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We discuss the existence of stable topological quantum memory at finite temperature. At stake here is the
fundamental question of whether it is, in principle, possible to store quantum information for macroscopic
times without the intervention from the external world, that is, without error correction. We study the toric code
in two dimensions with an additional bosonic field that couples to the defects, in the presence of a generic
environment at finite temperature: the toric-boson model. Although the coupling constants for the bare model
are not finite in the thermodynamic limit, the model has a finite spectrum. We show that in the topological
phase, there is a finite temperature below which open strings are confined and therefore the lifetime of the
memory can be made arbitrarily �polynomially� long in system size. The interaction with the bosonic field
yields a long-range attractive force between the end points of open strings but leaves closed strings and
topological order intact.
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I. INTRODUCTION

In recent years, it has become clear that models of com-
putation based on quantum mechanics are radically different
from classical ones.1,2 However, the quantum wave function
of a macroscopic system rapidly decoheres because of the
interaction with the environment.3 Decoherence is respon-
sible for the appearance of a classical world.4,5 Therefore, if
we want to process quantum information, we must preserve
it from being spoiled by decoherence.

In the past 15 years, a great amount of literature in quan-
tum information has been devoted to the theory of error cor-
rection, using several different paradigms.1,2,6 We encounter
here a profound difference with respect to the classical case:
encoding classical information in a system can be robust,
without the need for error correction �e.g., magnetic hard
drives�. On the other hand, the fragility of quantum states to
decoherence seems to require quantum error correction. Is
that really so? Can one build robust quantum memory at the
physical level, just like one does with classical memory, or
does quantum mechanics forbid it?

For suitably symmetric models of the environment, there
exist decoherence-free subspaces �DFSs�.7 However, it is
controversial whether these subspaces can exist in practice
because the conditions to obtain DFSs are unstable.8 More-
over, DFSs only exist for a specific model of noise, while we
are interested in the question of principle whether a quantum
system can be protected from a generic interaction with the
environment without operating from the external world �i.e.,
error correction�. The only restriction we shall assume about
the way the environment interacts with the system is the
locality of the interaction.

If the only requirement is locality of the interaction be-
tween the environment and the system, we can imagine en-
coding information in some collective topological degrees of
freedom and obtaining the desired robustness at the physical

level. Physical systems that exhibit topological order seem to
have the appropriate topological features.9 The toric code is
an example of a self-correcting quantum memory, that is, a
quantum memory that is inherently robust against arbitrary
�local� perturbations without need for error correction at zero
temperature.10,11

However, robustness against perturbations is not enough.
What one needs is a system in which quantum information
can be stored for macroscopically long times, in the presence
of arbitrary local interactions with the environment at finite
temperature T. There are not only errors due to virtual pro-
cesses but, even more importantly, errors due to thermal ex-
citations. For example, the toric code in two and three di-
mensions �2Ds and 3Ds� is not stable.11–14 �See Ref. 15 for a
discussion on generic stabilizer codes.� The toric code in four
dimensions is stable,11,13,16 but interactions in four spatial
dimensions are hardly realistic.

One wonders whether quantum information is not only
logically different from the classical one but also physically
different in that it cannot be stored efficiently in a passive
way �in less than four dimensions�. Therefore, we are faced
with a fundamental question: does a stable quantum memory
exist at all or the laws of nature forbid it in three or less
dimension?

In this paper, we take a step toward realizing topological
quantum memories in two spatial dimensions that are stable
against decoherence toward an arbitrary environment. We
obtain this result by adding to the toric code a local interac-
tion between the defects and a bosonic field �toric-boson
model�. This result comes at the cost of a compensating de-
fect energy whose strength diverges with growing system
size. However, the protection arising in the toric-boson
model is not trivially equivalent to removing thermal defects
by introducing an infinite energy cost by itself. In our model,
the physical energy scales �namely, the excitation spectrum�
remain finite, and it is the induced long-range interactions
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between defects that render the quantum state stable to ther-
mal fluctuations. This is similar to what one usually does in
high-energy physics, where infinite coupling constants are
used �often needed� to obtain finite-energy spectra.

