subsets of all E ∈ F satis-
fying P(E) = 0 (in particular, the probability space
is complete) and that (Ft) is right-continuous, in
that, at each time t, Ft = Ft+ :=

⋂

s>tFs. If the
original filtration (Ft) does not satisfy the usual
conditions (this will often be the case when Ft is
the σ-algebra generated by Xs, s≤ t), we can rede-
fine F as the P-completion FP of F and redefine
Ft as FP

t+ :=
⋂

s>tFP
s , where FP

s is the σ-algebra

generated by Fs and the sets E ∈ FP satisfying
P(E) = 0; (Xt,Ft) will remain a (super)martingale
by [13], VI.3(1).
We are particularly interested in test supermartin-

gales, defined as supermartingales that are nonnega-
tive (Xt ≥ 0 for all t) and satisfy E(X0)≤ 1, and test
martingales, defined as martingales that are non-
negative and satisfy E(X0) = 1. Earlier, we defined
test martingales as those having initial value 1; this
can be reconciled with the new definition by set-
ting Xt := 1 for t < 0. A well-known fact about test
supermartingales, first proven for discrete time and
test martingales by Ville, is that

P{X∗
∞ ≥ c} ≤ 1/c(2)

for every c≥ 1 ([39], page 100; [13], VI.1). We will
call this themaximal inequality. This inequality shows
that Xt can take the value ∞ only with probability
zero.
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3.2 Bayes Factors

A nonnegative measurable function B :Ω→ [0,∞]
is called a Bayes factor for P if

∫

(1/B)dP≤ 1; we
will usually omit “for P.” A Bayes factor B is said
to be precise if

∫

(1/B)dP= 1.
In order to relate this definition to the notion

of Bayes factor discussed informally in Sections 1
and 2, we note first that whenever Q is a probability
measure on (Ω,F), the Radon–Nikodym derivative
dQ/dP will satisfy

∫

(dQ/dP)dP ≤ 1, with equal-
ity if Q is absolutely continuous with respect to P.
Therefore, B = 1/(dQ/dP) will be a Bayes factor
for P. The Bayes factor B will be precise if Q is ab-
solutely continuous with respect to P; in this case B
will be a version of the Radon–Nikodym derivative
dP/dQ.
Conversely, whenever a nonnegative measurable

function B satisfies
∫

(1/B)dP≤ 1, we can construct
a probability measure Q that has 1/B as its Radon–
Nikodym derivative with respect to P. We first con-
struct a measureQ0 by settingQ0(A) :=

∫

A(1/B)dP
for all A ∈ F , and then obtain Q by adding to Q0

a measure that puts the missing mass 1 − Q0(Ω)
(which can be 0) on a set E (this can be empty or
a single point) to which P assigns probability zero.
(If P assigns positive probability to every element
of Ω, we can add a new point to Ω.) The function
B will be a version of the Radon–Nikodym deriva-
tive dP/dQ if we redefine it by setting B(ω) := 0
for ω ∈E [remember that P(E) = 0].

3.3 p-Values

In order to relate p-values to supermartingales, we
introduce a new concept, that of a p-test. A p-test
is a measurable function p :Ω→ [0,1] such that

P{ω | p(ω)≤ δ} ≤ δ(3)

for all δ ∈ [0,1]. We say that p is a precise p-test if

P{ω | p(ω)≤ δ}= δ(4)

for all δ ∈ [0,1].
It is consistent with established usage to call the

values of a p-test p-values, at least if the p-test is
precise. One usually starts from a measurable func-
tion T :Ω→ R (the test statistic) and sets p(ω) :=
P{ω′ | T (ω′) ≥ T (ω)}; it is clear that a function p
defined in this way, and any majorant of such a p,
will satisfy (3). If the distribution of T is continu-
ous, p will also satisfy (4). If not, we can treat the

ties T (ω′) = T (ω) more carefully and set

p(ω) :=P{ω′ | T (ω′)>T (ω)}
+ ξP{ω′ | T (ω′) = T (ω)},

where ξ is chosen randomly from the uniform dis-
tribution on [0,1]; in this way we will always obtain
a function satisfying (4) (where P now refers to the
overall probability encompassing generation of ξ).

4. SUPERMARTINGALES AND BAYES

FACTORS

When (Xt,Ft) is a test supermartingale, 1/Xt is
a Bayes factor for any value of t. It is also true
that 1/X∞, X∞ being the supermartingale’s lim-
iting value, is a Bayes factor. Part 1 of the following
theorem is a precise statement of the latter asser-
tion; the former assertion follows from the fact that
we can stop the supermartingale at any time t.
Part 2 of Theorem 1 states that we can construct

a test martingale whose limiting value is reciprocal
to a given precise Bayes factor. We include this re-
sult for mathematical completeness rather than be-
cause of its practical importance; the construction
involves arbitrarily introducing a filtration, which
need not correspond to any time scale with practi-
cal meaning. In its statement, we use F∞ to denote
the σ-algebra generated by

⋃

tFt.

Theorem 1. (1) If (Xt,Ft) is a test supermar-
tingale, then X∞ := limt→∞Xt exists almost surely
and 1/X∞ is a Bayes factor.
(2) Suppose B is a precise Bayes factor. Then

there is a test martingale (Xt) such that B = 1/X∞

a.s. Moreover, for any filtration (Ft) such that B is
F∞-measurable, there is a test martingale (Xt,Ft)
such that B = 1/X∞ almost surely.

Proof. If (Xt,Ft) is a test supermartingale, the
limit X∞ exists almost surely by Doob’s conver-
gence theorem ([13], VI.6), and the inequality
∫

X∞ dP≤ 1 holds by Fatou’s lemma:
∫

X∞ dP=

∫

lim inf
t→∞

Xt dP≤ lim inf
t→∞

∫

Xt dP≤ 1.

Now suppose that B is a precise Bayes factor and
(Ft) is a filtration (not necessarily satisfying the
usual conditions) such that B is F∞-measurable;
for concreteness, we consider the case of continu-
ous time. Define a test martingale (Xt,FP

t+) by set-

ting Xt := E(1/B|FP
t+); versions of conditional ex-

pectations can be chosen in such a way that (Xt)
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is right-continuous: cf. [13], VI.4. Then X∞ = 1/B
almost surely by Lévy’s zero–one law ([24], pages
128–130; [30], VI.6, corollary). It remains to notice
that (Xt,Ft) will also be a test martingale. If (Ft)
such that B is F∞-measurable is not given in ad-
vance, we can define it by, for example,

Ft :=

{

{∅,Ω}, if t < 1,
σ(B), otherwise,

where σ(B) is the σ-algebra generated by B. �

Formally, a stopping time with respect to a filtra-
tion (Ft) is a nonnegative random variable τ tak-
ing values in [0,∞] such that, at each time t, the
event {ω | τ(ω) ≤ t} belongs to Ft. Let (Xt,Ft) be
a test supermartingale. Doob’s convergence theo-
rem, which was used in the proof of Theorem 1,
implies that we can define its value Xτ at τ by the
formula Xτ (ω) :=Xτ(ω)(ω) even when τ =∞ with
positive probability. The stopped process (Xτ

t ,Ft) :=
(Xt∧τ ,Ft), where a∧b := min(a, b), will also be a test
supermartingale ([13], VI.12). Since Xτ is the final
value of the stopped process, it follows from part 1
of Theorem 1 that 1/Xτ is a Bayes factor. (This also
follows directly from Doob’s stopping theorem, [30],
VI.13.)

