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Abstract. BrowserID is a complex, real-world Single Sign-On (SSO) System for
web applications recently developed by Mozilla. It employs new HTML5 features
(such as web messaging and web storage) and cryptographic assertions to provide
decentralized login, with the intent to respect users’ privacy. It can operate in
a primary and a secondary identity provider mode. While in the primary mode
BrowserID runs with arbitrary identity providers, in the secondary mode there is
one identity provider only, namely Mozilla’s default identity provider.
We recently proposed an expressive general model for the web infrastructure and,
based on this web model, analyzed the security of the secondary identity provider
mode of BrowserID. The analysis revealed several severe vulnerabilities, which
have been fixed by Mozilla.
In this paper, we complement our prior work by analyzing the even more complex
primary identity provider mode of BrowserID. We do not only study authenti-
cation properties as before, but also privacy properties. During our analysis we
discovered new and practical attacks that do not apply to the secondary mode: an
identity injection attack, which violates a central authentication property of SSO
systems, and attacks that break an important privacy promise of BrowserID and
which do not seem to be fixable without a major redesign of the system. Interest-
ingly, some of our attacks on privacy make use of a browser side channel that, to
the best of our knowledge, has not gained a lot of attention so far.
For the authentication bug, we propose a fix and formally prove in a slight exten-
sion of our general web model that the fixed system satisfies all the authentication
requirements we consider. This constitutes the most complex formal analysis of a
web application based on an expressive model of the web infrastructure so far.
As another contribution, we identify and prove important security properties of
generic web features in the extended web model to facilitate future analysis efforts
of web standards and web applications.ar
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1 Introduction

Single sign-on (SSO) systems have become an important building block for authentica-
tion in the web. Over the last years, many different SSO systems have been developed,
for example, OpenID, OAuth, and proprietary solutions such as Facebook Connect.
These systems usually allow a user to identify herself to a so-called relying party (RP),
which provides some service, using an identity that is managed by an identity provider
(IdP), such as Facebook or Google.

Given their role as brokers between IdPs and RPs, the security of SSO systems is
particularly crucial: numerous attacks have shown that vulnerabilities in SSO systems
compromise the security of many services and users at once (see, e.g., [3, 7, 23–26]).

BrowserID [21] is a relatively new complex SSO system which allows users to utilize
any of their existing email addresses as an identity. BrowserID, which is also known by
its marketing name Persona, has been developed by Mozilla and provides decentralized
and federated login, with the intent to respect users’ privacy: While in other SSO systems
(such as OpenID), by design, IdPs can always see when and where their users log in,
Mozilla’s intention behind the design of BrowserID was that such tracking should not
be possible. Several web applications support BrowserID authentication. For example,
popular content management systems, such as Drupal and WordPress allow users to log
in using BrowserID. Also Mozilla uses this SSO system on critical web sites, e.g., their
bug tracker Bugzilla and their developer network MDN.

The BrowserID implementation is based solely on native web technologies. It uses
many new HTML5 web features, such as web messaging and web storage. For example,
BrowserID uses the postMessage mechanism for cross-origin inter-frame communica-
tion (i.e., communication within a browser between different windows) and the web
storage concept of modern browsers to store user data on the client side.

There are two modes for BrowserID: For the best user experience, email providers
(IdPs) can actively support BrowserID; they are then called primary IdPs. For all other
email providers that do not support BrowserID, the user can register her email address
at a default IdP, namely Mozilla’s login.persona.org, the so-called secondary IdP.

In [13], we proposed a general and expressive Dolev-Yao style model for the web
infrastructure. This web model is designed independently of a specific web application
and closely mimics published (de-facto) standards and specifications for the web, for in-
stance, the HTTP/1.1 and HTML5 standards and associated (proposed) standards (main-
ly RFCs). It is the most comprehensive web model to date. Among others, HTTP(S) re-
quests and responses, including several headers, such as cookie, location, strict transport
security (STS), and origin headers, are modeled. The model of web browsers captures
the concepts of windows, documents, and iframes, including the complex navigation
rules, as well as new technologies, such as web storage and cross-document messag-
ing (postMessages). JavaScript is modeled in an abstract way by so-called scripting
processes which can be sent around and, among others, can create iframes and initiate
XMLHTTPRequests (XHRs). Browsers may be corrupted dynamically by the adversary.

Based on this general web model, we analyzed the security of the secondary IdP
mode of BrowserID [13]. The analysis revealed several severe vulnerabilities, which
have since been fixed by Mozilla.
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Contributions of this Paper. The main contributions of this paper are that we i) analyze
authentication and privacy properties for the primary mode of BrowserID, where in both
cases the analysis revealed new attacks, ii) identify generic web security properties to
ease future analysis efforts, and iii) slightly extend our web model.

As mentioned before, in [13], we studied the simpler secondary mode of BrowserID
only. The primary model studied here is much more complex than the secondary mode
(see also the remarks in Section 4.2). It involves more components (such as an arbitrary
set of IdPs, more iframes), a much more complex communication structure, and requires
weaker trust assumptions (for example, some IdPs, and hence, the JavaScript they de-
liver, might be malicious). Also, in our previous work, we have not considered privacy
properties, but authentication properties only.

More specifically, the contributions of this paper can be summarized as follows.

Extension of the Web Model. We slightly extend our web model proposed in [13]. We
complement the modeling of the web storage concept of modern browsers by adding
sessionStorage [27], which is (besides the already modeled localStorage) heavily used
by BrowserID in its primary mode. We also extend the model to include a set of user
identities (e.g., user names or email addresses) in addition to user secrets.

Authentication Attack and Security Proof for BrowserID. The authentication properties
we analyze are central to any SSO system and correspond to those considered in our
previous work: i) the attacker should not be able to log in at an RP as an honest user
and ii) the attacker should not be able to authenticate an honest user/browser to an
RP with an ID not owned by the user (identity injection). While trying to prove these
authentication properties for the primary mode of BrowserID, we discovered a new
attack which violates property ii). Depending on the service provided by the RP, this
could allow the attacker to track the honest user or to obtain user secrets. We confirmed
the attack on the actual implementation and reported it to Mozilla, who acknowledged
the attack. We note that this attack does not apply to the secondary mode.

We propose a fix and provide a detailed formal proof based on the (extended) web
model which shows that the fixed system satisfies the mentioned authentication prop-
erties. This constitutes the most complex formal analysis of a web application based
on an expressive model of the web infrastructure, in fact, as mentioned, the most com-
prehensive one to date. We note that other web models are too limited to be applied to
BrowserID (see also Section 7).

Privacy Attacks on BrowserID. As pointed out before, BrowserID was designed by Mo-
zilla with the explicit intention to respect users’ privacy. Unlike in other SSO systems,
when using BrowserID, IdPs should not learn to which RP a user logs in. When trying
to formally prove this property, we discovered attacks that show that BrowserID cannot
live up to this claim. Our attacks allow malicious IdPs to check whether or not a user
is logged in at a specific RP with little effort. Interestingly, one variant of these attacks
exploits a browser side channel which, to our knowledge, has not received much atten-
tion in the literature so far. Just as for authentication, we have confirmed the attacks
on the actual implementation and reported them to Mozilla [10], who acknowledged
the attacks. Unfortunately, the attacks exploit a design flaw of BrowserID that does not
seem to be easily fixable without a major redesign.
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Generic Web Security Properties. Our security analysis of BrowserID and the case study
in [13] show that certain security properties of the web model need to be established in
most security proofs for web standards and web applications. As another contribution,
we therefore identify and summarize central security properties of generic web features
in our extension of our model and formalize them in a general way such that they can
be used in and facilitate future analysis efforts of web standards and web applications.

Structure of this Paper. In Section 2, we present the basic communication model
and the web model, including our extensions. We deduce general properties of this
model, which are independent of specific web applications, in Section 3. For our security
analysis, we first, in Section 4, provide a description of the BrowserID system, focusing
on the primary mode. We then, in Section 5, present our attack and the formal analysis
of the authentication properties of the (fixed) BrowserID system in primary mode. In
Section 6, we present our attacks on privacy of BrowserID. Related work is discussed
in Section 7. We conclude in Section 8. Full details can be found in the appendix.

2 The Web Model

In this section, we present the model of the web infrastructure as proposed in [13], along
with our extensions (sessionStorage and user identities) mentioned in the introduction,
with full details, most of which taken from [13], provided in Appendices A to C. We first
present the generic Dolev-Yao style communication model which the model is based
on.

2.1 Communication Model

The main entities in the communication model are atomic processes, which will be
used to model web browsers, web servers, DNS servers as well as web and network
attackers. Each atomic process has a list of addresses (representing IP addresses) it
listens to. A set of atomic processes forms what is called a system. The different atomic
processes in such a system can communicate via events, which consist of a message
as well as a receiver and a sender address. In every step of a run, one event is chosen
non-deterministically from the current “pool” of events and is delivered to an atomic
process that listens to the receiver address of that event; if different atomic processes can
listen to the same address, the atomic process to which the event is delivered is chosen
non-deterministically among the possible processes. The (chosen) atomic process can
then process the event and output new events, which are added to the pool of events, and
so on. More specifically, messages, processes, etc. are defined as follows.

Terms, Messages and Events. As usual in Dolev-Yao models (see, e.g., [1]), messages
are expressed as formal terms over a signature. Later messages may, for instance, repre-
sent HTTP(S) requests and responses.

The signature Σ for the terms and messages considered in this work is the union of
the following pairwise disjoint sets of function symbols: (1) constants C = IPs ∪ S∪
{>,⊥,♦}∪ N (IPs for (IP) addresses, S for ASCII strings, and N for an infinite set of
nonces) where the four sets are pairwise disjoint, (2) function symbols for public keys,
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asymmetric/symmetric encryption/decryption, and digital signatures: pub(·), enca(·, ·),
deca(·, ·), encs(·, ·), decs(·, ·), sig(·, ·), checksig(·, ·), extractmsg(·), (3) n-ary sequences
〈〉,〈·〉,〈·, ·〉,〈·, ·, ·〉, etc., and (4) projection symbols πi(·) for all i∈N. Ground terms over
this signature are terms that do not contain variables. These terms represent messages.
By M we denote the set of messages. An event (over IPs and M ) is of the form (a: f :m),
for a, f ∈ IPs and m ∈M , where a is interpreted to be the receiver address and f is the
sender address.

For example, k ∈ N and pub(k) are messages, where k typically models a private
key and pub(k) the corresponding public key. For strings a,b ∈ S and the nonce k ∈N ,
the message enca(〈a,b〉,pub(k)) is interpreted to be the message 〈a,b〉 (the sequence
of strings a and b) encrypted under the public key pub(k).

The equational theory associated with the signature Σ is defined as usual in Dolev-
Yao models. It captures the meaning of the function symbols in Σ . For instance, one
equation is deca(enca(x,pub(y)),y) = x and another πi(〈x1, . . . ,xn〉) = xi for 1≤ i≤ n.
We have that π1(deca(enca(〈a,b〉,pub(k)),k))≡ a.

Atomic Processes, Systems and Runs. Atomic Dolev-Yao processes, systems, and runs
of systems are defined as follows.

A (generic) atomic process is a tuple p = (Ip,Zp,Rp,sp
0) where Ip is a set of ad-

dresses (the set of address the process listens to), Zp is a set of states (formally, terms),
sp

0 ∈ Zp is an initial state, and Rp is a relation that takes an event and a state as input
and (non-deterministically) returns a new state and a set of events. This relation models
a non-deterministic computation step of the process, which upon receiving an event in
a given state non-deterministically moves to a new state and outputs a set of messages
(events).

In the web model, we consider atomic Dolev-Yao (DY) processes only. For these
processes it is required that the events and states that they output can be computed (more
formally, derived in the usual Dolev-Yao style) from the current input event and state
(see Appendix A). The rest of this paper will consider DY processes only.

The so-called attacker process is an atomic DY process which records all messages
it receives and outputs all messages it can possibly derive from its recorded messages.
Hence, an attacker process is the maximally powerful DY process. It carries out all
attacks any DY process could possibly perform and is parametrized by the set of sender
addresses it may use.

A system is a (possibly infinite) set of atomic processes. Its state (i.e., the states of
all atomic processes in the system) together with a multi-set of waiting events is called
a configuration.

A run of a system for an initial set E0 of events is a sequence of configurations,
where each configuration (except for the first one, which consists of E0 and the initial
states of the atomic processes) is obtained by delivering one of the waiting events of the
preceding configuration to an atomic process p (which listens to the receiver address of
the event), and which in turn performs a computation step according to its relation Rp.
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2.2 Scripting Processes

For the web model, we also define scripting processes, which model client-side scripting
technologies, such as JavaScript.

A scripting process (or simply, a script) is defined similarly to a DY process. It is
called by the browser in which it runs. The browser provides it with a (fresh, infinite) set
N of nonces and state information s. The script then outputs a term s′, which represents
the new internal state and some command which is interpreted by the browser (see
Section 2.5 for details). Again, it is required that a script’s output s′ is derivable from its
input (s,N).

Similarly to an attacker process, the so-called attacker script Ratt may output every-
thing that is derivable from the input.

2.3 Web System

In [13], we formalize the web infrastructure and web applications by what they call
a web system. A web system contains, among others, a (possibly infinite) set of DY
processes, modeling web browsers, web servers, DNS servers, and attackers (which may
corrupt other entities, such as browsers).

Web System. A web system is a tuple (W,S,script,E0) with its components defined as
follows:

The first component, W , denotes a system (a set of DY processes) and is partitioned
into the sets Hon, Web, and Net, where in Hon the set of honest DY processes and
in Web and Net attacker processes (see Section 2.1) are specified, web attacker and
network attacker processes, respectively. While a web attacker can listen to and send
messages from its own addresses only, a network attacker may listen to and spoof all
addresses. Hence, it is the maximally powerful attacker. Attackers may corrupt other
parties. In the analysis of a concrete web system, we typically have one network attacker
only and no web attackers (as they are subsumed by the network attacker) or one or
more web attackers but then no network attacker. Honest processes (in Hon) can either
be web servers, web browsers, or DNS servers. In our security analysis of authentication
properties, DNS servers will be subsumed by the attacker, and hence, we do not need
to model them for the analysis of these properties. Our attacks on privacy work with
honest DNS servers. As the details of the modeling of these servers is not essential to
understand these attacks, we refer to [13] for the model of DNS servers. The modeling
of a web server heavily depends on the specific web application. Our concrete models
for the web servers of the BrowserID system are provided in Sections 4 and following.
Below, we present the modeling of web browsers, including our extensions, which is
independent of a specific web application, with full details provided in Appendices B
and C.

The second component, S , is a finite set of scripts, which include the attacker script
Ratt ∈ S . In a concrete model of a web application, such as our BrowserID model, the set
S \{Ratt} typically describes the set of honest scripts used in the considered application.
Malicious scripts are modeled by the “worst-case” malicious script, Ratt.

The third component, script, is an injective mapping from S to S, i.e., by script every
s ∈ S is assigned its string representation script(s). Finally, E0 is a multi-set of events,
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containing an infinite number of events of the form (a:a:TRIGGER) for every process a
in the web system. A run of the web system is a run of W initiated by E0.

2.4 HTTP Messages

HTTP requests are represented as ground terms containing a nonce, a method (e.g., GET
or POST), a domain name, a path, URL parameters, request headers (such as Cookie),
and a message body. For example, a GET request for the URL http://ex.com/show?
p=1 can be modeled as the term

r := 〈HTTPReq,n1,GET,ex.com,/show,〈〈p,1〉〉,〈〉,〈〉〉

where headers and body are empty. A response contains a nonce (the same as in the
request), a status code, headers, and a body. A response to r would be

s := 〈HTTPResp,n1,200,〈〈Set-Cookie,〈SID,〈n2,⊥,>,⊥〉〉〉〉,〈script1, init〉〉

where 〈SID,〈n2,⊥,>,⊥〉〉 is a cookie with the name/value pair SID = n2 and the at-
tributes httpOnly, secure, session set or not set, and 〈script1, init〉 is the body, in
this case an HTML document that is to be delivered to the browser (modeled by the
string representation of a script and its initial state, see below).

A corresponding HTTPS request for r as above would be enca(〈r,k′〉,pub(kex.com)),
where k′ is a fresh symmetric key (a nonce) generated by the sender of the request. The
responder is supposed to use this key to encrypt the response, which, hence, is of the
form encs(s,k′).

2.5 Web Browsers

An honest browser is thought to be used by one honest user. The honest user is modeled
as part of the browser. User actions are modeled as non-deterministic actions of the web
browser. For example, the web browser itself can non-deterministically follow the links
provided by a web page. User data (i.e., passwords and identities) is stored in the initial
state of the browser (see below) and is given to a web page when needed, similar to the
AutoFill feature in browsers. As detailed below, browsers can be corrupted, i.e., taken
over by web and network attackers.

A web browser p is modeled as a DY process (Ip,Zp,Rp,sp
0 ,N

p) where Ip ⊆ IPs is
a finite set of addresses p may listen to and N p ⊆N is an infinite set of nonces p may
use. The set of states Zp, the initial state sp

0 , and the relation Rp are defined next.

Browser State: Zp and sp
0 . The set Zp of states of a browser consists of terms of the

form

〈windows, ids,secrets,cookies, localStorage,sessionStorage,keyMapping,

sts,DNSaddress,nonces,pendingDNS,pendingRequests, isCorrupted〉.

Windows and documents. The most important part of the state are windows and docu-
ments, both stored in the subterm windows. A browser may have several windows open
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at any time (resembling the tabs and windows in a real browser), each containing a list
of documents (the history of visited web pages) of which one is “active”, namely the one
currently presented to the user in that window. A window may be navigated forward and
backward (modeling navigation buttons), deactivating one document and activating its
successor or predecessor. Intuitively, a document represents a loaded HTML page. More
formally, a document contains (the string representation of) a script, which is meant to
model both the static HTML code (e.g., links and forms) as well as JavaScript code.
When called by the browser, a script outputs a command which is then interpreted by
the browser, such as following a link or issuing an XHR (see below). Documents may
also contain iframes, which are represented as windows (subwindows) nested inside of
document terms. This creates a tree of windows and documents.

Secrets and IDs. This subterm holds the secrets and the identities of the user of the web
browser. Secrets (such as passwords) are modeled as nonces and they are indexed by
origins (where an origin is a domain name plus the information whether the connection
to this domain is via HTTP or HTTPS). Secrets are only released to documents (scripts)
with the corresponding origin, similarly to the AutoFill mechanism in browsers. Iden-
tities are arbitrary terms that model public information of the user’s identity, such as
email addresses. Identities are released to any origin. As mentioned in the introduction,
identities were not considered in [13].

Cookies, localStorage, and sessionStorage. These subterms contain the cookies (indexed
by domains), localStorage data (indexed by origins), and sessionStorage data (indexed
by origins and top-level window references) stored in the browser. As mentioned in the
introduction, sessionStorage was not modeled in [13].

KeyMapping. This term is the equivalent to a certificate authority (CA) certificate store
in the browser. Since, for simplicity, the model currently does not formalize CAs, this
term simply encodes a mapping assigning domains d ∈ Doms to their respective public
keys pub(kd).

STS. Domains that are listed in this term are contacted by the web browser over HTTPS
only. Connection attempts over HTTP are transparently rewritten to HTTPS requests.
Servers can employ the Strict-Transport-Security header to add their domain to
this list.

DNSaddress. This term defines the address of the DNS server used by the browser.

Nonces, pendingDNS, and pendingRequests. These terms are used for bookkeeping pur-
poses, recording the nonces that have been used by the browser so far, the HTTP(S)
requests that await successful DNS resolution, and HTTP(S) requests that await a re-
sponse, respectively.

IsCorrupted. This term indicates whether the browser is corrupted ( 6=⊥) or not (=⊥).
A corrupted browser behaves like a web attacker.

Initial state sp
0 of a web browser. In the browser’s initial state, keyMapping, DNSAddress,

secrets, and ids are defined as needed, isCorrupted is set to ⊥, and all other subterms
are 〈〉.

Web Browser Relation Rp. This relation, outlined in Figure 1, specifies how the web
browser processes incoming messages. The browser may receive special messages that
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PROCESSING INPUT MESSAGE m
m = FULLCORRUPT: isCorrupted := FULLCORRUPT

m = CLOSECORRUPT: isCorrupted := CLOSECORRUPT

m = TRIGGER: non-deterministically choose action from {1,2}
action = 1: Call script of some active document. Outputs new state and command.

command = HREF:→ Initiate request
command = IFRAME: Create subwindow,→ Initiate request
command = FORM:→ Initiate request
command = SETSCRIPT: Change script in given document.
command = SETSCRIPTSTATE: Change state of script in given document.
command = XMLHTTPREQUEST:→ Initiate request
command = BACK or FORWARD: Navigate given window.
command = CLOSE: Close given window.
command = POSTMESSAGE: Send postMessage to specified document.

action = 2:→ Initiate request to some URL in new window
m = DNS response: send corresponding HTTP request
m = HTTP(S) response: (decrypt,) find reference.

reference to window: create document in window
reference to document: add response body to document’s script input

Fig. 1. The basic structure of the web browser relation Rp with an extract of the most important
processing steps, in the case that the browser is not already corrupted.

cause it to become corrupted (first two lines in Figure 1), in which case it acts like the
attacker process. There are two types of corruption: If the browser gets fully corrupted,
the attacker learns the entire current state of the browser. If it gets close-corrupted, any
open windows, documents and used nonces (in particular, HTTPS encryption keys)
are discarded from the browser’s state before it is handed over to the attacker. This
models that a user closed the browser, but a malicious user now uses the browser (and
all information left in the browser’s state).

The browser can receive a special trigger message TRIGGER, upon which the browser
non-deterministically chooses one of two actions: i) Select one of the current documents,
trigger its JavaScript, and evaluate the output of the script. Scripts can change the state
of the browser (e.g., by setting cookies) and can trigger specific actions (e.g., following
a link or creating an iframe), which are modeled as commands issued by the script (see
the list in Figure 1). ii) Follow some URL, with the intuition that it was entered by the
user.

As mentioned, some of the above actions can cause the browser to generate new
HTTP(S) requests. In this case, the browser first asks the configured DNS server for the
IP address belonging to the domain name in the HTTP(S) request. As soon as the DNS
response arrives, the browser sends the HTTP(S) request to the respective IP address.

If the HTTP(S) response arrives, its headers are evaluated and the body of the request
becomes the script of a newly created document that is then inserted at an appropriate
place in the window/document tree. However, if the HTTP(S) response is a response to
an XHR (triggered by a script in a document), the body of the response is added to the
corresponding document and can later be processed by the script of that document.
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3 General Security Properties

We have identified central application independent security properties of web features in
the web model and formalized them in a general way such that they can be used in and
facilitate future analysis efforts of web standards and web applications. In this section,
we provide a brief overview of these properties, with precise formulations and proofs
presented in Appendix D.

The first set of properties concerns encrypted connections (HTTPS): We show that
HTTP requests that were encrypted by an honest browser for an honest receiver can-
not be read or altered by the attacker (or any other party). This, in particular, implies
correct behavior on the browser’s side, i.e., that browsers that are not fully corrupted
never leak a symmetric key used for an HTTPS connection to any other party. We also
show that honest browsers set the host header in their requests properly, i.e., the header
reflects an actual domain name of the receiver, and that only the designated receiver can
successfully respond to HTTPS requests.

The second set of properties concerns origins and origin headers. Using the prop-
erties stated above, we show that browsers cannot be fooled about the origin of an
(HTTPS) document in their state: If the origin of a document in the browser’s state is a
secure origin (HTTPS), then the document was actually sent by that origin. Moreover,
for requests which contain an origin header with a secure origin we prove that such
requests were actually initated by a script that was sent by that origin to the browser. In
other words, in this case, the origin header works as expected.

4 The BrowserID System

BrowserID [22] is a decentralized single sign-on (SSO) system developed by Mozilla
for user authentication on web sites. It is a complex full-fledged web application de-
ployed in practice, with currently ∼47k LOC (excluding some libraries). It allows web
sites to delegate user authentication to email providers, identifying users by their email
addresses. BrowserID makes use of a broad variety of browser features, such as XHRs,
postMessage, local- and sessionStorage, cookies, various headers, etc.

We first, in Section 4.1, provide a high-level overview of the BrowserID system. A
more detailed description of the BrowserID implementation is then given in Section 4.2.
The description of the BrowserID system presented in the following as well as our
BrowserID model (see Section 5.1) is extracted mainly from the BrowserID source
code [20] and the (very high-level) official BrowserID documentation [22].

4.1 Overview

The BrowserID system knows three distinct parties: the user, who wants to authenticate
herself using a browser, the relying party (RP) to which the user wants to authenticate
(log in) with one of her email addresses (say, user@idp.com), and the identity/email
address provider, the IdP. If the IdP (idp.com) supports BrowserID directly, it is called
a primary IdP. Otherwise, a Mozilla-provided service, the so-called secondary IdP,
takes the role of the IdP. As mentioned before, here we concentrate on the primary IdP
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RP Browser IdP

A gen. key pair

B pkb, email

C create UC

D UC

E gen. IA

F CAP

G pkIdP

H verify CAP

I

II

III

Fig. 2. BrowserID login: basic overview

mode as the secondary IdP mode was described in detail in [13]. However, we briefly
discuss the differenes between the two modes at the end of Section 4.2.

