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We show the existence of an exact mimicking network of 𝑘𝑂 (log𝑘) edges for minimum multicuts over a set of
terminals in an undirected graph, where 𝑘 is the total capacity of the terminals, i.e., the sum of the degrees of
the terminal vertices. Furthermore, using the best available approximation algorithm for Small Set Expansion,
we show that a mimicking network of 𝑘𝑂 (log3 𝑘) edges can be computed in randomized polynomial time. As a
consequence, we show quasipolynomial kernels for several problems, including Edge Multiway Cut, Group
Feedback Edge Set for an arbitrary group, and Edge Multicut parameterized by the solution size and the
number of cut requests. The result combines the matroid-based irrelevant edge approach used in the kernel
for 𝑠-Multiway Cut with a recursive decomposition and sparsification of the graph along sparse cuts. This is
the first progress on the kernelization of Multiway Cut problems since the kernel for 𝑠-Multiway Cut for
constant value of 𝑠 (Kratsch and Wahlström, FOCS 2012).

CCS Concepts: •Mathematics of computing→ Extremal graph theory; Graph algorithms; • Theory
of computation→ Parameterized complexity and exact algorithms.
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1 INTRODUCTION
Graph separation questions are home to some of the most intriguing open questions in theoretical
computer science. In approximation algorithms, the well-known unique games conjecture (UGC) has
been central to the area for close to two decades, and is closely related to graph separation problems.
Even more directly, the small set expansion hypothesis, proposed by Raghavendra and Steurer [37],
roughly states that it is NP-hard to approximate the Small Set Expansion problem (SSE) up to a
constant factor, where SSE is the problem of finding a small-sized set in a graph with minimum
expansion. (More precise statements are given below.) For the general case, despite significant
research, the best polynomial-time result is an 𝑂 (log𝑛)-approximation due to Räcke [36], but
stronger results are known for special cases. In particular, if the size bound on the desired set 𝑆 is
|𝑆 | ≤ 𝑠 , then Bansal et al. [3] show an algorithm with an approximation ratio of 𝑂 (log𝑛/

√
log 𝑠).

Another interesting notion from parameterized complexity is kernelization. Informally, a kernel-
ization algorithm is a procedure that takes an input of a parameterized, usually NP-hard problem
and reduces it in polynomial time to an equivalent instance of size bounded in the parameter, e.g.,
by discarding irrelevant parts of the input or transforming some part of the input into a smaller
object with equivalent behaviour. For example, the seminal Nemhauser-Trotter theorem on the
half-integrality of Vertex Cover [33] implies that an instance of Vertex Cover can be reduced to
have at most 2𝑘 vertices, where 𝑘 is the bound given on the solution size. On the flip side, Fortnow
and Santhanam [12] and Bodlaender et al. [4] gave a framework to exclude the existence of a
kernel of any polynomial size, under a standard complexity-theoretic conjecture. An extensive
collection of upper and lower bounds for kernelization exists (see, e.g., the recent book of Fomin et
al. [11]), but a handful of central “hard questions” remain unanswered. One of the most notorious
is Multiway Cut.
∗A preliminary version of this paper with weaker results was presented at ICALP 2020 [42]. Compared to that version, the
current paper has a much simpler correctness argument for the marking procedure, as well as adding the constructive
version of the result. We have also observed an error in [42] regarding the claimed 0-Extension application; see remark at
the end of Section 3.

Author’s address: Magnus Wahlström, Royal Holloway, University of London, Department of Computer Science, Egham
Hill, Egham, UK, TW20 0EX, Magnus.Wahlstrom@rhul.ac.uk.

HTTPS://ORCID.ORG/0000-0002-0933-4504
https://orcid.org/0000-0002-0933-4504


2 Magnus Wahlström

Let𝐺 = (𝑉 , 𝐸) be a graph and𝑇 ⊆ 𝑉 a set of terminals in𝐺 . An (edge) multiway cut for𝑇 in𝐺 is
a set of edges 𝑋 ⊆ 𝐸 such that no two terminals are connected in𝐺 −𝑋 , and Multiway Cut is the
problem of finding a multiway cut of at most 𝑘 edges, given a parameter 𝑘 . The problem is FPT [30]
and NP-hard for |𝑇 | ≥ 3 [8]. Using methods from matroid theory, Kratsch and Wahlström [20]
were able to show that if |𝑇 | ≤ 𝑠 , thenMultiway Cut has a kernel with 𝑂 (𝑘𝑠+1) vertices, hence
the problem has a polynomial kernel for every constant 𝑠 . However, if |𝑇 | is unbounded, the only
known size bound for a kernel is 2𝑂 (𝑘) , following from the FPT algorithm [30], and the question of
whetherMultiway Cut has a polynomial kernel in the general case is completely open.

We make progress on this question by showing thatMultiway Cut and several related problems
have quasipolynomial kernels, i.e., kernels of size 𝑘 log𝑂 (1) 𝑘 . Furthermore, the degree in the exponent
depends on the best available approximation algorithm for Small Set Expansion (see Theorem 1.1
for exact dependence). With the current state of the art, we are able to show kernels of size 𝑘𝑂 (log3 𝑘) ;
and if the small set expansion problem has a constant-factor approximation, the result would be
kernels of size 𝑘𝑂 (log𝑘) .
The result goes via showing the existence of a kind of mimicking network for the problem;

or more generally, a network of quasipolynomial size mimicking the behaviour of (𝐺,𝑇 ) for all
multicut instances over 𝑇 . We review these notions next.