5. SUPERMARTINGALES AND p-VALUES

Now we will prove that the inverse of a supremum
of a test supermartingale is a p-test. This is true
when the supremum is taken over [0, t] for some time
point t or over [0, τ ] for any stopping time τ , but the
strongest way of making the point is to consider the
supremum over all time points (i.e., for τ :=∞).
We will also show how to construct a test mar-

tingale that has the inverse of a given p-test as its
supremum. Because the time scale for this martin-
gale is artificial, the value of the construction is more
mathematical than directly practical; it will help us
prove Theorem 4 in Section 7. But it may be worth-
while to give an intuitive explanation of the con-
struction. This is easiest when the p-test has discrete
levels, because then we merely construct a sequence
of bets. Consider a p-test p that is equal to 1 with
probability 1/2, to 1/2 with probability 1/4, to 1/4
with probability 1/8, etc.:

P{p= 2−n}= 2−n−1

for n = 0,1, . . . . To see that a function on Ω that
takes these values with these probabilities is a p-
test, notice that when 2−n ≤ δ < 2−n+1,

P{p≤ δ}=P{p≤ 2−n}= 2−n ≤ δ.

Suppose that we learn first whether p is 1. Then, if
it is not 1, we learn whether it is 1/2. Then, if it
is not 1/2, whether it is 1/4, etc. To create the test
martingale X0,X1, . . . , we start with capital X0 = 1
and bet it all against p being 1. If we lose, X1 = 0
and we stop. If we win, X1 = 2, and we bet it all
against p being 1/2, etc. Each time we have even
chances of doubling our money or losing it all. If
p = 2−n, then our last bet will be against p = 2−n,
and the amount we will lose, 2n, will be X∗

∞. So
1/X∗

∞ = p, as desired.
Here is our formal result:

Theorem 2. (1) If (Xt,Ft) is a test supermar-
tingale, 1/X∗

∞ is a p-test.
(2) If p is a precise p-test, there is a test mar-

tingale (Xt) such that p= 1/X∗
∞.

Proof. The inequality P{1/X∗
∞ ≤ δ} ≤ δ

for test supermartingales follows from the maximal
inequality (2).
In the opposite direction, let p be a precise p-test.

Set Π := 1/p; this function takes values in [1,∞].
Define a right-continuous random process (Xt), t ∈
[0,∞), by

Xt(ω) =

{

1, if t ∈ [0,1),
t, if t ∈ [1,Π(ω)),
0, otherwise.

Since X∗
∞ =Π, it suffices to check that (Xt) is a test

martingale. The time interval where this process is
nontrivial is t ≥ 1; notice that X1 = 1 with proba-
bility one.
Let t ≥ 1; we then have Xt = tI{Π>t}. Since Xt

takes values in the two-element set {0, t}, it is inte-
grable. The σ-algebra generated by Xt consists of 4
elements (∅, Ω, the set Π−1((t,∞]), and its comple-
ment), and the σ-algebra Ft generated by Xs, s≤ t,
consists of the sets Π−1(E) where E is either a Borel
subset of [1, t] or the union of (t,∞] and a Borel sub-
set of [1, t]. To check (1), where 1≤ s < t, it suffices
to show that

∫

Π−1(E)
Xt dP=

∫

Π−1(E)
Xs dP,

that is,
∫

Π−1(E)
tI{Π>t} dP=

∫

Π−1(E)
sI{Π>s} dP,(5)

where E is either a Borel subset of [1, s] or the union
of (s,∞] and a Borel subset of [1, s]. If E is a Borel
subset of [1, s], the equality (5) holds, as its two sides
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are zero. If E is the union of (s,∞] and a Borel
subset of [1, s], (5) can be rewritten as
∫

Π−1((s,∞])
tI{Π>t} dP=

∫

Π−1((s,∞])
sI{Π>s} dP,

that is, tP{Π> t}= sP{Π> s}, that is, 1 = 1. �

6. CALIBRATING p-VALUES

An increasing (not necessarily strictly increasing)
function f : [0,1] → [0,∞] is called a calibrator if
f(p) is a Bayes factor for any p-test p. This notion
was discussed in [41] and, less explicitly, in [35]. In
this section we will characterize the set of all in-
creasing functions that are calibrators; this result is
a slightly more precise version of Theorem 7 in [41].
We say that a calibrator f dominates a calibra-

tor g if f(x) ≤ g(x) for all x ∈ [0,1]. We say that
f strictly dominates g if f dominates g and f(x)<
g(x) for some x ∈ [0,1]. A calibrator is admissible if
it is not strictly dominated by any other calibrator.

Theorem 3. (1) An increasing function f :
[0,1]→ [0,∞] is a calibrator if and only if

∫ 1

0

dx

f(x)
≤ 1.(6)

(2) Any calibrator is dominated by an admissible
calibrator.
(3) A calibrator is admissible if and only if it is

left-continuous and

∫ 1

0

dx

f(x)
= 1.(7)

Proof. Part 1 is proven in [41] (Theorem 7),
but we will give another argument, perhaps more
intuitive. The condition “only if” is obvious: ev-
ery calibrator must satisfy (6) in order to transform
the “exemplary” p-test p(ω) = ω on the probability
space ([0,1],F ,P), where F is the Borel σ-algebra
on [0,1] and P is the uniform probability measure
on F , into a Bayes factor. To check “if,” suppose
(6) holds and take any p-test p. The expectation
E(1/f(p)) depends on p only via the values P{p ≤
c}, c ∈ [0,1], and this dependence is monotonic: if
a p-test p1 is stochastically smaller than another
p-test p2 in the sense that P{p1 ≤ c} ≥ P{p2 ≤ c}
for all c, then E(1/f(p1)) ≥ E(1/f(p2)). This can
be seen, for example, from the well-known formula

E(ξ) =
∫∞
0 P{ξ > c}dc, where ξ is a nonnegative

random variable:

E(1/f(p1)) =

∫ ∞

0
P{1/f(p1)> c}dc

≥
∫ ∞

0
P{1/f(p2)> c}dc=E(1/f(p2)).

The condition (6) means that the inequality
E(1/f(p))≤ 1 holds for our exemplary p-test p; since
p is stochastically smaller than any other p-test, this
inequality holds for any p-test.
Part 3 follows from part 1, and part 2 follows from

parts 1 and 3. �

Equation (7) gives a recipe for producing admissi-
ble calibrators f : take any left-continuous decreasing
function g : [0,1] → [0,∞] such that

∫ 1
0 g(x)dx = 1

and set f(x) := 1/g(x), x ∈ [0,1]. We see in this way,
for example, that

f(x) := x1−α/α(8)

is an admissible calibrator for every α ∈ (0,1); if
we are primarily interested in the behavior of f(x)
as x → 0, we should take a small value of α. This
class of calibrators was found independently in [41]
and [35].
The calibrators (8) shrink to 0 significantly slower

than x as x→ 0. But there are evidently calibrators
that shrink as fast as x ln1+α(1/x), or x ln(1/x) ·
ln1+α ln(1/x), etc., where α is a positive constant.
For example,

f(x) :=







α−1(1 + α)−αx ln1+α(1/x)
if x≤ e−1−α,

∞, otherwise,

(9)

is an admissible calibrator for any α > 0.