A primary IdP provides information about its setup in a so-called support document,
which it provides at a fixed URL derivable from the email domain, e.g., https://idp.
com/.well-known/browserid.

A user who wants to log in at an RP with an email address for some IdP has to present
two signed documents to the RP: A user certificate (UC) and an identity assertion (IA).
The UC contains the user’s email address and the user’s public key. It is signed by the
IdP. The IA contains the origin of the RP and is signed with the user’s private key. Both
documents have a limited validity period. A pair consisting of a UC and a matching IA
is called a certificate assertion pair (CAP) or a backed identity assertion. Intuitively, the
UC in the CAP tells the RP that (the IdP certified that) the owner of the email address is
(or at least claims to be) the owner of the public key. By the IA contained in the CAP
the RP is ensured that the owner of the given public key (i.e., the one who knows the
corresponding private key) wants to log in. Altogether, given a valid CAP, RP would
consider the user (identified by the email address in the CAP) to be logged in.

The BrowserID authentication process (with a primary IdP) consists of three phases
(see Figure 2): I UC provisioning, II CAP creation, and III CAP verification.

In Phase I , (the browser of) the user creates a public/private key pair A . She then
sends her public key as well as the email address she wants to use to log in at some RP
to the respective IdP B . The IdP now creates the UC C , which is then sent to the user D .
The above requires the user to be logged in at IdP.

With the user having received the UC, Phase II can start. The user wants to authen-
ticate to an RP, so she creates the IA E . The UC and the IA are concatenated to a CAP,
which is then sent to the RP F .

In Phase III , the RP checks the authenticity of the CAP. For this purpose, the RP
could use an external verification service provided by Mozilla or check the CAP itself
as follows: First, the RP fetches the public key of the IdP G , which is contained in the
support document. Afterwards, the RP checks the signatures of the UC and the IA H . If
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this check is successful, the RP can, as mentioned before, consider the user to be logged
in with the given email address and send her some token (e.g., a cookie with a session
ID), which we refer to as an RP service token.

4.2 Implementation Details

We now provide a more detailed description of the BrowserID implementation. Since
the system is very complex, with many HTTPS requests, XHRs, and postMessages sent
between different entities (servers as well as windows and iframes within the browser),
we here describe mainly the phases of the login process without explaining every single
message exchange done in the implementation. A more detailed step-by-step description
can be found in Appendix E. Note that BrowserID’s specification of IdPs fixes the
interface to BrowserID only, but otherwise does not further detail the specification
of IdPs. Therefore, in what follows, we consider a typical IdP, namely the example
implementation provided by Mozilla [20].

In addition to the parties mentioned so far, the actual BrowserID implementation uses
another party, Mozilla’s login.persona.org (LPO). Among others, LPO provides
HTML and JavaScript files that, for security and privacy reasons, cannot be delivered by
either IdP or RP. An overview of the implementation is given in Figure 3. For brevity of
presentation, several messages and components, such as the CIF (see below), are omitted
in the figure (see Figure 8 on Pages 85 and 86 for a detailed version of Figure 3).

Windows and iframes in the Browser. By RP-Doc we denote the window containing
the document loaded from some RP, at which the user wants to log in with an email
address hosted by some IdP. RP-Doc typically includes JavaScript from LPO and con-
tains a button “Login with BrowserID”. The LPO JavaScript running in RP-Doc opens
an auxiliary window called the login dialog (LD). Its content is provided by LPO and
it handles the interaction with the user. During the login process, a temporary invisible
iframe called the provisioning iframe (PIF) can be created in the LD. The PIF is loaded
from IdP. It is used by LD to communicate (cross-origin) with the IdP via postMessages:
As the BrowserID implementation mainly runs under the origin of LPO, it cannot di-
rectly communicate with the IdP, thus it uses the PIF as a proxy. Temporarily, the LD
may navigate itself to a web page at IdP to allow for direct user interaction with the IdP.
We then call this window the authentication dialog (AD).

Login Process. To describe the login process, for the sake of presentation we assume for
now that the user uses a “fresh” browser, i.e., the user has not been logged in before. As
mentioned, the process starts by the user visiting a web site of some RP. After the user
has clicked on the login button in RP-Doc, the LD is opened and the interactive login
flow is started. We can divide this login flow into seven phases: In Phase i , the LD is
initialized and the user is prompted to provide her email address. Also, LD fetches the
support document (see Section 4.1) of the IdP via LPO. In Phase ii , LD creates the PIF
from the provisioning URL provided in the support document. As (by our assumption)
the user is not logged in yet, the PIF notifies LD that the user is not authenticated to
the IdP. In Phase iii , LD navigates itself away to the authentication URL which is also
provided in the support document and links to the IdP. Usually, this document will show
a login form in which the user enters her password to authenticate to the IdP. After the
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Fig. 3. Simplified BrowserID implementation overview. CIF omitted for brevity.

user has been authenticated to IdP (which typically implies that the IdP sets a session
cookie in the browser), the window is navigated back to LPO.
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Now, the login flow continues in Phase iv , which basically repeats Phase i . How-
ever, the user is not prompted for her email address (it has previously been saved in the
localStorage under the origin of LPO along with a nonce, where the nonce is stored in
the sessionStorage). In Phase v , which essentially repeats Phase ii , the PIF detects
that the user is now authenticated to the IdP and the provisioning phase is started ( I

in Figure 2): The user’s keys are created by LD and stored in the localStorage under the
origin of LPO. The PIF forwards the certification request to the IdP, which then creates
the UC and sends it back to the PIF. The PIF in turn forwards it to the LD, which stores
it in the localStorage under the origin of LPO.

In Phases vi and vii , mainly the IA is generated by LD for the origin of RP-Doc
and sent (together with the UC) to RP-Doc ( II in Figure 2). In the localStorage, LD
stores that the user’s email address is logged in at RP. Moreover, to log the user in at
LPO, LD generates an IA for the origin of LPO and sends the UC and IA to LPO.

Automatic CAP Creation. In addition to the interactive login presented above, Brow-
serID also contains an automatic, non-interactive way for RPs to obtain a freshly gener-
ated CAP: During initialization within RP-Doc, an invisible iframe called the communi-
cation iframe (CIF) is created inside RP-Doc. The CIF’s JavaScript is loaded from LPO
and behaves similar to LD, but without user interaction. The CIF automatically issues
a fresh CAP and sends it to RP-Doc under specific conditions: among others, the email
address must be marked as logged in at RP in the localStorage. If necessary, a new key
pair is created and a corresponding new UC is requested at the IdP. For this purpose, a
PIF is created inside the CIF.

Differences to the Secondary IdP Mode. In the secondary IdP mode there are three
parties involved only: RP, Browser, and LPO, where LPO also takes the role of an
IdP; LPO is the only IdP that is present, rather than an arbitrary set of (external) IdPs.
Consequently, in the secondary IdP mode the PIF and the AD do not exist. Moreover,
in the primary mode, the behavior of the CIF and the LD is more complex than in the
secondary mode. For example, in the primary mode, just like the LD, the CIF might
contain a PIF (iframe in iframe) and interact with it via postMessages. Altogether, the
secondary IdP case requires much less communication between parties/components and
trust assumptions are simpler: in the secondary IdP mode LPO (which is the only IdP
in this mode) has to be trusted, in the primary IdP mode some external IdPs might be
malicious (and hence, also the scripts they deliver for the PIF and the AD). To illustrate
the difference between the secondary and the primary IdP mode, in the appendix both
modes are illustrated in more detail, see Figure 9 on Page 87 for the secondary IdP mode
and Figure 8 on Pages 85 and 86 for the primary IdP mode.

5 Analysis of BrowserID: Authentication Properties

In this section, we present the analysis of the BrowserID system with primary IdPs and
with respect to authentication properties. As already mentioned, in [13], we analyzed
the simpler case with a secondary IdP. We first, in Section 5.1, describe our model of
BrowserID with primary IdPs, with two central authentication properties one would
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expect any SSO system to satisfy formalized in Section 5.2. Due to the many differ-
ences between the secondary and primary mode as described above, the model had to
be written from scratch in most parts. As mentioned in the introduction, during the
analysis of BrowserID it turned out that one of the security properties is not satisfied
and that in fact there is an attack on BrowserID. We confirmed that this attack, which
was acknowledged by Mozilla, works on the actual implementation of BrowserID. In
Section 5.3, the attack is presented along with a fix. (Our BrowserID model presented in
Appendix F contains this fix.) In Section 5.4, we prove that the fixed BrowserID system
with primary IdPs satisfies both authentication properties.

5.1 Modeling of BrowserID with Primary IdPs

We model the BrowserID system with primary IdPs as a web system (in the sense of
Section 2). Note that while in Section 4 we give only a brief overview of the BrowserID
system, our modeling and analysis considers the complete system with primary IdPs,
where we have extracted the model from the BrowserID source code [20].

We call a web system BID = (W ,S ,script,E0) a BrowserID web system if it is of
the form described in Appendix F and briefly outlined here.

The system W = Hon ∪Web ∪Net consists of the (network) attacker process
attacker, the web server for LPO, a finite set B of web browsers, a finite set RP of
web servers for the relying parties, and a finite set IDP of web servers for the identity
providers, with Hon :=B∪RP∪ IDP∪{LPO}, Web := /0, and Net := {attacker}. DNS
servers are assumed to be dishonest, and hence, are subsumed by attacker. IdPs and
RPs can become corrupted (similar to browsers, by a special message); LPO is assumed
to be honest.

The set IPs of IP addresses (see Section 2.1) contains one address for each party in
W . The set Doms ⊆ S contains one or more domains for each party in W , except for
browsers.

The definition of the processes in W follows the description in Section 4.2. For
RP, we explicitly follow the security considerations in [22] (Cross-site Request Forgery
protection, e.g., by checking origin headers and HTTPS only with STS enabled). When
RP receives a valid CAP (see below), RP responds with a fresh RP service token for ID
i where i is the ID (email address) for which the CAP was issued. Intuitively, a client
having such a token can use the service of the RP.

Each browser b ∈ B owns a set of email addresses (identities) of the form 〈name,d〉
with name ∈ S and d ∈ Doms (belonging to an IdP) and associated passwords (i.e.,
nonces).

A UC uc for a user u with email address 〈name,d〉 and public key (verification key)
pub(ku), where d ∈ dom(y) is a domain of the IdP y that issued the UC and ku is the pri-
vate (signing) key of u, is a term of the form uc = sig(〈〈name,d〉,pub(ku)〉,signkey(y)),
with signkey(y) being the signing key of y. An IA ia for an origin o is a message of the
form ia = sig(o,ku). A CAP is of the form 〈uc, ia〉. Note that time stamps are omitted
both from the UC and the IA, modeling that UC and IA never expire. In reality, as
explained in Section 4, they are valid for a certain period of time. So our modeling is a
safe overapproximation.
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The set S of BID contains six scripts, with their string representations defined by
script: the honest scripts running in RP-Doc, CIF, LD, AD, and PIF, respectively, and
the malicious script Ratt. The scripts for CIF and LD (issued by LPO) are defined in a
straightforward way following the implementation outlined in Section 4. The script for
RP-Doc (issued by RP) also includes the script that is (in reality) loaded from LPO. In
particular, this script creates the CIF and the LD (sub)windows, whose contents (scripts)
are loaded from LPO. The scripts for the AD and PIF are modeled following the example
implementation provided by Mozilla [20]. Full formal specifications of all the above
mentioned scripts are provided in Appendix F.

5.2 Authentication Properties of the BrowserID System

While the documentation of BrowserID does not contain explicit security goals, here we
state two fundamental authentication properties every SSO system should satisfy. These
properties are adapted from [13].

Informally, these properties can be stated as follows: (A) The attacker should not be
able to use a service of RP as an honest user. In other words, the attacker should not
get hold of (be able to derive from his current knowledge) an RP service token for an
ID of an honest user (browser), even if the browser was closed and then later used by
a malicious user (i.e., after a CLOSECORRUPT). (B) The attacker should not be able to
authenticate an honest browser to an RP with an ID that is not owned by the browser
(identity injection). We refer the reader to Appendix G for the formal definition of these
properties.

We call a BrowserID web system BID secure (w.r.t. authentication) if the above
conditions are satisfied in all runs of the system.

5.3 Identity Injection Attack on BrowserID with Primary IdPs

While trying to prove the above mentioned authentication properties of BrowserID with
primary IdPs in our model, we discovered a serious attack, which is sketched below and
does not apply to the case with secondary IdPs. We confirmed the attack on the actual
implementation and reported it to Mozilla [9], who acknowledged it.

During the provisioning phase v (see Figure 3), the IdP issues a UC for the user’s
identity and public key provided in 16 . This UC is sent to the LD by the PIF in 20 .

If the IdP is malicious, it can issue a UC with different data. In particular, it could
replace the email address by a different one, but keep the original public key. This
(malicious) UC is then later included in the CAP by LD. The CAP will still be valid,
because the public key is unchanged. Now, as the RP determines the user’s identity by
the UC contained in the CAP, RP issues a service token for the spoofed email address.
As a result, the honest user will use RP’s service (and typically will be logged in to RP)
under an ID that belongs to the attacker, which, for example, could allow the attacker to
track actions of the honest user or obtain user secrets. This violates Condition (B).

To fix this problem, upon receipt of the UC in 20 , LD should check whether it
contains the correct email address and public key, i.e., the one requested by LD in 16 .
The same is true for the CIF, which behaves similarly to the LD. The formal model of
BrowserID presented in Appendix F contains these fixes.
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5.4 Security of the Fixed System

For the fixed BrowserID system with primary IdPs, we have proven the following theo-
rem, which says that a fixed BrowserID web system (i.e., the system where the above
described fix is applied) satisfies the security properties (A) and (B).

Theorem 1. Let BID be a fixed BrowserID web system. Then, BID is secure (w.r.t. au-
thentication).

We prove Conditions (A) and (B) separately. For both conditions, we assume that they
are not satisfied and lead this to a contradiction. In our proofs, we make use of the
general security properties of the web model presented in Section 3, which helped a lot
in making the proof for the primary IdP model more modular and concise. The complete
proof with all details is provided in Appendix H.

6 Privacy of BrowserID

In this section, we study the privacy guarantees of the BrowserID system with primary
IdPs. Regarding privacy, Mozilla states that “...the BrowserID protocol never leaks track-
ing information back to the Identity Provider.” [5] and “Unlike other sign-in systems,
BrowserID does not leak information back to any server [. . . ] about which sites a user
visits.” [19].1 While this is not a formal definition of the level of privacy that BrowserID
is supposed to provide, these and other statements2 make it certainly clear that, unlike
for other SSO systems, IdPs should not be able to learn to which RPs their users log in.

In the process of formalizing this intuition in our model of BrowserID and trying
to prove this property, we found severe attacks against the privacy of BrowserID which
made clear that BrowserID does not provide even a rather weak privacy property in the
presence of a malicious IdP. Intuitively, the property says that a malicious IdP (which
acts as a web attacker) should not be able to tell whether a user logs in at an honest RP r
or some other honest RP r′. In other words, a run in which the user logs in at r at some
point should be indistinguishable (from the point of view of the IdP) from the run in
which the user logs in at r′ instead. Indistinguishability means that the two sequences
of messages received by the web attacker in the two runs are statically equivalent in the
usual sense of Dolev-Yao models (see [1]), i.e., a Dolev-Yao attacker cannot distinguish
between the two sequences. Details of the privacy definition are not important here
since our attacks clearly show that privacy is broken for any reasonable definition of
privacy. Unfortunately, our attacks are not caused by a simple implementation error,
but rather a fundamental design flaw in the BrowserID protocol. Fixes for this flaw are
conceivable, but not without major changes to the design of BrowserID as discussed
in Section 6.2. Such a redesign of BrowserID and a proof of privacy of the redesigned
system are therefore out of the scope of this paper, which focuses on the existing and
deployed version of BrowserID.

1Clearly, in the current state of BrowserID a malicious LPO server could gather information
about users’ log in history. However, an integration of the code currently delivered by LPO into
the browser, as envisioned, would avoid this issue. Currently, Mozilla’s LPO needs to be trusted.

2see, e.g., https://developer.mozilla.org/en-US/Persona/Why_Persona and
http://identity.mozilla.com/post/7669886219.
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idp.com/index

relyingparty.com/login

login.persona.org/cif

idp.com/pif

a User visits her iden-
tity provider (could be in
a PIF itself, i.e., during lo-
gin at some other RP).

b PIF exists only when
BrowserID automatically
logs the user in at r (be-
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in before).

c When the user is
logged in at r, the
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Message when the PIF
iframe is loaded.

Fig. 4. The three main steps of the privacy attack. Using a specially crafted PIF document, a
malicious IdP can notify itself via postMessage when the user is logged in at some RP r.

6.1 Privacy Attacks on BrowserID

For our attacks to work, it suffices that the IdP is a web attacker. They work even if all
DNS servers, RPs, and LPO are honest, and all parties use encrypted connections. In
what follows, we present several variants of attacks on privacy.

PostMessage-Based Attack. The adversary is a malicious IdP that is interested to learn
whether a user is logged in at RP r. Figure 4 illustrates the main steps:
Step a . First, the victim visits her IdP. In BrowserID, email providers serve as IdPs, and
therefore it is not unlikely that a user visits this web site (e.g., for checking email or
to use other services). As the IdP usually has some cookie set at the user’s browser, it
learns the identity of the victim. The IdP now creates a hidden iframe containing the
login page of r.
Step b . The login page of r (now loaded as an iframe within IdP’s web site) includes
and runs the BrowserID script. As defined in the BrowserID protocol, the script creates
the communication iframe (see “Automatic CAP Creation” in Section 4.2), which in
turn checks whether the email address is marked as logged in at r in the localStorage of
the user’s browser. Only then it will try to create a new CAP, for which it needs a PIF
(the same as in Phase ii in Figure 3).
Step c . The PIF is loaded from the IdP. Note that from this action alone, the IdP does
not learn where the user wants to log in. However, instead of the original (honest) PIF
document, the IdP can send a modified one that sends a postMessage to the parent of the
parent of the parent of its own window, which in this setting is the IdP document that
was opened by the user in Step a . When the IdP receives this message in the document
from Step a , it knows that the PIF was loaded, and therefore, that the user is currently
logged in at r.

Note that the IdP can repeatedly apply the above as long as the user stays on the
IdP’s web site. During this period, the IdP can see whether or not the user is logged
in at the targeted RP. Clearly, the IdP can simultaneously run the attack for different
RPs in order to track the user’s login status for all such RPs. In particular, the IdP can
distinguish whether a user is logged in at RP r or r′, which violates the privacy property
sketched above. In our formal model, the malicious IdP would run the attacker script
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Ratt in idp.com/index and in idp.com/pif (see Figure 4) in order to carry out the
attack.

Variant 1: Waiting for UC requests. The IdP first acts as in Step a . Now, it could passively
wait for incoming requests for the PIF document or UC requests on its server, which tell
the IdP that a provisioning flow (probably initiated by Step a ) was started. This variant
cannot be executed in parallel and is less reliable in practice, though.

Variant 2: PIF as Attack Source. Step a can also be launched from within a PIF itself
(i.e., the PIF also takes the role of idp.com/index above). This way, while the user
logs in at some r1, the IdP could check whether the user is logged in at r2, for any r2.

Variant 3: Scanning the Window Structure (I). Instead of using a postMessage to alert the
IdP’s outer document about the existence of the inner PIF document, the outer document
could as well repeatedly scan the window tree of the iframe containing r’s web site:
While the IdP sees almost no information about r’s document in the iframe (as it is not
same origin), it can see the list of subwindows (i.e., the CIF, and possibly other iframes).
For these frames, again, it would see the subwindows, especially the PIF, which it could
identify uniquely by checking whether it is same origin with the IdPs outer window.

Variant 4: Scanning the Window Structure (II). In Variant 2, using a same-origin check,
the malicious IdP can uniquely identify the PIF in the window structure. This same-
origin check could be skipped and it could only be checked whether a PIF is generated,
based on the window structure alone. While this is less reliable, this attack could be
launched by any third party web attacker (not only the IdP to which the user’s email
address belongs) to check whether the victim is logged in at r or not.

We verified (all variants of) the attacks in our model as well as in a real-world
BrowserID setup. Implementing proofs-of-concept required only a few lines of (trivial)
JavaScript. In most attack variants, we directly or indirectly use the structure of the
windows inside the web browser as a side channel. To our knowledge, this is the first
description of this side channel for breaking privacy in browsers. The attacks have been
reported to and confirmed by Mozilla [10].

6.2 Fixing the Privacy of BrowserID

Fixing the privacy of BrowserID seems to require a substantial redesign of the system.
Regarding the presented attacks, BrowserID’s main weakness is the window structure.
The most obvious mitigation, modifying the CIF such that it always creates the PIF
(even if the user has not logged in before), does not work: To open the PIF, the CIF
looks up (in the localStorage) the user’s identity at the current RP to derive the address
of the PIF. If the user has not logged in before, this information is not available.

Another approach would be to use cross-origin XHRs to replace the features of the
PIF. This solution would require a major revision in the inner workings of BrowserID
and would not protect against Variant 1.
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7 Related Work

The formal treatment of the security of the web infrastructure and web applications
based on this infrastructure is a young discipline. Of the few works in this area even less
are based on a general model that incorporates essential mechanisms of the web.

Early works in formal web security analysis (see, e.g., [3,11,16,17,25]) are based on
very limited models developed specifically for the application under scrutiny. The first
work to consider a general model of the web, written in the finite-state model checker
Alloy, is the work by Akhawe et al. [2]. Inspired by this work, Bansal et al. [6, 7] built a
more expressive model, called WebSpi, in ProVerif [8], a tool for symbolic cryptographic
protocol analysis. These models have successfully been applied to web standards and
applications. Recently, Kumar [18] presented a high-level Alloy model and applied it
to SAML single sign-on. However, compared to our model in [13] and its extensions
considered here, on the one hand, all above mentioned models are formulated in the
specification languages of specific analysis tools, and hence, are tailored towards au-
tomation (while we perform manual analysis). On the other hand, the models considered
in these works are much less expressive and precise. For example, these models do not
incorporate a precise handling of windows, documents, or iframes; cross-document mes-
saging (postMessages) or session storage are not included at all. In fact, several general
web features and technologies that have been crucial for the analysis of BrowserID are
not supported by these models, and hence, these models cannot be applied to BrowserID.
Moreover, the complexity of BrowserID exceeds that of the systems analyzed in these
other works in terms of the use of web technologies and the complexity of the proto-
cols. For example, BrowserID in primary mode is a protocol consisting of 48 different
(network and inter-frame) messages compared to typically about 10–15 in the protocols
analyzed in other models.

The BrowserID system in the primary mode has been analyzed before using the
AuthScan tool developed by Bai et al. [4]. Their work focusses on the automated ex-
traction of a model from a protocol implementation. This tool-based analysis did not
reveal the identity injection attack, though; privacy properties have not been studied
there. Dietz and Wallach demonstrated a technique to secure BrowserID when specific
flaws in TLS are considered [12].

8 Conclusion

In this paper, we slightly extended our existing web model, resulting in the most com-
prehensive model of the web so far. It contains many security-relevant features and is
designed to closely mimic standards and specifications for the web. As such, it consti-
tutes a solid basis for the analysis of a broad range of web standards and applications.

Based on this model, we presented a detailed analysis of the BrowserID SSO system
in the primary IdP mode. During the security proof of the fundamental authentication
requirements (A) and (B), we found a flaw in BrowserID that does not apply to its
secondary mode and leads to an identity injection attack, and hence, violates property
(B). We confirmed the attack on the actual BrowserID implementation and reported it
to Mozilla, who acknowledged it. We proposed a fix and formally proved that the fixed
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system fulfills both (A) and (B). Among the so far very few efforts on formally analyzing
web applications and standards in expressive web models, our analysis constitutes the
most complex formal analysis of a web application to date. It illustrates that (manual)
security analysis of complex real-world web applications in a detailed web model, while
laborious, is feasible and yields meaningful and practically relevant results.

During an attempt to formally analyze the privacy promise of the BrowserID system,
we again found practical attacks. These attacks have been reported to and confirmed by
Mozilla and, unfortunately, show that BrowserID would have to undergo a substantial
redesign in order to fulfill its privacy promise. Interestingly, for our attacks we use a
side channel that exploits information about the structure of windows in a browser. To
the best of our knowledge, such side channel attacks have not gained much attention so
far in the literature.

Finally, we have identified and proven important security properties of general ap-
plication independent web features in order to facilitate future analysis efforts of web
standards and web applications in the web model.
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A Communication Model

Extending Section 2.1, we here present details and definitions on the basic concepts of
the communication model. For readability, some parts from Section 2.1 are repeated.

A.1 Terms, Messages and Events

The signature Σ for the terms and messages considered in this work is the union of the
following pairwise disjoint sets of function symbols:

• constants C = IPs ∪ S∪{>,⊥,♦} where the three sets are pairwise disjoint, S is
interpreted to be the set of ASCII strings (including the empty string ε), and IPs is
interpreted to be a set of (IP) addresses,3

3For brevity of presentation, in Section 2.1 the set C contained also the set of nonces N . Here
nonces are considered separately (see Definition 1).
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• function symbols for public keys, (a)symmetric encryption/decryption, and signa-
tures: pub(·), enca(·, ·), deca(·, ·), encs(·, ·), decs(·, ·), sig(·, ·), checksig(·, ·), and
extractmsg(·),

• n-ary sequences 〈〉,〈·〉,〈·, ·〉,〈·, ·, ·〉, etc., and
• projection symbols πi(·) for all i ∈ N.