1.1 Mimicking networks and multiway cut sparsifiers
Although kernelization is most commonly described in terms of polynomial-time preprocessing
as above, there is also a clear connection with succinct information representation. For example,
consider a graph 𝐺 = (𝑉 , 𝐸) with a set of 𝑝 terminals 𝑇 ⊆ 𝑉 . The pair (𝐺,𝑇 ) is referred to as a
terminal network. A mimicking network for (𝐺,𝑇 ) is a graph𝐺 ′ = (𝑉 ′, 𝐸 ′) with 𝑇 ⊆ 𝑉 ′ such that
for any sets 𝐴, 𝐵 ⊆ 𝑇 , the min-cut between 𝐴 and 𝐵 in𝐺 and𝐺 ′ have the same value. A mimicking
network of size bounded in 𝑝 always exists [14], but the size of 𝐺 ′ can be significant. The initial
upper bound given was 22𝑝 [14], only slightly improved since [17], and there is an exponential lower
bound [22]. Better bounds are known for special graph classes, but even for planar graphs the best
possible general bound has 2Θ(𝑝) vertices [16, 22] (see also recent improvements by Krauthgamer
and Rika [21]).
A related notion is cut sparsifiers, which solve the same task up to some approximation factor

𝑞 ≥ 1 [24, 32], typically 𝑞 = 𝜔 (1) in the general case. We focus on mimicking networks; see
Krauthgamer and Rika [21] for an overview of cut sparsifiers. However, we note that for general
graphs, constant-factor cut sparsifiers are not known with any size bound smaller than the size
guarantee for an exact mimicking network.

However, if we include the capacity of the set of terminals in the bound (and if edges have integer
capacity), then significantly stronger results are possible. Chuzhoy [5] showed that if the total
capacity of 𝑇 is cap𝐺 (𝑇 ) =

∑
𝑡 ∈𝑇 𝑑 (𝑡) = 𝑘 , then there exists an 𝑂 (1)-approximate cut sparsifier of

size𝑂 (𝑘3). Kratsch and Wahlström [20] sharpened this to an exact mimicking network with𝑂 (𝑘3)
edges, which furthermore can be computed in randomized polynomial time. This is particularly
remarkable given that the network has to replicate the exact cut-value for exponentially many
pairs (𝐴, 𝐵). The network can be constructed via contractions in 𝐺 .1 This built on an earlier result
that used linear representations of matroids to encode the sizes of all (𝐴, 𝐵)-min cuts into an object
using 𝑂 (𝑘3 log𝑂 (1) 𝑘) bits of space [19], although this earlier version did not produce an explicit
graph, i.e., not a mimicking network.

These results had significant consequences for kernelization. The succinct representation in [19]
was used to produce a (randomized) polynomial kernel for the Odd Cycle Transversal problem,
1The results of [20] are phrased in terms of vertex cuts, but the above follows easily from [20].
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thereby solving a notorious open problem in parameterized complexity [19]; and the mimicking
network of [20] brought further (randomized) polynomial kernels for a range of problems, in
particular including Almost 2-SAT, i.e., the problem of satisfying all but at most 𝑘 clauses of a
given 2-CNF formula.

Similar methods are relevant for the question of separating a set of terminals into more than two
parts. Let (𝐺,𝑇 ) be a terminal network, and let T = 𝑇1 ∪ . . .∪𝑇𝑠 be a partition of𝑇 . A multiway cut

for T is a set of edges 𝑋 ⊆ 𝐸 (𝐺) such that𝐺 − 𝑋 contains no path between any pair of terminals
𝑡 ∈ 𝑇𝑖 and 𝑡 ′ ∈ 𝑇𝑗 , 𝑖 ≠ 𝑗 . Let us tentatively define a multicut-mimicking network for (𝐺,𝑇 ) as a
terminal network (𝐺 ′,𝑇 ) where𝑇 ⊆ 𝑉 (𝐺 ′) and for every partition T = 𝑇1∪ . . .∪𝑇𝑠 of𝑇 , the size of
a minimum multiway cut for T is identical in𝐺 and𝐺 ′. (The term multicut-mimicking, as opposed
to multiway cut-mimicking, is justified; see Prop. 2.2.) The minimum size of a multicut-mimicking
network, in terms of 𝑘 = cap𝐺 (𝑇 ), appears to lie at the core of the difficulty of the question of a
polynomial kernelization of Multiway Cut. The kernel for 𝑠-Multiway Cut mentioned above
builds on the computation of a mimicking network of size𝑂 (𝑘𝑠+1) for partitions of𝑇 into at most 𝑠
parts [20]. The kernel for 𝑠-Multiway Cut then essentially follows from considering the partition
T = {𝑡1} ∪ . . . ∪ {𝑡𝑠 } of a set 𝑇 of |𝑇 | = 𝑠 terminals, along with known reduction rules bounding
cap𝐺 (𝑇 ). We are not aware of any non-trivial lower bounds on the size of a multicut-mimicking
network in terms of 𝑘 ; it seems completely consistent with known bounds that every terminal
network (𝐺,𝑇 ) could have a multicut-mimicking network of size poly(𝑘), even for partitions into
an unbounded number of sets.
In this paper, we show that any terminal network (𝐺,𝑇 ) with cap𝐺 (𝑇 ) = 𝑘 admits a multicut-

mimicking network (𝐺 ′,𝑇 ) where |𝑉 (𝐺 ′) | = 𝑘𝑂 (log𝑘) ; and furthermore, a network with |𝑉 (𝐺 ′) | =
𝑘𝑂 (log𝑂 (1) 𝑘) can be computed in randomized polynomial time, using a sufficiently good approx-
imation algorithm for a graph separation problem similar to Small Set Expansion (SSE). We
also see a tradeoff between the quality of the approximation algorithm and the size of (𝐺 ′,𝑇 ).
Using the algorithm of Bansal et al. [3], we achieve |𝑉 (𝐺 ′) | = 𝑘𝑂 (log3 𝑘) ; and if the small set ex-
pansion hypothesis were false and SSE had a constant-factor approximation algorithm, then the
bound |𝑉 (𝐺 ′) | = 𝑘𝑂 (log𝑘) would be achievable in polynomial time. We leave open the questions of
whether there always exists a multicut-mimicking network of size 𝑘𝑂 (1) , as well as the question of
whether a network of size 𝑘𝑂 (log𝑘) can be computed through means other than a constant-factor
approximation for SSE.

