
On key control in key agreement protocolsChris J. Mitchell� Mike Wardy Piers Wilsonz18th March 1998AbstractIn this paper we consider certain key establishment protocols speci�ed in an inter-national standard and a draft international standard. These protocols are all intendedto provide joint key control, i.e. the protocols are designed to prevent either partychoosing the key value. We show that this claim is suspect for most of the protocolsconcerned.Index Terms: key agreement, key distribution, authentication protocol1 IntroductionAs de�ned in ISO/IEC DIS 11770-3, [1], key agreement is the process of establishing ashared secret key between two entities A and B in such a way that neither of them canpredetermine the value of the key. DIS 11770-3 speci�es seven key agreement protocols.In addition, two protocols in ISO/IEC 11770-2, [2], are apparently designed to providejoint key control; they certainly enable both parties to in
uence the value of the key.�Information Security Group, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK.yAPACS, Mercury House, Triton Court, 14 Finsbury Square, London EC2A 1BR, UK.zVodafone Ltd., The Courtyard, 2{4 London Road, Newbury, Berkshire RG14 1JX, UK.1

The basic mechanism 2There are a number of practical circumstances in which it may be useful to use a keyagreement protocol. For example, neither party may trust the other to choose a suitablekey, and use of a key agreement protocol enables them to choose a mutually acceptableshared key. Moreover it is often recommended to use key agreement to prevent one partyhaving any kind of advantage over the other.2 The basic mechanismIn both the mechanisms in ISO/IEC 11770{2 (Key Establishment Mechanisms 5 and 6),and in six out of the seven key agreement mechanisms in ISO/IEC DIS 11770{3, i.e.all but Key Agreement Mechanism 1, the method for agreeing the key between the twoparties operates in much the same way. Both parties choose a secret `key component',and these secret components, or a function of them, are exchanged. The shared secretkey is then computed as a one-way function of the two key components. In principle thisprovides key agreement since neither party has any means of controlling the �nal valueof the key.3 A practical limitationIn practice, one party, say B, will receive the key component (or a function of it) of theother party, say A, before B sends its component back to A. This will put B at an unfairadvantage. In particular, if B is prepared to perform approximately 2s computations ofthe one-way function used to combine key components prior to sending a response to A,then B will be able to choose s bits of the shared secret key. To do this B �rst nominatess bit positions in the shared key and chooses values for these s bits. B now generates aseries of random values for its key component, and combines each with the key component

Some speci�c examples 3information supplied by A. As soon as an output key which has the s nominated bits equalto the chosen values is found, then the corresponding key component value is selected.After 2s such random selections, the chances are that an appropriate value will have beenfound.Of course the need for B to perform 2s computations prior to returning a response toA, will typically severely limit the value of s. This holds since A will often only accepta response if it arrives within a short space of time (e.g. a second). However, if a hash-function such as SHA{1 is used to combine the keys, then given the availability of high-speed implementations of such functions, it may be possible to test as many as 104� 105key components in a second or so, allowing as many as 16 bits of the shared key to bechosen by B. In situations where a reply is not expected so quickly, larger values of s willbe possible.4 Some speci�c examplesWe now consider two examples of how this general point relates to speci�c key agreementmechanisms from [1, 2]. A slightly simpli�ed version of Key Establishment Mechanism 5from [2] involves the following exchange of messages between A and B:M1: A! B: eKAB (TAjjIDBjjFA)M2: B ! A: eKAB (TBjjIDAjjFB)where eKAB (X) denotes the encryption of data X using the secret key KAB (shared byA and B), X jjY denotes the concatenation of data items X and Y , TA and TB aretimestamps, IDA and IDB are identi�ers for entities A and B respectively, and FA andFB are key components chosen by A and B respectively. At the conclusion of the protocol

Providing genuine key agreement 4A and B calculate the shared secret key asK = w(FAjjFB) where w is a one-way function.Using the argument from the previous section it should be clear that B has an advantageover A in this mechanism, as long as B waits to receive M1 before sending M2.A second example is provided by an implementation of Key Agreement Mechanism 5 from[1] (this is the Matsumoto-Takashima-Imai A(0) protocol). This involves the followingexchange of messages between A and B:M1: A! B: grA mod pM2: B ! A: grB mod pwhere rA and rB are random key component values chosen by A and B respectively, g isa primitive element mod p, and p is a `safe' prime (where g, p are globally agreed).To use this protocol A and B must have private/public key pairs (hA,pA), (hB,pB) re-spectively, where pA = ghA mod p and pB = ghB mod p, and A and B must have trustedcopies of each others' public keys. At the conclusion of the protocol A calculates theshared secret key as K = w(prAB jj(grB)hA)(working mod p), where w is a one-way function. B calculates the same key asK = w((grA)hB jjprBA):It should again be clear that B has an advantage over A (as long as B waits to receiveM1 before sending M2).5 Providing genuine key agreementTo remove the problem identi�ed above we need to ensure that both parties choose theirown key components before seeing the other party's component. This could be (partially)

Conclusions 5achieved by requiring the recipient of one component to respond with its component in avery short space of time. Alternatively, a Trusted Third Party could act as a mediator,and require both components to be supplied to it before passing them on.Clearly both these approaches have shortcomings. A more practical approach involves oneparty (B say) generating their component, and also calculating a hashed version of thiscomponent using a one-way hash function h. This hash-code, which we call a commitment,is passed to the other party (A). A now generates its component and passes it to B. Bnow passes its component back to A, who checks that it matches the previously providedcommitment. Observe that, as long as h is one-way and components contain su�cientlymany bits, A cannot misuse B's commitment to help choose its component. Moreover, Bis forced to choose its component before seeing A's component.6 ConclusionsIt has been shown that certain key agreement protocols, either standardised or approach-ing standardisation, are not strictly `fair', in that one party can exert some control overthe mutually agreed key. A general approach to avoiding this problem through the useof commitments, a well-established concept in the study of cryptographic protocols, hasbeen described.References[1] International Organization for Standardization, Gen�eve, Switzerland. ISO/IEC 2ndDIS 11770{3, Information technology|Security techniques|Key management; Part3: Mechanisms using asymmetric techniques, July 1997.

REFERENCES 6[2] International Organization for Standardization, Gen�eve, Switzerland. ISO/IEC11770{2, Information technology|Security techniques|Key management|Part 2:Mechanisms using symmetric techniques, 1996.