We show that the toric-boson model realizes a quantum
memory that can be stored for macroscopically long times, in
the sense that the relaxation times scale �polynomially� with
system size. While we fall short of realizing a stable topo-
logical quantum memory using local finite coupling terms in
the Hamiltonian, our model shows that quantum relaxation
times scaling with system size can be obtained in a system
with a finite excitation spectrum, using local-coupling terms
only.

II. TORIC CODE

The toric-code model10 is defined on a 2D L�L square
lattice with periodic boundary conditions and with spin-1/2
degrees of freedom on the N=2L2 edges. On every vertex s,
we can define the star operator Xs=� j�s� j

x and on every
plaquette p the plaquette operator Zp=� j�p� j

z. The Hamil-
tonian of the toric code is

Htoric = −
�

2 ��s

Xs + �
p

Zp� . �1�

The operators Xs , Zp all commute and therefore their eigen-
values are good quantum numbers for labeling the states.
Nevertheless, they are not all independent because periodic
boundary conditions imply �sXs=�pZp=1. The two degrees
of freedom not labeled by the above quantum numbers are
the two topological qubits defined by the algebra of the Pauli
operators 	XL1

=� j�L1
� j

x , ZM2
=� j�M2

� j
z,
 and 	XL2

,ZM1



defined similarly, where L1 , L2 and M1 , M2 are appropri-
ately defined noncontractible loops around the torus.

Two topological qubits can then be defined as the sub-
spaces on which the two Pauli algebras �ZM1

,XL2
� and

�ZM2
,XL1

� act, respectively. For example, one can choose the
two basis states for the first qubit to be the eigenvectors �0�
and �1� of ZM1

with eigenvalues +1 and −1. In this case, the
operator XL2

flips the qubit �XL2
�0�= �1�� while the operator

ZM2
can be used to change the phase of a qubit state �e.g.,

ZM2
��0�+ �1�� /2= ��0�− �1�� /2�.

Since the model has a spectral gap �, the information
encoded in the topological qubits is stable against arbitrary
local perturbations.10 However, it is fragile when interacting
with an arbitrary environment at finite temperature �even if it
is local�.11–14 A heuristic argument for the fragility can be
formulated as follows. Consider for concreteness HI
=g� j=1

N �� j
x

� f j +� j
z

� f j� to be the interaction Hamiltonian be-
tween the system and the environment. This interaction will
create pairs of defects �anyons� with probability P�exp�
−� /kBT� and move them about in a Brownian motion. When
two anyons travel around the noncontractible holes of the
torus to recombine and annihilate, a logical error is pro-
duced, namely, a noncontractible loop. �For example, a pair
of Zp defects �generated by �x operators� that travel around a
loop of type L2 will change the eigenvalue of ZM1

and ∀M1.�
Since the anyons propagate freely, the time scale for an iso-

lated pair to induce an error is proportional to L2. However,
the very same noninteracting nature that ensures free motion
of the defects causes a nonvanishing density of them at any
given temperature. Therefore, one can envisage faster collec-
tive processes whereby pairs stretch only as far as reaching
anyons from neighboring pairs and by annihilating them,
they lead to longer overall propagation paths. The time scale
to induce an error via these processes is roughly given by the
time it takes for a pair to stretch over a distance equal to the
average interparticle separation trel�exp�� /kBT�. The relax-
ation time is therefore microscopic because it does not scale
with system size.