As a side note, we note that a 2-approximate “multicut sparsifier” of size𝑂 (𝑘3) can be computed
efficiently using known methods. Specifically, we observe that the above-mentioned mimicking
network of𝑂 (𝑘3) edges for standard terminal cuts in a terminal network (𝐺,𝑇 ) with cap(𝑇 ) = 𝑘 [20]
implies a terminal network (𝐺 ′,𝑇 ) where cap(𝑇 ) = 𝑘 , |𝐸 (𝐺 ′) | = 𝑂 (𝑘3), and where for every
partition T of 𝑇 the costs of minimum multiway cuts for T in (𝐺 ′,𝑇 ) and (𝐺,𝑇 ) differ by at most
a factor of 2 (see Lemma 2.4).
Flow sparsifiers. Finally, similarly to cut sparsifiers, there is a notion of a flow sparsifier of a

terminal network (𝐺,𝑇 ). Here the goal is to approximately preserve theminimum congestion for any
multicommodity flow on (𝐺,𝑇 ). Chuzhoy [5] showed flow sparsifiers with quality 𝑂 (1) and with
𝑘𝑂 (log log𝑘) vertices, where 𝑘 is the total terminal capacity; for further results on achievable bounds
for flow sparsifiers, see [2, 9]. However, the notion is incomparable to multicut-mimicking networks,
because even an exact flow sparsifier would be subject to the corresponding multicommodity flow-
multicut approximation gap, which is Θ(log𝑘) in the worst case [13].

Further related results. The general approach of decomposing a graph along sparse cuts is well
established; cf. Räcke [35] and follow-up work.
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The Small Set Expansion (SSE) problem is defined as follows. Let𝐺 = (𝑉 , 𝐸) be a graph and
𝑆 ⊆ 𝑉 a set of vertices. The edge expansion of 𝑆 is

Φ(𝑆) := |𝐸 (𝑆,𝑉 \ 𝑆) |
|𝑆 | ,

where 𝐸 (𝐴, 𝐵) denotes the set of edges with one endpoint in 𝐴 and one in 𝐵. For a real number
𝜌 ∈ (0, 1/2], one also defines the small set expansion

Φ𝜌 (𝐺) := min
𝑆⊆𝑉 , |𝑆 |=𝜌𝑛

Φ(𝑆).

In particular, for a value 𝑠 ∈ [𝑛/2], Φ𝑠/𝑛 (𝐺) denotes the worst (i.e., minimum) expansion among
subsets of𝐺 of size at most 𝑠 . The Small Set Expansion problem is to compute the value of Φ𝑠 (𝐺).
The Small Set Expansion Hypothesis (SSEH) states that for every constant 𝜂 > 0 there exists a value
𝜖 > 0 such that it is NP-hard to distinguish between the cases that Φ𝜖 (𝐺) ≤ 𝜂 and Φ𝜖 (𝐺) ≥ 1 − 𝜂.
SSEH was defined by Raghavendra and Steurer [37], who also showed that SSEH implies UGC [37];
in fact it is equivalent to a stronger version of UGC [38]. Like UGC, SSEH has also been used as the
foundation for hardness of approximation bounds not known to follow by other methods [29, 38].

For further applications of matroid tools to kernelization, see Hols and Kratsch [15], Kratsch [18],
and Reidl and Wahlström [39].

1.2 Our results
We show the following.

Theorem 1.1. Let 𝐴 be an approximation algorithm for Small Set Expansion for instances with

integral, strictly positive capacities with an approximation ratio of 𝛼 (𝑛, 𝑘), where 𝑘 is the number of

edges cut in the optimal solution. Let (𝐺,𝑇 ) be a terminal network with cap𝐺 (𝑇 ) = 𝑘 . Then there is a

set 𝑍 ⊆ 𝐸 (𝐺) with |𝑍 | = 𝑘𝑂 (𝛼 (𝑛,𝑘) log𝑘)
such that for every partition T = 𝑇1 ∪ . . . ∪𝑇𝑠 of 𝑇 , there is a

minimum multiway cut 𝑋 for T such that 𝑋 ⊆ 𝑍 . Furthermore, 𝑍 can be computed in randomized

polynomial time using calls to 𝐴.

Note that this result, and the corollaries below, are given in terms of the number of edges of the
output, where the more common size measure for a sparsifier or mimicking network (or, indeed,
for a polynomial kernel) is the number of vertices of the output graph. However, since we generally
leave the exponent open up to a constant-factor term, this is not a significant difference.
Unfortunately, the best known ratio for SSE which can be stated purely in terms of 𝑘 and 𝑛 is

𝛼 (𝑛, 𝑘) = 𝑂 (log𝑛) [36], and plugging this into the above formula yields a vacuous result. However,
by a more careful analysis we are able to show a better bound using the algorithm of Bansal et
al. [3]. In summary, we get the following.

Corollary 1.2. Let (𝐺,𝑇 ) be a terminal network with cap𝐺 (𝑇 ) = 𝑘 . The following holds.

(1) There is a multicut-mimicking network for (𝐺,𝑇 ) with 𝑘𝑂 (log𝑘)
edges.

(2) A multicut-mimicking network for (𝐺,𝑇 ) with 𝑘𝑂 (log3 𝑘)
edges can be computed in randomized

polynomial time.

The latter implies several breakthrough results in kernelization, as follows. We refer to previous
kernelization work [20] for the necessary definitions.

Corollary 1.3. The following problems have randomized quasipolynomial kernels.

(1) Edge Multiway Cut parameterized by solution size.

(2) Edge Multicut parameterized by the solution size and the number of cut requests.

(3) Group Feedback Edge Set parameterized by solution size, for any group.

(4) Subset Feedback Edge Set with undeletable edges, parameterized by solution size.



Quasipolynomial multicut-mimicking networks and kernels for multiway cut problems 5

2 PRELIMINARIES
A parameterized problem is a decision problem where inputs are given as pairs (𝑋, 𝑘), where 𝑘 is the
parameter. A polynomial kernelization is a polynomial-time procedure that maps an instance (𝑋, 𝑘)
to an instance (𝑋 ′, 𝑘 ′) where (𝑋, 𝑘) is positive if and only if (𝑋 ′, 𝑘 ′) is positive, and |𝑋 ′ |, 𝑘 ′ ≤ 𝑔(𝑘)
for some function 𝑔(𝑘) referred to as the size of the kernel. A problem has a polynomial kernel if it
has a kernel where 𝑔(𝑘) = 𝑘𝑂 (1) . We extend this to discuss quasipolynomial kernels, which is the
case that 𝑔(𝑘) = 𝑘 log

𝑂 (1) 𝑘 . For more on parameterized complexity and kernelization, see [6, 11].
For a graph 𝐺 = (𝑉 , 𝐸) and sets 𝐴, 𝐵 ⊆ 𝑉 , we let 𝐸𝐺 (𝐴, 𝐵) = {𝑢𝑣 ∈ 𝐸 | 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵}. As

shorthand for 𝑆 ⊆ 𝑉 we also write 𝐸 (𝑆) = 𝐸 (𝑆, 𝑆), 𝜕𝐺 (𝑆) = 𝐸𝐺 (𝑆,𝑉 \ 𝑆), and 𝛿𝐺 (𝑆) = |𝜕𝐺 (𝑆) |. For
a vertex 𝑣 ∈ 𝑉 , 𝑑𝐺 (𝑣) is the degree of 𝑣 in 𝐺 , also written 𝑑 (𝑣) when the graph 𝐺 is understood
from context. The total capacity of a set of vertices 𝑆 in a graph 𝐺 is

cap𝐺 (𝑆) :=
∑
𝑣∈𝑆

𝑑 (𝑣).