7. CALIBRATING THE RUNNING SUPREMA

OF TEST SUPERMARTINGALES

Let us call an increasing function f : [1,∞)→ [0,∞)
a martingale calibrator if it satisfies the following
property:

For any probability space (Ω,F ,P) and
any test supermartingale (Xt,Ft) in this
probability space there exists a test super-
martingale (Yt,Ft) such that Yt ≥ f(X∗

t )
for all t almost surely.

There are at least 32 equivalent definitions of a mar-
tingale calibrator: we can independently replace each
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of the two entries of “supermartingale” in the defini-
tion by “martingale,” we can independently replace
(Xt,Ft) by (Xt) and (Yt,Ft) by (Yt), and we can
optionally allow t to take value ∞. The equivalence
will be demonstrated in the proof of Theorem 4.
Our convention is that f(∞) := limx→∞ f(x) (but
remember that X∗

t =∞ only with probability zero,
even for t=∞).
As in the case of calibrators, we say that a mar-

tingale calibrator f is admissible if there is no other
martingale calibrator g such that g(x)≥ f(x) for all
x ∈ [1,∞) (g dominates f ) and g(x)> f(x) for some
x ∈ [1,∞).

Theorem 4. (1) An increasing function f :
[1,∞)→ [0,∞) is a martingale calibrator if and only
if

∫ 1

0
f(1/x)dx≤ 1.(10)

(2) Any martingale calibrator is dominated by an
admissible martingale calibrator.
(3) A martingale calibrator is admissible if and

only if it is right-continuous and
∫ 1

0
f(1/x)dx= 1.(11)

Proof. We start from the statement “if” of
part 1. Suppose an increasing function f : [1,∞)→
[0,∞) satisfies (10) and (Xt,Ft) is a test super-
martingale. By Theorem 3, g(x) := 1/f(1/x), x ∈
[0,1], is a calibrator, and by Theorem 2, 1/X∗

∞ is
a p-test. Therefore, g(1/X∗

∞) = 1/f(X∗
∞) is a Bayes

factor, that is, E(f(X∗
∞))≤ 1. Similarly to the proof

of Theorem 1, we set Yt :=E(f(X∗
∞)|Ft), obtaining

a nonnegative martingale (Yt,Ft) satisfying Y∞ =
f(X∗

∞) a.s. We have E(Y0)≤ 1; the case E(Y0) = 0
is trivial, and so we assume E(Y0)> 0. Since

Yt =E(f(X∗
∞)|Ft)≥E(f(X∗

t )|Ft) = f(X∗
t ) a.s.

(the case t=∞ was considered separately) and we
can make (Yt,Ft) a test martingale by dividing each
Yt by E(Y0) ∈ (0,1], the statement “if” in part 1
of the theorem is proven. Notice that our argument
shows that f is a martingale calibrator in any of
the 32 senses; this uses the fact that (Yt) is a test
(super)martingale whenever (Yt,Ft) is a test (su-
per)martingale.
Let us now check that any martingale calibra-

tor (in any of the senses) satisfies (10). By any of
our definitions of a martingale calibrator, we have

∫

f(X∗
t )dP≤ 1 for all test martingales (Xt) and all

t <∞. It is easy to see that in Theorem 2, part 2,
we can replace X∗

∞ with, say, X∗
π/2, by replacing the

test martingale (Xt) whose existence it asserts with

X ′
t :=

{

Xtan t, if t < π/2,
X∞, otherwise.

Applying this modification of Theorem 2, part 2, to
the precise p-test p(ω) := ω on [0,1] equipped with
the uniform probability measure, we obtain

1≥
∫

f(X∗
π/2)dP=

∫

f(1/p)dP=

∫ 1

0
f(1/x)dx.

This completes the proof of part 1.
Part 3 is now obvious, and part 2 follows from

parts 1 and 3. �

As in the case of calibrators, we have a recipe for
producing admissible martingale calibrators f pro-
vided by (11): take any left-continuous decreasing

function g : [0,1] → [0,∞) satisfying
∫ 1
0 g(x)dx = 1

and set f(y) := g(1/y), y ∈ [1,∞). In this way we
obtain the class of admissible martingale calibrators

f(y) := αy1−α, α ∈ (0,1),(12)

analogous to (8) and the class

f(y) :=

{

α(1 +α)α
y

ln1+α y
, if y ≥ e1+α,

0, otherwise,
α> 0,

analogous to (9).
In the case of discrete time, Theorem 4 has been

greatly generalized by Dawid et al. ([12], Theorem 1).
The generalization, which required new proof tech-
niques, makes it possible to apply the result in new
fields, such as mathematical finance ([12], Section 4).
In this article we have considered only tests of sim-

ple statistical hypotheses. We can use similar ideas
for testing composite hypotheses, that is, sets of
probability measures. One possibility is to measure
the evidence against the composite hypothesis by
the current value of a random process that is a test
supermartingale under all probability measures in
the composite hypothesis; we will call such processes
simultaneous test supermartingales. For example,
there are nontrivial processes that are test super-
martingales under all exchangeable probability mea-
sures simultaneously ([42], Section 7.1). Will mar-
tingale calibrators achieve their goal for simultane-
ous test supermartingales? The method of proof of
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Theorem 4 does not work in this situation: in gen-
eral, it will produce a different test supermartin-
gale for each probability measure. The advantage
of the method used in [12] is that it will produce
one process, thus demonstrating that for each mar-
tingale calibrator f and each simultaneous test su-
permartingale Xt there exists a simultaneous test
supermartingale Yt such that Yt ≥ f(X∗

t ) for all t
(the method of [12] works pathwise and makes the
qualification “almost surely” superfluous).