Definition 1. Let X = {x0,x1, . . .} be a set of variables and N be an infinite set of
constants (nonces) such that Σ , X, and N are pairwise disjoint. For N ⊆N , we define
the set TN(X) of terms over Σ ∪N ∪X inductively as usual: (1) If t ∈ N ∪X, then t is
a term. (2) If f ∈ Σ is an n-ary function symbol in Σ for some n ≥ 0 and t1, . . . , tn are
terms, then f (t1, . . . , tn) is a term.

By TN = TN( /0), we denote the set of all terms over Σ ∪N without variables, called
ground terms. The set M of messages (over N ) is defined to be the set of ground terms
TN .

Example 1. For example, k ∈N and pub(k) are messages, where k typically models a
private key and pub(k) the corresponding public key. For constants a, b, c and the nonce
k ∈N , the message enca(〈a,b,c〉,pub(k)) is interpreted to be the message 〈a,b,c〉 (the
sequence of constants a, b, c) encrypted by the public key pub(k).

For strings (elements in S), we use a specific font. For example, HTTPReq and
HTTPResp are strings. We denote by Doms⊆ S the set of domains, e.g., example.com∈
Doms. We denote by Methods⊆ S the set of methods used in HTTP requests, e.g., GET,
POST ∈Methods.

The equational theory associated with the signature Σ is given in Figure 5.

deca(enca(x,pub(y)),y) = x (1)

decs(encs(x,y),y) = x (2)

extractmsg(sig(x,y)) = x (3)

checksig(sig(x,y),pub(y)) => (4)

πi(〈x1, . . . ,xn〉) = xi if 1≤ i≤ n (5)

π j(〈x1, . . . ,xn〉) = ♦ if j 6∈ {1, . . . ,n} (6)

π j(t) = ♦ if t is not a sequence (7)

Fig. 5. Equational theory for Σ .

By ≡ we denote the congruence relation on TN (X) induced by this theory. For
example, we have that π1(deca(enca(〈a,b〉,pub(k)),k))≡ a.

Definition 2. An event (over IPs and M ) is of the form (a: f :m), for a, f ∈ IPs and
m ∈M , where a is interpreted to be the receiver address and f is the sender address.
We denote by E the set of all events.
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A.2 Atomic Processes, Systems and Runs

We here define atomic processes, systems, and runs of systems.
An atomic process takes its current state and an event as input, and then (non-

deterministically) outputs a new state and a set of events.

Definition 3. A (generic) atomic process is a tuple p = (Ip,Zp,Rp,sp
0) where Ip ⊆ IPs,

Zp is a set of states, Rp ⊆ (E×Zp)× (2E ×Zp), and sp
0 ∈ Zp is the initial state of p. We

write (e,z)R(E,z′) instead of ((e,z),(E,z′)) ∈ R.
A system P is a (possibly infinite) set of atomic processes.

Definition 4. A configuration of a system P is a tuple (S,E) where S maps every atomic
process p ∈ P to its current state S(p) ∈ Zp and E is a (possibly infinite) multi-set of
events waiting to be delivered.

Definition 5. A processing step of the system P is of the form

(S,E)
e→p−−−−→

p→Eout
(S′,E ′)

such that (1) there exists an event e = (a: f :m) ∈ E, Eout ⊆ E ′, and a process p ∈ P
with (e,S(p))Rp(Eout,S′(p)) and a ∈ Ip, (2) S′(p′) = S(p′) for all p′ 6= p, and (3) E ′ =
(E \{e})∪Eout (multi-set operations). We may omit the superscript and/or subscript of
the arrow.

Definition 6. Let P be a system and E0 be a multi-set of events. A run ρ of a system P
initiated by E0 is a finite sequence of configurations (S0,E0), . . . ,(Sn,En) or an infinite
sequence of configurations (S0,E0), . . . such that S0(p) = sp

0 for all p∈ P and (Si,Ei)−→
(Si+1,Ei+1) for all 0≤ i< n (finite run) or for all i≥ 0 (infinite run).

A.3 Atomic Dolev-Yao Processes

We next define atomic Dolev-Yao processes, for which we require that the messages and
states that they output can be computed (more formally, derived) from the current input
event and state. For this purpose, we first define what it means to derive a message from
given messages.

Definition 7. Let N ⊆N , τ ∈ TN({x1, . . . ,xn}), and t1, . . . , tn ∈ TN . By τ [t1/x1, . . . , tn/xn]
we denote the (ground) term obtained from τ by replacing all occurrences of xi in τ by
ti, for all i ∈ {1, . . . ,n}.

Definition 8. Let M ⊆M be a set of messages. We say that a message m can be derived
from M with nonces N if there exist n ≥ 0, m1, . . . ,mn ∈ M, and τ ∈ TN({x1, . . . ,xn})
such that m ≡ τ [m1/x1, . . . ,mn/xn]. We denote by dN(M) the set of all messages that
can be derived from M with nonces N.

For example, a ∈ d{k}({enca(〈a,b,c〉,pub(k))}).
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Definition 9. An atomic Dolev-Yao process (or simply, a DY process) is a tuple p =
(Ip,Zp, Rp,sp

0 ,N
p) such that (Ip,Zp,Rp,sp

0) is an atomic process and (1) N p ⊆N is an
(initial) set of nonces, (2) Zp ⊆ TN (and hence, sp

0 ∈ TN ), and (3) for all a,a′, f , f ′ ∈ IPs,
m,m′,s,s′ ∈ TN , set of events E with ((a: f :m),s)R(E,s′) and (a′: f ′:m′) ∈ E it holds
true that m′,s′ ∈ dN({m,s}). (Note that a′, f ′ ∈ dN({m,s}).)

Definition 10. An (atomic) attacker process for a set of sender addresses A⊆ IPs is an
atomic DY process p = (I,Z,R,s0,N) such that for all a, f ∈ IPs, m ∈ TN , and s ∈ Z we
have that ((a: f :m),s)R(E,s′) iff s′ = 〈〈a, f ,m〉,s〉 and E = {(a′: f ′:m′) | a′ ∈ IPs, f ′ ∈ A,
m′ ∈ dN({m,s})}.

A.4 Scripting Processes

We define scripting processes, which model client-side scripting technologies, such as
JavaScript. Scripting processes are defined similarly to DY processes.

Definition 11. A scripting process (or simply, a script) is a relation R⊆ (TN ×2N )×
TN such that for all s,s′ ∈ TN and N ⊆N with (s,N)Rs′ it follows that s′ ∈ dN(s).

A script is called by the browser which provides it with a (fresh, infinite) set N of nonces
and state information s. The script then outputs a term s′, which represents the new
internal state and some command which is interpreted by the browser.

Similarly to an attacker process, we define the attacker script Ratt. This script outputs
everything that is derivable from the input, i.e., Ratt = {((s,N),s′) | s ∈ TN ,N ⊆N ,s′ ∈
dN(s)}.

B Message and Data Formats

We now provide some more details about data and message formats that are needed for
the formal treatment of the web model and the analysis of BrowserID presented in the
rest of the appendix.

B.1 Notations

Definition 12 (Sequence Notations). For a sequence t = 〈t1, . . . , tn〉 and a set s we use
t ⊂〈〉 s to say that t1, . . . , tn ∈ s. We define x ∈〈〉 t ⇐⇒ ∃i : ti = x . We write t +〈〉 y to
denote the sequence 〈t1, . . . , tn,y〉. For a sequence t = 〈t1, . . . , tn〉 we define |t| = n. If t
is not a sequence, we set |t|= ♦. For a finite set M with M = {m1, . . . ,mn} we use 〈M〉
to denote the term of the form 〈m1, . . . ,mn〉. (The order of the elements does not matter;
one is chosen arbitrarily.)

Definition 13. A dictionary over X and Y is a term of the form

〈〈k1,v1〉, . . . ,〈kn,vn〉〉

where k1, . . . ,kn ∈ X, v1, . . . ,vn ∈Y , and the keys k1, . . . ,kn are unique, i.e., ∀i 6= j : ki 6=
k j. We call every term 〈ki,vi〉, i∈ {1, . . . ,n}, an element of the dictionary with key ki and
value vi. We often write [k1 : v1, . . . ,ki : vi, . . . ,kn : vn] instead of 〈〈k1,v1〉, . . . ,〈kn,vn〉〉.
We denote the set of all dictionaries over X and Y by [X×Y ].
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We note that the empty dictionary is equivalent to the empty sequence, i.e., [] = 〈〉. Figure
6 shows the short notation for dictionary operations that will be used when describing
the browser atomic process. For a dictionary z = [k1 : v1,k2 : v2, . . . ,kn : vn] we write
k ∈ z to say that there exists i such that k = ki. We write z[k j] := v j to extract elements.
If k 6∈ z, we set z[k] := 〈〉.

[k1 : v1, . . . ,ki : vi, . . . ,kn : vn] [ki] = vi (8)

[k1 : v1, . . . ,ki−1 : vi−1,ki : vi,ki+1 : vi+1 . . . ,kn : vn]− ki =

[k1 : v1, . . . ,ki−1 : vi−1,ki+1 : vi+1 . . . ,kn : vn] (9)

Fig. 6. Dictionary operators with 1≤ i≤ n.

Given a term t = 〈t1, . . . , tn〉, we can refer to any subterm using a sequence of integers.
The subterm is determined by repeated application of the projection πi for the integers i
in the sequence. We call such a sequence a pointer:

Definition 14. A pointer is a sequence of non-negative integers. We write τ .p for the
application of the pointer p to the term τ . This operator is applied from left to right. For
pointers consisting of a single integer, we may omit the sequence braces for brevity.

Example 2. For the term τ = 〈a,b,〈c,d,〈e, f 〉〉〉 and the pointer p = 〈3,1〉, the subterm
of τ at the position p is c = π1(π3(τ)). Also, τ .3.〈3,1〉= τ .3.p = τ .3.3.1 = e.

To improve readability, we try to avoid writing, e.g., o.2 or π2(o) in this document.
Instead, we will use the names of the components of a sequence that is of a defined form
as pointers that point to the corresponding subterms. E.g., if an Origin term is defined as
〈host,protocol〉 and o is an Origin term, then we can write o.protocol instead of π2(o)
or o.2. See also Example 3.

In the pseudocode, we will write, for example,

let x,y such that 〈Constant,x,y〉 ≡ t if possible; otherwise doSomethingElse

for some variables x,y, a string Constant, and some term t to express that x := π2(t),
and y := π3(t) if Constant≡ π1(t) and if |〈Constant,x,y〉|= |t|, and that otherwise x
and y are not set and doSomethingElse is executed.

B.2 URLs

Definition 15. A URL is a term of the form 〈URL,protocol,host,path,params〉 with
protocol ∈ {P,S} (for plain (HTTP) and secure (HTTPS)), host ∈ Doms, path ∈ S and
params ∈

[
S×TN

]
. The set of all valid URLs is URLs.

Example 3. For the URL u = 〈URL,a,b,c,d〉, u.protocol = a. If, in the algorithm
described later, we say u.path := e then u = 〈URL,a,b,c,e〉 afterwards.
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B.3 Origins

Definition 16. An origin is a term of the form 〈host,protocol〉 with host ∈ Doms and
protocol ∈ {P,S}. We write Origins for the set of all origins. See Example 6 for an
example of an origin.

B.4 Cookies

Definition 17. A cookie is a term of the form 〈name,content〉 where name ∈ TN , and
content is a term of the form 〈value,secure,session,httpOnly〉 where value∈ TN , secure,
session, httpOnly ∈ {>,⊥}. We write Cookies for the set of all cookies.

If the secure attribute of a cookie is set, the browser will not transfer this cookie over
unencrypted HTTP connections. If the session flag is set, this cookie will be deleted as
soon as the browser is closed. The httpOnly attribute controls whether JavaScript has
access to this cookie.

Note that cookies of the form described here are only contained in HTTP(S) requests.
In responses, only the components name and value are transferred as a pairing of the
form 〈name,value〉.

B.5 HTTP Messages

Definition 18. An HTTP request is a term of the form shown in (10). An HTTP response
is a term of the form shown in (11).

〈HTTPReq,nonce,method,host,path,parameters,headers,body〉 (10)
〈HTTPResp,nonce,status,headers,body〉 (11)

The components are defined as follows:

• nonce ∈N serves to map each response to the corresponding request
• method ∈Methods is one of the HTTP methods.
• host ∈ Doms is the host name in the HOST header of HTTP/1.1.
• path ∈ S is a string indicating the requested resource at the server side
• status ∈ S is the HTTP status code (i.e., a number between 100 and 505, as defined

by the HTTP standard)
• parameters ∈

[
S×TN

]
contains URL parameters

• headers ∈
[
S×TN

]
, containing request/response headers. The dictionary elements

are terms of one of the following forms:
• 〈Origin,o〉 where o is an origin
• 〈Set-Cookie,c〉 where c is a sequence of cookies
• 〈Cookie,c〉 where c ∈

[
S×TN

]
(note that in this header, only names and

values of cookies are transferred)
• 〈Location, l〉 where l ∈ URLs
• 〈Strict-Transport-Security,>〉

• body ∈ TN in requests and responses.
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We write HTTPRequests/HTTPResponses for the set of all HTTP requests or responses,
respectively.

Example 4 (HTTP Request and Response).

r :=〈HTTPReq,n1,POST,example.com,/show,〈〈index,1〉〉,
[Origin : 〈example.com,S〉],〈foo,bar〉〉 (12)

s :=〈HTTPResp,n1,200,〈〈Set-Cookie,〈〈SID,〈n2,⊥,⊥,>〉〉〉〉〉,〈somescript,x〉〉
(13)

An HTTP GET request for the URL http://example.com/show?index=1 is shown
in (12), with an Origin header and a body that contains 〈foo,bar〉. A possible response
is shown in (13), which contains an httpOnly cookie with name SID and value n2 as well
as the string representation somescript of the scripting process script−1(somescript)
(which should be an element of S ) and its initial state x.

Encrypted HTTP Messages. For HTTPS, requests are encrypted using the public key
of the server. Such a request contains an (ephemeral) symmetric key chosen by the
client that issued the request. The server is supported to encrypt the response using the
symmetric key.

Definition 19. An encrypted HTTP request is of the form enca(〈m,k′〉,k), where k, k′ ∈
N and m ∈ HTTPRequests. The corresponding encrypted HTTP response would be
of the form encs(m′,k′), where m′ ∈ HTTPResponses. We call the sets of all encrypted
HTTP requests and responses HTTPSRequests or HTTPSResponses, respectively.

Example 5.

enca(〈r,k′〉,pub(kexample.com)) (14)
encs(s,k′) (15)

The term (14) shows an encrypted request (with r as in (12)). It is encrypted using
the public key pub(kexample.com). The term (15) is a response (with s as in (13)). It is
encrypted symmetrically using the (symmetric) key k′ that was sent in the request (14).

B.6 DNS Messages

Definition 20. A DNS request is a term of the form 〈DNSResolve,domain,n〉 where
domain ∈ Doms, n ∈N . We call the set of all DNS requests DNSRequests.

Definition 21. A DNS response is a term of the form 〈DNSResolved,result,n〉 with
result ∈ IPs, n ∈N . We call the set of all DNS responses DNSResponses.

DNS servers are supposed to include the nonce they received in a DNS request in the
DNS response that they send back so that the party which issued the request can match
it with the request.
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C Detailed Description of the Browser Model

Following the informal description of the browser model in Section 2.5, we now present
a formal model. We start by introducing some notation and terminology.

C.1 Notation and Terminology (Web Browser State)

Before we can define the state of a web browser, we first have to define windows and
documents. Concrete window and document terms are shown in Example 6.

Definition 22. A window is a term of the form w = 〈nonce,documents,opener〉 with
nonce ∈ N , documents ⊂〈〉 Documents (defined below), opener ∈ N ∪ {⊥} where
d.active = > for exactly one d ∈〈〉 documents if documents is not empty (we then
call d the active document of w). We write Windows for the set of all windows. We write
w.activedocument to denote the active document inside window w if it exists and 〈〉
else.

We will refer to the window nonce as (window) reference.
The documents contained in a window term to the left of the active document are

the previously viewed documents (available to the user via the “back” button) and
the documents in the window term to the right of the currently active document are
documents available via the “forward” button, as will be clear from the description of
web browser model (see Section C.2).

A window a may have opened a top-level window b (i.e., a window term which is not
a subterm of a document term). In this case, the opener part of the term b is the nonce
of a, i.e., b.opener= a.nonce.

Definition 23. A document d is a term of the form

〈nonce,origin,script,scriptstate,scriptinput,subwindows,active〉

where nonce ∈ N , origin ∈ Origins, script ∈ TN , scriptstate ∈ TN , scriptinput ∈ TN ,
subwindows ⊂〈〉 Windows, active ∈ {>,⊥}. A limited document is a term of the form
〈nonce,subwindows〉 with nonce, subwindows as above. A window w ∈〈〉 subwindows
is called a subwindow (of d). We write Documents for the set of all documents.

We will refer to the document nonce as (document) reference.

Example 6. The following is an example of a window term with reference n1, two
documents, and an opener (n4):

〈n1,〈〈n2,〈example.com,P〉,script1,〈〉,〈〉,〈〉,⊥〉,
〈n3,〈example.com,S〉,script2,〈〉,〈〉,〈〉,>〉〉,n4〉

The first document has the reference n2. It was loaded from the origin 〈example.com,P〉,
which translates into http://example.com. Its scripting process has the string repre-
sentation script1, the last state and the input history of this process are empty. The
document does not have subwindows and is inactive (⊥). The second document has the
reference n3, its origin corresponds to https://example.com, the scripting process
is represented by script2, and the document is active (>). All other components are
empty.
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We can now define the set of states of web browsers. Note that we use the dictionary
notation that we introduced in Definition 13.

Definition 24. Let OR := {〈o,r〉|o ∈ Origins, r ∈N }. The set of states Zp of a web
browser atomic process p consists of the terms of the form

〈windows, ids,secrets,cookies, localStorage,sessionStorage,keyMapping,

sts,DNSaddress,nonces,pendingDNS,pendingRequests, isCorrupted〉

where

• windows⊂〈〉Windows,
• ids⊂〈〉 TN ,
• secrets ∈ [Origins×N ],
• cookies is a dictionary over Doms and dictionaries of Cookies,
• localStorage ∈

[
Origins×TN

]
,

• sessionStorage ∈
[
OR×TN

]
,

• keyMapping ∈
[
Doms×TN

]
,

• sts⊂〈〉 Doms,
• DNSaddress ∈ IPs,
• nonces⊂〈〉 N ,
• pendingDNS ∈

[
N ×TN

]
,

• pendingRequests ∈ TN ,
• and isCorrupted ∈ {⊥,FULLCORRUPT, CLOSECORRUPT}.

Definition 25. For two window terms w and w′ we write w
childof−−−→ w′ if

w ∈〈〉 w′.activedocument.subwindows .

We write
childof+−−−−→ for the transitive closure.

In the following description of the web browser relation Rp we will use the helper
functions Subwindows, Docs, Clean, CookieMerge and AddCookie.

Given a browser state s, Subwindows(s) denotes the set of all pointers4 to windows in
the window list s.windows, their active documents, and (recursively) the subwindows of
these documents. We exclude subwindows of inactive documents and their subwindows.
With Docs(s) we denote the set of pointers to all active documents in the set of windows
referenced by Subwindows(s).

Definition 26. For a browser state s we denote by Subwindows(s) the minimal set of
pointers that satisfies the following conditions: (1) For all windows w ∈〈〉 s.windows
there is a p ∈ Subwindows(s) such that s.p = w. (2) For all p ∈ Subwindows(s), the
active document d of the window s.p and every subwindow w of d there is a pointer
p′ ∈ Subwindows(s) such that s.p′ = w.

Given a browser state s, the set Docs(s) of pointers to active documents is the minimal
set such that for every p ∈ Subwindows(s), there is a pointer p′ ∈ Docs(s) with s.p′ =
s.p.activedocument.

4Recall the definition of a pointer in Definition 14.
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The function Clean will be used to determine which information about windows and
documents the script running in the document d has access to.

Definition 27. Let s be a browser state and d a document. By Clean(s,d) we denote the
term that equals s.windows but with all inactive documents removed (including their
subwindows etc.) and all subterms that represent non-same-origin documents w.r.t. d
replaced by a limited document d′ with the same nonce and the same subwindow list.
Note that non-same-origin documents on all levels are replaced by their corresponding
limited document.

The function CookieMerge merges two sequences of cookies together: When used in
the browser, oldcookies is the sequence of existing cookies for some origin, newcookies
is a sequence of new cookies that was output by some script. The sequences are merged
into a set of cookies using an algorithm that is based on the Storage Mechanism algo-
rithm described in RFC6265.

Definition 28. For a sequence of cookies (with pairwise different names) oldcookies
and a sequence of cookies newcookies, the set CookieMerge(oldcookies,newcookies) is
defined by the following algorithm: From newcookies remove all cookies c that have
c.content.httpOnly≡>. For any c, c′ ∈〈〉 newcookies, c.name≡ c′.name, remove the
cookie that appears left of the other in newcookies. Let m be the set of cookies that have a
name that either appears in oldcookies or in newcookies, but not in both. For all pairs of
cookies (cold,cnew) with cold ∈〈〉 oldcookies, cnew ∈〈〉 newcookies, cold.name≡ cnew.name,
add cnew to m if cold.content.httpOnly ≡ ⊥ and add cold to m otherwise. The result
of CookieMerge(oldcookies,newcookies) is m.

The function AddCookie adds a cookie c received in an HTTP response to the se-
quence of cookies contained in the sequence oldcookies. It is again based on the algo-
rithm described in RFC6265 but simplified for the use in the browser model.

Definition 29. For a sequence of cookies (with different names) oldcookies and a cookie
c, the sequence AddCookie(oldcookies,c) is defined by the following algorithm: Let
m := oldcookies. Remove any c′ from m that has c.name≡ c′.name. Append c to m and
return m.

The function NavigableWindows returns a set of windows that a document is allowed
to navigate. We closely follow [15], Section 5.1.4 for this definition.

Definition 30. The set NavigableWindows(w,s′) is the set W ⊆ Subwindows(s′) of
pointers to windows that the active document in w is allowed to navigate. The set W is
defined to be the minimal set such that for every w′ ∈ Subwindows(s′) the following is
true:

• If s′.w′.activedocument.origin ≡ s′.w.activedocument.origin (i.e., the ac-
tive documents in w and w′ are same-origin), then w′ ∈W, and

• If s′.w
childof∗−−−−→ s′.w′ ∧ @w′′ ∈ Subwindows(s′) with s′.w′

childof∗−−−−→ s′.w′′ (w′ is a top-
level window and w is an ancestor window of w′), then w′ ∈W, and
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• If ∃ p ∈ Subwindows(s′) such that s′.w′
childof+−−−−→ s′.p

∧ s′.p.activedocument.origin = s′.w.activedocument.origin (w′ is not a
top-level window but there is an ancestor window p of w′ with an active document
that has the same origin as the active document in w), then w′ ∈W, and

• If ∃ p ∈ Subwindows(s′) such that s′.w′.opener= s′.p.nonce ∧ p ∈W (w′ is a top-
level window—it has an opener—and w is allowed to navigate the opener window
of w′, p), then w′ ∈W.

C.2 Description of the Web Browser Atomic Process

We will now describe the relation Rp of a standard HTTP browser p. For a tuple r =
(((a: f :m) ,s) ,(M,s′)) we define r to belong to Rp iff the non-deterministic algorithm
presented in Section 7, when given ((a: f :m) ,s) as input, terminates with stop M, s′, i.e.,
with output M and s′. Recall that (a: f :m) is an (input) event and s is a (browser) state,
M is a set of (output) events, and s′ is a new (browser) state.

The notation let n←N is used to describe that n is chosen non-deterministically from
the set N. We write for each s ∈ M do to denote that the following commands (until
end for) are repeated for every element in M, where the variable s is the current element.
The order in which the elements are processed is chosen non-deterministically.

We first define some functions which will be used in the main algorithm presented in
Section 7.

Functions. In the description of the following functions we use a, f , m, s and N p as
read-only global input variables. Also, the functions use the set N p as a read-only set.
All other variables are local variables or arguments.

TAKENONCE returns a nonce from the set of unused nonces and modifies the brow-
ser state such that the nonce is added to the sequence of used nonces. Note that this
function returns two values, the nonce n and the modified state s′.

Algorithm 1 Non-deterministically choose a fresh nonce.