In all cases, we may omit the index 𝐺 if understood from context.
For a vertex set 𝑆 ⊆ 𝑉 in a graph 𝐺 = (𝑉 , 𝐸), we let 𝑁𝐺 [𝑆] = 𝑆 ∪ {𝑣 ∈ 𝑉 | ∃𝑢𝑣 ∈ 𝐸,𝑢 ∈ 𝑆}

denote the closed neighbourhood of 𝑆 . We write 𝑁 [𝑆] in place of 𝑁𝐺 [𝑆] when 𝐺 is understood
from context.

2.1 Multicut-mimicking networks
Let 𝐺 = (𝑉 , 𝐸) be a graph and 𝑇 ⊆ 𝑉 a set of terminals with cap(𝑇 ) = 𝑘 . An edge multiway cut for
𝑇 in𝐺 is a set of edges 𝑋 ⊆ 𝐸 such that no two vertices in𝑇 are connected in𝐺 −𝑋 . More generally,
let T = {𝑇1, . . . ,𝑇𝑟 } be a partition of 𝑇 . Then an edge multiway cut for T in 𝐺 is a set of edges
𝑋 ⊆ 𝐸 such that in 𝐺 − 𝑋 every connected component contains terminals from at most one part of
T . Hence a multiway cut for (𝐺,𝑇 ) is equivalent to a multiway cut for (𝐺, {{𝑡} | 𝑡 ∈ 𝑇 }). Further,
let 𝑅 ⊆

(
𝑇
2
)
be a set of pairs over 𝑇 , referred to as cut requests. A multicut for 𝑅 in𝐺 is a set of edges

𝑋 ⊆ 𝐸 such that every connected component in 𝐺 − 𝑋 contains at most one member of every
pair {𝑢, 𝑣} ∈ 𝑅. A minimum multicut for 𝑅 in 𝐺 is a multicut for 𝑅 in 𝐺 of minimum cardinality.
Similarly, a minimum multiway cut for T in𝐺 is a multiway cut for T in𝐺 of minimum cardinality.
For the rest of the paper, we let all cuts implicitly be edge cuts, unless otherwise specified, hence
we generally refer simply to multiway cuts.

We now come to the central definition of the paper.

Definition 2.1 (Multicut-mimicking network). Let (𝐺,𝑇 ) be a terminal network, i.e., 𝐺 = (𝑉 , 𝐸) is
a graph and 𝑇 ⊆ 𝑉 is a set of terminals in 𝐺 . A multicut-mimicking network for 𝑇 in 𝐺 is a graph
𝐺 ′ = (𝑉 ′, 𝐸 ′) such that 𝑇 ⊆ 𝑉 ′ and such that for every set of cut requests 𝑅 ⊆

(
𝑇
2
)
, the size of a

minimum multicut for 𝑅 is equal in 𝐺 and in 𝐺 ′.

We observe that preserving this is equivalent to preserving the sizes of minimum multiway cuts
over all partitions of 𝑇 .

Proposition 2.2. A graph 𝐺 ′
with 𝑇 ⊆ 𝑉 (𝐺 ′) is a multicut-mimicking network for 𝑇 in 𝐺 if and

only if, for every partition T of 𝑇 , the size of a minimum multiway cut for T is equal in 𝐺 and in 𝐺 ′
.

Proof. It is clear that the condition is necessary, since for any partition T of 𝑇 we could form
the set 𝑅 of all pairs over 𝑇 which lie in distinct parts of T , and a multicut for 𝑅 is then necessarily
a multiway cut for T . To see that the condition is also sufficient, consider an arbitrary set of cut
requests 𝑅 ⊆

(
𝑇
2
)
and let 𝑋 be a minimum multicut for (𝐺, 𝑅). Let T be the partition of 𝑇 in 𝐺 − 𝑋

according to connected components. Then 𝑋 is a multiway cut for T , and any multiway cut for
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T is also a multicut for 𝑅. Hence the size of a minimum multicut for 𝑅 is precisely the size of a
minimum multiway cut for T . □

We also consider a slightly sharper notion.

Definition 2.3 (Multicut-covering set). Let (𝐺,𝑇 ) be a terminal network. A multicut-covering set

for (𝐺,𝑇 ) is a set 𝑍 ⊆ 𝐸 (𝐺) such that for every set of cut requests 𝑅 ⊆
(
𝑇
2
)
, there is a minimum

multicut 𝑋 for 𝑅 in 𝐺 such that 𝑋 ⊆ 𝑍 .

Note that a multicut-covering set 𝑍 is essentially equivalent to a multicut-mimicking network
formed by contraction (contracting all edges of 𝐸 (𝐺) \ 𝑍 ). Our main result in this paper is the
existence of a multicut-covering set of size quasipolynomial in 𝑘 = cap(𝑇 ) in any undirected graph
𝐺 . Furthermore, such a set can be computed in polynomial time, subject to the existence of certain
approximation algorithms that we will make precise later in this section.
A multicut-covering set is a generalization of a cut-covering set, used in previous work [20].

Formally, a cut-covering set for (𝐺,𝑇 ) is a set 𝑍 ⊆ 𝐸 (𝐺) such that for any partition𝑇 = 𝐴∪𝐵 there
is an (𝐴, 𝐵)-min cut 𝑋 in 𝐺 with 𝑋 ⊆ 𝑍 . By previous work, if (𝐺,𝑇 ) is a terminal network with
cap(𝑇 ) = 𝑘 , then a cut-covering set of 𝑂 (𝑘3) edges can be computed in randomized polynomial
time [20]. We observe that this gives us a 2-approximate multicut-covering set.