8. EXAMPLES

Although our results are very general, we can il-
lustrate them using the simple problem of testing
whether a coin is fair. Formally, suppose we observe
a sequence of independent identically distributed bi-
nary random variables x1, x2, . . . , each taking values
in the set {0,1}; the probability θ ∈ [0,1] of x1 = 1
is unknown. Let Pθ be the probability distribution
of x1, x2, . . .; it is a probability measure on {0,1}∞.
In most of this section, our null hypothesis is that
θ = 1/2.
We consider both Bayesian testing of θ = 1/2, whe-

re the output is a posterior distribution, and non-
Bayesian testing, where the output is a p-value. We
call the approach that produces p-values the samp-
ling-theory approach rather than the frequentist ap-
proach, because it does not require us to interpret all
probabilities as frequencies; instead, we can merely
interpret the p-values using Cournot’s principle ([36],
Section 2). We have borrowed the term “sampling-
theory” from D. R. Cox and A. P. Dempster [10, 14],
without necessarily using it in exactly the same way
as either of them do.
We consider two tests of θ = 1/2, corresponding

to two different alternative hypotheses:

(1) First, we test θ = 1/2 against θ = 3/4. This
is unrealistic on its face; it is hard to imagine ac-
cepting a model that contains only these two simple
hypotheses. But some of what we learn from this
test will carry over to sensible and widely used tests
of a simple against a composite hypothesis.
(2) Second, we test θ = 1/2 against the composite

hypothesis θ 6= 1/2. In the spirit of Bayesian statis-
tics and following Laplace ([22]; see also [38], Sec-
tion 870, and [37]), we represent this composite hy-
pothesis by the uniform distribution on [0,1], the
range of possible values for θ. (In general, the com-
posite hypotheses of this section will be composite

only in the sense of Bayesian statistics; from the
point of view of the sampling-theory approach, these
are still simple hypotheses.)

For each test, we give an example of calibration of
the running supremum of the likelihood ratio. In
the case of the composite alternative hypothesis, we
also discuss the implications of using the inverse of
the running supremum of the likelihood ratio as a
p-value.
To round out the picture, we also discuss Bayesian

testing of the composite hypothesis θ ≤ 1/2 against
the composite hypothesis θ > 1/2, representing the
former by the uniform distribution on [0,1/2] and
the latter by the uniform distribution on (1/2,1].
Then, to conclude, we discuss the relevance of the
calibration of running suprema to Bayesian philos-
ophy.
Because the idea of tracking the supremum of

a martingale is related to the idea of waiting un-
til it reaches a high value, our discussion is related
to a long-standing debate about “sampling to reach
a foregone conclusion,” that is, continuing to sam-
ple in search of evidence against a hypothesis and
stopping only when some conventional p-value fi-
nally dips below a conventional level such as 5%.
This debate goes back at least to the work of Fran-
cis Anscombe in 1954 [4]. In 1961, Peter Armitage
described situations where even a Bayesian can sam-
ple to a foregone conclusion ([6]; [7], Section 5.1.4).
Yet in 1963 [15], Ward Edwards and his co-authors
insisted that this is not a problem: “The likelihood
principle emphasized in Bayesian statistics implies,
among other things, that the rules governing when
data collection stops are irrelevant to data interpre-
tation. It is entirely appropriate to collect data until
a point has been proven or disproven, or until the
data collector runs out of time, money, or patience.”
For further information on this debate, see [43]. We
will not attempt to analyze it thoroughly, but our
examples may be considered a contribution to it.

8.1 Testing θ = 1/2 Against a Simple

Alternative

To test our null hypothesis θ = 1/2 against the
alternative hypothesis θ = 3/4, we use the likelihood
ratio

Xt :=
P3/4(x1, . . . , xt)

P1/2(x1, . . . , xt)
(13)

=
(3/4)kt(1/4)t−kt

(1/2)t
=

3kt

2t
,
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where kt is the number of 1s in x1, . . . , xt [and Pθ(x1,
. . . , xt) is the probability under Pθ that the first t ob-
servations are x1, . . . , xt; such informal notation was
already used in Section 2]. The sequence of succes-
sive values of this likelihood ratio is a test martingale
(Xt).
According to (12), the function

f(y) := 0.1y0.9(14)

is a martingale calibrator. So there exists a test mar-
tingale (Yt) such that

Yt ≥ max
n=1,...,t

0.1X0.9
n .(15)

Figure 2 shows an example in which the martin-
gale calibrator (14) preserves a reasonable amount of
the evidence against θ = 1/2. To construct this fig-
ure, we generated a sequence x1, . . . , x10,000 of 0s and
1s, choosing each xt independently with the proba-
bility θ for xt = 1 always equal to ln2/ ln 3 ≈ 0.63.
Then we formed the lines in the figure as follows:

• The red line is traced by the sequence of num-
bers Xt = 3kt/2t. If our null hypothesis θ = 1/2
were true, these numbers would be a realization
of a test martingale, but this hypothesis is false
(as is our alternative hypothesis θ = 3/4).

• The upper dotted line is the running supremum
of the Xt:

X∗
t = max

n=1,...,t

3kn

2n

= (best evidence so far against θ = 1/2)t.

• The lower dotted line, which we will call Ft, shrinks
this best evidence using our martingale calibrator:
Ft = 0.1(X∗

t )
0.9.

• The blue line, which we will call Yt, is a test
martingale under the null hypothesis that satis-
fies (15): Yt ≥ Ft.

According to the proof of Theorem 4, E(0.1(X∗
∞)0.9|

Ft)/E(0.1(X∗
∞)0.9), where the expected values are

with respect to P1/2, is a test martingale that sat-
isfies (15). Because these expected values may be
difficult to compute, we have used in its stead in the
role of Yt a more easily computed test martingale
that is shown in [12] to satisfy (15).
Here are the final values of the processes shown in

Figure 2:

X10,000 = 2.2, X∗
10,000 = 7.3× 1015,

F10,000 = 1.9× 1013, Y10,000 = 2.2× 1013.

The test martingale Yt legitimately and correctly
rejects the null hypothesis at time 10,000 on the
basis of Xt’s high earlier values, even though the
Bayes factor X10,000 is not high. The Bayes factor
Y10,000 gives overwhelming evidence against the null
hypothesis, even though it is more than two orders
of magnitude smaller than X∗

10,000.

As the reader will have noticed, the test martin-
gale Xt’s overwhelming values against θ = 1/2 in
Figure 2 are followed, around t = 7,000, by over-
whelming values (order of magnitude 10−15) against

Fig. 2. The red line is a realization over 10,000 trials of the likelihood ratio for testing θ = 1/2 against θ = 3/4. The horizontal
axis gives the number of observations so far. The vertical axis is logarithmic and is labeled by powers of 10. The likelihood
ratio varies wildly, up to 1015 and down to 10−15. Were the sequence continued indefinitely, it would be unbounded in both
directions.
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θ = 3/4. Had we been testing θ = 3/4 against θ =
1/2, we would have found that it can also be re-
jected very strongly even after calibration. The fact
that (Xt) and (1/Xt) both have times when they are
very large is not accidental when we sample from
Pln 2/ ln 3. Under this measure, the conditional ex-
pected value of the increment lnXt − lnXt−1, given
the first t− 1 observations, is

ln 2

ln 3
ln

3

2
+

(

1− ln 2

ln 3

)

ln
1

2
= 0.

So lnXt is a martingale under Pln 2/ ln 3. The condi-
tional variance of its increment is

ln 2

ln 3

(

ln
3

2

)2

+

(

1− ln 2

ln3

)(

ln
1

2

)2

= ln2 ln
3

2
.