1: function TAKENONCE(s′)
2: let n←

{
x
∣∣∣x ∈ N p∧ x 6∈〈〉 s′.nonces

}
3: let s′.nonces := s′.nonces +〈〉 n
4: return n,s′

5: end function
The following function, GETNAVIGABLEWINDOW, is called by the browser to

determine the window that is actually navigated when a script in the window s′.w
provides a window reference for navigation (e.g., for opening a link). When it is given a
window reference (nonce) window, GETNAVIGABLEWINDOW returns a pointer to a
selected window term in s′:

• If window is the string _BLANK, a new window is created and a pointer to that
window is returned.
• If window is a nonce (reference) and there is a window term with a reference of

that value in the windows in s′, a pointer w′ to that window term is returned, as
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long as the window is navigable by the current window’s document (as defined by
NavigableWindows above).

In all other cases, w is returned instead (the script navigates its own window).

Algorithm 2 Determine window for navigation.

1: function GETNAVIGABLEWINDOW(w, window, s′)
2: if window≡ _BLANK then . Open a new window when _BLANK is used
3: let n, s′ := TAKENONCE(s′)
4: let w′ := 〈n,〈〉,s′.w.nonce〉
5: let s′.windows := s′.windows +〈〉 w′

↪→ and let w′ be a pointer to this new element in s′

6: return (w′,s′)
7: end if
8: let w′ ← NavigableWindows(w,s′) such that s′.w′.nonce≡ window

↪→ if possible; otherwise return (w,s′)
9: return (w′,s′)

10: end function
The following function takes a window reference as input and returns a pointer to

a window as above, but it checks only that the active documents in both windows are
same-origin. It creates no new windows.

Algorithm 3 Determine same-origin window.

1: function GETWINDOW(w, window, s′)
2: let w′ ← Subwindows(s′) such that s′.w′.nonce≡ window

↪→ if possible; otherwise return (w,s′)
3: if s′.w′.activedocument.origin≡ s′.w.activedocument.origin then
4: return (w′,s′)
5: end if
6: return (w,s′)
7: end function

The next function is used to stop any pending requests for a specific window. From
the pending requests and pending DNS requests it removes any requests with the given
window reference n.

Algorithm 4 Cancel pending requests for given window.

1: function CANCELNAV(n, s′)
2: remove all 〈n,req,key, f 〉 from s′.pendingRequests for any req, key, f
3: remove all 〈x,〈n,message,protocol〉〉 from s′.pendingDNS

↪→ for any x, message, protocol
4: return s′

5: end function
The following function takes an HTTP request message as input, adds cookie and

origin headers to the message, creates a DNS request for the hostname given in the
request and stores the request in s′.pendingDNS until the DNS resolution finishes. For
normal HTTP requests, reference is a window reference. For XHRs, reference is a value
of the form 〈document,nonce〉 where document is a document reference and nonce is
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some nonce that was chosen by the script that initiated the request. protocol is either P
or S. origin is the origin header value that is to be added to the HTTP request.

Algorithm 5 Prepare headers, do DNS resolution, save message.

1: function SEND(reference, message, protocol, origin, s′)
2: if message.host ∈〈〉 s′.sts then
3: let protocol := S

4: end if
5: let cookies := 〈{〈c.name,c.content.value〉|c ∈〈〉 s′.cookies [message.host]

↪→ ∧(c.content.secure =⇒ (protocol = S))}〉
6: let message.headers[Cookie] := cookies
7: if origin 6≡ ⊥ then
8: let message.headers[Origin] := origin
9: end if

10: let n,s′ := TAKENONCE(s′)
11: let s′.pendingDNS[n] := 〈reference,message,protocol〉
12: stop {(s′.DNSaddress : a : 〈DNSResolve,host,n〉)}, s′

13: end function
The following two functions have informally been described in Section 2.5.
The function RUNSCRIPT performs a script execution step of the script in the docu-

ment s′.d (which is part of the window s′.w). A new script and document state is chosen
according to the relation defined by the script and the new script and document state is
saved. Afterwards, the command that the script issued is interpreted. Note that for each
(Line 13) works in a non-deterministic order.

Algorithm 6 Execute a script.

1: function RUNSCRIPT(w, d, s′)
2: let n, s′ := TAKENONCE(s′)
3: let tree := Clean(s′,s′.d)
4: let cookies := 〈{〈c.name,c.content.value〉|c ∈〈〉 s′.cookies

[
s′.d.origin.host

]
↪→ ∧c.content.httpOnly=⊥
↪→ ∧

(
c.content.secure =⇒

(
s′.d.origin.protocol≡ S

))
}〉

5: let tlw← s′.windows such that tlw is the top-level window containing d
6: let sessionStorage := s′.sessionStorage

[
〈s′.d.origin, tlw.nonce〉

]
7: let localStorage := s′.localStorage

[
s′.d.origin

]
8: let secret := s′.secrets

[
s′.d.origin

]
9: let nonces be an infinite subset of

{
x
∣∣∣x ∈ N p∧ x 6∈〈〉 s′.nonces

}
10: let R← script−1(s′.d.script)
11: let in := 〈tree, s′.d.nonce,s′.d.scriptstate, s′.d.scriptinput, cookies,

↪→ localStorage, sessionStorage, s′.ids, secret〉
12: let state′ ← TN ,

↪→ cookies′← Cookies,
↪→ localStorage′← TN ,
↪→ command← TN ,
↪→ out := 〈state′,cookies′, localStorage′, sessionStorage′,command〉
↪→ such that ((in,nonces),out) ∈ R .

13: for each n ∈ dN (〈in,out〉)∩N p do
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14: let s′.nonces := s′.nonces +〈〉 n
15: end for
16: let s′.cookies

[
s′.d.origin.host

]
↪→ := 〈CookieMerge(s′.cookies

[
s′.d.origin.host

]
, cookies′)〉

17: let s′.localStorage
[
s′.d.origin

]
:= localStorage′

18: let s′.sessionStorage
[
〈s′.d.origin, tlw.nonce〉

]
:= sessionStorage′

19: let s′.d.scriptstate := state′

20: switch command do
21: case 〈〉
22: stop {}, s′

23: case 〈HREF,url,hrefwindow〉5
24: let w′, s′ := GETNAVIGABLEWINDOW(w, hrefwindow, s′)
25: let req := 〈HTTPReq,n,GET,url.host,url.path,〈〉,url.params,〈〉〉
26: let s′ := CANCELNAV(s′.w′.nonce,s′)
27: SEND(s′.w′.nonce, req, url.protocol, ⊥, s′)
28: case 〈IFRAME,url,window〉
29: let w′, s′ := GETWINDOW(w,window,s′)
30: let req := 〈HTTPReq,n,GET,url.host,url.path,〈〉,url.params,〈〉〉
31: let n, s′ := TAKENONCE(s′)
32: let w′ := 〈n,〈〉,⊥〉
33: let s′.w′.activedocument.subwindows

↪→ := s′.w′.activedocument.subwindows+〈〉w′

34: SEND(n, req, url.protocol, ⊥, s′)
35: case 〈FORM,url,method,data,hrefwindow〉
36: if method 6∈ {GET,POST} then 6

37: stop {}, s′

38: end if
39: let w′, s′ := GETNAVIGABLEWINDOW(w, hrefwindow, s′)
40: if method = GET then
41: let body := 〈〉
42: let params := data
43: let origin := ⊥
44: else
45: let body := data
46: let params := url.params
47: let origin := s′.d.origin
48: end if
49: let req := 〈HTTPReq,n,method,url.host,url.path,〈〉,params,body〉
50: let s′ := CANCELNAV(s′.w′.nonce,s′)
51: SEND(s′.w′.nonce, req, url.protocol, origin, s′)
52: case 〈SETSCRIPT,window,script〉
53: let w′, s′ := GETWINDOW(w,window,s′)
54: let s′.w′.activedocument.script := script
55: stop {}, s′

5See the definition of URLs in Appendix B.2.
6The working draft for HTML5 allowed for DELETE and PUT methods in HTML5

forms. However, these have since been removed. See http://www.w3.org/TR/2010/
WD-html5-diff-20101019/#changes-2010-06-24.
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56: case 〈SETSCRIPTSTATE,window,scriptstate〉
57: let w′, s′ := GETWINDOW(w,window,s′)
58: let s′.w′.activedocument.scriptstate := scriptstate
59: stop {}, s′

60: case 〈XMLHTTPREQUEST,url,method,data,xhrreference〉
61: if method ∈ {CONNECT,TRACE,TRACK} then
62: stop {}, s′

63: end if
64: if url.host 6≡ s′.d.origin.host

↪→ ∨ url.protocol 6≡ s′.d.origin.protocol then
65: stop {}, s′

66: end if
67: if method ∈ {GET,HEAD} then
68: let data := 〈〉
69: let origin := ⊥
70: else
71: let origin := s′.d.origin
72: end if
73: let req := 〈HTTPReq,n,method,url.host,url.path, ,url.params,data〉
74: SEND(〈s′.d.nonce,xhrreference〉, req, url.protocol, origin, s′)
75: case 〈BACK,window〉 7

76: let w′, s′ := GETNAVIGABLEWINDOW(w, window, s′)
77: if ∃ j ∈ N, j > 1 such that s′.w′.documents. j.active≡> then
78: let s′.w′.documents. j.active := ⊥
79: let s′.w′.documents.( j−1).active := >
80: let s′ := CANCELNAV(s′.w′.nonce,s′)
81: end if
82: stop {}, s′

83: case 〈FORWARD,window〉
84: let w′, s′ := GETNAVIGABLEWINDOW(w, window, s′)
85: if ∃ j ∈ N such that s′.w′.documents. j.active≡>

↪→ ∧ s′.w′.documents.( j+1) ∈Documents then
86: let s′.w′.documents. j.active := ⊥
87: let s′.w′.documents.( j+1).active := >
88: let s′ := CANCELNAV(s′.w′.nonce,s′)
89: end if
90: stop {}, s′

91: case 〈CLOSE,window〉
92: let w′, s′ := GETNAVIGABLEWINDOW(w, window, s′)
93: remove s′.w′ from the sequence containing it
94: stop {}, s′

95: case 〈POSTMESSAGE,window,message,origin〉
96: let w′ ← Subwindows(s′) such that s′.w′.nonce≡ window

7Note that navigating a window using the back/forward buttons does not trigger a reload of
the affected documents. While real world browser may chose to refresh a document in this case,
we assume that the complete state of a previously viewed document is restored.
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97: if ∃ j ∈ N such that s′.w′.documents. j.active≡>
↪→ ∧(origin 6≡ ⊥ =⇒ s′.w′.documents. j.origin≡ origin) then

98: let s′.w′.documents. j.scriptinput
↪→ := s′.w′.documents. j.scriptinput
↪→ +〈〉 〈POSTMESSAGE,s′.w.nonce,s′.d.origin,message〉

99: end if
100: end function

The function PROCESSRESPONSE is responsible for processing an HTTP response
(response) that was received as the response to a request (request) that was sent earlier.
In reference, either a window or a document reference is given (see explanation for
Algorithm 5 above). Again, protocol is either P or S.

The function first saves any cookies that were contained in the response to the browser
state, then checks whether a redirection is requested (Location header). If that is not the
case, the function creates a new document (for normal requests) or delivers the contents
of the response to the respective receiver (for XHR responses).

Algorithm 7 Process an HTTP response.

1: function PROCESSRESPONSE(response, reference, request, protocol, s′)
2: let n,s′ := TAKENONCE(s′)
3: if Set-Cookie ∈ response.headers then
4: for each c ∈〈〉 response.headers [Set-Cookie], c ∈ Cookies do
5: let s′.cookies [request.url.host]

↪→ := AddCookie(s′.cookies [request.url.host] ,c)
6: end for
7: end if
8: if Strict-Transport-Security ∈ response.headers ∧ protocol≡ S then
9: let s′.sts := s′.sts +〈〉 request.host

10: end if
11: if Location ∈ response.headers∧ response.status ∈ {303,307} then 8

12: let url := response.headers [Location]
13: let method′ := request.method 9

14: let body′ := request.body 10

15: if Origin ∈ request.headers then
16: let origin := 〈request.headers[Origin],〈request.host,protocol〉〉
17: else
18: let origin := ⊥

8The RFC for HTTPbis (currently in draft status), which obsoletes RFC 2616, does not specify
whether a POST/DELETE/etc. request that was answered with a status code of 301 or 302 should
be rewritten to a GET request or not (“for historic reasons” that are detailed in Section 7.4.). As
the specification is clear for the status codes 303 and 307 (and most browsers actually follow the
specification in this regard), we focus on modeling these.

9While the standard demands that users confirm redirections of non-safe-methods (e.g.,
POST), we assume that users generally confirm these redirections.

10If, for example, a GET request is redirected and the original request contained a body, this
body is preserved, as HTTP allows for payloads in messages with all HTTP methods, except for
the TRACE method (a detail which we omit). Browsers will usually not send body payloads for
methods that do not specify semantics for such data in the first place.
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19: end if
20: if response.status≡ 303∧ request.method 6∈ {GET,HEAD} then
21: let method′ := GET

22: let body′ := 〈〉
23: end if
24: if @w ∈ Subwindows(s′) such that s′.w.nonce≡ reference then

. Do not redirect XHRs.
25: stop {}, s
26: end if
27: let req := 〈HTTPReq,n,method′,url.host,url.path,〈〉,url.params,body′〉
28: SEND(reference, req, url.protocol, origin, s′)
29: end if
30: if ∃w ∈ Subwindows(s′) such that s′.w.nonce≡ reference then

. normal response
31: let script := π1(response.body)
32: let scriptstate := π2(response.body)
33: let d := 〈n,〈request.host,request.protocol〉,script,scriptstate,〈〉,〈〉,>〉
34: if s′.w.documents≡ 〈〉 then
35: let s′.w.documents := 〈d〉
36: else
37: let i← N such that s′.w.documents.i.active≡>
38: let s′.w.documents.i.active := ⊥
39: remove s′.w.documents.(i+1) and all following documents

↪→ from s′.w.documents
40: let s′.w.documents := s′.w.documents +〈〉 d
41: end if
42: stop {}, s′

43: else if ∃w ∈ Subwindows(s′), d such that s′.d.nonce≡ π1(reference)
↪→ ∧ s′.d = s′.w.activedocument then . process XHR response

44: let s′.d.scriptinput := s′.d.scriptinput +〈〉

〈P,response.body,π2(reference)〉
45: end if
46: end function

Main Algorithm. This is the main algorithm of the browser relation. It was already
presented informally in Section 2.5 and follows the structure presented there. It receives
the message m as input, as well as a, f and s as above.

Algorithm 8 Main Algorithm

Input: (a: f :m),s
1: let s′ := s
2: if s.isCorrupted≡ FULLCORRUPT then
3: let s′.pendingRequests := 〈m,s.pendingRequests〉

. Collect incoming messages
4: let m′ ← dN p(s′)
5: let a′ ← IPs
6: stop {(a′:a:m′)}, s′

7: else if s.isCorrupted≡ CLOSECORRUPT then
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8: let s′.pendingRequests := 〈m,s.pendingRequests〉
. Collect incoming messages

9: let Nclean := N p \{n|n ∈〈〉 s.nonces}
10: let m′ ← dNclean(s′)
11: let a′ ← IPs
12: let s′.nonces := s.nonces
13: stop {(a′:a:m′)}, s′

14: end if
15: let n, s′ := TAKENONCE(s′)
16: if m≡ TRIGGER then . A special trigger message.
17: let switch← {1,2}
18: if switch≡ 1 then . Run some script.
19: let w← Subwindows(s′) such that s′.w.documents 6= 〈〉

↪→ if possible; otherwise stop {}, s′

20: let d := w+〈〉 activedocument
21: RUNSCRIPT(w, d, s′)
22: else if switch≡ 2 then . Create some new request.
23: let w′ := 〈n,〈〉,⊥〉
24: let s′.windows := s′.windows +〈〉 w′

25: let protocol← {P,S}
26: let host← Doms
27: let path← S
28: let parameters← [S×S]
29: let n′, s′ := TAKENONCE(s′)
30: let req := 〈HTTPReq,n′,GET,host,path,〈〉,parameters,〈〉〉
31: SEND(n, req, protocol, ⊥, s′)
32: end if
33: else if m≡ FULLCORRUPT then . Request to corrupt browser
34: let s′.isCorrupted := FULLCORRUPT

35: stop {}, s′

36: else if m≡ CLOSECORRUPT then . Close the browser
37: let s′.secrets := 〈〉
38: let s′.windows := 〈〉
39: let s′.pendingDNS := 〈〉
40: let s′.pendingRequests := 〈〉
41: let s′.sessionStorage := 〈〉
42: let s′.cookies⊂〈〉 Cookies such that

↪→ (c ∈〈〉 s′.cookies)⇐⇒ (c ∈〈〉 s.cookies∧ c.content.session≡⊥)
43: let s′.isCorrupted := CLOSECORRUPT

44: stop {}, s′

45: else if ∃〈reference,request,key, f 〉 ∈〈〉 s′.pendingRequests
↪→ such that π1(decs(m,key))≡ HTTPResp then . Encrypted HTTP response

46: let m′ := decs(m,key)
47: if m′.nonce 6≡ request.nonce then
48: stop {}, s
49: end if
50: remove 〈reference,request,key, f 〉 from s′.pendingRequests
51: PROCESSRESPONSE(m′, reference, request, S, s′)
52: else if π1(m)≡ HTTPResp ∧ ∃〈reference,request,⊥, f 〉 ∈〈〉 s′.pendingRequests

↪→ such that m′.nonce≡ request.key then
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53: remove 〈reference,request,⊥, f 〉 from s′.pendingRequests
54: PROCESSRESPONSE(m, reference, request, P, s′)
55: else if m ∈DNSResponses then . Successful DNS response
56: if m.nonce 6∈ s.pendingDNS then
57: stop {}, s
58: end if
59: let 〈reference,message,protocol〉 := s.pendingDNS[m.nonce]
60: if protocol≡ S then
61: let k,s′ := TAKENONCE(s′)
62: let s′.pendingRequests := s′.pendingRequests

↪→ +〈〉 〈reference, message, k, m.result〉
63: let message := enca(〈message,k〉,s′.keyMapping [message.host])
64: else
65: let s′.pendingRequests := s′.pendingRequests

↪→ +〈〉 〈reference, message, ⊥, m.result〉
66: end if
67: let s′.pendingDNS := s′.pendingDNS−m.nonce
68: stop {(m.result:a:message)}, s′

69: else
70: stop {}, s
71: end if

D General Security Properties of the Web Model

We now formally state and prove the general application independent security properties
of the web which in Section 3 have been sketched only.

Let Web = (W ,S ,script,E0) be a web system. In the following, we write sx = (Sx,Ex)
for the states of a web system.

Definition 31. In what follows, given an atomic process p and a message m, we say
that p emits m in a run ρ= s0,s1, . . . if there is a processing step of the form

su−1 −−−→
p→E

su

for some u ∈ N, a set of events E and some addresses x, y with (x:y:m) ∈ E.

Definition 32. We say that a term t is derivably contained in (a term) t ′ for (a set of DY
processes) P (in a processing step si→ si+1 of a run ρ= s0,s1, . . .) if t is derivable from
t ′ with the knowledge available to P, i.e.,

t ∈ dη({t ′}∪ ς) with η :=
⋃
p∈P

N p and ς :=
⋃

p∈P, j≤i

S j(p) .

Definition 33. We say that a set of processes P leaks a term t (in a processing step
si→ si+1) to a set of processes P′ if there exists a message m that is emitted (in si→ si+1)
by some p ∈ P and t is derivably contained in m for P′ in the processing step si→ si+1.
If we omit P′, we define P′ := W \P. If P is a set with a single element, we omit the set
notation.
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Definition 34. We say that an DY process p created a message m (at some point) in a
run if m is derivably contained in a message emitted by p in some processing step and if
there is no earlier processing step where m is derivably contained in a message emitted
by some DY process p′.

Definition 35. We say that a browser b accepted a message (as a response to some re-
quest) if the browser decrypted the message (if it was an HTTPS message) and called the
function PROCESSRESPONSE, passing the message and the request (see Algorithm 7).

Definition 36. We say that an atomic DY process p knows a term t in some state s =
(S,E) of a run if it can derive the term from its knowledge, i.e., t ∈ dN p(S(p)).

Definition 37. We say that a script initiated a request r if a browser triggered the script
(in Line 12 of Algorithm 6) and the first component of the command output of the script
relation is either HREF, IFRAME, FORM, or XMLHTTPREQUEST such that the browser
issues the request r in the same step as a result.

For a run ρ= s0,s1, . . . of any Web , we state the following lemmas:

Lemma 1. If in the processing step si→ si+1 of a run ρ of Web an honest browser b (I)
emits an HTTPS request of the form

m = enca(〈req,k〉,pub(k′))

(where req is an HTTP request, k is a nonce (symmetric key), and k′ is the private key of
some other DY process u), and (II) in the initial state s0 the private key k′ is only known
to u, and (III) u never leaks k′, then all of the following statements are true:

(1) There is no state of Web where any party except for u knows k′, thus no one except
for u can decrypt req.

(2) If there is a processing step s j → s j+1 where the browser b leaks k to W \ {u,b}
there is a processing step sh→ sh+1 with h < j where u leaks the symmetric key k
to W \{u,b} or the browser is fully corrupted in s j.

(3) The value of the host header in req is the domain that is assigned the public key
pub(k′) in the browsers’ keymapping s0.keymapping (in its initial state).

(4) If b accepts a response (say, m′) to m in a processing step s j→ s j+1 and b is honest
in s j and u did not leak the symmetric key k to W \{u,b} prior to s j, then u created
the HTTPS response m′ to the HTTPS request m, i.e., the nonce of the HTTP request
req is not known to any atomic process p, except for the atomic process b and u.

Proof. (1) follows immediately from the condition. If k′ is initially only known to u and
u never leaks k′, i.e., even with the knowledge of all nonces (except for those of u), k′

can never be derived from any network output of u, k′ cannot be known to any other
party. Thus, nobody except for u can derive req from m.

(2) We assume that b leaks k to W \{u,b} in the processing step s j→ s j+1 without
u prior leaking the key k to anyone except for u and b and that the browser is not fully
corrupted in s j, and lead this to a contradiction.

The browser is honest in si. From the definition of the browser b, we see that the key
k is always chosen from a fresh set of nonces (Line 61 of Algorithm 7) that are not used
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anywhere else. Further, the key is stored in the browser’s state in pendingRequests. The
information from pendingRequests is not extracted or used anywhere else (in particular
it is not accessible by scripts). If the browser becomes closecorrupted prior to s j (and
after si), the key cannot be used anymore (compare Line 9 of Algorithm 8). Hence, b
does not leak k to any other party in s j (except for u and b). This proves (2).

(3) Per the definition of browsers (Algorithm 8), a host header is always contained in
HTTP requests by browsers. From Line 63 of Algorithm 8 we can see that the encryption
key for the request req was chosen using the host header of the message. It is chosen
from the keymapping in the browser’s state, which is never changed during ρ. This
proves (3).

(4) An HTTPS response m′ that is accepted by b as a response to m has to be encrypted
with k. The nonce k is stored by the browser in the pendingRequests state information.
The browser only stores freshly chosen nonces there (i.e., the nonces are not used twice,
or for other purposes than sending one specific request). The information cannot be
altered afterwards (only deleted) and cannot be read except when the browser checks
incoming messages. The nonce k is only known to u (which did not leak it to any other
party prior to s j) and b (which did not leak it either, as u did not leak it and b is honest,
see (2)). The browser b cannot send responses. This proves (4). ut

Corollary 1. In the situation of Lemma 1, as long as u does not leak the symmetric key
k to W \{u,b} and the browser does not become fully corrupted, k is not known to any
DY process p 6∈ {b,u} (i.e., @s′ = (S′,E ′) ∈ ρ: k ∈ dN p(S′(p))).

Lemma 2. If for some si ∈ ρ an honest browser b has a document d in
its state Si(b).windows with the origin 〈dom,S〉 where dom ∈ Domain, and
Si(b).keyMapping[dom] ≡ pub(k) with k ∈ N being a private key, and there is only
one DY process p that knows the private key k in all s j, j ≤ i, then b extracted (in
Line 33 in Algorithm 7) the script in that document from an HTTPS response that was
created by p.

Proof. The origin of the document d is set only once: In Line 33 of Algorithm 7. The
values (domain and protocol) used there stem from the information about the request
(say, req) that led to loading of d. These values have been stored in pendingRequests
between the request and the response actions. The contents of pendingRequests are
indexed by freshly chosen nonces and can never be altered or overwritten (only deleted
when the response to a request arrives). The information about the request req was added
to pendingRequests in Line 62 (or Line 65 which we can exclude as we will see later)
of Algorithm 8. In particular, the request was an HTTPS request iff a (symmetric) key
was added to the information in pendingRequests. When receiving the response to req,
it is checked against that information and accepted only if it is encrypted with the proper
key and contains the same nonce as the request (say, n). Only then the protocol part of
the origin of the newly created document becomes S. The domain part of the origin (in
our case dom) is taken directly from the pendingRequests and is thus guaranteed to be
unaltered.