Lemma 2.4. Let (𝐺,𝑇 ) be a terminal network and let 𝑍 be a cut-covering set for edge cuts over 𝑇 .

Then 𝑍 is a 2-approximate multicut-covering set.

Proof. Let T = 𝑇1 ∪ . . . ∪𝑇𝑠 be a partition of 𝑇 and let 𝑋 be a minimum multiway cut for T .
For 𝑖 ∈ [𝑠], let 𝜆𝑖 = 𝜆(𝑇𝑖 ,𝑇 \ 𝑇𝑖 ) be the size of an isolating min-cut for 𝑇𝑖 in 𝐺 . Then 𝑍 contains
a (𝑇𝑖 ,𝑇 \ 𝑇𝑖 )-cut of cardinality 𝜆𝑖 for every 𝑖 ∈ [𝑠], and by taking their union we get a solution
𝑋 ′ ⊆ 𝑍 with |𝑋 ′ | ≤ ∑𝑠

𝑖=1 𝜆𝑖 .
It is known [40, Cor. 73.2e] that there exists a half-integral multiflow in 𝐺 for T of value

1
2
∑𝑠

𝑖=1 𝜆𝑖 ≥ |𝑋 ′ |/2. Hence |𝑋 | ≥ |𝑋 ′ |/2, and 𝑋 ′ is a 2-approximate multiway cut for T . By the
argument of Prop. 2.2, 𝑋 ′ is also a 2-approximate multicut-mimicking network for (𝐺,𝑇 ). □

Thus, in randomized polynomial time we can compute a 2-approximate multicut-covering set
for a terminal network (𝐺,𝑇 ) with 𝑂 (cap(𝑇 )3) edges.

2.2 Graph separation algorithms
The central technical approximation assumption needed in this paper is the following. For a graph
𝐺 with a set of terminals 𝑇 , define the 𝑇 -capacity of 𝑆 in 𝐺 as

cap𝑇 (𝑆) = cap𝐺 (𝑇 ∩ 𝑆) + 𝛿𝐺 (𝑆).
For the purposes of the paper, we may consider a graph “dense” if there are no sets 𝑆 with |𝑆 | ≤
|𝑉 (𝐺) |/2 where cap𝑇 (𝑆) is very small compared to |𝑆 |. More precisely, we work with the following
definition of a form of approximate denseness guarantee.

Definition 2.5 ((𝛼, 𝑐)-dense). Let 𝛼 and 𝑐 be constants and let (𝐺,𝑇 ) be a terminal network. We
say that (𝐺,𝑇 ) is (𝛼, 𝑐)-dense if for every set 𝑆 ⊆ 𝑉 (𝐺) with 0 < |𝑆 | ≤ |𝑉 (𝐺) |/2 and 𝑁 [𝑆] ≠ 𝑉 (𝐺)
we have cap𝑇 (𝑆) ≥ |𝑆 |1/𝑐/𝛼 . More generally, let 𝛼 : N → N be a function. In this case, (𝐺,𝑇 ) is
(𝛼, 𝑐)-dense if for every set 𝑆 as above we have cap𝑇 (𝑆) ≥ |𝑆 |1/𝑐/𝛼 ( |𝑆 |).

We define the following notion.2

2For the main results of the paper, it suffices to assume a specialised version that focuses on cuts that cut through the
terminal set. The details were worked out in the preliminary version of this paper [42], under the name sublogarithmic

terminal expansion tester. We use here a simplified definition that suffices for our results.
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Definition 2.6 (Quasipolynomial expansion tester). Let (𝐺,𝑇 ) be a terminal networkwith cap𝐺 (𝑇 ) =
𝑘 . A quasipolynomial expansion tester (with approximation ratio 𝛼) is a (possibly randomized) al-
gorithm that, given as input (𝐺,𝑇 ) and an integer 𝑐 ∈ N, with 𝑐 = Ω(log𝑘), does one of the
following.
(1) Either returns a set 𝑆 ⊂ 𝑉 such that 𝑁 [𝑆] ≠ 𝑉 (𝐺) and cap𝑇 (𝑆) < |𝑆 |1/𝑐 ,
(2) or guarantees that (𝐺,𝑇 ) is (𝛼, 𝑐)-dense.

More generally, we allow 𝛼 : N→ N to be a function depending on |𝑆 | in addition to 𝑛 and 𝑘 , in
which case the alternate definition of (𝛼, 𝑐)-denseness applies.

We note that quasipolynomial expansion testers follow from approximation algorithms for Small
Set Expansion. Indeed, this should be no great surprise, as the problem definitions are almost
identical, except for the parameter 𝑐 .

Lemma 2.7. Assume that Small Set Expansion has a bicriteria approximation algorithm that

on input (𝐺, 𝜌) returns a set 𝑆 with |𝑆 | ≤ 𝛽 · 𝜌𝑛 and Φ(𝑆) ≤ 𝛼 (𝜌𝑛) · Φ𝜌 , for some 𝛼, 𝛽 ≥ 1 which
may depend on 𝑛, 𝑘 = Φ𝜌𝜌𝑛, and 𝜌 . Also assume 𝑐 = Ω(log𝑘) and 𝛼 ≤ 𝑂 (log𝑛). Then there is a

quasipolynomial expansion tester with an approximation function 𝛼 ′( |𝑆 |) = Θ(𝛼 ( |𝑆 |)𝛽).