The reason why end points of strings �the anyons� can
propagate freely is that here only the boundary of stringlike
objects pays an energy and a longer string does not have a
larger boundary. So one way of confining these objects is to
go to higher dimensions. In the 3D toric code, topological
information is stored in noncontractible membranes and
winding loops. Defects to these operators acquire the form of
open strings and open membranes, respectively. While open
strings still behave as in 2D, with end points propagating
freely, an open membrane costs energy that grows with the
size of its boundary �a closed string�, and it is therefore con-
fined. Since only one of the two operators is preserved at
finite temperature, the 3D toric code can only encode classi-
cal information.13,14 In four dimensions, true quantum
memory can be stored for times that are exponentially large
in L because both types of errors are membranes.11,13,16

One can think of confining the strings by adding a tension
term to the Hamiltonian. There is a critical value of the cou-
pling with this field such that the open strings are confined.17

Unfortunately, the tension term does not distinguish between
open and closed strings. If open strings are confined, the
system undergoes a quantum phase transition where topo-
logical order is destroyed and with it the degenerate ground
state encoding the qubit is also lost. In fact, the phase in
which the strings are confined can be mapped to the ferro-
magnetic phase of the 2D Ising model18 and we can only
encode classical information in such system.

III. TORIC-BOSON MODEL

If we want to hinder the propagation of the anyons with-
out affecting the loops and spoiling topological order, we
must find an interaction that only couples the end points of
strings. A projector onto the subspace of open strings would
allow us to give a tension only to open strings. But this term
would be highly nonlocal and therefore not realistic. Another
possibility is to add a long-range force that makes the anyons
attract, as it was suggested in Ref. 11. However, the problem
is whether the needed attractive force can materialize from a
purely local Hamiltonian.

As we show in the following, one can reach this goal with
a local Hamiltonian by coupling the 2D toric code to bosonic
fields, which will have the desired confining effect in the
presence of a completely generic bath acting on both sys-
tems. However, we shall achieve this at the cost of a com-
pensating energy term in the Hamiltonian that scales with the
size of the system. The bosonic fields will affect open strings
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by attracting the end points, while they have no effect what-
soever on closed strings. In this way, they protect the topo-
logical qubit while preserving topological order.

Let ns and np be the defect-density operators �namely, ns
= �1−Xs� /2 and np= �1−Zp� /2, respectively� taking values 0
and 1 on the stars/plaquettes of a square lattice �with spacing
set to unity�. This density will couple locally to the displace-
ment field defined in the continuum. We consider the case of
elastic waves �phonons� on the surface of the torus, two in
plane and one out of plane. These elastic deformations are
denoted by ��x , t� ,�� �x , t�= ��x�x , t� ,�y�x , t��, where x takes
values in the continuum �with centers of plaquettes labeled
by xp and those of stars by xs�.

The densities ns and np couple to the out-of-plane
phonons piezoelectrically ��� �Ref. 19� and to the in-plane
phonons in a rotationally invariant form �via �x�

x+�y�
y�. In

the case of piezoelectric coupling, one has to take proper
care of the center-of-mass �CM� mode. One can work with
�k=0 pinned to the origin �basically, the entire mass of the
crystal behaves as a large classical object�. This is physical
since what matters in the piezocoupling are the elastic defor-
mations and uniform translations should not affect the sys-
tem; by working with coordinates relative to the CM, this is
ensured.

One can expand ��x , t� , �i�x , t� using creation and anni-
hilation operators ak , ak

† , bk
�i� , bk

�i�† satisfying the
harmonic-oscillator algebra as

��x,t� =
1

V
�
k�0

1
2�k

�ak�t�eik·x + ak
†�t�e−ik·x� �2�

and

�i�x,t� =
1

V
�
k�0

1
2�k

�bk
�i��t�eik·x + bk

�i�†�t�e−ik·x� , �3�

with i=x ,y, thus implying the canonical equal-time commu-
tation relations

��i�x,t�,�̇i�x�,t�� = i��x − x�� ,

���x,t�,�̇�x�,t�� = i��x − x�� �4�

for the displacement fields. The Hamiltonian for the fields is
given by

Hboson = �
k�0

�kak
†ak + �

k�0,i=x,y
�kbk

�i�†bk
�i�. �5�

The interaction Hamiltonian reads as

Hint = �
�=s,p

n�	g���x�� + g���x�
x�x�� + �y�

y�x���
 �6�

�notice that g� and g� have different dimensions� and the
toric-boson Hamiltonian can thus be written as