From Line 63 of Algorithm 8 we can see that the encryption key for the request
req was actually chosen using the host header of the message which will finally be
the value of the origin of the document d. Since b therefore selects the public key
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Si(b).keyMapping[dom] = S0(b).keyMapping[dom]≡ pub(k) for p (the key mapping
cannot be altered during a run), we can see that req was encrypted using a public key
that matches a private key which is only (if at all) known to p. With Lemma 1 we see that
the symmetric encryption key for the response, k, is only known to b and the respective
web server. The same holds for the nonce n that was chosen by the browser and included
in the request. Thus, no other party than p can encrypt a response that is accepted by the
browser b and which finally defines the script of the newly created document. ut

Lemma 3. If in a processing step si → si+1 of a run ρ of Web an honest brow-
ser b issues an HTTP(S) request with the Origin header value 〈dom,S〉 where and
Si(b).keyMapping[dom]≡ pub(k) with k ∈N being a private key, and there is only one
DY process p that knows the private key k in all s j, j ≤ i, then that request was initiated
by a script that b extracted (in Line 33 in Algorithm 7) from an HTTPS response that
was created by p.

Proof. First, we can see that the request was initiated by a script: As it contains an origin
header, it must have been a POST request (see the browser definition in Appendix C.2).
POST requests can only be initiated in Lines 51, 74 of Algorithm 6 and Line 28 of
Algorithm 7. In the latter instance (Location header redirect), the request contains at
least two different origins, therefore it is impossible to create a request with exactly the
origin 〈dom,S〉 using a redirect. In the other two cases (FORM and XMLHTTPRequest),
the request was initiated by a script.

The Origin header of the request is defined by the origin of the script’s document.
With Lemma 2 we see that the content of the document, in particular the script, was
indeed provided by p. ut

E Step-By-Step Description of BrowserID (Primary IdP)

We now present additional details of the implementation of BrowserID. While the basic
steps have been shown in Section 4.2, we will now again refer to Figure 3 and provide
a step-by-step description. As above, for brevity of presentation, we focus on the main
login flow without the CIF, and we leave out steps for fetching additional resources (like
JavaScript files) and some less relevant postMessages and XHRs. Also, we assume that
a typical IdP implementation like the example implementation provided by Mozilla is
used.

We emphasize, however, that our formal model of BrowserID with primary IdPs
(cf. Appendix F) closely follows the full BrowserID implementation (see also Figure 8
on Pages 85 and 86, which is an extended version of Figure 3).

E.1 LPO Sessions

Before we describe the login flow step-by-step, we first introduce LPO sessions.
LPO establishes a session with the browser by setting a cookie browserid_state

(Step 5 in Figure 3) on the client-side. LPO considers such a session authenticated after
having received a valid CAP (Step 22 in Figure 3). In future runs, the user is presented a
list of her email addresses (which is fetched from LPO) in order to choose one address.
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Then, she is asked if she trusts the computer she is using and is given the option to be
logged in for one month or “for this session only” (ephemeral session). In order to use
any of the email addresses, the user is required to authenticate to the IdP responsible
for that address to get an UC issued. If the localStorage (under the origin LPO) already
contains a valid UC, then, however, authentication at the IdP is not necessary.

E.2 Step-By-Step Description

We (again) assume that the user uses a “fresh” browser, i.e., the user has not been logged
in before. The user has already opened a document of some RP (RP-Doc) in her browser.
RP-Doc includes a JavaScript file, which provides the BrowserID API. The user is now
about to click on a login button in order to start a BrowserID login.

Phase i . After the user has clicked on the login button, RP-Doc opens a new browser
window, the login dialog (LD) 1 . The document of LD is loaded from LPO 2 . Now, LD
sends a ready postMessage 3 to its opener, which is RP-Doc. RP-Doc then responds by
sending a request postMessage 4 . This postMessage may contain additional information
like a name or a logo of RP-Doc. LD then fetches the so-called session context from
LPO using 5 . The session context contains information about whether the user is already
logged in at LPO, which, by our assumption, is not the case at this point. The session
context also contains an XSRF protection token which will be sent in all subsequent
POST requests to LPO. Also, an httpOnly cookie called browserid_state is set,
which contains an LPO session identifier. Now, the user is prompted to enter her email
address (login email address), which she wants to use to log in at RP 6 . LD sends the
login email address to LPO via an XHR 7 , in order to get information about the IdP the
email address belongs to. The information from this so-called support document may be
cached at LPO for further use. LPO extracts the domain part of the login email address
and fetches an information document 8 from a fixed path (/.well-known/browserid)
at the IdP. This document contains the public key of IdP, and two paths, the provisioning
path and the authentication path at IdP. These paths will be used later in the login process
by LD. LPO converts these paths into URLs and sends them in its response 9 to the
requesting XHR 7 .

Phase ii . As there is no record about the login email address in the localStorage under
the origin of LPO, the LD now tries to get a UC for this identity. For that to happen,
the LD creates a new iframe, the provisioning iframe (PIF) 10 . The PIF’s document is
loaded 11 from the provisioning URL LD has just received before in 9 . The PIF now
interacts with the LD via postMessages 12 . As the user is currently not logged in, the
PIF tells the LD that the user is not authenticated yet. This also indicates to the LD that
the PIF has finished operation. The LD then closes the PIF 13 .

Phase iii . Now, the LD saves the login email address in the localStorage indexed by
a fresh nonce. This nonce is stored in the sessionStorage to retrieve the email address
later from the localStorage again. Next, the LD navigates itself to the authentication
URL it has received in 9 . The loaded document now interacts with the user and the
IdP 14 in order to establish some authenticated session depending on the actual IdP
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implementation, which is out of scope of the BrowserID standard. For example, during
this authentication procedure, the IdP may issue some session cookie.

Phase iv . After the authentication to the IdP has been completed, the authentication
document navigates the LD to the LD URL again. The LD’s document is fetched again
from LPO and the login process starts over. The following steps are similar to Phase i :
The ready and request postMessages are exchanged and the session context is fetched.
As the user has not been authenticated to LPO yet, the session context still contains
the same information as above in 5 . Now, the user is not prompted to enter her email
address again. The email address is fetched from the localStorage under the index of
the nonce stored in the sessionStorage. Now, the address information is requested again
from LPO.

Phase v . As there still is no UC belonging to the login email address in the localStor-
age, the PIF is created again. As the user now has established an authenticated session
with the IdP, the PIF asks the LD to generate a fresh key pair. After the LD has generated
the key pair 15 , it stores the key pair in the localStorage (under the origin of LPO) and
sends the public key to the PIF as a postMessage 16 . The following steps 17 – 19 are not
specified in the BrowserID protocol. Typically, the PIF would send the public key to IdP
(via an XHR) 17 . The IdP would create the UC 18 and send it back to the PIF 19 . The
PIF then sends the UC to the LD 20 , which stores it in the localStorage. Now, the LD
closes the PIF.

Phase vi . The LD is now able to create a CAP, as it has access to a UC and the
corresponding private key in its localStorage. First, LD creates an IA for LPO 21 . The
IA and the UC is then combined to a CAP, which is then sent to LPO in an XHR POST
message 22 . LPO is now able to verify this CAP with the public key of IdP, which
LPO has already fetched and cached before in 8 . If the CAP is valid, LPO considers its
session with the user’s browser to be authenticated for the email address the UC in the
CAP is issued for.

Phase vii . Now, in 23 , the LD fetches a list of email addresses, which LPO considers to
be owned by the user. If the login email address would not appear in this list, LD would
abort the login process. After this, the LD fetches the address information about the
login email address again in 24 . Using this information, LD validates if the UC is signed
by the correct party (primary/secondary IdP). Now, LD generates an IA for the sender’s
origin of the request postMessage 4 (which was repeated in Phase iv ) using the private
key from the localStorage 25 (the IA is generated for the login email address). Also, it is
recorded in the localStorage that the user is now logged in at RP with this email address.
The LD then combines the IA with the UC stored in the localStorage to the CAP, which
is then sent to RP-Doc in the response postMessage 26 .

This concludes the login process that runs in LD. Afterwards, RP-Doc closes LD 27 .
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F Model of BrowserID with Primary IdPs

We now present the full details of our formal model of BrowserID with primary IdPs and
the fixes discussed in Section 5.3 applied. We consider ephemeral sessions (the default),
which are supposed to last until the browser is closed.

We model the BrowserID system as a web system (in the sense of Section 2). We
call a web system BID = (W ,S ,script,E0) a BrowserID web system if it is of the form
described in what follows.

F.1 Outline

The system W = Hon∪Web∪Net consists of the (network) attacker process attacker,
the web server for LPO, a finite set B of web browsers, a finite set RP of web servers
for the relying parties, and a finite set IDP of web servers for the identity providers,
with Hon := B∪RP∪ IDP∪{LPO}, Web := /0, and Net := {attacker}. DNS servers
are assumed to be dishonest, and hence, are subsumed by attacker. More details on
the processes in W are provided below. Figure 7 shows the set of scripts S and their
respective string representations that are defined by the mapping script. The set E0
contains only the trigger events as specified in Section 2.3.

s ∈ S script(s)

Ratt att_script
script_rp_index script_rp_index
script_lpo_cif script_lpo_cif
script_lpo_ld script_lpo_ld
script_idp_pif script_idp_pif
script_idp_ad script_idp_ad

Fig. 7. List of scripts in S and their respective string representations.

This outlines BID . We will now define the DY processes in BID and their addresses,
domain names, and secrets in more detail.

F.2 Addresses and Domain Names

The set IPs contains for LPO, attacker, every relying party in RP, every identity provider
in IDP, and every browser in B one address each. By addr we denote the corresponding
assignment from a process to its address. The set Doms contains one domain for LPO,
one for every relying party in RP, a finite set of domains for every identity provider in
IDP, and a finite set of domains for attacker. Browsers (in B) do not have a domain.

By addr and dom we denote the assignments from atomic processes to sets of IPs
and Doms, respectively. If dom or addr returns a set with only one element, we often
write dom(x) or addr(x) to refer to the element.
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F.3 Keys and Secrets

The set N of nonces is partitioned into four sets, an infinite set NW , an infinite set KSSL,
an infinite set Ksign, and a finite set Secrets. We thus have

N = NW︸︷︷︸
infinite

∪̇KSSL︸︷︷︸
finite

∪̇Ksign︸︷︷︸
finite

∪̇Secrets︸ ︷︷ ︸
finite

.

The set NW contains the nonces that are available for each DY process in W . It is
partitioned into infinite sets of nonces, one set N p ⊆ NW for every p ∈W .

The set KSSL contains the keys that will be used for SSL encryption. Let
sslkey : Doms→ KSSL be an injective mapping that assigns a (different) private key
to every domain.

The set Ksign contains the keys that will be used by IdPs for signing UCs. Let
signkey : IdPs→ Ksign be an injective mapping that assigns a (different) private key
to every identity provider.

The set Secrets ⊆ N is the set of passwords (secrets) the browsers share with the
identity providers.

F.4 Identities

Indentites are email addresses, which consist of a user name and a domain part. For our
model, this is defined as follows:

Definition 38. An identity (email address) i is a term of the form 〈name,domain〉 with
name ∈ S and domain ∈ Doms.

Let ID be the finite set of identities. By IDy we denote the set {〈name,domain〉 ∈
ID |domain ∈ dom(y)}.

We say that an ID is governed by the DY process to which the domain of the ID
belongs. Formally, we define the mapping governor : ID → W , 〈name,domain〉 7→
dom−1(domain).

The governor of an ID will usually be an IdP, but could also be the attacker. Note that
we omit delegation of authority over domains.

We further define UCs, IAs and CAPs formally:

Definition 39. A (valid) user certificate (UC) uc for a user u with email address id =
〈name,d〉 and public key (verification key) pub(ku), where d ∈ dom(y) is a domain of
the governor y of id and ku is the private key (signing key) of u, is a message of the form
uc = sig(〈〈name,d〉,pub(ku)〉,signkey(y)).

An (valid) identity assertion (IA) ia for an origin o (e.g., 〈example.com,S〉) signed
with the key ku is a message of the form ia = sig(o,ku).

A certificate assertion pair (CAP) is of the form 〈uc, ia〉, with uc and ia as above.11

11Note that the time stamps are omitted both from the UC and the IA. This models that both
certificates are valid indefinitely. In reality, they are valid for a certain period of time, as indicated
by the time stamps. So our modeling is a safe overapproximation.
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Each browser b ∈ B owns a set of secrets (∈ Secrets). Each secret is assigned a set S
of IDs for a specific IdP y such that S⊆ IDy. Browsers have disjoint secrets and secrets
have disjoint sets of IDs. The IdPs of the secrets of a browser are disjoint. An ID i is
owned by a browser b if the identity associated with i belongs to b:

Let ownerOfSecret : Secrets→ B denote the mapping that assigns to each secret the
browser that owns this secret. Let secretOfID : ID→ Secrets denote the mapping that
assigns to each identity the associated secret. Now, we define the mapping ownerOfID :
ID→ B, i 7→ ownerOfSecret(secretOfID(i)), which assigns to each identity the browser
that owns this identity (we say that the identity belongs to the browser).

F.5 Corruption

RPs and IdPs can become corrupted: If they receive the message CORRUPT, they start col-
lecting all incoming messages in their state and (upon triggering) send out all messages
that are derivable from their state and collected input messages, just like the attacker pro-
cess. We say that an RP or IdP is honest if the according part of their state (s.corrupt)
is ⊥, and that they are corrupted otherwise.

We are now ready to define the processes in W as well as the scripts in S in more
detail.

F.6 Processes in W (Overview)

We first provide an overview of the processes in W . All processes in W contain in their
initial states all public keys and the private keys of their respective domains (if any). We
define Ip = {addr(p)} for all p ∈ Hon.

Attacker. The attacker process is a network attacker (see Section 2.3), who uses all
addresses for sending and listening. All parties use the attacker as a DNS server. See
Appendix F.7 for details.

Browsers. Each b ∈ B is a web browser as defined in Section 2.5. The initial state
contains all secrets owned by b, stored under the origin of the respective IdP. See Ap-
pendix F.8 for details.

LPO. LPO is a web server that serves important scripts (script_lpo_cif and
script_lpo_ld) and manages user sessions. See Appendix F.9 for details.

IdPs. Each IdP is a web server. IdPs are modeled following the example implementation
provided by Mozilla. As outlined in Section 4, users can authenticate to the IdP with
their credentials. IdP tracks the state of the users with sessions. Authenticated users can
receive signed UCs from the IdP. When receiving a special message (CORRUPT) IdPs
can become corrupted. Similar to the definition of corruption for the browser, IdPs then
start sending out all messages that are derivable from their state. See Appendix F.11 for
details.

Relying Parties. A relying party r ∈ RP is a web server. The definition of Rr follows
the description in Section 4 and the security considerations in [22] (Cross-site Request
Forgery protection, e.g., by checking origin headers, and HTTPS only with STS enabled).
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RP answers any GET request with the script script_rp_index (see below). When
receiving an HTTPS POST message, RP checks (among others) if the message contains
a valid CAP. For this purpose, all signing keys of the identity providers (see below) are
contained in the initial state of all RPs. If successful, RP responds with an RP service
token for ID i of the form 〈n, i〉, where i∈ ID is the ID for which the CAP was issued and
n is a freshly chosen nonce. The RP r keeps a list of such tokens in its state. Intuitively,
a client having such a token can use the service of r for ID i. See Appendix F.10 for
details. Just like IdPs, RPs can become corrupted.

F.7 Attacker

As mentioned, the attacker attacker is modeled to be a network attacker as specified in
Section 2.3. We allow it to listen to/spoof all available IP addresses, and hence, define
Iattacker = IPs. His initial state is sattacker0 = 〈attdoms,sslkeys,signkeys〉, where attdoms
is a sequence of all domains along with the corresponding private keys owned by the
attacker, sslkeys is a sequence of all domains and the corresponding public keys, and
signkeys is a sequence containing all public signing keys for all IdPs. All other parties
use the attacker as a DNS server.

F.8 Browsers

Each b ∈ B is a web browser as defined in Section 2.5, with Ib := {addr(b)} being its
address.

To define the inital state, first let IDb := ownerOfID−1(b) be the set of all IDs of
b, IDb,d := {i | ∃x : i = 〈x,d〉 ∈ IDb} be the set of IDs of b for a domain d, and
SecretDomainsb := {d | IDb,d 6= /0} be the set of all domains that b owns identities for.

Then, the initial state sb
0 is defined as follows: the key mapping maps every domain to

its public (ssl) key, according to the mapping sslkey; the DNS address is addr(attacker);
the list of secrets contains an entry 〈〈d,S〉,s〉 for each d ∈ SecretDomainsb and s =
secretOfID(i) for some i ∈ IDb,d (s is the same for all i); ids is 〈IDb〉; sts is empty.

F.9 LPO

LPO is a an atomic DY process (ILPO,ZLPO,RLPO,sLPO0 ,NLPO) with the IP address
ILPO = {addr(LPO)}. The initial state sLPO0 of LPO contains the private key of its
domain, and the signing keys of all IdPs (LPO does not need the public ssl keys of other
parties, which is why we omit them from LPO’s initial state.). The definition of RLPO

follows the description of LPO in Appendix E.
HTTP responses by LPO can contain strings representing scripts, namely the script

script_lpo_cif run in the CIF and the script script_lpo_ld run in the LD. These
scripts are defined in Appendix F.12.

Client sessions at LPO. Any party can establish a session at LPO. Such a session
can either be authenticated or unauthenticated. Roughly speaking, a session becomes
authenticated if a client has provided a valid CAP (for the origin of LPO) to LPO
during the session. LPO manages groups of IDs, i.e., lists of email addresses. If a user
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authenticates a session using any ID in the group, she is authenticated for all IDs in the
group. An authenticated session can (non-deterministically) expire, i.e. the authenticated
session can get unauthenticated or it is removed completely. Such an expiration is used
to model a user logout or a session expiration caused by a timeout.

More specifically, a session is identified by a nonce, which is issued by LPO. Each
session is associated with some xsrfToken, which is also a nonce issued by LPO. LPO
stores all information about established sessions in its state as a dictionary indexed by
the session identifier. In this dictionary, for every session LPO stores a pair containing
the xsrfToken and, in authenticated sessions, the sequence of all IDs associated with the
secret provided in the session, or, in unauthenticated sessions, the empty sequence 〈〉
of IDs. On the receiver side (typically a browser) LPO places, by appropriate headers
in its HTTPS responses, a cookie named browserid_state whose value is the session
identifier (a nonce). This cookie is flagged to be a session, httpOnly, and secure cookie.

Before we provide a detailed formal specification of LPO, we first provide an informal
description.

HTTPSRequests to LPO. LPO answers only to certain requests (listed below). In
reality, all such requests have to be over HTTPS, and all responses send by LPO contain
the Strict-Transport-Security header. We overapproximate safely here in omitting
these two requirements from the model.

GET /cif. LPO replies to this request by providing the script script_lpo_cif.
GET /ld. LPO replies to this request by providing the script script_lpo_ld.
GET /ctx. This requests the session context information from LPO. The response

body is of the form 〈loggedIn,xsrfToken〉, where loggedIn is > or ⊥, depending
on whether the user is logged in at LPO or not, and xsrfToken is the token that the
client is supposed to include into the auth request (see below).

POST /auth. With this request, a client can log into LPO. The client has to provide a
sequence of a CAP and an XSRF token. The CAP must be valid and issued for the
origin of LPO.

We define LPO formally as an atomic DY process (ILPO,ZLPO,RLPO,sLPO0 ,NLPO).
As already mentioned, we define ILPO = {addr(LPO)}.

In order to define the set ZLPO of states of LPO, we first define the terms describing
the session context of a session.

Definition 40. A term of the form 〈ids,xsrfToken〉 with ids ⊂〈〉 ID and xsrfToken ∈ N
is called an LPO session context. We denote the set of all LPO session contexts by
LPOSessionCTXs.

Now, we define the set ZLPO of states of LPO as well as the initial state sLPO0 of LPO.

Definition 41. A state s ∈ ZLPO of LPO is a term of the form 〈nonces, sslkey,
signkeys, sessions〉 where nonces ⊂〈〉 N (used nonces), sslkey = sslkey(dom(LPO)),
signkeys is a mapping of domain names to public signing keys of the
form signkeys = 〈{〈d,pub(signkey(y))〉 | y ∈ IdPs, d ∈ dom(y)}〉, and sessions ∈
[N ×LPOSessionCTXs].12

12As mentioned before, the state of LPO does not need to contain public keys.
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The initial state sLPO0 of LPO is a state of LPO with sLPO0 .nonces = 〈〉 and
sLPO0 .sessions= 〈〉.

Example 7. Let k be a private signing key for some identity provider which owns the
domain example.com. A possible state s of LPO may look like this:

s = 〈〈n1, . . . ,nm〉,sslkey(dom(LPO)), [example.com : pub(k)],sessions〉

with

sessions = 〈〈sessionid1,〈〈id′1, . . . , id′l〉,xsrfToken〉〉, . . .〉

We now specify the relation RLPO ⊆ (E ×ZLPO)× (2E ×ZLPO) of LPO. Just like in
Appendix C.2, we describe this relation by a non-deterministic algorithm.

Algorithm 9 Relation of LPO RLPO

Input: (a: f :m),s
1: let s′ := s
2: let sts := 〈Strict-Transport-Security,>〉
3: if m≡ TRIGGER then
4: if s′.sessions≡ 〈〉 then
5: stop {}, s
6: end if
7: let sessionid← {id | id ∈〈〉 s′.sessions}
8: let choice← {logout,expire}
9: if choice≡ logout then

10: let s′.sessions[sessionid].ids := 〈〉
11: else
12: let s′.sessions := s′.sessions − sessionid
13: end if
14: stop {}, s
15: end if
16: let mdec, k such that 〈mdec,k〉 ≡ deca(m,s.sslkey)

↪→ if possible; otherwise stop {}, s
17: let n, method, path, params, headers, body such that

↪→ 〈HTTPReq,n,method,dom(LPO),path,params,headers,body〉 ≡ mdec
↪→ if possible; otherwise stop {}, s

18: if method ≡ GET∧path≡ /cif then . Deliver CIF script
19: let scriptinit := 〈init,⊥,⊥,⊥,⊥,⊥,⊥,〈〉,⊥,⊥〉
20: let m′ := encs(〈HTTPResp,n,200,〈sts〉,〈script_lpo_cif,scriptinit〉〉,k,)
21: stop {( f :a:m′)}, s′

22: else if method ≡ GET∧path≡ /ld then . Deliver LD script
23: let scriptinit := 〈init,⊥,⊥,⊥,⊥,⊥,〈〉,⊥,⊥,⊥〉
24: let m′ := encs(〈HTTPResp,n,200,〈sts〉,〈script_lpo_ld,scriptinit〉〉,k,)
25: stop {( f :a:m′)}, s′

26: else if method ≡ GET∧path≡ /ctx then . Deliver context info.
27: let sessionid := headers[Cookie][browserid_state]
28: if sessionid 6∈〈〉 s.sessions then
29: let sessionid, s′ := TAKENONCE(s′)
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30: let xsrfToken, s′ := TAKENONCE(s′)
31: let s′.sessions := s′.sessions +〈〉 〈sessionid,〈〈〉,xsrfToken〉〉
32: end if
33: let context := 〈⊥,s′.sessions[sessionid].xsrfToken〉
34: if s′.session[sessionid].ids 6≡ 〈〉 then
35: let context.1 := >
36: end if
37: let setCookie := 〈Set-Cookie,〈〈browserid_state,sessionid,>,>,>〉〉〉
38: let headers := 〈sts,setCookie〉
39: let m′ := encs(〈HTTPResp,n,200,headers,context〉,k)
40: stop {( f :a:m′)}, s′

41: else if method ≡ POST∧path≡ /auth then
42: let uc, ia, xsrfToken such that 〈〈uc, ia〉,xsrfToken〉 ≡ body

↪→ if possible; otherwise stop {}, s
43: let sessionid := headers[Cookie][browserid_state]
44: if s′.sessions[sessionid].xsrfToken 6≡ xsrfToken then
45: stop {}, s
46: end if
47: let name, domain, userpubkey such that

↪→ 〈〈name,domain〉,userpubkey〉 ≡ extractmsg(uc)
↪→ if possible; otherwise stop {}, s

48: let id := 〈name,domain〉
49: let origin := extractmsg(ia)
50: if checksig(uc,s.signkeys[domain]) 6≡ >∨ checksig(ia,userpubkey) 6≡ >

↪→ ∨ origin 6≡ 〈s.domain,S〉 then
51: stop {}, s
52: end if
53: if s′.sessions[sessionid].ids≡ 〈〉 then
54: if 6 ∃n ∈ N such that id ∈〈〉 s′.idgroups.n then
55: let s′.idgroups := s′.idgroups +〈〉 〈id〉
56: end if
57: let n← N such that id ∈〈〉 s′.idgroups.n
58: else
59: let n← N such that s′.idgroups.n≡ s′.sessions[sessionid].ids

↪→ if possible; otherwise stop {}, s
60: if id 6∈〈〉 s′.idgroups.n then
61: let s′.idgroups.n := s′.idgroups.n +〈〉 〈name,domain〉
62: end if
63: end if
64: let s′.sessions[sessionid].ids := s′.idgroups.n
65: let m′ := encs(〈HTTPResp,n,200,〈sts〉,>〉,k)
66: stop {( f :a:m′)}, s′

67: end if
68: stop {}, s

F.10 Relying Parties
A relying party r ∈ RP is a web server modeled as an atomic DY process
(Ir,Zr,Rr,sr

0,N
r) with the address Ir := {addr(r)}. Its initial state sr

0 contains its do-
main, the private key associated with its domain, the DNS server address, and the
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signing keys of all IdPs.13 The full state additionally contains the set of service tokens
the RP has issued. The definition of Rr again follows the description in Appendix E. RP
accepts only HTTPS requests.