Proof. Let a terminal network (𝐺,𝑇 ) and parameter 𝑐 ∈ N be given, 𝑐 = Ω(log𝑘). Let 𝛼 ′(𝑠) =
2𝛼 (𝑠)𝛽 . We need to show that if (𝐺,𝑇 ) is not (𝛼 ′, 𝑐)-dense, then we can find a set 𝑆 ⊂ 𝑉 with
𝑁 [𝑆] ≠ 𝑉 such that cap𝑇 (𝑆) < |𝑆 |1/𝑐 . Hence assume that (𝐺,𝑇 ) is not (𝛼 ′, 𝑐)-dense, and let 𝑆 ⊂ 𝑉

be a set witnessing this, i.e., 0 < |𝑆 | ≤ |𝑉 (𝐺) |/2, 𝑁 [𝑆] ≠ 𝑉 (𝐺), and cap𝑇 (𝑆) < |𝑆 |1/𝑐/𝛼 ′( |𝑆 |).
For shorthand write 𝛼 ′ = 𝛼 ′( |𝑆 |). We argue that the set 𝑆 \𝑇 is also a legal return value for the
algorithm. Note

cap𝑇 (𝑆 \𝑇 ) = 𝛿 (𝑆 \𝑇 ) ≤ 𝛿 (𝑆) + cap𝐺 (𝑇 ∩ 𝑆) = cap𝑇 (𝑆).

We also have |𝑆 | > (𝛼 ′cap𝑇 (𝑆))𝑐 ≥ (𝛼 ′cap𝑇 (𝑆 \𝑇 )𝑐 . Now, recall thatMinimum Bisection is FPT
parameterized by the solution value (i.e., the number of edges cut by an optimal solution), with
the fastest FPT algorithm running in time 𝑂∗ (2𝑂 (𝑝 log𝑝) ) for parameter 𝑝 [7]. Hence we can in
polynomial time check for a bisection with 𝑝 = 𝑂 (log𝑛/log log𝑛) edges, and by replacing a vertex
with a suitably large clique we can also check for a set 𝑆 ′ of cardinality 𝑠 with 𝛿 (𝑆 ′) ≤ 𝑝 . Hence in
the remaining case we assume cap𝑇 (𝑆) ≥ 𝛿 (𝑆) ≥ Ω(log𝑛/log log𝑛). Furthermore, by assumption
𝑐 = Ω(log𝑘). Hence

|𝑆 | ≥ (𝛼 ′cap𝑇 (𝑆))𝑐 ≥ (log𝑛/log log𝑛)log𝑘 = 𝑘Ω (log log𝑛) ,

and the difference in size between |𝑆 | and |𝑆 \𝑇 | ≥ |𝑆 | − 𝑘 is negligible. Hence

Φ(𝑆 \𝑇 ) = 𝛿 (𝑆 \𝑇 )
|𝑆 \𝑇 | ≤

cap𝑇 (𝑆)
(1 − 𝑜 (1)) |𝑆 | < (1 + 𝑜 (1)) (1/𝛼 ′) |𝑆 |1/𝑐−1 .

Now attach a large clique to every terminal in 𝐺 , say of size 𝛽 |𝑆 | + 1, forming a graph 𝐺 ′, and
call an approximation algorithm for Small Set Expansion with a parameter of 𝜌 = |𝑆 |/|𝑉 (𝐺 ′) |.
Assume that the algorithm returns a set 𝑆 ′ ⊆ 𝑉 (𝐺 ′). Then |𝑆 ′ | ≤ 𝛽 |𝑆 |, hence 𝑆 ′ ∩ 𝑇 = ∅ and
cap𝑇 (𝑆 ′) = 𝛿 (𝑆 ′). Furthermore Φ(𝑆 ′) ≤ 𝛼 ′′Φ(𝑆 \𝑇 ) where 𝛼 ′′ is the approximation guarantee of
the algorithm on input (𝐺 ′, 𝜌). Here, the only relevant difference between 𝛼 ′′ and 𝛼 lies in the
difference between |𝑉 (𝐺) | = 𝑛 and |𝑉 (𝐺 ′ | ≤ 𝑛 + 𝑘 (𝛽 |𝑆 | + 1) ≤ 𝑂 (𝑘𝛽𝑛). But since 𝛼 by assumption
depends on 𝑛 as 𝑂 (log𝑛) or slower, this difference is a lower-order term. Then

cap𝑇 (𝑆 ′) = 𝛿 (𝑆 ′) = |𝑆 ′ |Φ(𝑆 ′) ≤ |𝑆 ′ |𝛼 ·Φ(𝑆\𝑇 ) < 1 + 𝑜 (1)
2𝛽 |𝑆 ′ |·|𝑆 |1/𝑐−1 . = 1 + 𝑜 (1)

2𝛽 ( |𝑆 ′ |/|𝑆 |)1−1/𝑐 |𝑆 ′ |1/𝑐 .
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Now, since |𝑆 ′ |/|𝑆 | ≤ 𝛽 we get cap𝑇 (𝑆 ′) < (1/2) (1 + 𝑜 (1)) |𝑆 ′ |1/𝑐 , and 𝑆 ′ is a valid return value. By
repeating the above for all target sizes |𝑆 | = 𝜌 |𝑉 (𝐺 ′) | from 1 to |𝑉 (𝐺) |, we can be sure to identify
such a set 𝑆 ′ if one exists. □

Recall that our main result (Theorem 1.1) states roughly that if Small Set Expansion has an
approximation ratio of 𝛼 (𝑛, 𝑘), then we can find a multicut-covering set with 𝑘𝑂 (𝛼 (𝑛,𝑘) log𝑘) edges.
The strongest general-case approximation (stated purely in terms of𝑛) is an𝑂 (log𝑛)-approximation
due to Räcke [36]. Unfortunately, this is not a useful bound for us, since 𝑘 log𝑛 log𝑘 = 𝑛log

2 𝑘 is a
trivial size guarantee. However, Bansal et al. [3] gave a bicriteria algorithm with an approximation
ratio of 𝑂 (

√
log𝑛 log(1/𝜌)), giving 𝛼 ( |𝑆 |) = 𝑂 (log𝑛/

√
log |𝑆 |). In Section 3.3, we show that this

bound is (just barely) strong enough for a constructive result, yielding a kernel with 𝑘𝑂 (log3 𝑘) edges.
Stronger bounds, e.g., 𝛼 = 𝑂 (log𝑘) or better, would naturally give improved results.

3 MULTICUT-COVERING SETS
We now present the main result of the paper, namely the existence of quasipolynomial multicut-
mimicking networks for terminal networks (𝐺,𝑇 ), and a method for computing them in randomized
polynomial time using an appropriate quasipolynomial expansion tester.