H = Htoric + Hboson + Hint. �7�

After substituting Eqs. �2� and �3� into the interaction
Hamiltonian �6� and introducing new creation and annihila-
tion operators

	k � ak +
g�
̃†�k�
2V�k

3/2 , �8�

�k
�i� � bk

�i� +
ig�ki
̃

†�k�
2V�k

3/2 �i = x,y� , �9�

the total Hamiltonian H of the system can be written as

H = Htoric + �
k�0

�k	k
†	k + �

k�0,i=x,y
�k�k

�i�†�k
�i�

−
1

V
�
k�0

�
̃�k��2� g�
2

2�k
2 +

g�
2 �kx

2 + ky
2�

2�k
2 � , �10�

where 
̃�k�=��n�eik·x� is the Fourier transform of 
�x�
=��n���x−x��. Here we have assumed that the defects are
smeared over the corresponding plaquette/star so as to regu-
larize ��x� and remove ultraviolet divergences.

Notice that the first two terms in Eq. �10� lead to precisely
the same energy levels as those of the bosonic modes in the
absence of the defects �Eq. �5��. This holds true even for
thermal averages in mixed states. Therefore, the phononic
fields added to the toric-code Hamiltonian give rise to an
effective interaction potential Vd given by the last term in Eq.
�10�, irrespective of temperature. Notice that Vd is always
negative, independent of the arrangement of the defects, and
thus it favors defect proliferation, which will need to be ap-
propriately counter balanced later on.

Consider the case of N�NX+NZ defect pairs, at posi-
tions xa, with �=1, . . . ,2NX labeling the sites with star-type
defects and �=2NX+1, . . . ,2N labeling the sites with
plaquette-type defects. The effective interaction potential Vd
can then be written as

Vd�x1, . . . ,x2N� = − �
�,��=1

2N

n�n��
1

V

� �
k�0

� g�
2

2�k
2 +

g�
2 �k�2

2�k
2 �eik·�x�−x���

=
1

2 �
�,��=1

2N

n�n���V��x� − x��� + V��x� − x���� ,

�11�

where

V��x� − x��� � −
1

V
�
k�0

g�
2

�k
2 eik·�x�−x���, �12�

V��x� − x��� � −
1

V
�
k�0

g�
2 �k�2

�k
2 eik·�x�−x���. �13�

For acoustic phonons with dispersion �k=v��k� and �k
=v��k�, the potential V��r� becomes Coulombic in d dimen-
sions,
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�2V��r� =
g�

2

v�
2

1

V
�
k�0

eik·r =
g�

2

v�
2 ���d��r� −

1

V
� . �14�

Namely, the potential generated by a pointlike charge in a
uniform compensating background distribution is

V��r� = �
g�

2

v�
2

��d/2�
2d/2

1

2 − d
�r�2−d + C d � 2

g�
2

v�
2

1

2
ln�r� + C d = 2,�

where the uniform compensating background is irrelevant
due to the absence of the k=0 term in Eq. �12�. For the same
reason, �V��x�ddx=0, which fixes the constant C�
−g�

2 / �2v�
2 �ln �L with �L on the order of the system size L in

two dimensions �the actual value will depend on details
about the shape of the system�.

For g��0, the potential V��r� acts therefore as a “gravi-
tational” potential with Newton constant G
= �2v�

2 d/2�−1��d /2�, attracting particles of mass g�.
The in-plane phonon contribution amounts to