By the law of the iterated logarithm,

lim sup
t→∞

lnXt
√

2 ln 2 ln(3/2)t ln ln t
= 1

and

lim inf
t→∞

lnXt
√

2 ln2 ln(3/2)t ln ln t
=−1

almost surely. This means that as t tends to∞, lnXt

oscillates between approximately ±0.75
√
t ln ln t; in

particular,

lim sup
t→∞

Xt =∞ and lim inf
t→∞

Xt = 0(16)

almost surely. This guarantees that we will eventu-
ally obtain overwhelming evidence against whichever
of the hypotheses θ = 1/2 and θ = 3/4 that we want

to reject. This may be called sampling to a foregone
conclusion, but the foregone conclusion will be cor-
rect, since both θ = 1/2 and θ = 3/4 are wrong.
In order to obtain (16), we chose x1, . . . , x10,000

from a probability distribution, Pln 2/ ln 3, that lies
midway between P1/2 and P3/4 in the sense that it
tends to produce sequences that are as atypical with
respect to the one measure as to the other. Had we
chosen a sequence x1, . . . , x10,000 less atypical with
respect to P3/4 than with respect to P1/2, then we
might have been able to sample to the foregone con-
clusion of rejecting θ = 1/2, but not to the foregone
conclusion of rejecting θ = 3/4.

8.2 Testing θ = 1/2 Against a Composite

Alternative

Retaining θ = 1/2 as our null hypothesis, we now
take as our alternative hypothesis the probability
distribution Q obtained by averaging Pθ with re-
spect to the uniform distribution for θ.
After we observe x1, . . . , xt, the likelihood ratio for

testing P1/2 against Q is

Xt : =
Q(x1, . . . , xt)

P1/2(x1, . . . , xt)
(17)

=

∫ 1
0 θkt(1− θ)t−kt dθ

(1/2)t
=

kt!(t− kt)!2
t

(t+1)!
.

Figure 3 shows an example of this process and of
the application of the same martingale calibrator,
(14), that we used in Figure 2. In this case, we gen-
erate the 0s and 1s in the sequence x1, . . . , x10,000

Fig. 3. A realization over 10,000 trials of the likelihood ratio for testing θ = 1/2 against the probability distribution Q
obtained by averaging Pθ with respect to the uniform distribution for θ. The vertical axis is again logarithmic. As in Figure 2,
the oscillations would be unbounded if trials continued indefinitely.
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Fig. 4. On the left we graph P{p≤ δ} as a function of δ, where p is the function defined in (18). On the right, we magnify
the lower left corner of this graph.

independently but with a probability for xt = 1 that
slowly converges to 1/2: 1

2 +
1
4

√

ln t/t. As we show in
Appendix B, (16) again holds almost surely; if you
wait long enough, you will have enough evidence
to reject legitimately whichever of the two false hy-
potheses (independently and identically distributed
with θ = 1/2, or independently and identically dis-
tributed with θ 6= 1/2) you want.
Here are the final values of the processes shown in

Figure 3:

X10,000,= 3.5, X∗
10,000 = 3599,

F10,000,= 159, Y10,000 = 166.

In this case, the evidence against θ = 1/2 is very
substantial but not overwhelming.

8.3 p-Values for Testing θ = 1/2

By Theorem 2, 1/X∗
∞ is a p-test whenever (Xt) is

a test martingale. Applying this to the test martin-
gale (17) for testing P1/2 against Q, we see that

p(x1, x2, . . .) : =
1

sup1≤t<∞(kt!(t− kt)!2t/(t+ 1)!)
(18)

= inf
1≤t<∞

(t+1)!

kt!(t− kt)!2t

is a p-test for testing θ = 1/2 against θ 6= 1/2. Fig-
ure 4 shows that it is only moderately conserva-
tive.
Any function of the observations that is bounded

below by a p-test is also a p-test. So for any rule N
for selecting a positive integer N(x1, x2, . . .) based

on knowledge of some or all of the observations x1,
x2, . . . , the function

rN (x1, x2, . . .) :=
(N +1)!

kN !(N − kN )!2N
(19)

is a p-test. It does not matter whether N qualifies
as a stopping rule [i.e., whether x1, . . . , xn always
determine whether N(x1, x2, . . .)≤ n].
For each positive integer n, let

pn :=
(n+ 1)!

kn!(n− kn)!2n
.(20)

We can paraphrase the preceding paragraph by say-
ing that pn is a p-value (i.e., the value of a p-test) no
matter what rule is used to select n. In particular, it
is a p-value even if it was selected because it was the
smallest number in the sequence p1, p2, . . . , pn, . . . , pt,
where t is an integer much larger than n.
We must nevertheless be cautious if we do not

know the rule N—if the experimenter who does the
sampling reports to us pn and perhaps some other
information but not the rule N . We can consider the
reported value of pn a legitimate p-value whenever
we know that the experimenter would have told us
pn for some n, even if we do not know what rule N
he followed to choose n and even if he did not follow
any clear rule. But we should not think of pn as a
p-value if it is possible that the experimenter would
not have reported anything at all had he not found
an n with a pn to his liking. We are performing a
p-test only if we learn the result no matter what it is.
Continuing to sample in search of evidence against

θ = 1/2 and stopping only when the p-value finally
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Fig. 5. The ratio (23) as n ranges from 100 to 10,000. This is the factor by which not knowing n in advance widens the
99% prediction interval for kn. Asymptotically, the ratio tends to infinity with n as c

√
lnn for some positive constant c.

reaches 5% can be considered legitimate if instead
of using conventional p-tests for fixed sample sizes
we use the p-test (19) with N defined by

N(x1, x2, . . .) := inf

{

n
∣

∣

∣

(n+1)!

kn!(n− kn)!2n
≤ 0.05

}

.

But we must bear in mind that N(x1, x2, . . .) may
take the value ∞. If the experimenter stops only
when the p-value dips down to the 5% level, he has
a chance of at least 95%, under the null hypothesis,
of never stopping. So it will be legitimate to inter-
pret a reported pn of 0.05 or less as a p-value (the
observed value of a p-test) only if we were somehow
also guaranteed to hear about the failure to stop.