At a high level, the process works through recursive decomposition of the graph 𝐺 across very
sparse cuts, treating each piece 𝐺 [𝑆] of the recursion as a new instance of multicut-covering set
computation, where the edges of 𝜕(𝑆) are considered as additional terminals. The process repeatedly
finds a single edge 𝑒 ∈ 𝐸 (𝐺) with a guarantee that for every set of cut requests 𝑅 ⊆

(
𝑇
2
)
there is a

minimum multicut 𝑋 for 𝑅 in 𝐺 such that 𝑒 ∉ 𝑋 . We may then contract the edge 𝑒 and repeat the
process. Thus the end product is a multicut-mimicking network, and the edges that survive until
the end of the process form a multicut-covering set.

In somewhat more detail, the process uses a variant of the representative sets approach, which
was previously used in the kernel for 𝑠-Multiway Cut [20]. Refer to an edge 𝑒 as essential for 𝑅,
for some 𝑅 ⊆

(
𝑇
2
)
, if every minimum multicut for 𝑅 in 𝐺 contains 𝑒 , and essential for (𝐺,𝑇 ) if it is

essential for 𝑅 for some 𝑅 ⊆
(
𝑇
2
)
. We use a representative sets approach to return a set of at most 𝑘𝑐

edges which is guaranteed to contain every essential edge, if (𝐺,𝑇 ) is already (𝛼, 𝑐)-dense, for an
appropriate value 𝑐 = Ω(𝛼 log𝑘). On the other hand, if (𝐺,𝑇 ) is not (𝛼, 𝑐)-dense, then (by careful
choice of parameters) we can identify a cut through 𝐺 which is sufficiently sparse that we can
reduce the size of one side of this cut via a recursive call. This gives a tradeoff between the size
of the resulting multicut-covering set and the denseness-guarantee we may assume through the
approximation algorithm. When 𝛼 is constant (or, more precisely, independent of |𝑆 |) then this
analysis gives a quite simple bound for an algorithm that computes a multicut-covering set of 𝑘𝑐
edges.
Unfortunately, the best bound on 𝛼 independent of |𝑆 | is just 𝛼 = 𝑂 (log𝑛), in which case the

bound 𝑘𝑐 with 𝑐 = Ω(log𝑛) is vacuous. We therefore also perform a more careful analysis using
the Small Set Expansion- approximation algorithm of Bansal et al. [3], and show that it allows us
to compute a multicut-covering set of 𝑘𝑂 (log3 𝑘) edges in polynomial time.

3.1 Recursive replacement
We now present the recursive decomposition step in detail. Let (𝐺,𝑇 ) be a terminal network with
cap𝐺 (𝑇 ) = 𝑘 . For a set 𝑆 ⊆ 𝑉 , we define the graph

𝐺𝑆 = 𝐺 [𝑁𝐺 [𝑆]] − 𝐸 (𝑁𝐺 (𝑆)),
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i.e., 𝐺𝑆 equals the graph 𝐺 [𝑆] with the edges of 𝜕(𝑆) added back in. We also denote
𝑇 (𝑆) = (𝑇 ∩ 𝑆) ∪ 𝑁𝐺 (𝑆)

as the terminals of 𝑆 . Under these definitions, the𝑇 -capacity of 𝑆 in𝐺 has two equivalent definitions
as

cap𝑇 (𝑆) = cap𝐺𝑆
(𝑇 (𝑆)) = cap𝐺 (𝑇 ∩ 𝑆) + 𝛿𝐺 (𝑆).

The recursive instance at 𝑆 consists of the terminal network (𝐺𝑆 ,𝑇 (𝑆)). This is the basis of our
recursive replacement procedure. Indeed, we show the following. Note that we consider 𝐸 (𝐺𝑆 ) ⊆
𝐸 (𝐺) in the following.

Lemma 3.1. Let (𝐺𝑆 ,𝑇 (𝑆)) be the recursive instance at 𝑆 for some 𝑆 ⊆ 𝑉 (𝐺). Let 𝑍𝑆 be a multicut-

covering set for (𝐺𝑆 ,𝑇 (𝑆)) and let 𝑒 ∈ 𝐸 (𝐺𝑆 ) \ 𝑍𝑆 . Then 𝑒 is not essential for (𝐺,𝑇 ).

Proof. By Prop. 2.2, it is sufficient to consider partitions T of 𝑇 and minimum multiway cuts
𝑋 for T . Let T be some partition of 𝑇 , and let 𝑋 be a minimum multiway cut for T in 𝐺 . Let T ′

be the partition of 𝑇 (𝑆) induced by the connected components of 𝐺 − 𝑋 , and let 𝑋𝑆 = 𝑋 ∩ 𝐸 (𝐺𝑆 ).
Then 𝑋𝑆 is a multiway cut for T ′ in 𝐺𝑆 . Indeed, any path 𝑃 in 𝐺𝑆 − 𝑋𝑆 between distinct parts of
T ′ also exists in 𝐺 − 𝑋 . If T ′ consists of a single part, then we have 𝑋𝑆 = ∅, as otherwise either
𝑋 contains an edge 𝑢𝑣 whose both endpoints lie in the same connected component of 𝐺 − 𝑋 , or
𝐺 − 𝑋 contains a connected component with no terminals, both of which contradict that 𝑋 is of
minimum cardinality. Otherwise, by assumption there is a minimum multiway cut 𝑋 ′

𝑆
for T ′ in 𝐺𝑆

such that 𝑒 ∉ 𝑋 ′
𝑆
. We claim that 𝑋 ′ := (𝑋 \ 𝑋𝑆 ) ∪ 𝑋 ′

𝑆
is a minimum multiway cut for T in 𝐺 . Note

that |𝑋 ′ | ≤ |𝑋 |, hence it remains to show that 𝑋 ′ is a multiway cut. Assume for a contradiction
that 𝐺 − 𝑋 ′ contains a path 𝑃 connecting different parts of T , and consider the partition of 𝑃
into subpaths induced by splitting at every vertex of 𝑇 (𝑆) that 𝑃 intersects. Note that every such
subpath is either contained in 𝐸 (𝐺𝑆 ) or disjoint from 𝐸 (𝐺𝑆 ), and by assumption at least one such
subpath is contained in 𝐸 (𝐺𝑆 ), as otherwise 𝑃 uses only edges also present in𝐺 −𝑋 . But every such
subpath goes between two vertices of 𝑇 (𝑆) which lie in the same connected component of 𝐺 − 𝑋

by definition of T ′. Thus every such subpath starts and ends in a single connected component of
𝐺 − 𝑋 , contradicting that 𝑃 starts and ends in different components. Therefore 𝑋 ′ is a minimum
multiway cut for T in 𝐺 . Since 𝑒 ∉ 𝑋 ′ we are done. □

Let us also briefly note the formal correctness of contracting a non-essential edge. Let𝐺/𝑒 denote
the result of contracting 𝑒 in 𝐺 .