V��r� = −
g�

2

v�
2

1

V
�
k�0

eik·r = −
g�

2

v�
2 ���d��r� −

1

V
� �15�

and we can finally combine the two contributions into

V��r� + V��r� =
g�

2

v�
2

1

2
ln

�r�
a

�16a�

+ �g�
2

v�
2

1

V
−

g�
2

v�
2

1

2
ln

�L

a
� �16b�

−
g�

2

v�
2 ��2��r� , �16c�

where we separated for convenience ln��r� /�L� into
ln��r� /a�−ln��L /a� �a being the lattice constant, �r� /a�1,
∀r�. The first term is the desired confining interaction �which
we discuss below� while terms �16b� and �16c� are by-
products that need to be appropriately taken care of. By tun-
ing the ratio between g� /v� and g� /v�, one can obtain that
the two parts of Eq. �16b� cancel each other out exactly, at
the cost however of generating a system-size scaling cou-
pling constant in Eq. �16c�

g�
2

v�
2 =

g�
2

v�
2

V

2
ln

�L

a
� L2 ln L . �17�

Therefore, the phonon-mediated effective interaction be-
tween the defects can be written as

Vd�x1, . . . ,x2N� =
g�

2

v�
2

1

4
�

�,��=1

2N

n�n�� ln
�x� − x���

a

−
g�

2

v�
2

1

4
�V ln

�L

a
� �

�,��=1

2N

n�n���
�2��x� − x��� ,

�18�

=
g�

2

v�
2

1

4
�

�,��=1

2N

n�n�� ln
�x� − x���

a

−
g�

2

v�
2

1

4
�V ln

�L

a
�2N��2��0� , �19�

where the � function has been regularized at short distances
just like one does for the Coulomb potential.

The remaining unwanted term—coming from Eq. �16c�—
plays the role of a chemical potential that favors thermal
defects and whose strength scales with the size of the system.
In order to preserve the fact that the defect density vanishes
at zero temperature, we must neutralize this contribution by
adding a compensating energy cost for the defects that also
grows with system size.

Since this unwanted term scales linearly in the number of
defects N, it can be removed by the further addition of a
chemical potential to the Hamiltonian of the system. Indeed,
the role of the in-plane phonons in our model is to prevent
the arising of undesired defect-favoring long-range interac-
tions that scale with the square of the number of defects N2

and could not be removed by the addition of a local one-
body term in the Hamiltonian.

In conclusion, we obtain a purely gravitational defect in-
teraction of the form

Vd�x1, . . . ,x2N� =
g�

2

v�
2

1

4
�

�,��=1

2N

n�n�� ln
�x� − x���

a
. �20�

An important comment is in order. While we did add an
infinite ��L2 ln L� coupling term to the Hamiltonian in order
to arrive at the effective interaction shown above, this is not
equivalent to trivially introducing an infinite energy cost for
the defects, which would forbid their presence altogether. In
fact, the energy to add a pair of defects in our model remains
finite �the environment acts locally on the system and there-
fore defects are always produced close to each other and
move one step at a time�.

The situation is similar in high energy, where the bare
Hamiltonian often has diverging coupling constants but it
carries nonetheless physical meaning as the spectral gaps are
finite.

A. Robustness of quantum memory

Once we obtain an effective long-range gravitational at-
traction between the defects, we can argue for the stability of
the quantum memory. It is well known that the partition
function of N particles of mass m interacting via a 2D gravi-
tational potential u�r�=Gm2 ln�r� becomes divergent below a
finite temperature T�=NGm2 /4 �see e.g., Ref. 20�. The
gravitational forces overcome the entropic contribution and
lead to a collapse, where all the particles coalesce to a single
point. In the toric-boson model, where the massive particles
correspond to the defective stars and plaquettes, their number
is controlled by the chemical potential due to the ratio � /T.
Therefore, given that the number of particles is topologically
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constrained to be even, the equilibrium density of defects
vanishes below the finite temperature T��N=2�=Gm2 /2.

In this temperature regime, thermal processes connecting
two different topological sectors are essentially limited to
creation, diffusion, and annihilation of individual pairs of
particles. Such processes must overcome the energy barrier
of taking one particle around the whole system, which scales
with the logarithm of the system size, thus yielding a char-
acteristic macroscopic time scale trel�exp�	 ln�L� /T�
�L	/T which is polynomial in system size L �poly�L��.