In a typical flow with one client, r will first receive an HTTP GET request. In this
case, it returns the script script_rp_index (see Appendix F.12 below) and sets the
Strict-Transport-Security header.

Afterwards, it will receive an HTTPS POST request. Provided that the message con-
tains a CAP, r checks that the UC and IA are valid and matching, and that the IA contains
the Origin of r (with HTTPS). If the check is successful, r creates a new RP service
token for the identity i, 〈n, i〉, and sends it to the browser. The RP keeps a list of such
tokens in its state. Intuitively, a client in possession of such a token can use the service
of r for ID i (e.g., access data of i at r).

We now provide the formal definition of r as an atomic DY process (Ir,Zr,Rr,sr
0,N

r).
As mentioned, we define Ir = {addr(r)}. Next, we define the set Zr of states of r and
the initial state sr

0 of r.

Definition 42. A state s ∈ Zr of an RP r is a term of the form 〈nonces, domain, sslkey,
signkeys, serviceTokens, corrupt〉where nonces⊂〈〉N (used nonces), domain= dom(r),
sslkey = sslkey(dom(r)), signkeys = 〈{〈d,pub(signkey(y))〉 | y ∈ IdPs, d ∈ dom(y)}〉
(same as for LPO), serviceTokens ∈ [N ×S], corrupt ∈ TN .

The initial state sr
0 of r is a state of r with sr

0.nonces= sr
0.serviceTokens= 〈〉 and

sr
0.corrupt=⊥.

We now specify the relation Rr ⊆ (E×Zr)×(2E×Zr) of r. Just like in Appendix C.2,
we describe this relation by a non-deterministic algorithm. We note that we use the
function TAKENONCE introduced in Section C.2 for this purpose.

Algorithm 10 Relation of a Relying Party Rr

Input: (a: f :m),s
1: let s′ := s
2: if s′.corrupt 6≡ ⊥∨m≡ CORRUPT then
3: let s′.corrupt := 〈〈a, f ,m〉,s′.corrupt〉
4: let m′ ← dN p(s′)
5: let a′ ← IPs
6: stop {(a′:a:m′)}, s′

7: end if
8: let sts := 〈Strict-Transport-Security,>〉
9: let mdec, k such that 〈mdec,k〉 ≡ deca(m,s.sslkey)

↪→ if possible; otherwise stop {}, s
10: let n, method, path, params, headers, body such that

↪→ 〈HTTPReq,n,method,s.domain,path,params,headers,body〉 ≡ mdec
↪→ if possible; otherwise stop {}, s

11: if method ≡ GET then . Deliver CIF script
12: let scriptinit := 〈init,⊥,⊥,⊥,〈〉,〈〉,⊥〉
13: let m′ := encs(〈HTTPResp,n,200,〈sts〉,〈script_rp_index,scriptinit〉〉,k)

13We add the IdP verification keys to the initial status (instead of having RPs retrieve them
dynamically from the IdP) in order to reduce the overall complexity.
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14: stop {( f :a:m′)}, s′

15: else if method ≡ POST∧headers≡ 〈Origin,〈s.domain,S〉〉 then
16: let uc, ia such that 〈uc, ia〉 ≡ body if possible; otherwise stop {}, s
17: let name, domain, userpubkey such that

↪→ 〈〈name,domain〉,userpubkey〉 ≡ extractmsg(uc)
↪→ if possible; otherwise stop {}, s

18: let id := 〈name,domain〉
19: let origin := extractmsg(ia)
20: if checksig(uc,s.signkeys[domain]) 6≡ >∨ checksig(ia,userpubkey) 6≡ >∨

↪→ origin 6≡ 〈s.domain,S〉 then
21: stop {}, s
22: end if
23: let ntoken, s′ := TAKENONCE(s′)
24: let s′.serviceTokens := s′.serviceTokens +〈〉 〈ntoken, id〉
25: let m′ := encs(〈HTTPResp,n,200,〈sts〉,〈ntoken, id〉〉,k)
26: stop {( f :a:m′)}, s′

27: end if

F.11 Identity Providers

An identity provider i ∈ IdPs is a web server modeled as an atomic process
(Ii,Zi,Ri,si

0,N
i) with the address Ii := {addr(i)}. Its initial state si

0 contains a list of
domains and (private) SSL keys (see below), a list of users and identites (see below),
and a private key for signing UCs. Besides this, the full state of i further contains a list
of used nonces, and information about active sessions.

Sessions are structured as a dictionary: For each session identifier (session ID) the
dictionary contains the list of identities for which the session is authenticated.

IdPs, in our model, only accept SSL connections. Thus, after receiving a request, an
IdP first decodes the message. It then checks whether a valid session ID is contained
in the cookie that was sent with the request. If there is no such ID, a new session with
a freshly chosen session ID is created. IdP saves this ID into its list of active sessions,
along with the initial session data (an empty list of authenticated identities). A Set-
Cookie header is added to IdPs response to the browser in order to add the session
cookie to the client’s cookie store.

The IdP then checks the method and the path of the request and acts as follows:
If the method is GET, IdP serves, depending on the path, the provisioning iframe

(script_idp_pif) or the authentication dialog (script_idp_ad) defined in Ap-
pendix F.12.

If the method is POST, the IdP can either authenticate the user or sign a UC. In the
first case, IdP extracts the identity of the user (an email address) and the user’s secret
from the request. If the secret and the identity are found in the user database, the session
is considered to be logged in for all identities associated with this secret. In the second
case (signing UC), the IdP extracts the user’s identity and the public key of the user
from the request. If the session is considered to be logged in for this identity, the IdP
creates a UC and signs it with its signing key before sending it to the user.

Formal description. In the following, we will first define the (initial) state of i formally
and afterwards present the definition of the relation Ri.
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To define the initial state, we will need a term that represents the “user database” of
the IdP i. We will call this term userseti. This database defines, which secret is valid
for which set of identities. It is encoded as a mapping of secrets to lists of identities for
which these secrets are valid. For example, if the secret secret1 is valid for the identites
id1 and id2 and the secret secret2 is valid for the identities id3 and id4, the userseti looks
as follows:

userseti = [secret1:〈id1, id2〉,secret2:〈id3, id4〉]

To define userseti (for the identity provider i), we first define the set
Secretsi =

⋃
j∈IDi secretOfID( j), the function IDsofSecret : Secrets→ ID, s 7→ { j | j ∈

ID, secretOfID( j) = s}, and finally userseti = 〈{〈s,〈IDsofSecret(s)〉〉 |s ∈ Secretsi}〉.
We also need a term that represents a dictionary that maps domains to (private) SSL

keys of the IdP i. We define sslkeysi = 〈{〈d,sslkey(d)〉 | d ∈ dom(i)}〉.

Definition 43. A state s ∈ Zi of an IdP i is a term of the form 〈nonces, sslkeys, users,
signkey, sessions, corrupt〉 where nonces ⊂〈〉 N (used nonces), sslkeys = sslkeysi,
users = userseti, signkey ∈ N (the key used by the IdP i to sign UCs), sessions ∈[
N ×TN

]
, corrupt ∈ TN .

The initial state si
0 of i is the state 〈〈〉,sslkeysi,userseti,signkey(i),〈〉,⊥〉.

The relation Ri that defines the behavior of the IdP i is defined as follows:

Algorithm 11 Relation of IdP Ri

Input: (a: f :m),s
1: let s′ := s
2: if s′.corrupt 6≡ ⊥∨m≡ CORRUPT then
3: let s′.corrupt := 〈〈a, f ,m〉,s′.corrupt〉
4: let m′ ← dN p(s′)
5: let a′ ← IPs
6: stop {(a′:a:m′)}, s′

7: end if
8: let sts := 〈Strict-Transport-Security,>〉
9: let mdec, k, k′, inDomain such that

↪→ 〈mdec,k〉 ≡ deca(m,k′)∧〈inDomain,k′〉 ∈ s.sslkeys
↪→ if possible; otherwise stop {}, s

10: let n, method, path, params, headers, body such that
↪→ 〈HTTPReq,n,method, inDomain,path,params,headers,body〉 ≡ mdec
↪→ if possible; otherwise stop {}, s

11: if method ≡ POST then
12: if path 6≡ /certreq then . User logs in.
13: let id, secret such that 〈id,secret〉 ≡ body

↪→ if possible; otherwise stop {}, s
14: if headers 6≡ 〈Origin,〈inDomain,S〉〉 then
15: stop {}, s
16: end if
17: let ids := s.users[secret]
18: if ids≡ 〈〉∨ id ≡ 〈〉∨ id 6∈〈〉 ids then . Check id/secret pair.
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19: stop {}, s
20: end if
21: let sessionid, s′ := TAKENONCE(s′)
22: let s′.sessions[sessionid] := ids
23: let setCookie := 〈Set-Cookie,〈〈sessionid,sessionid,>,>,>〉〉〉
24: let m′ := encs(〈HTTPResp,n,200,〈sts,setCookie〉,>〉,k)
25: stop {( f :a:m′)}, s′

26: else . User wants a certificate.
27: let id, pubkey such that 〈id,pubkey〉 ≡ body

↪→ if possible; otherwise stop {}, s
28: let sessionid := headers[Cookie][sessionid]
29: if id 6∈〈〉 s′.sessions[sessionid] then . Check if user is logged in.
30: stop {}, s
31: end if
32: let uc := sig(〈id,pubkey〉,s.signkey)
33: let m′ := encs(〈HTTPResp,n,200,〈sts〉,uc〉,k)
34: stop {( f :a:m′)}, s′

35: end if
36: else
37: if path≡ /pif then
38: let m′ := encs(〈HTTPResp,n,200,〈sts〉,〈script_idp_pif,

↪→ 〈init,〈〉,〈〉,〈〉,⊥,⊥,⊥〉〉〉,k)
39: else
40: let m′ := encs(〈HTTPResp,n,200,〈sts〉,〈script_idp_ad,〈〉〉〉,k)
41: end if
42: stop {( f :a:m′)}, s′

43: end if
44: stop {}, s

F.12 BrowserID Scripts

As already mentioned in Section F.1, the set S of the web system BIDprimary =
(W ,S ,script,E0) consists of the scripts Ratt, script_rp_index, script_lpo_cif ,
script_lpo_ld, script_idp_pif , and script_idp_ad with their string representa-
tions being att_script, script_rp_index, script_lpo_cif, script_lpo_ld,
script_idp_pif, and script_idp_ad (defined by script).

The script Ratt is the attacker script (see Section 2.3). The formal model of the other
scripts follows the description in Appendix E. The script script_rp_index defines the
script of the RP index page. In reality, this page has its own script(s) and includes a script
from LPO. In our model, we combine both scripts into script_rp_index. In particular,
this script is responsible for creating the CIF and the LD iframes/subwindows, whose
contents are loaded from LPO.

In what follows, the scripts script_rp_index, script_lpo_cif , and script_lpo_ld are
defined formally. First, we introduce some notation and helper functions.

Notations and Helper Functions. In the formal description of the scripts we use an
abbreviation for URLs at LPO. We write URLLPOpath to describe the following URL term:
〈URL,S,dom(LPO),path,〈〉〉. Also, we call originLPO the origin of LPO which describes
the following origin term: 〈dom(LPO),S〉.
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In order to simplify the description of the scripts, several helper functions are used.

CHOOSEINPUT. As explained in Section 2.5, the state of a document contains a term,
say, scriptinputs, which records the input this document has obtained so far (via XHRs
and postMessages). If the script of the document is activated, it will typically need to
pick one input message from scriptinputs and record which input it has already pro-
cessed. For this purpose, the function CHOOSEINPUT(s′,scriptinputs) is used, where
s′ denotes the scripts current state. It saves the indexes of already handled messages
in the scriptstate s′ and chooses a yet unhandled input message from scriptinputs. The
index of this message is then saved in the scriptstate (which is returned to the script).

Algorithm 12 Choose an unhandled input message for a script

1: function CHOOSEINPUT(s′,scriptinputs)
2: let iid such that iid ∈ {1, · · · , |scriptinputs|}∧ iid 6∈〈〉 s′.handledInputs

↪→ if possible; otherwise return (⊥,s′)
3: let input := πiid(scriptinputs)
4: let s′.handledInputs := s′.handledInputs+〈〉 iid
5: return (input,s′)
6: end function

PARENTWINDOW. To determine the nonce referencing the parent window in the brow-
ser, the function PARENTWINDOW(tree,docnonce) is used. It takes the term tree,
which is the (partly cleaned) tree of browser windows the script is able to see and the
document nonce docnonce, which is the nonce referencing the current document the
script is running in, as input. It outputs the nonce referencing the window which directly
contains in its subwindows the window of the document referenced by docnonce. If
there is no such window (which is the case if the script runs in a document of a top-level
window), PARENTWINDOW returns ⊥.

SUBWINDOWS. This function takes a term tree and a document nonce docnonce
as input just as the function above. If docnonce is not a reference to a document
contained in tree, then SUBWINDOWS(tree,docnonce) returns 〈〉. Otherwise, let
〈docnonce, origin, script, scriptstate, scriptinput, subwindows, active〉 denote the
subterm of tree corresponding to the document referred to by docnonce. Then,
SUBWINDOWS(tree,docnonce) returns subwindows.

AUXWINDOW. This function takes a term tree and a document nonce docnonce as input
as above. From all window terms in tree that have the window containing the document
identified by docnonce as their opener, it selects one non-deterministically and returns
its nonce. If there is no such window, it returns the nonce of the window containing
docnonce.

OPENERWINDOW. This function takes a term tree and a document nonce docnonce
as input as above. It returns the window nonce of the opener window of the window
that contains the document identified by docnonce. Recall that the nonce identifying the
opener of each window is stored inside the window term. If no document with nonce
docnonce is found in the tree tree, ♦ is returned.

GETWINDOW. This function takes a term tree and a document nonce docnonce as input
as above. It returns the nonce of the window containing docnonce.
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GETORIGIN. The function GETORIGIN(tree,docnonce) extracts the origin of a docu-
ment. It searches for the document with the identifier docnonce in the (cleaned) tree tree
of the browser’s windows and documents. It returns the origin o of the document. If no
document with nonce docnonce is found in the tree tree, ♦ is returned.

Web storage under LPO’s origin. The web storage under the origin of LPO used by
the scripts script_lpo_cif and script_lpo_ld (see below) is organized as follows:

The localStorage is a dictionary. There are two types of entries in this dictionary:
Under the key siteInfo, a dictionary is stored which has origins as keys and IDs as
values. An entry in this dictionary indicates that the user is logged in at the referenced
origin with a certain ID. The second type of entry has a nonce as a key. The value is an
email address (ID). This models the email address a user entered in the LD before being
navigated away to the AD. The nonce is also stored in the sessionStorage (see below).

Example 8.
〈〈siteInfo,〈〈〈domainRP1,S〉, id1〉,

〈〈domainRP2,S〉, id1〉,
〈〈domainRP3,S〉, id2〉〉〉,

〈n1, id1〉,
〈n2, id3〉〉

This example shows a localStorage under the origin of LPO, indicating that the user
is logged in at domainRP1 and domainRP2 with id1 and at domainRP3 with id2 (using
HTTPS). Further, the nonces n1 and n2 each refer to an email address which the user
entered in the LD.

The sessionStorage is also a dictionary. It may only contain one key, idpnonce. Its
value is a nonce (like n1 or n2 in the example above) which references the latest email
address entry in the localStorage (see above).

login.persona.org Communication Iframe Script (script_lpo_cif). As defined in Sec-
tion 2.3, a script is a relation that takes as input a term and a set of nonces it may use. It
outputs a new term. As specified in Section 2.5 (Triggering the Script of a Document
(m = TRIGGER, action = 1)) and formally specified in Algorithm 6, the input term is
provided by the browser. It contains the current internal state of the script (which we
call scriptstate in what follows) and additional information containing all browser state
information the script has access to, such as the input the script has obtained so far
via XHRs and postMessages, information about windows, etc. The browser expects the
output term to have a specific form, as also specified in Section 2.5 and Algorithm 6.
The output term contains, among other information, the new internal scriptstate.

As for script_lpo_cif , this script models the script run in the CIF, as sketched in
Appendix E.

We first describe the structure of the internal scriptstate of the script script_lpo_cif .

Definition 44. A scriptstate s of script_lpo_cif is a term of the form 〈q, requestOrigin,
loggedInUser, pause, context, key, uc, handledInputs, refXHRctx, PIFindex〉 where
q ∈ S, requestOrigin ∈ Origins∪{⊥}, loggedInUser ∈ ID∪{〈〉,⊥}, pause ∈ {>,⊥},
context ∈ TN , key ∈ N ∪{⊥}, uc ∈ TN , handledInputs ⊂〈〉 N, refXHRctx ∈ N ∪{⊥},
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PIFindex ∈ N∪ {⊥}. The initial scriptstate initStatecif of script_lpo_cif is the state
〈init,⊥,⊥,⊥,⊥,⊥,⊥,〈〉,⊥,⊥〉.

Before we provide the formal specification of the relation that defines the behavior
of script_lpo_cif , we present an informal description. The behavior mainly depends on
the state q the script is in.

q = init This is the initial state. Its only transition handles no input and outputs a
postMessage cifready to its parent window and transitions to default.

q = default This is the state to which script_lpo_cif always returns to. This state
handles all postMessages the CIF expects to receive from its parent window. If the
postMessage received was sent from the parent window of the CIF, it behaves as
follows, depending on the first element of the received postMessage:
postMessage loaded The script records the sender’s origin of the received post-

Message as the remote origin in the scriptstate if the scriptstate did not contain
any information about the remote origin yet. Also, an ID, which represents
the assumption of the sender on who it believes to be logged in, is saved in
the scriptstate. If the pause flag in the scriptstate is > it transitions to the state
default. Otherwise, it is checked, if the current context in the scriptstate is ⊥.
If the check is true, the script transitions to the state fetchContext, or to the
state checkAndEmit otherwise.

postMessage dlgRun The script sets the pause flag in the scriptstate to > and
transitions to default.

postMessage dlgCmplt The script sets the pause flag in the scriptstate to ⊥. It
then transitions to the state fetchContext.

postMessage loggedInUser This message has to contain an ID. This ID is saved
in the scriptstate and then the script transitions to default.

postMessage logout The script removes the entry for the RP (recorded in the
scriptstate) from the localStorage and then transitions to the state sendLogout.
If no remote origin is set in the script’s state, it is now set to the sender’s origin
of the received postMessage.

q = fetchContext In this state, the script sends an XHR to LPO with a GET request
to the path /ctx and then transitions to the state receiveContext.

q = receiveContext In this state, the script expects an XHR response as input con-
taining the session context. This context is saved as the current context in the script-
state. The script transitions to checkAndEmit.

q = checkAndEmit This state lets the script create the provisioning iframe and transi-
tion to startPIF iff (1) some email address is marked as logged in at RP in the
localStorage, (2) if an email address is recorded in the current scriptstate, this email
address differs from the one recorded in the localStorage, and (3) the user is marked
as logged in in the current context. Otherwise, if the email address recorded in
the current scriptstate is 〈〉, the script transitions to default, else it transitions to
sendLogout.

q = startPIF In this state, the script waits for a postMessage from the PIF containing
a ping message. If such a message is received and the sender’s window and origin
match the PIF, the script sends a pong message back to the PIF and transitions to
the state runPIF.

61



q = runPIF This is the state in which script_lpo_cif interacts with the PIF. This
state handles all postMessages the CIF expects to receive from the latest PIF (as
recorded in PIFindex in its state). If the postMessage received was sent from the
PIF’s window and the PIF’s origin, it behaves as follows, depending on the first
element of the postMessage:
postMessage beginProvisioning The script responds with a postMessage to the

PIF containing the email address of the identity which is to authenticate to the
relying party (as recorded in the CIF’s state).

postMessage genKeyPair The script creates a fresh key pair (i.e. the CIF chooses
a fresh nonce) and sends the public key contained in a postMessage to the PIF.

postMessage registerCertificate The script stores the UC received in this
postMessage in the CIF’s state and transitions to the state createCAPforRP.

postMessage raiseProvisioningFailure This message indicates that no one
is logged in. This is recorded in the CIF’s state accordingly. The script transi-
tions to the state sendLogout in which the CIF’s parent window will be notified
that no one is logged in.

q = createCAPforRP In this state, the script creates an IA for the request origin (as
recorded in the script’s state), combines the IA with the UC to a CAP, and sends the
CAP in a postMessage to its parent restricting the receiver to the request origin.

q = sendLogout In this state, the script sends a logout postMessage to the parent
document and then transitions to the default state.

We now specify the relation script_lpo_cif ⊆ (TN × 2N )×TN of the CIF’s script-
ing process formally. Just like in Appendix C.2, we describe this relation by a non-
deterministic algorithm.

Just like all scripts, as explained in Section 2.5 (see also Algorithm 6 for the formal
specification), the input term this script obtains from the browser contains the cleaned
tree of the browser’s windows and documents tree, the nonce of the current document
docnonce, its own scriptstate scriptstate (as defined in Definition 44), a sequence of all
inputs scriptinput (also containing already handled inputs), a dictionary cookies of all
accessible cookies of the document’s domain, the localStorage localStorage belonging
to the document’s origin, the secrets secret of the document’s origin, and a set nonces
of fresh nonces as input. The script returns a new scriptstate s′, a new set of cookies
cookies′, a new localStorage localStorage′, and a term command denoting a command
to the browser.

Algorithm 13 Relation of script_lpo_cif

Input: 〈tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage,
↪→ ids, secret〉, nonces
1: let s′ := scriptstate
2: let cookies′ := cookies
3: let localStorage′ := localStorage
4: let sessionStorage′ := sessionStorage
5: switch s′.q do
6: case init
7: let command := 〈POSTMESSAGE, PARENTWINDOW(tree,docnonce),

↪→ 〈cifready,〈〉〉, ⊥〉
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8: let s′.q := default

9: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
10: case default
11: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
12: if π1(input)≡ POSTMESSAGE then
13: let senderWindow := π2(input)
14: let senderOrigin := π3(input)
15: let m := π4(input)
16: if senderWindow≡ PARENTWINDOW(tree,docnonce) then
17: switch m do
18: case 〈loaded, id〉
19: if s′.requestOrigin≡⊥ then
20: let s′.requestOrigin := senderOrigin
21: end if
22: let s′.loggedInUser := id
23: if s′.pause≡> then
24: stop 〈s′,cookies′, localStorage′,sessionStorage′,〈〉〉
25: else if s′.context≡⊥ then
26: let s′.q := fetchContext

27: stop 〈s′,cookies′, localStorage′,sessionStorage′,〈〉〉
28: else
29: let s′.q := checkAndEmit

30: stop 〈s′,cookies′, localStorage′,sessionStorage′,〈〉〉
31: end if
32: case 〈dlgRun,〈〉〉
33: let s′.pause := >
34: stop 〈s′,cookies′, localStorage′,sessionStorage′,〈〉〉
35: case 〈dlgCmplt,〈〉〉
36: let s′.pause := ⊥
37: let s′.q := fetchContext

38: stop 〈s′,cookies′, localStorage′,sessionStorage′,〈〉〉
39: case 〈loggedInUser, id〉
40: let s′.loggedInUser := id
41: stop 〈s′,cookies′, localStorage′,sessionStorage′,〈〉〉
42: case 〈logout,〈〉〉
43: if s′.requestOrigin≡⊥ then
44: let s′.requestOrigin := senderOrigin
45: end if
46: let s′.loggedInUser := ⊥
47: remove the element with key s′.requestOrigin

↪→ from the dictionary localStorage′[siteInfo]
48: let s′.q := sendLogout

49: end if
50: end if
51: case fetchContext
52: let s′.refXHRctx← nonces
53: let command := 〈XMLHTTPREQUEST,URLLPO/ctx,GET,〈〉,s

′.refXHRctx〉
54: let s′.q := receiveContext
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55: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
56: case receiveContext
57: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
58: if (π1(input)≡ XMLHTTPREQUEST)∧ (π3(input)≡ s′.refXHRctx) then
59: let s′.context := π2(input)
60: let s′.q := checkAndEmit

61: stop 〈s′,cookies′, localStorage′,sessionStorage′,〈〉〉
62: end if
63: case checkAndEmit
64: let s′.email := localStorage′[siteInfo][s′.requestOrigin]
65: if (s′.email 6≡ 〈〉)

↪→ ∧(s′.loggedInUser /∈ {〈〉,⊥}⇒ (s′.loggedInUser 6≡ s′.email))
↪→ ∧(π1(s′.context)≡>) then

66: let s′.q := startPIF

67: let url := 〈URL,S,π2(s′.email),/pif〉
68: let s′.PIFindex := |subwindows|+1

. Index of the next subwindow to be created.
69: let command := 〈IFRAME,url,_SELF〉
70: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
71: else if s′.loggedInUser≡ 〈〉 then
72: let s′.q := default

73: stop 〈s′,cookies′, localStorage′,sessionStorage′,〈〉〉
74: else
75: let s′.q := sendLogout

76: stop 〈s′,cookies′, localStorage′,sessionStorage′,〈〉〉
77: end if
78: case startPIF
79: let idpOrigin := 〈π2(s′.email),S〉
80: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
81: let pifNonce := πs′.PIFindex(subwindows).nonce
82: if π1(input)≡ POSTMESSAGE then
83: let senderWindow := π2(input)
84: let senderOrigin := π3(input)
85: let m := π4(input)
86: if m≡ ping∧ senderWindow≡ pifNonce

↪→ ∧senderOrigin≡ idpOrigin then
87: let command := 〈POSTMESSAGE,pifNonce,pong, idpOrigin〉
88: let s′.q := runPIF

89: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
90: end if
91: end if
92: case runPIF
93: let idpOrigin := 〈π2(s′.email),S〉
94: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
95: let pifNonce := πs′.PIFindex(subwindows).nonce
96: if π1(input)≡ POSTMESSAGE then
97: let senderWindow := π2(input)
98: let senderOrigin := π3(input)
99: let m := π4(input)
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100: if senderWindow≡ pifNonce∧ senderOrigin≡ idpOrigin then
101: switch π1(m) do
102: case beginProvisioning
103: let jschannel_nonce := π2(m)
104: let command := 〈POSTMESSAGE, pifNonce,

↪→ 〈 jschannel_nonce,s′.email〉, idpOrigin〉
105: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
106: case genKeyPair
107: let jschannel_nonce := π2(m)
108: let s′.key← nonces
109: let command := 〈POSTMESSAGE, pifNonce,

↪→ 〈 jschannel_nonce,pub(s′.key)〉, idpOrigin〉
110: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
111: case registerCertificate
112: if π1(extractmsg(π2(m)))≡ s′.email∧ s′.email 6≡ 〈〉 then

. This check is our fix against identity injection.
113: let s′.uc := π2(m)
114: let s′.q := createCAPforRP

115: end if
116: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
117: case raiseProvisioningFailure
118: let s′.loggedInUser := ⊥
119: let s′.q := sendLogout

120: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
121: end if
122: end if
123: case createCAPforRP
124: let ia := sig(s′.requestOrigin,s′.key)
125: let cap := 〈s′.uc, ia〉
126: let command := 〈POSTMESSAGE, PARENTWINDOW(tree,docnonce),

↪→ 〈response,cap〉, s′.requestOrigin〉
127: let s′.q := null

128: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
129: case sendLogout
130: let command := 〈POSTMESSAGE, PARENTWINDOW(tree,docnonce),

↪→ 〈logout,〈〉〉, ⊥〉
131: let s′.q := default

132: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
133: stop 〈scriptstate,cookies, localStorage,sessionStorage,〈〉〉

login.persona.org Login Dialog Script (script_lpo_ld). This script models the LD
contents. Its formal specification, presented next, follows the one presented above for
script_lpo_cif .