8.4 Comparison with a Standard p-Test

If the number n of observations is known in ad-
vance, a standard sampling-theory procedure for tes-
ting the hypothesis θ = 1/2 is to reject it if |kn −
n/2| ≥ cn,δ, where cn,δ is chosen so that P1/2{|kn −
n/2| ≥ cn,δ} is equal (or less than but as close as
possible) to a chosen significance level δ. To see how
this compares with the p-value pn given by (20), let
us compare the conditions for nonrejection:

• If we use the standard procedure, the condition
for not rejecting θ = 1/2 at level δ is

|kn − n/2|< cn,δ.(21)

• If we use the p-value pn, the condition for not
rejecting θ = 1/2 at level δ is pn > δ, or

(n+1)!

kn!(n− kn)!2n
> δ.(22)

In both cases, kn satisfies the condition with proba-
bility at least 1− δ under the null hypothesis, and,
hence, the condition defines a level 1− δ prediction
interval for kn. Because condition (21) requires the
value of n to be known in advance and condition (22)
does not, we can expect the prediction interval de-
fined by (22) to be wider than the one determined
by (22). How much wider?
Figure 5 answers this question for the case where

δ = 0.01 and 100 ≤ n ≤ 10,000. It shows, for each
value of n in this range, the ratio

width of the 99% prediction interval given by (22)

width of the 99% prediction interval given by (21)
,

(23)

that is, the factor by which not knowing n in ad-
vance widens the prediction interval. The factor is
less than 2 over the whole range but increases steadi-
ly with n.
As n increases further, the factor by which the

standard interval is multiplied increases without limit,
but very slowly. To verify this, we first rewrite (22) as

|kn − n/2|< (1 +αn)
√
n

√

1

2
ln

1

δ
+

1

4
lnn,(24)

where αn is a sequence such that αn → 0 as n→∞.
[For some αn of order o(1) the inequality (24) is
stronger than pn > δ, whereas for others it is weaker;
see Appendix B for details of calculations.] Then,
using the Berry–Esseen theorem and letting zε stand
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for the upper ε-quantile of the standard Gaussian
distribution, we rewrite (21) as

∣

∣

∣

∣

kn −
n

2

∣

∣

∣

∣

<
1

2
zδ/2+αn

√
n,(25)

where αn is a sequence such that |αn| ≤
(2π)−1/2n−1/2 for all n. (See [17].) As δ→ 0,

zδ/2 ∼
√

2 ln
2

δ
∼
√

2 ln
1

δ
.

So the main asymptotic difference between (24) and
(25) is the presence of the term 1

4 lnn in (24).

The ratio (23) tends to infinity with n as c
√
lnn

for a positive constant c (namely, for c = 1/zδ/2 ,
where δ = 0.01 is the chosen significance level). How-
ever, the expression on the right-hand side of (24)
results from using the uniform probability measure
on θ to average the probability measures Pθ. Aver-
aging with respect to a different probability measure
would give something different, but it is clear from
the law of the iterated logarithm that the best we
can get is a prediction interval whose ratio with the
standard interval will grow like

√
ln lnn instead of√

lnn. In fact, the method we just used to obtain
(24) was used by Ville, with a more carefully chosen
probability measure on θ, to prove the upper half of
the law of the iterated logarithm ([39], Section V.3),
and Ville’s argument was rediscovered and simpli-
fied using the algorithmic theory of randomness in
[40], Theorem 1.

8.5 Testing a Composite Hypothesis Against

a Composite Hypothesis

When Peter Armitage pointed out that even Baye-
sians can sample to a foregone conclusion, he used
as an example the Gaussian model with known vari-
ance and unknown mean [6]. We can adapt Armita-
ge’s idea to coin tossing by comparing two composite
hypotheses: the null hypothesis θ ≤ 1/2, represented
by the uniform probability measure on [0,1/2], and
the alternative hypothesis θ > 1/2, represented by
the uniform probability measure on (1/2,1]. (These
hypotheses are natural in the context of paired com-
parison: see, e.g., [23], Section 3.1.) The test mar-
tingale is

Xt =
2
∫ 1
1/2 θ

kt(1− θ)t−kt dθ

2
∫ 1/2
0 θkt(1− θ)t−kt dθ

(26)

=
P{Bt+1 ≤ kt}

P{Bt+1 ≥ kt +1} ,

where Bn is the binomial random variable with pa-
rameters n and 1/2; see Appendix B for details.
If the sequence x1, x2, . . . turns out to be typical
of θ = 1/2, then by the law of the iterated loga-
rithm, (kt − t/2)/

√
t will almost surely have ∞ as

its upper limit and −∞ as its lower limit; there-
fore, (16) will hold again. This confirms Armitage’s
intuition that arbitrarily strong evidence on both
sides will emerge if we wait long enough, but the os-
cillation depends on increasingly extreme reversals
of a random walk, and the lifetime of the universe
may not be long enough for us to see any of them
[
√

ln ln(5× 1023)< 2].
Figure 6 depicts one example, for which the final

values are

X10,000 = 3.7, X∗
10,000 = 272,

F10,000 = 15.5, Y10,000 = 17.9.

In this realization, the first 10,000 observations provi-
de modest evidence against θ ≤ 1/2 and none against
θ > 1/2. Figures 2 and 3 are reasonably typical for
their setups, but in this setup it is unusual for the
first 10,000 observations to show even as much ev-
idence against one of the hypotheses as we see in
Figure 6.

8.6 A Puzzle for Bayesians

From a Bayesian point of view, it may seem puz-
zling that we should want to shrink a likelihood ratio
in order to avoid exaggerating the evidence against
a null hypothesis. Observations affect Bayesian pos-
terior odds only through the likelihood ratio, and we
know that the likelihood ratio is not affected by the
sampling plan. So why should we adjust it to take
the sampling plan into account?
Suppose we assign equal prior probabilities of 1/2

each to the two hypotheses θ = 1/2 and θ = 3/4 in
our first coin-tossing example. Then if we stop at
time t, the likelihood ratio Xt given by (13) is iden-
tical with the posterior odds in favor of θ = 3/4. If
we write postt for the posterior probability measure
at time t, then

Xt =
postt{θ = 3/4}
postt{θ = 1/2} =

1− postt{θ = 1/2}
postt{θ = 1/2}

and

postt{θ = 1/2}= 1

Xt +1
.(27)

This is our posterior probability given the evidence
x1, . . . , xt no matter why we decided to stop at time t.
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Fig. 6. A realization over 10,000 trials of the likelihood ratio for testing the probability distribution obtained by averaging Pθ

with respect to the uniform probability measure on [0,1/2] against the probability distribution obtained by averaging Pθ with
respect to the uniform probability measure on (1/2,1]. As in the previous figures, the vertical axis is logarithmic, and the red
line would be unbounded in both directions if observations continued indefinitely.

If we “calibrate” Xt and plug the calibrated value
instead of the actual value into (27), we will get the
posterior probability wrong.
It may help us escape from our puzzlement to

acknowledge that if the model is wrong, then the
observations may oscillate between providing over-
whelming evidence against θ = 1/2 and providing
overwhelming evidence against θ = 3/4, as in Fig-
ure 2. Only if we insist on retaining the model in
spite of this very anomalous phenomenon will (27)
continue to be our posterior probability for θ = 1/2
at time t, and it is this stubbornness that opens the
door to sampling to whichever foregone conclusion
we want, θ = 1/2 or θ = 3/4.
The same issues arise when we test θ = 1/2 against

the composite hypothesis θ 6= 1/2. A natural Baye-
sian method for doing this is to put half our prob-
ability on θ = 1/2 and distribute the other half uni-
formly on [0,1] (which is a special case of a widely
recommended procedure described in, e.g., [7], page
391). This makes the likelihood ratio Xt given by
(17) the posterior odds against θ = 1/2. As we have
seen, if the observations x1, x2, . . . turn out to be
typical for the distribution in which they are in-
dependent with the probability for xt = 1 equal to
1
2 +

1
4

√

ln t/t, then if you wait long enough, you can
observe values of Xt as small or as large as you like,
and thus obtain a posterior probability for θ = 1/2
as large or as small as you like.