IV. ROBUSTNESS OF THE TORIC-BOSON MODEL

An essential ingredient to obtain the effective gravita-
tional potential between the defects lies in the gaplessness of
the phonon modes involved in the system. In order to ensure
robustness against thermal fluctuations in the toric-boson
model, one should therefore also ensure that the action of the
environment on the phonon modes does not open a gap �e.g.,
via introducing effective interactions between the different
bosonic modes�.

In our case, the gaplessness ��k��k�� of phononic exci-
tations is protected by translational symmetry. Even if the
elastic medium is inhomogeneous, it satisfies the equation of
motion m�x��̈�x , t�=�ddyK�x ,y���y , t�, where the condition
�ddyK�x ,y�=0 follows from uniform translations ��x , t�
=const; this condition on the K�x ,y� is similar to that in a
master equation for stochastic systems21 with the difference
that the wave equation is second order. It thus follows from
generic arguments on diffusion in inhomogeneous media that
the dispersion of the phonons for long wavelengths must be
linear, �k��k�. Notice that this conclusion holds even if the
inhomogeneous elastic medium breaks translation symmetry
�in the form of an inhomogeneous m�x� and K�x ,y��. The
key point is that at long distances, acoustic sound waves
propagate in the effective medium. Notice also that to at-
tempt to pin the displacement fields with a rigid substrate
potential is an illusion, as one must consider the elastic prop-
erties of the substrate itself. The linearly dispersing acoustic
modes in the effective medium at large distances are respon-
sible for the long-range behavior of v�r�, which remains un-
changed after tracing out the environment. �One can bypass
the issue of the linear dispersion and compute directly V��r�
in the inhomogeneous medium: V��x� ,x�=�0

�dtPW�x� ,x ; t�,
where PW�x� ,x ; t� is the probability to diffuse from x to x� in
time t, computed using the transition rate W�x ,y�
=K�x ,y� /m�x�.�

V. CONCLUSIONS AND OUTLOOK

In this paper, we have shown how a system with topologi-
cal order like the toric code can be made robust to local
interactions with a generic environment below a finite tem-
perature T�, if the defects in the system are coupled to a
phononic field. The defects feel a long-range attractive force
that prevents them from moving freely around the torus. The
long-range force is not spoiled by the interaction of the
bosons with the environment as long as the dispersion

relation is preserved. In our model, phonons are protected by
translational symmetry and the dispersion relation yields a
logarithmic potential resulting in a relaxation-time scaling as
poly�L�. Therefore, quantum information can be stored for
arbitrarily long times, scaling with the size of the system.

In the model described here, we need to introduce com-
pensating terms that scale as L2 ln L, L being the linear size
of the system and thus diverge in the thermodynamic limit.
However, we do so while preserving the finite nature of the
low-energy spectrum of the system. We believe that this is a
step farther with respect to the simple addition of an infinite
energy cost for the defects in the Hamiltonian. Our model
shows that, in principle, quantum mechanics allows for the
preservation of quantum information for arbitrarily long
times, scaling with the size of the system.

There are a number of open problems left to investigate.
First and foremost, can one construct a model with similar
physics where all the interactions are not only local but also
finite?

Second, for reliable quantum topological memory,
poly�L� is not ideal. It takes in general polynomial time to
operate on a topological qubit �e.g., the readout at finite
temperature14�. Our system would be viable only in the low-
temperature limit, where the polynomial relaxation-time
scale trel�L	/T is much larger than the �temperature indepen-
dent� polynomial operational time scale. A stronger quantum
memory could be realized in a system that exhibits exponen-
tial relaxation-time scales trel�exp�L�. This could be ob-
tained using a bosonic field with protected gapless excita-
tions with dispersion ���k�3. There are other topologically
ordered systems with the right cubic dispersion relation,
whose gaplessness is protected by topological order itself,
resulting in a very strong protection.22 Therefore, a toric code
interacting with the appropriate system would feature expo-
nentially large relaxation times. We think that the robustness
of quantum memory in such system is the true meaning of
the full survival of quantum topological order at finite tem-
perature.
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