Definition 45. A scriptstate s of script_lpo_ld is a term of the form 〈q, requestOrigin,
context, email, key, uc, handledInputs, refXHRctx, refXHRLPOauth, PIFindex〉 with q∈
S, requestOrigin ∈ Origins∪ {⊥}, context ∈ TN , email ∈ ID∪ {⊥}, key ∈ N ∪ {⊥},
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uc ∈ TN , handledInputs ⊂〈〉 N, refXHRctx,refXHRLPOauth ∈ N ∪ {⊥}, PIFindex ∈
N∪{⊥}. The initial scriptstate initStateld is the state 〈init,⊥,⊥,⊥,⊥,⊥,〈〉,⊥,⊥,⊥〉.

Before we provide the formal specification of the relation that defines the behavior of
script_lpo_ld, we present an informal description. The behavior mainly depends on the
state q the script is in.

q≡ init This is the initial state. Its only transition takes no input and outputs a post-
Message ldready to its parent window and transitions to start.

q≡ start In this state, the script expects a request postMessage. The sender’s origin
of this postMessage is recorded as the requesting origin in the scriptstate. An XHR
is sent to LPO with a GET request to the path /ctx and then the script transitions to
the state receiveContext.

q≡ receiveContext In this state, the script expects an XHR response as input con-
taining the session context. This context is saved as the current context in the script-
state. The script checks if an idpNonce is recorded in the sessionStorage. The
presence of this nonce indicates that there was a run of script_lpo_ld in the
same window previously. Indexed by this nonce, there can be an email address
(identity) recorded in the localStorage which is then copied to the script’s state. Oth-
erwise an email address is non-deterministically choosen (and copied to the script’s
state) out of the email addresses owned by the browser.
The script now always issues the command to create an iframe, the PIF. The URL
for the PIF is determined by the domain of the email address now recorded in the
state. The script then transitions to the state startPIF.

q = startPIF In this state, the script waits for a postMessage from the PIF containing
a ping message. If such a message is received and the sender’s window and origin
match the PIF, the script sends a pong message back to the PIF and transitions to
the state runPIF.

q = runPIF This is the state in which script_lpo_ld interacts with the PIF. This
state handles all postMessages the LD expects to receive from the latest PIF (as
recorded in PIFindex in its state). If the postMessage received was sent from the
PIF’s window and the PIF’s origin, it behaves as follows, depending on the first
element of the received postMessage:
postMessage beginProvisioning The script responds with a postMessage to the

PIF containing the email address of the identity which is to authenticate to the
relying party (as recorded in the LD’s state).

postMessage genKeyPair The script creates a fresh key pair (i.e. the LD chooses
a fresh nonce) and sends the public key contained in an postMessage to the PIF.

postMessage registerCertificate The script stores the UC received in this
postMessage in the LD’s state. If the context contained in the script’s state
indicates that the browser is authenticated to LPO, the script transitions
to the state createCAPforRP. Otherwise, the script transitions to the state
createCAPforLPO.

postMessage raiseProvisioningFailure This message indicates that no one
is logged in. The script now chooses a fresh nonce, the so-called idpNonce,
which is stored in the sessionStorage. In the localStorage, this nonce is used as
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a key under which the email address is stored, the LD is currently trying to get
an UC for. The script navigates the window it is running to the authentication
path at the identity provider responsible for the email address.

q = createCAPforLD In this state, the script creates an IA for LPO, combines it with
the UC (stored in the script’s state) to a CAP and sends the CAP to LPO in an XHR.
The nonce identifying the XHR is stored as refXHRLPOauth in the script’s state.

q = receiveLPOauthresponse In this state, the script expects the response to the
XHR identified by the nonce refXHRLPOauth. If the response indicates a success-
ful authentication at LPO, the context recorded in the script’s state is changed
accordingly and the script transitions to the state createCAPforRP.

q = createCAPforRP In this state, the script creates an IA for the request origin (as
recorded in the script’s state), combines the IA with the UC to a CAP, and sends
the CAP in a postMessage to its parent restricting the receiver to the request origin.
The script records in the localStorage that the email address it is currently using is
logged in at the request origin. The script then transitions to the state null.

q≡ null In this state, the script does nothing.

We now formally specify the relation script_lpo_ld ⊆ (TN ×2N )×TN of the LD’s
scripting process. Just like in Appendix C.2, we describe this relation by a non-
deterministic algorithm. Like all scripts, the input term given to this script is determined
by the browser and the browser expects a term of a specific form (see Algorithm 6)

Algorithm 14 Relation of script_lpo_ld

Input: 〈tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage,
↪→ ids, secret〉, nonces
1: let s′ := scriptstate
2: let cookies′ := cookies
3: let localStorage′ := localStorage
4: let sessionStorage′ := sessionStorage
5: switch s′.q do
6: case init
7: let command := 〈POSTMESSAGE, OPENERWINDOW(tree,docnonce),

↪→ 〈ldready,〈〉〉, ⊥〉
8: let s′.q := start

9: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
10: case start
11: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
12: if π1(input)≡ POSTMESSAGE then
13: let senderWindow := π2(input)
14: let senderOrigin := π3(input)
15: let m := π4(input)
16: if m≡ 〈request,〈〉〉 then
17: let s′.requestOrigin := senderOrigin
18: let s′.refXHRctx← nonces
19: let command := 〈XMLHTTPREQUEST,URLLPO/ctx,GET,〈〉,s

′.refXHRctx〉
20: let s′.q := receiveContext

21: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
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22: end if
23: end if
24: case receiveContext
25: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
26: if (π1(input)≡ XMLHTTPREQUEST)∧ (π3(input)≡ s′.refXHRctx) then
27: let s′.context := π2(input)
28: let s′.q := startPIF

29: let idpnonce := sessionStorage[idpnonce]
30: if idpnonce≡ 〈〉∨ localStorage[idpnonce]≡ 〈〉 then
31: let s′.email← ids
32: else
33: let s′.email := localStorage[idpnonce]
34: let sessionStorage[idpnonce] := 〈〉
35: end if
36: let url := 〈URL,S,π2(s′.email),/pif〉
37: let s′.PIFindex := |subwindows|+1

. Index of the next subwindow to be created.
38: let command := 〈IFRAME,url,_SELF〉
39: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
40: end if
41: case startPIF
42: let idpOrigin := 〈π2(s′.email),S〉
43: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
44: let pifNonce := πs′.PIFindex(subwindows).nonce
45: if π1(input)≡ POSTMESSAGE then
46: let senderWindow := π2(input)
47: let senderOrigin := π3(input)
48: let m := π4(input)
49: if m≡ ping∧ senderWindow≡ pifNonce

↪→ ∧senderOrigin≡ idpOrigin then
50: let command := 〈POSTMESSAGE,pifNonce,pong, idpOrigin〉
51: let s′.q := runPIF

52: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
53: end if
54: end if
55: case runPIF
56: let idpOrigin := 〈π2(s′.email),S〉
57: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
58: let pifNonce := πs′.PIFindex(subwindows).nonce
59: if π1(input)≡ POSTMESSAGE then
60: let senderWindow := π2(input)
61: let senderOrigin := π3(input)
62: let m := π4(input)
63: if senderWindow≡ pifNonce∧ senderOrigin≡ idpOrigin then
64: switch π1(m) do
65: case beginProvisioning
66: let jschannel_nonce := π2(m)
67: let command := 〈POSTMESSAGE, pifNonce,

↪→ 〈 jschannel_nonce,s′.email〉, idpOrigin〉
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68: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
69: case genKeyPair
70: let jschannel_nonce := π2(m)
71: let s′.key← nonces
72: let command := 〈POSTMESSAGE, pifNonce,

↪→ 〈 jschannel_nonce,pub(s′.key)〉, idpOrigin〉
73: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
74: case registerCertificate
75: if π1(extractmsg(π2(m)))≡ s′.email∧ s′.email 6≡ 〈〉 then

. This check is our fix against identity injection.
76: let s′.uc := π2(m)
77: let loggedIn := π1(s′.context)
78: if loggedIn≡> then
79: let s′.q := createCAPforRP

80: end if
81: let s′.q := createCAPforLPO

82: end if
83: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
84: case raiseProvisioningFailure
85: let idpnonce← nonces
86: let localStorage′[idpnonoce] := s′.email
87: let sessionStorage′[idpnonce] := idpnonce
88: let command := 〈HREF,〈URL,S,π2(s′.email),〈〉〉,_SELF〉
89: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
90: end if
91: end if
92: case createCAPforLPO
93: let ia := sig(〈dom(LPO),S〉,s′.key)
94: let cap := 〈s′.uc, ia〉
95: let body := 〈cap,π2(s′.context)〉
96: let s′.refXHRLPOauth← nonces
97: let command := 〈XMLHTTPREQUEST,URLLPO/auth,POST,body,s′.refXHRLPOauth〉
98: let s′.q := receiveLPOauthresponse

99: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
100: case receiveLPOauthresponse
101: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
102: if (π1(input)≡ XMLHTTPREQUEST)∧ (π3(input)≡ s′.refXHRLPOauth)

↪→ ∧π2(input)≡> then
103: let π1(s′.context) := >
104: let s′.q := createCAPforRP

105: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
106: end if
107: case createCAPforRP
108: let ia := sig(s′.requestOrigin,s′.key)
109: let cap := 〈s′.uc, ia〉
110: let command := 〈POSTMESSAGE, OPENERWINDOW(tree,docnonce),

↪→ 〈response,cap〉, s′.requestOrigin〉
111: let s′.q := null
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112: let localStorage′[siteInfo][s′.requestOrigin] := s′.email
113: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
114: stop 〈scriptstate,cookies, localStorage,sessionStorage,〈〉〉

Relying Party Web Page Script (script_rp_index). This script models the default
web page at a RP. The user usually triggers the login process on this page. Its formal
specification, presented next, follows the one presented for the other scripts above.

Definition 46. A scriptstate s of script_rp_index is a term of the form 〈q, CIFindex,
LDindex, dialogRunning, cap, handledInputs, refXHRcap〉 with q ∈ S, CIFindex ∈ N∪
{⊥}, dialogRunning∈ {>,⊥}, cap∈ TN , handledInputs⊂〈〉 N, refXHRcap∈N ∪{⊥}.
We call s the initial scriptstate of script_rp_index iff s≡ 〈init,⊥,⊥,⊥,〈〉,〈〉,⊥〉.

Before we provide the formal specification of the relation that defines the behavior of
script_rp_index, we present an informal description. The behavior mainly depends on
the state q the script is in.

q≡ init This is the initial state. The script creates the CIF iframe and then transitions
to receiveCIFReady.

q≡ receiveCIFReady In this state, the script expects a cifready postMessage from
the CIF iframe with the sender origin of LPO. The script chooses some ID, 〈〉, or ⊥
and sends this in a loaded postMessage to the CIF iframe with receiver’s origin set
to the origin of LPO.14 It then transitions to the state default.

q≡ default In this state, the script chooses non-deterministically between (1) opening
the LD subwindow and then transitioning to the same state or (2) handling one of
the following postMessages (identified by their first element):
postMessage login This message has to be sent from the CIF with origin of LPO.

Handling this postMessage stores the CAP (contained in the postMessage) in
the scriptstate and then transitions to the sendCAP state.

postMessage logout This message has to be sent from the CIF with origin of
LPO. Handling this postMessage has no effect and results in the same state.

postMessage ldready This message can only be handled after the LD has been
opened and before a response postMessage has been received. The ldready
postMessage has to be sent from the origin of LPO. The script sends a request
postMessage to the LD and stays in the default state.

postMessage response This message can only be handled after the LD has been
opened and before another response postMessage has been received. The
ldready postMessage has to be sent from the origin of LPO. Handling this
postMessage stores the CAP (contained in the postMessage) in the scriptstate,
closes the LD, and then transitions to the dlgClosed state.

q≡ dlgClosed In this state, the script sends a loggedInUser postMessage to the CIF
and transitions to the loggedInUser state.

14From the point of view of the real scripts running at RP either some ID is considered to
be logged in (e.g. from some former “session”), or no one is considered to be logged in (〈〉), or
the script script_rp_index does not know if it should consider anyone to be logged in (⊥). This
is overapproximated here by allowing script_rp_index to choose non-deterministically between
these cases.
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q≡ loggedInUser In this state, the script sends a dlgCmplt postMessage to the CIF
and transitions to the sendCAP state.

q≡ sendCAP In this state, the script sends the CAP to RP as a POST XHR and then
transitions to the receiveServiceToken state.

q≡ receiveServiceToken In this state, the script receives 〈n, i〉 from RP, but does
not do anything with it. The script then transitions to the default state.

We now formally specify the relation script_rp_index⊆ (TN ×2N )×TN of the RP-
Doc’s scripting process. Just like in Appendix C.2, we describe this relation by a non-
deterministic algorithm. Like all scripts, the input term given to this script is determined
by the browser and the browser expects a term of a specific form (see Algorithm 6).
Following Algorithm 15, we provide some more explanation.

Algorithm 15 Relation of script_rp_index

Input: 〈tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage,
↪→ ids, secret〉, nonces
1: let s′ := scriptstate
2: let cookies′ := cookies
3: let localStorage′ := localStorage
4: let sessionStorage′ := sessionStorage
5: switch s′.q do
6: case init
7: let command := 〈IFRAME,URLLPO/cif,GETWINDOW(tree,docnonce)〉
8: let s′.q := receiveCIFReady

9: let subwindows := SUBWINDOWS(tree,docnonce)
10: let s′.CIFindex := |subwindows|+1 . Index of the next subwindow to be created.
11: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
12: case receiveCIFReady
13: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
14: if π1(input)≡ POSTMESSAGE then
15: let senderWindow := π2(input)
16: let senderOrigin := π3(input)
17: let m := π4(input)
18: let subwindows := SUBWINDOWS(tree,docnonce)
19: if (m≡ 〈cifready,〈〉〉)

↪→ ∧(senderOrigin≡ originLPO)
↪→ ∧(senderWindow≡ πs′.CIFindex(subwindows).nonce) then

20: let id← {⊥,〈〉}∪ ID
21: let command := 〈POSTMESSAGE, πs′.CIFindex(subwindows),

↪→ 〈loaded, id〉, originLPO〉
22: let s′.q := default

23: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
24: end if
25: end if
26: case default
27: if s′.dialogRunning≡⊥ then
28: let choice← {openLD,handlePM}
29: else
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30: let choice := handlePM

31: end if
32: if choice≡ openLD then
33: let s′.dialogRunning := >
34: let command := 〈HREF,URLLPO/ld ,_BLANK〉
35: let s′.q := default

36: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
37: else
38: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
39: if π1(input)≡ POSTMESSAGE then
40: let senderWindow := π2(input)
41: let senderOrigin := π3(input)
42: let m := π4(input)
43: let subwindows := SUBWINDOWS(tree,docnonce)
44: if senderOrigin≡ originLPO then
45: if senderWindow≡ πs′.CIFindex(subwindows).nonce then
46: if π1(m)≡ login then
47: let s′.cap := π2(m)
48: let s′.q := sendCAP

49: stop 〈s′,cookies′, localStorage′,sessionStorage′,〈〉〉
50: else if π1(m)≡ logout then
51: let s′.q := default

52: stop 〈s′,cookies′, localStorage′,sessionStorage′,〈〉〉
53: end if
54: else if s′.dialogRunning≡> then
55: if π1(m)≡ ldready then
56: let command := 〈POSTMESSAGE,

↪→ AUXWINDOW(tree,docnonce), 〈request,〈〉〉, originLPO〉
57: let s′.q := default

58: stop〈s′,cookies′, localStorage′,sessionStorage′,command〉
59: else if π1(m)≡ response then
60: let s′.dialogRunning := ⊥
61: let s′.cap := π2(m)
62: let command := 〈CLOSE,AUXWINDOW(tree,docnonce)〉
63: let s′.q := dlgClosed

64: stop〈s′,cookies′, localStorage′,sessionStorage′,command〉
65: end if
66: end if
67: end if
68: end if
69: end if
70: case dlgClosed
71: let subwindows := SUBWINDOWS(tree,docnonce)
72: let id := π1(extractmsg(π1(s′.cap))) . Extract ID from CAP.
73: let command := 〈POSTMESSAGE, πs′.CIFindex(subwindows).nonce,

↪→ 〈loggedInUser, id〉, originLPO〉
74: let s′.q := loggedInUser

75: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
76: case loggedInUser
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77: let subwindows := SUBWINDOWS(tree,docnonce)
78: let command :=

↪→ 〈POSTMESSAGE,πs′.CIFindex(subwindows).nonce,〈dlgCmplt,〈〉〉,originLPO〉
79: let s′.q := sendCAP

80: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
81: case sendCAP
82: let s′.refXHRcap← nonces
83: let host, protocol such that

↪→ 〈host, protocol〉 ≡ GETORIGIN(tree,docnonce)
↪→ if possible; otherwise stop
↪→ 〈scriptstate, cookies, localStorage, sessionStorage, command〉

84: let command := 〈XMLHTTPREQUEST, 〈URL,protocol,host,/,〈〉〉, POST, s′.cap,
↪→ s′.refXHRcap〉 . Relay received CAP to RP.

85: let s′.q := receiveServiceToken

86: stop 〈s′,cookies′, localStorage′,sessionStorage′,command〉
87: case receiveServiceToken
88: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
89: if (π1(input)≡ XMLHTTPREQUEST)∧ (π3(input)≡ s′.refXHRcap) then
90: let s′.q := default

91: stop 〈s′,cookies′, localStorage′,sessionStorage′,〈〉〉
92: end if
93: stop 〈scriptstate,cookies, localStorage,sessionStorage,〈〉〉

In Lines 7–11 and 33–36 the script asks the browser to create iframes. To obtain the
window reference for these iframes, the script first determines the current number of
subwindows and stores it (incremented by 1) in the scriptstate (CIFindex and LDindex,
respectively). When the script is invoked the next time, the iframe the script asked to
be created will have been added to the sequence of subwindows by the browser directly
following the previously existing subwindows. The script can therefore access the iframe
by the indexes CIFindex and LDindex, respectively.

Identity Provider Authentication Dialog Script (script_idp_ad). This script runs in
the LD after script_lpo_ld has navigated the LD window. The purpose of this script is
to authenticate the browser to the identity provider.

The script non-deterministically chooses if it sends authentication data to the IdP (i.e.
its origin) via an XHR, or if it navigates the window to an URL at LPO which servers
script_lpo_ld. Note that script_idp_ad does not read or change its scriptstate. Hence,
we omit the definition of the scriptstate for this script.

Algorithm 16 Relation of script_idp_ad

Input: 〈tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage,
↪→ ids, secret〉, nonces
1: let action← {authenticate,navigate}
2: if action≡ authenticate then
3: let email← ids
4: let body := 〈email,secret〉
5: let host, protocol such that

↪→ 〈host, protocol〉 ≡ GETORIGIN(tree,docnonce)
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↪→ if possible; otherwise
↪→ stop 〈scriptstate,cookies, localStorage,sessionStorage,〈〉〉

6: let command :=〈XMLHTTPREQUEST,〈URL,protocol,host,/auth,〈〉〉,POST,body,⊥〉
7: stop 〈scriptstate,cookies′, localStorage′,sessionStorage′,command〉
8: else
9: let command := 〈HREF,〈URL,S,dom(LPO),/ld,〈〉〉,_SELF〉

10: stop 〈scriptstate,cookies′, localStorage′,sessionStorage′,command〉
11: end if

Identity Provider Provisioning Iframe Script (script_idp_pif). This script acts as a
proxy between the LD or CIF and the IdP server.

Definition 47. A scriptstate s of script_idp_pif is a term of the form 〈q, emails,
pubkeys, ucs, provisioningnonces, genkeypairnonces, xhrnonces, handledInputs〉 with
q ∈ S, emails, pubkeys, ucs ∈ TN , provisioningnonces, genkeypairnonces, xhrnonces ∈
N ∪ {⊥}, handledInputs ⊂〈〉 N. We call s the initial scriptstate of script_idp_pif iff
s≡ 〈init,〈〉,〈〉,〈〉,⊥,⊥,⊥〉.

Before we provide the formal specification of the relation that defines the behavior
of script_idp_pif , we present an informal description. The behavior mainly depends on
the state q the script is in.

q = init This is the initial state. Its only transition handles no input and outputs a
postMessage ping to its parent window, which has to have the origin of LPO, and
transitions to waiting.

q = waiting In this state, the script expects a postMessage containing either ping or
pong, which has to be sent by the parent window from the origin of LPO. If such a
postMessage has been received, the script transitions to default.

q = default In this state, the script chooses an action non-deterministically out of the
following:
beginprovisioning The script sends a postMessage to the parent window, which

has to have the origin of LPO, indicating that the provisioning process of a UC
should start. A fresh nonce is chosen, stored in the script’s state, and included
in this postMessage. The postMessage requests the email address of the user
from the receiver. The address is to be sent to the PIF in a postMessage which
is identified by the nonce in the request.

genkeypair The script sends a postMessage to the parent window, which has to
have the origin of LPO, indicating that a new key pair should be generated. This
postMessage requests the public key of this fresh key pair. As above, a nonce
is included to identify the response corresponding to the request.

registercert The script sends a postMessage containing a UC to the parent
window, which has to have the origin of LPO. This postMessage is only sent if
the script has received a UC before.

raisefailure The script sends a postMessage to the parent window, which has to
have the origin of LPO, indicating that the browser is currently not authenticated
to the identity provider.

requestuc The script sends an XHR to the origin of the current document if the
scriptstate contains at least one email address and one public key. The message
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contains a non-deterministically chosen email address and a public key (from
the scriptstate). The nonce identifying this XHR is non-deterministically chosen
and stored in the scriptstate.

handleresponse The script chooses non-deterministically a script input and dis-
tinguishes if this input is a postMessage or an XHR response.
If the chosen input is a postMessage, it is checked if the postMessage was sent
by the parent window and if this window has the origin of LPO. If this check is
successful, it is checked if the message contains a nonce, which was previously
been recorded in the script’s state. If this nonce indicates that this message is a
response to a beginProvisioning postMessage, the second part is assumed to
contain an email address. This address is then recorded in the script’s state. If the
nonce indicates that this message is a response to a genKeyPair postMessage,
the second part is assumed to contain a public key. This public key is then
recorded in the script’s state.
If the chosen input is an XHR response, it is checked if the nonce identifying
the XHR is recorded in the script’s state. If this is the case, the message is
assumed to contain an UC. The content of the message is stored in the script’s
state.