Of course, it will not always happen that the ac-
tual observations are so equidistant from a simple
null hypothesis and the probability distribution rep-
resenting its negation that the likelihood ratio will
oscillate wildly and you can sample to whichever side
you want. More often, the likelihood ratio and hence
the posterior probability will settle on one side or the
other. But in the spirit of George Box’s maxim that
all models are wrong, we can interpret this not as
confirmation of the side favored but only as confir-
mation that the other side should be rejected. The
rejection will be legitimate from the Bayesian point
of view, regardless of why we stopped sampling.
It will also be legitimate from the sampling-theory
point of view.
On this argument, it is legitimate to collect data

until a point has been disproven but not legitimate
to interpret this data as proof of an alternative hy-
pothesis within the model. Only when we really know
the model is correct can we prove one of its hypothe-
ses by rejecting the others.

APPENDIX A: INADEQUACY OF TEST

MARTINGALES IN CONTINUOUS TIME

In this appendix we will mainly discuss the case
of continuous time; we will see that in this case the
notion of a test martingale is not fully adequate for
the purpose of hypothesis testing (Proposition 2).
Fix a filtration (Ft) satisfying the usual conditions;
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in this appendix we will only consider supermartin-
gales (Xt,Ft), and we will abbreviate (Xt,Ft) to
(Xt), or even to Xt or X .
In discrete time, there is no difference between

using test martingales and test supermartingales for
hypothesis testing: every test martingale is a test
supermartingale, and every test supermartingale is
dominated by a test martingale (according to Doob’s
decomposition theorem, [30], VII.1); therefore, us-
ing test supermartingales only allows discarding ev-
idence as compared to test martingales. In contin-
uous time, the difference between test martingales
and test supermartingales is essential, as we will
see below (Proposition 2). For hypothesis testing we
need “local martingales,” a modification of the no-
tion of martingales introduced by Itô and Watan-
abe [18] and nowadays used perhaps even more of-
ten than martingales themselves in continuous time.
This is the principal reason why in this article we
use test supermartingales so often starting from Sec-
tion 3.
We will say that a random process (Xt) is a local

member of a class C of random processes (such as
martingales or supermartingales) if there exists a se-
quence τ1 ≤ τ2 ≤ · · · of stopping times (called a lo-
calizing sequence) such that τn →∞ a.s. and each
stopped process Xτn

t =Xt∧τn belongs to the class C.
(A popular alternative definition requires that each
Xt∧τnI{τn>0} should belong to C.) A standard argu-
ment (see, e.g., [13], VI.29) shows that there is no
difference between test supermartingales and local
test supermartingales:

Proposition 1. Every local test supermartin-
gale (Xt) is a test supermartingale.

Proof. Let τ1, τ2, . . . be a localizing sequence,
so that τn →∞ as n→∞ a.s. and each Xτn , n =
1,2, . . . , is a test supermartingale. By Fatou’s lemma
for conditional expectations, we have, for 0≤ s < t,

E(Xt|Fs) =E
(

lim
n→∞

Xτn
t |Fs

)

≤ lim inf
n→∞

E(Xτn
t |Fs)

≤ lim inf
n→∞

Xτn
s =Xs a.s.

In particular, E(Xt)≤ 1. �

An adapted process (At) is called increasing if
A0 = 0 a.s. and its every path is right-continuous
and increasing (as usual, not necessarily strictly in-
creasing). According to the Doob–Meyer decomposi-

tion theorem ([13], Theorem VII.12), every test su-
permartingale (Xt) can be represented as the dif-
ference Xt = Yt −At of a local test martingale (Yt)
and an increasing process (At). Therefore, for the
purpose of hypothesis testing in continuous time,
local test martingales are as powerful as test su-
permartingales: every local test martingale is a test
supermartingale, and every test supermartingale is
dominated by a local test martingale.
In discrete time there is no difference between

local test martingales and test martingales ([13],
(VI.31.1)). In continuous time, however, the differ-
ence is essential. Suppose the filtration (Ft) admits
a standard Brownian motion (Wt,Ft) in R

3. A well-
known example ([19]; see also [30], VI.21, and [13],
VI.26) of a local martingale which is not a martin-
gale is Lt := 1/‖Wt + e‖, where e is a vector in R

3

such that ‖e‖= 1 [e.g., e= (1,0,0)]; Lt being a local
martingale can be deduced from 1/‖ · ‖ (the Newto-
nian kernel) being a harmonic function on R

3 \ {0}.
The random process (Lt) is a local test martingale
such that suptE(L2

t )<∞; nevertheless, it fails to be
a martingale. See, for example, [29] (Example 1.140)
for detailed calculations.
The local martingale Lt := 1/‖Wt + e‖ provides

an example of a test supermartingale which cannot
be replaced, for the purpose of hypothesis testing,
by a test martingale. According to another version
of the Doob–Meyer decomposition theorem ([30],
VII.31), a supermartingale (Xt) can be represented
as the difference Xt = Yt −At of a martingale (Yt)
and an increasing process (At) if and only if (Xt)
belongs to the class (DL). The latter is defined as
follows: a supermartingale is said to be in (DL) if, for
any a > 0, the system of random variables Xτ , where
τ ranges over the stopping times satisfying τ ≤ a, is
uniformly integrable. It is known that (Lt), despite
being uniformly integrable (as a collection of ran-
dom variables Lt), does not belong to the class (DL)
([30], VI.21 and the note in VI.19). Therefore, (Lt)
cannot be represented as the difference Lt = Yt−At

of a martingale (Yt) and an increasing process (At).
Test martingales cannot replace local test martin-
gales in hypothesis testing also in the stronger sense
of the following proposition.

Proposition 2. Let δ > 0. It is not true that for
every local test martingale (Xt) there exists a test
martingale (Yt) such that Yt ≥ δXt a.s. for all t.

Proof. Let Xt := Lt = 1/‖Wt+e‖, and suppose
there is a test martingale (Yt) such that Yt ≥ δXt a.s.
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for all t. Let ε > 0 be arbitrarily small. Since (Yt) is
in (DL) ([30], VI.19(a)), for any a > 0 we can find
C > 0 such that

sup
τ

∫

{Yτ≥C}
Yτ dP< εδ,

τ ranging over the stopping times satisfying τ ≤ a.
Since

sup
τ

∫

{Xτ≥C/δ}
Xτ dP≤ sup

τ

∫

{Yτ≥C}
(Yτ/δ)dP< ε,

(Xt) is also in (DL), which we know to be false. �

APPENDIX B: DETAILS OF CALCULATIONS

In this appendix we will give details of some calcu-
lations omitted in Section 8. They will be based on
Stirling’s formula n! =

√
2πn(n/e)neλn , where λn =

o(1) as n→∞.