Algorithm 17 Relation of script_idp_pif

Input: 〈tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage,
↪→ ids, secret〉, nonces
1: let s′ := scriptstate
2: switch s′.q do
3: case init
4: let command := 〈POSTMESSAGE, PARENTWINDOW(tree,docnonce),

↪→ 〈ping,〈〉〉, 〈dom(LPO), S〉〉
5: let s′.q := waiting

6: stop 〈s′,cookies, localStorage,sessionStorage,command〉
7: case waiting
8: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
9: let senderWindow := π2(input)

10: let senderOrigin := π3(input)
11: let m := π4(input)
12: if π1(input) ∈ {ping,pong}

↪→ ∧senderWindow≡ PARENTWINDOW(tree,docnonce)
↪→ ∧senderOrigin≡ 〈dom(LPO),S〉 then

13: let s′.q := default

14: end if
15: stop 〈s′,cookies, localStorage,sessionStorage,〈〉〉
16: case default
17: let action← {beginprovisioning, genkeypair, registercert,

↪→ raisefailure, requestuc, handleresponse}
18: switch action do
19: case beginprovisioning
20: let jschannel_nonce← nonces
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21: let command := 〈POSTMESSAGE, PARENTWINDOW(tree,docnonce),
↪→ 〈beginProvisioning, jschannel_nonce〉, dom(LPO)〉

22: let s′.provisioningnonces :=
↪→ s′.provisioningnonces+〈〉 jschannel_nonce

23: stop 〈s′,cookies, localStorage,sessionStorage,command〉
24: case genkeypair
25: let jschannel_nonce← nonces
26: let command := 〈POSTMESSAGE, PARENTWINDOW(tree,docnonce),

↪→ 〈genKeyPair, jschannel_nonce〉, dom(LPO)〉
27: let s′.genkeypairnonces :=

↪→ s′.genkeypairnonces+〈〉 jschannel_nonce
28: stop 〈s′,cookies, localStorage,sessionStorage,command〉
29: case registercert
30: if s′.ucs 6≡ 〈〉 then
31: let uc← s′.ucs
32: let command :=〈POSTMESSAGE,PARENTWINDOW(tree,docnonce),

↪→ 〈registerCertificate,uc〉, dom(LPO)〉
33: stop 〈s′,cookies, localStorage,sessionStorage,command〉
34: end if
35: case raisefailure
36: let command := 〈POSTMESSAGE, PARENTWINDOW(tree,docnonce),

↪→ 〈raiseProvisioningFailure,⊥〉, dom(LPO)〉
37: stop 〈s′,cookies, localStorage,sessionStorage,command〉
38: case requestuc
39: if s′.emails 6≡ 〈〉∧ s′.pubkeys 6≡ 〈〉 then
40: let email← s′.emails
41: let pubkey← s′.pubkeys
42: let body := 〈email,pubkey〉
43: let xhrnonce← nonces
44: let s′.xhrnonces := s′.xhrnonces +〈〉 xhrnonce
45: let host,protocol such that

↪→ 〈host,protocol〉 ≡ GETORIGIN(tree,docnonce)
↪→ if possible; otherwise
↪→ stop 〈s′,cookies, localStorage,sessionStorage,〈〉〉

46: let command := 〈XMLHTTPREQUEST,
↪→ 〈URL,protocol,host,/certreq,〈〉〉,POST,body,xhrnonce〉

47: stop 〈s′,cookies, localStorage,sessionStorage,command〉
48: end if
49: case handleresponse
50: let input,s′ := CHOOSEINPUT(s′,scriptinputs)
51: if π1(input)≡ POSTMESSAGE then
52: let senderWindow := π2(input)
53: let senderOrigin := π3(input)
54: let m := π4(input)
55: if senderWindow≡ PARENTWINDOW(tree,docnonce)

↪→ ∧senderOrigin≡ 〈dom(LPO),S〉 then
56: if π1(m) ∈ s′.provisioningnonces then
57: let s′.emails := s′.emails +〈〉 π2(m)
58: else if π1(m) ∈ s′.genkeypairnonces then
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59: let s′.pubkeys := s′.pubkeys +〈〉 π2(m)
60: end if
61: stop 〈s′,cookies, localStorage,sessionStorage,〈〉〉
62: end if
63: else if π1(input)≡ XMLHTTPREQUEST

↪→ ∧π3(input) ∈ s′.xhrnonces then
64: let s′.ucs := s′.ucs +〈〉 π2(input)
65: stop 〈s′,cookies, localStorage,sessionStorage,〈〉〉
66: end if
67: stop 〈scriptstate,cookies, localStorage,sessionStorage,〈〉〉

G Formal Security Properties

The security properties for BrowserID, informally introduced in Section 5.2, are formally
defined as follows. First note that every RP service token 〈n, i〉 recorded in RP was
created by RP as the result of a unique HTTPS POST request m with a valid CAP for ID
i. We refer to m as the request corresponding to 〈n, i〉.

Definition 48. Let BID be a BrowserID web system. We say that BID is secure if for
every run ρ of BID, every state (S j,E j) in ρ, every r ∈ RP that is honest in S j, every
RP service token of the form 〈n, i〉 recorded in r in the state S j(r), the following two
conditions are satisfied:

(A) If 〈n, i〉 is derivable from the attackers knowledge in S j (i.e., 〈n, i〉 ∈
dNattacker(S j(attacker))), then it follows that the browser b owning i is fully corrupted in
S j (i.e., the value of isCorrupted is FULLCORRUPT) or governor(i) is not an honest IdP
(in S j).

(B) If the request corresponding to 〈n, i〉 was sent by some b ∈ B which is honest in
S j, then b owns i.

H Proof of Theorem 1

In order to prove Theorem 1, we have to prove Conditions A and B of Definition 48. We
prove these conditions separately. First, we provide an overview of the proofs.

H.1 Overview

For Condition (A), we analyze the request to an honest RP r upon which r returned a
service token 〈n, i〉, where i is an ID and n a nonce. We show that it must contain a valid
CAP (for the identity i). For this, it must in particular contain a valid UC and a matching
IA. We show that the UC must have been created by the IdP that governs the identity
i (which is honest by assumption). We can then show that only b can request a UC at
the IdP for the identity i, and that b does not leak the private key that corresponds to the
public key used for this UC, and that this key was chosen from b’s set of fresh nonces.
Thus, only b can know the key that is used in the creation of the UC in the CAP. We
show that neither the private key corresponding to the public key in the UC, nor the IA
can leak to the attacker. Thus, the attacker cannot have sent the request corresponding to
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〈n, i〉 to the RP r. Also, 〈n, i〉 does not leak to the attacker. The attacker can therefore not
know 〈n, i〉, which contradicts the assumption and proves that Condition (A) is satisfied.

For Condition (B), we focus on the request corresponding to 〈n, i〉 as well. We observe
that if the request was sent by b, the script that initiated the request was script_rp_index,
which again got the CAP that is finally used in the request from either script_lpo_cif
or script_lpo_ld (any other sources, including the attacker script, can be ruled out). In
both of these scripts, the identity in the CAP is checked against the list of identities of
the browser (here, the proposed patch comes into play). This ensures that the request
corresponding to 〈n, i〉 contains a CAP for an identity of the browser, which contradicts
the assumption that Condition (B) is not satisfied and thus proves the theorem.

H.2 Condition A

We assume that Condition A is not satisfied and prove that this leads to a contradiction.
That is, we make the following assumption: There is a run ρ= s0,s1, . . . of BID , a state
s j = (S j,E j) in ρ, an r ∈ RP that is honest in S j, an RP service token of the form 〈n, i〉
recorded in r in the state S j(r) such that 〈n, i〉 ∈ dNattacker(S j(attacker)) and the browser
b owning i is not fully corrupted in S j and governor(i) is an honest IdP in S j.

By definition of RPs, for 〈n, i〉 there exists a corresponding HTTPS request received
by r, which we call reqcap, and a corresponding response respcap. The request must
contain a valid CAP c and must have been sent by some atomic process p to r. The
response must contain 〈n, i〉 and it must be encrypted by some symmetric encryption
key k sent in reqcap.

In particular, it follows that the request and the response must be of the following form,
where dr ∈ dom(r) is the domain of r, ncap,k ∈N are some nonces, path, params ∈ TN ,
c is some valid CAP, and sts is the Strict-Transport-Security header (as in the definition
of RP’s relation):

reqcap = enca(〈〈HTTPReq,ncap,POST,dr,path,params, [Origin : 〈dr,S〉],c〉,
k〉,pub(key(dr))) (16)

respcap = encs(〈HTTPResp,ncap,200,〈sts〉,〈n, i〉〉,k) (17)

Moreover, there must exist a processing step of the following form, where m≤ j, ar ∈
addr(r), and x is some address:

sm−1
(ar :x:reqcap)→r
−−−−−−−−−−→
r→{(x:ar :respcap)}

sm .

From the assumption and the definition of RPs it follows that c is of the following
form:

c = 〈uc, ia〉
≡ 〈sig(〈i,pub(ku)〉,ksign),sig(〈dr,S〉,ku)〉

where ku and ksign are some private keys. When we write i = 〈iname, idomain〉, we have
that:

c≡ 〈sig(〈〈iname, idomain〉,pub(ku)〉,ksign),sig(〈dr,S〉,ku)〉 .
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As r accepts the CAP c, we know that pub(ksign) ≡ S j(r).signkeys[idomain]. As
the subterm signkeys of r’s state is never changed, we have S j(r).signkeys =
S0(r).signkeys. With the definition of the initial state of r (See Definition 42), we
have that pub(ksign)≡ S j(r).signkeys[idomain]≡ pub(signkey(dom−1(idomain))).

The private key signkey(dom−1(idomain)) is initially only known to the DY process
idp := dom−1(idomain) = governor(i). From the assumption we know that idp is an
honest IdP (and not the attacker, a corrupted IdP, or some other DY process). As we can
see in Algorithm 11 (that defines the behavior of IdPs), the signkey can only be used in
Line 4 and in Line 32. We know that Line 4 cannot be invoked as long as idp is honest,
which it is in s j and ever since s0. For Line 32, we see that the key is not sent out to other
processes. In s j, the key can therefore not have been leaked to any other DY processes.

Knowing that in or before s j, only idp can derive ksign from its knowledge, it is easy
to see that only idp can derive sig(x,ksign) for any x, and in particular, uc.

Now we want to see exactly how idp creates uc and which data it uses in this process.
We have already seen that idp creates the uc in Line 32 of Algorithm 11. There may

be more than one processing step in ρ where idp outputs uc.

Lemma 4. For all processing steps of the form

sβ−1
(aidp:x:requc)→idp
−−−−−−−−−−−−→
idp→{(x:aidp:respuc)}

sβ (18)

(for some addresses x, aidp with sβ < s j, where respuc is an encrypted HTTP response
with the body 〈uc〉) it holds that requc was emitted by b.

Proof. To reach Line 32 of Algorithm 11, several conditions have to be met for requc: It
must be an encrypted HTTPS POST request with the path /certreq. The body of requc
must be congruent to 〈i,pub(ku)〉. The request must contain a cookie with the name
sessionid and some value sessionid. This value must be a valid key for the dictionary
s′.sessions and

i ∈〈〉 s′.sessions[sessionid] . (19)

Initially, s′.sessions is empty. It is only populated in Line 22 of Algorithm 11. This
line must have been executed in a previous processing step of the following form:

sα−1
(aidp:x:reqauth)→idp
−−−−−−−−−−−−−→
idp→{(x:aidp:respauth)}

sα (20)

(for some addresses x, aidp with sα < sβ). In this step, s′.sessions was populated with
a new entry for the session id sessionid.

From Algorithm 11 we can see that reqauth must meet the following conditions: It must
be an HTTPS POST request, must contain a specific Origin header and its body must
contain a pair 〈iin,secretin〉 such that the id/password combination matches a combi-
nation stored in Sα−1(idp).users. As we have that Sα−1(idp).users= S0(idp).users
and with the initial definition

S0(idp).users= 〈{〈s,〈IDsofSecret(s)〉〉|Secretsi}〉 (21)
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we can see that iin ∈ IDsofSecret(secretin). As the list of authenticated ids in the session
is then (in Line 22 of Algorithm 11) populated with IDsofSecret(secretin) and with (19)
we have that i ∈ IDsofSecret(secretin). Now, IDsofSecret assigns the IDs to their secrets
according to secretOfID, i.e., it must hold that

secretOfID(i) = secretin . (22)

This secret can be owned by at most one browser, and according to the definitions of
the initial knowledge of the DY processes in F, it is initially only known to the owner
of the secret ownerOfSecret(secretin) (see Section F.8) and to one specific IdP (see
Section F.11), in this case idomain ∈ dom(idp) (because otherwise, idp would not accept
this ID).

From Algorithm 11 we can see that the IdP never uses this secret to create messages
as long as it is honest, which it is by precondition.

With (22) we see that initially, only ownerOfSecret(secretOfID(i)) = ownerOfID(i)
knows the secret secretin, which, by assumption, is not fully corrupted in s j, and thus,
with the request order given for (18) and (20) is not fully corrupted in sα. (Once fully
corrupted, browsers stay fully corrupted.)

(*): Honest browsers release secrets only to scripts that are loaded from a spe-
cific origin. In this case, according to the initial state given in Section F.8, the secret
secretOfID(i) is only released to scripts from the origin 〈idomain,S〉. For any such script
(or document), with Lemma 2 and the definition of the browser’s key mapping in Sec-
tion F.8, we can see that any script that has access to the secret was sent by idp. This
DY process is also the governor of i, which is, by assumption, not corrupted. Therefore,
idp can only deliver either the script script_idp_pif or the script script_idp_ad. We can
now check, that both scripts, running in a browser, never send this secret to any other
DY process than idp, and trigger only encrypted requests to do so.

In script_idp_pif (Algorithm 17), the subterm secret of the state is not used at all;
therefore, the script triggers no outgoing message containing the secret at all.

In script_idp_ad (Algorithm 16), secret is only used as a part of a an HTTP request
to the document’s own origin (which therefore is the origin for which the secret is stored
in the browser’s list of secrets, which therefore must be 〈idomain,S〉). The request’s data
is not stored in the script’s state.

We now know that all entities that have access to secret (the browser b and the IdP
idp) never leak it. As idp never creates any HTTP(S) requests, b must have created
reqauth before the processing step sα−1→ sα.

In this processing step, idp creates a new session id (sessionid). This id is sent out
only once (in Line 25 of Algorithm 11), which, in our case, is respauth. With Corollary 1
we can see that from this (encrypted) response respauth, only b can derive the contents,
especially the contents of the Set-Cookie header. As in b, the cookie is stored as
a secure, HTTP only cookie, b releases the contents of this cookie only as a Cookie

header to the origin 〈idomain,S〉. Given the keymapping in b’s state, requests to this origin
are handled by idp, and with Algorithm 11 it is easy to see that the Cookie header is
only used for validating the UC request, but is not used anywhere else. All in all, b and
idp do not leak the session id sessionid.

As sessionid is an important part of requc, we can see that this request must have been
emitted by b. ut
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Lemma 5. The secret key ku was chosen by the browser b from its own nonces, i.e.,
ku ⊂ Nb.

Proof. First of all, we know that for idp to generate uc, there must be a processing step
in ρ of the form (described in Lemma 4):

sβ−1
(aidp:x:requc)→idp
−−−−−−−−−−−−→
idp→{(x:aidp:respuc)}

sβ (23)

(for some addresses x, aidp with sβ < s j, where respuc is an encrypted HTTP response
with the body 〈uc〉). For the request requc, the method must be POST and the path
component must be /certreq.

With Lemma 4 we know that requc was emitted by b, which is honest at this point in
the run. With the same arguments as in (*) we can see that either script_idp_pif or the
script script_idp_ad initiated requc.

For script_idp_ad it is easy to see that this script never sends a POST request to idp.
The script script_idp_pif can only send a POST request to /certreq in Line 47 of

Algorithm 17. In this case, the public key is chosen from the subterm pubkeys of the
script’s state. This subterm is only populated in Line 59 of Algorithm 17. It can only be
populated by a postMessage pm from an immediate parent window and from the origin
〈dom(LPO),S〉 (given how a browser checks and transmits postMessages, see Line 97f.
of Algorithm 6). Further, the message in pm must be of the form 〈n,pub(ku)〉 where n
is a nonce that was freshly chosen for a 〈genKeyPair,n〉 postMessage in Line 28 of
Algorithm 17.

Given that b’s keymapping assigns the private key of LPO to the domain of LPO
and with Lemma 3 we see that the only scripts that can send such a postMessage are
script_lpo_cif and script_lpo_ld.

In the script script_lpo_cif (Algorithm 13), postMessages of the form of pm can only
be sent in Line 110 (the message sent in Line 105 would not carry the correct nonce for
a response to a genKeyPair message).

The same holds true for the script script_lpo_ld (Algorithm 13).
Therefore, the key ku is a nonce that was chosen from the browser’s nonces. ut

Lemma 6. ku does not leak from b.

Proof. As we have seen above, the key ku was chosen either in the script script_lpo_cif
or in the script script_lpo_ld running in the honest browser b.

In both scripts, any nonce that is chosen from the script’s nonces will not be given to
the script (as part of nonces) by the browser again, thus, the nonce was chosen freshly.
Further, the nonce is stored in the subterm key of the script’s state and (besides the
derivation of the public key) is only used to sign IAs.

There are no other scripts running in the origin of 〈dom(LPO),S〉. The (honest)
browser b does not leak the script’s state. Therefore, ku does not leak from b. ut

With Lemma 4, 5, and 6, we can see that only b knows ku and the attacker cannot
know ku. Therefore, only b can create the ia = sig(〈dr,S〉,ku). As ku is only accessible
to scripts with the origin 〈dom(LPO),S〉, only the script script_lpo_cif or the script
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script_lpo_ld can create sig(〈dr,S〉,ku). In both scripts, after creation, ia is sent in post-
Message only to scripts that have the origin for which ia was created (= 〈dr,S〉). With
Lemma 3 and the definition of relying parties (see Algorithm 10) we see, that the only
potential receiver is script_rp_index.

After receiving this response postMessage, script_rp_index stores the UC and the
IA in the subterm called cap of its scriptstate (see Algorithm 15, Line 47). After doing
so, this subterm is read only in Line 72 (where only the identity is extracted) and in
Line 84. There, the ia is sent to r (in the encrypted request reqcap).

The RP r, which is not corrupted, and the browser b do not leak ia. After receiving ia,
r sends the newly created service token 〈n, i〉 to b, which ignores it (see Algorithm 15
Line 90f.). Therefore, b and r do not leak 〈n, i〉.

Therefore, the attacker cannot know 〈n, i〉 in S j, i.e., 〈n, i〉 6∈ dNattacker(S j(attacker)).
This is a contradiction to our assumption. ut

H.3 Condition B

Similar to before, we assume that Condition B does not hold and lead this to a contra-
diction. We therefore make the following assumption: There is a run ρ of BID, some
state s j = (S j,E j) in ρ, some r ∈ RP that is honest in S j, some RP service token of the
form 〈n, i〉 recorded in r in the state S j(r), the request corresponding to 〈n, i〉 was sent
by some b ∈ B which is honest in S j, and b does not own i.

By definition of RPs, for 〈n, i〉 there exists a corresponding HTTPS request received
by r, which we call reqcap, and a corresponding response respcap. The request must
contain a valid CAP c and must have been sent by some atomic process p to r. The
response must contain 〈n, i〉 and it must be encrypted by some symmetric encryption
key k sent in reqcap.

In particular, it follows that the request and the response must be of the following form,
where dr ∈ dom(r) is the domain of r, ncap,k ∈N are some nonces, path, params ∈ TN ,
c is some valid CAP, and sts is the Strict-Transport-Security header (as in the definition
of RP’s relation):

reqcap = enca(〈〈HTTPReq,ncap,POST,dr,path,params, [Origin : 〈dr,S〉],c〉,
k〉,pub(key(dr))) (24)

respcap = encs(〈HTTPResp,ncap,200,〈sts〉,〈n, i〉〉,k) (25)

Moreover, there must exist a processing step of the following form, where m≤ j, ar ∈
addr(r), and x is some address:

sm−1
(ar :x:reqcap)→r
−−−−−−−−−−→
r→{(x:ar :respcap)}

sm .

From the assumption and the definition of RPs it follows that c is of the following
form:

c = 〈uc, ia〉
≡ 〈sig(〈i,pub(ku)〉,ksign),sig(〈dr,S〉,ku)〉
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where ku and ksign are some private keys. When we write i = 〈iname, idomain〉, we have
that:

c≡ 〈sig(〈〈iname, idomain〉,pub(ku)〉,ksign),sig(〈dr,S〉,ku)〉 .

With Lemma 3 we see that this request was initiated by a script that b extracted from
an HTTPS response by r. The only script that r sends in its responses is script_rp_index.

In this script (Algorithm 14), the only place where a request is initiated is in Line 47.
We can see that the cap c is taken from the script’s state, i.e., s′.cap ≡ c before the
execution of Line 47 must hold. Initially, this term is empty, therefore the value must
have been set during the prior execution of the script. This happens in Line 47 and in
Line 61 of the algorithm. For both lines to be executed, there must arrive a postMessage
at script_rp_index (either a login or a response postMessage) from the origin of LPO.

With Lemma 2, Lemma 3, and the definition of the web browser, we can see that the
message must indeed come from one of LPO’s scripts, that is, either script_lpo_ld or
script_lpo_cif . Before we proceed by showing that both scripts never send a UC for an
identity that is not owned by browser b to the script script_rp_index (and later to r), we
first proof the following lemma:

Lemma 7. The value of s′.email in script_lpo_ld is always either one of the browser’s
identities or empty.

Proof. We show this by induction:
Base case: The value of s′.email is initially empty (see initial scriptstate).
Induction step: The value is set only in Lines 31 and 33. In the first case, the identity

is chosen non-deterministically from the browser’s identities ids, which are the identities
that the browser owns (see Section F.8).

In the second case, the value of s′.email is taken from the localStorage, with the help
of the key idpnonce that is taken from the sessionStorage. We can now show that what
is retrieved from the localStorage is either empty or a previous value of s′.email:

First, we show that the value of idpnonce, taken from sessionStorage in Line 29, is
always a nonce or empty: The browser’s sessionStorage is separated by origins (and root
windows), and therefore, only scripts under the origin of LPO have read or write access.
Thus, the only two scripts that can possibly write the idpnonce value are script_lpo_cif
and script_lpo_ld. The script script_lpo_cif does not write to sessionStorage. The script
script_lpo_ld only writes to sessionStorage in Line 87. It only writes a fresh nonce
(chosen in Line 85). Therefore, the value of idpnonce is always a nonce (or empty).

As we are already in the second case of the if-statement in Line 30 (we know that
Line 33 was executed) idpnonce cannot be empty and must be a nonce.

Now, we can show that localStorage[idpnonce] is either empty or a previous value
of s′.email: The browser’s localStorage is separated by origins, and therefore, only
scripts under the origin of LPO have read or write access. As above, the only two
scripts that can write values to the localStorage are script_lpo_cif and script_lpo_ld.
The script script_lpo_cif does not write to localStorage (it only removes subterms form
localStorage in Line 47). We can thus focus on script_lpo_ld.

There are two lines where this script writes to the localStorage: Lines 112 and 86. We
can safely ignore the first case, as it does not use a nonce as a key (but the fixed string
siteInfo instead). In the latter case, it writes a value of s′.email.
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This concludes the induction. ut

We can now show (for both scripts), that they never send a UC for an identity that is
not owned by the browser b:

(I) For script_lpo_ld (Algorithm 14), it is easy to see that the UC that is finally used
to create a CAP for RP in Line 109 is set in Line 76. There, the identity in the UC
is checked against the identity in s′.email in the script’s state (and it is checked that
s′.email is not empty).

With Lemma 7 and the observations above we can conclude that in script_lpo_ld,
it is not possible that a UC for an identity that the browser does not own is accepted.
Therefore, the UC that is sent to script_rp_index is issued for an identity of the browser
b.

(II) For script_lpo_cif (Algorithm 13), it is easy to see that the UC that is finally used
in Line 125 is set in Line 113. There, the identity in the UC is checked against the value
of s′.email (and, that s′.email is not empty). Initially, s′.email is empty. It is set only
in Line 64. There, it is taken from the localStorage, using the key siteInfo. As we
have seen above, the only place where values are stored using this key is in Line 112 of
Algorithm 14. There, it is taken from the script’s s′.email, which, according to Lemma 7,
is either empty or one of the browser’s identities. Note that the value of siteInfo is a
dictionary. The keys which are used inside of this dictionary are not relevant here, but
only the values.

Thus, in script_lpo_cif , it is not possible that a UC for an identity that the browser
does not own is accepted. Therefore, the UC that is sent to script_rp_index is issued for
an identity of the browser b.

With (I) and (II), we see that all UCs that are sent to script_rp_index (and later to r)
are issued for identities of the browser b. This contradicts the assumption, which proves
that Condition B holds true. ut
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I BrowserID Login Flow Overviews
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Fig. 8. BrowserID primary mode typical login flow overview (part 1 of 2).
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Fig. 8. BrowserID primary mode typical login flow overview (part 2 of 2).
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Fig. 9. BrowserID secondary mode typical login flow overview. Similar abstraction level as in
Figure 8.
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