B.1 Oscillating Evidence when Testing Against
a Composite Alternative

First we establish (16) for Xt defined by (17).
Suppose we have made t observations and observed
k := kt 1s so far. We start from finding bounds on k
that are implied by the law of the iterated logarithm.
Using the simplest version of Euler’s summation for-
mula (as in [5], Theorem 1), we can find its expected
value as

E(k) =

t
∑

n=1

(

1

2
+

1

4

√

lnn

n

)

=
t

2
+

1

4

t
∑

n=2

(

lnn+ 1√
n lnn

)

− 1

4

t
∑

n=2

(

1√
n lnn

)

=
t

2
+

1

4

∫ t

2

(

lnu+ 1√
u lnu

)

du+O(
√
t)

=
t

2
+

1

2

√
t ln t+O(

√
t).

Its variance is

var(k) =
t
∑

n=1

(

1

2
+

1

4

√

lnn

n

)(

1

2
− 1

4

√

lnn

n

)

=

t
∑

n=1

(

1

4
− 1

16

lnn

n

)

∼ t

4
.

Therefore, Kolmogorov’s law of the iterated loga-
rithm gives

lim sup
t→∞

k− (1/2)(t+
√
t ln t)

√

(1/2)t ln ln t
= 1 and

(28)

lim inf
t→∞

k− (1/2)(t+
√
t ln t)

√

(1/2)t ln ln t
=−1 a.s.

Using the definition (17) and applying Stirling’s
formula, we obtain

lnXt = t ln 2 + ln
k!(t− k)!

t!
− ln(t+1)

= t ln 2− tH(k/t) + ln

√

2π
k(t− k)

t

+ λk + λt−k − λt − ln(t+ 1)(29)

= t(ln 2−H(k/t))− 1

2
ln t+O(1)

= 2t

(

k

t
− 1

2

)2

− 1

2
ln t+O(1) a.s.,

where H(p) :=−p lnp− (1−p) ln(1−p), p ∈ [0,1], is
the entropy function; the last equality in (29) uses
ln2−H(p) = 2(p−1/2)2+O(|p−1/2|3) as p→ 1/2.
Combining (29) with (28), we further obtain

lim sup
t→∞

lnXt√
2 ln t ln ln t

= 1 and

(30)

lim inf
t→∞

lnXt√
2 ln t ln ln t

=−1 a.s.

B.2 Prediction Interval

Now we show that (22) can be rewritten as (24).
For brevity, we write k for kn. Similarly to (29), we
can rewrite (22) as

ln 2−H(k/n) +
1

n
ln

√

2π
k(n− k)

n
(31)

+
λk + λn−k − λn

n
− 1

n
ln(n+1)<

ln(1/δ)

n
.

Since ln2−H(p)∼ 2(p− 1/2)2 (p→ 1/2), we have
k/n = 1/2 + o(1) for k satisfying (31), as n → ∞.
Combining this with (31), we further obtain

2

(

k

n
− 1

2

)2

< (1 +αn)
ln(1/δ)− ln

√
n+ ln(n+ 1) + βn
n

,

for some αn = o(1) and βn = O(1), which can be
rewritten as (24) for a different sequence αn = o(1).

B.3 Calculations for Armitage’s Example

Finally, we deduce (26). Using a well-known ex-
pression ([2], 6.6.4) for the regularized beta function
Ip(a, b) :=B(p;a, b)/B(a, b) and writing k for kt, we
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obtain

Xt = (B(k+ 1, t− k+1)

−B(1/2;k + 1, t− k+1))

/B(1/2;k +1, t− k+1)
(32)

=
1

I1/2(k+ 1, t− k+1)
− 1

=
1

P{Bt+1 ≥ k+ 1} − 1

=
P{Bt+1 ≤ k}

P{Bt+1 ≥ k+ 1} .

As a final remark, let us compare the sizes of os-
cillation of the log likelihood ratio lnXt that we
have obtained in Section 8 and in this appendix for
our examples of the three kinds of Bayesian hypoth-
esis testing. When testing a simple null hypothe-
sis against a simple alternative, lnXt oscillated be-
tween approximately ±0.75

√
t ln ln t (as noticed in

Section 8.1). When testing a simple null hypothe-
sis against a composite alternative, lnXt oscillated
between ±

√
2 ln t ln ln t [see (30)]. And finally, when

testing a composite null hypothesis against a com-
posite alternative, we can deduce from (32) that

lim sup
t→∞

lnXt

ln ln t
= 1 and lim inf

t→∞

lnXt

ln ln t
=−1 a.s.

(details omitted); therefore, lnXt oscillates between
± ln ln t. Roughly, the size of oscillations of lnXt

goes down from
√
t to

√
ln t to ln ln t. Of course,

these sizes are only examples, but they illustrate
a general tendency.
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[28] Martin-Löf, P. (1969). The literature on von Mises’
Kollektivs revisited. Theoria 35 12–37. MR0240841

[29] Medvegyev, P. (2007). Stochastic Integration Theory.
Oxford Univ. Press, Oxford. MR2345169

[30] Meyer, P. A. (1966). Probability and Potentials. Blais-
dell, Waltham, MA. MR0205288

[31] Neyman, J. and Pearson, E. (1933). On the problem
of the most efficient tests of statistical hypotheses.
Philos. Trans. Roy. Soc. London Ser. A 231 289–
337.

[32] Pearson, K. (1900). On the criterion that a given sys-
tem of deviations from the probable in the case of
correlated system of variables is such that it can be
reasonably supposed to have arisen from random
sampling. Philos. Magazine 50 157–175.

[33] R Development Core Team (2010). R: A language
and environment for statistical computing. R Foun-
dation for Statistical Computing, Vienna.

[34] Schnorr, C.-P. (1971). Zufälligkeit und Wahrschein-
lichkeit. Eine algorithmische Begründung der
Wahrscheinlichkeitstheorie. Springer, Berlin.
MR0414225

[35] Sellke, T., Bayarri, M. J. and Berger, J. (2001).
Calibration of p-values for testing precise null hy-
potheses. Amer. Statist. 55 62–71. MR1818723

[36] Shafer, G. (2006). From Cournot’s principle to mar-
ket efficiency. The Game-Theoretic Probability and

Finance project, Working Paper 15. Available at
probabilityandfinance.com.

[37] Stigler, S. M. (1986). Laplace’s 1774 memoir on inverse
probability. Statist. Sci. 1 359–363. MR0858515

[38] Todhunter, I. (1865). A History of the Mathematical
Theory of Probability from the Time of Pascal to
that of Laplace. Macmillan, London.

[39] Ville, J. (1939). Etude critique de la notion de collectif.
Gauthier-Villars, Paris.

[40] Vovk, V. (1987). The law of the iterated logarithm for
random Kolmogorov, or chaotic, sequences. The-
ory Probab. Appl. 32 413–425. Russian original: Za-
kon povtornogo logarifma dlya sluchăinyh po Kol-
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