Proposition 3.2. Let 𝑒 ∈ 𝐸 (𝐺) be a non-essential edge. Then for every 𝑋 ⊆ 𝐸 (𝐺) with 𝑒 ∉ 𝑋 , and

every partition T of 𝑇 , 𝑋 is a multiway cut for T in 𝐺 if and only if it is a multiway cut for T in

𝐺/𝑒 . Furthermore, 𝐺/𝑒 is a multicut-mimicking network for (𝐺,𝑇 ), and any multicut-covering set

𝑍 ⊆ 𝐸 (𝐺/𝑒) for (𝐺/𝑒,𝑇 ) is also multicut-covering for (𝐺,𝑇 ).

Proof. The first part is clear, since the contraction of an edge in 𝐺 − 𝑋 does not change the
structure of the connected components. Since 𝑒 is non-essential, by assumption there exists such
an optimal 𝑋 with 𝑒 ∉ 𝑋 for every partition T , hence (𝐺/𝑒,𝑇 ) is a multicut-mimicking network. It
also follows that an optimal solution for 𝐺 always exists in 𝐸 (𝐺/𝑒), hence a solution-covering set
for (𝐺/𝑒,𝑇 ) is also solution-covering for (𝐺,𝑇 ). □

The process now works as follows. Recall that (𝐺,𝑇 ) is (𝛼, 𝑐)-dense if cap𝑇 (𝑆) ≥ |𝑆 |1/𝑐/𝛼 for
every set 𝑆 with 𝑆 ∩ 𝑇 ≠ ∅ and |𝑆 | ≤ |𝑉 |/2 (Def. 2.5). The main technical result is a marking
process that marks all essential edges for (𝐺,𝑇 ) on the condition that (𝐺,𝑇 ) is (𝛼, 𝑐)-dense, and
which marks at most 𝑘𝑐 edges in total. In such a case, we are clearly allowed to select and contract
any unmarked edge of 𝐺 . Now, assume that (𝐺,𝑇 ) is not (𝛼, 𝑐)-dense. Then by definition there
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exists a set 𝑆 ⊂ 𝑉 such that cap𝑇 (𝑆) < |𝑆 |1/𝑐/𝛼 . If we can detect a set 𝑆 such that cap𝑇 (𝑆) < |𝑆 |1/𝑐 ,
then we can recursively compute a multicut-covering set 𝑍𝑆 for (𝐺𝑆 ,𝑇 (𝑆)), consisting of at most
cap𝑇 (𝑆)𝑐 < |𝑆 | edges. By the above, we may again select any single edge 𝑒 ∈ 𝐸 (𝐺𝑆 ) \ 𝑍𝑆 and
contract 𝑒 in 𝐺 . In either case, we replace 𝐺 by a strictly smaller graph until |𝐸 (𝐺) | ≤ 𝑘𝑐 , at which
point we are done.
The two ingredients in the above are thus the marking process for (𝛼, 𝑐)-dense graphs, which

we present next, and the ability to distinguish the two cases, which has been formalized in the
notion of a quasipolynomial expansion tester (Def. 2.6).

3.2 The dense case
Let us now focus on the marking procedure. Let a terminal network (𝐺,𝑇 ) with cap𝐺 (𝑇 ) = 𝑘 and
an integer 𝑐 be given. We show a process that marks essential edges, on the condition that (𝐺,𝑇 ) is
(𝛼, 𝑐)-dense, where we initially assume that 𝛼 is constant. That is, we prove the following result.
The proof takes up the rest of the subsection.

Lemma 3.3. Let 𝛼 be a constant. There is a function 𝑐 = Θ(𝛼 log𝑘) and a randomized polynomial-

time procedure that returns a set of edges 𝑍 ⊆ 𝐸 (𝐺) such that |𝑍 | ≤ 𝑘𝑐 and if (𝐺,𝑇 ) is (𝛼, 𝑐)-dense
then every essential edge for (𝐺,𝑇 ) is contained in 𝑍 .

In the preliminary version of this paper [42], we gave a multi-phase marking procedure for this
purpose, with a relatively complex correctness proof. In this paper, we give a simplified proof,
based around the following observation.
Proposition 3.4. Let T be a partition of 𝑇 and 𝑋 a minimum multiway cut for T . Let 𝑉 =

𝑉1 ∪ . . . ∪𝑉𝑠 be the partition of 𝑉 according to the connected components of 𝐺 − 𝑋 , ordered so that

cap𝑇 (𝑉1) ≥ . . . ≥ cap𝑇 (𝑉𝑠 ). Then for any 𝑖 ∈ [𝑠], cap𝑇 (𝑉𝑖 ) ≤ 3𝑘/𝑖 .
Proof. Since every edge of 𝑋 is incident with at most two components of 𝐺 − 𝑋 , we have∑𝑠
𝑖=1 𝛿 (𝑉𝑖 ) ≤ 2𝑘 . The additional contribution to cap𝑇 (𝑉𝑖 ) from terminals of 𝑇 is precisely 𝑘 in total.

Hence
∑

𝑖 cap𝑇 (𝑉𝑖 ) ≤ 3𝑘 . On the other hand, if there exists 𝑖 ∈ [𝑠] such that cap𝑇 (𝑉𝑖 ) > 3𝑘/𝑖 then∑𝑠
𝑗=1 cap𝑇 (𝑉𝑗 ) ≥

∑𝑖
𝑗=1 cap𝑇 (𝑉𝑗 ) ≥ 𝑖 · cap𝑇 (𝑉𝑖 ) > 𝑖 · (3𝑘/𝑖) = 3𝑘 . □

Since (𝐺,𝑇 ) is by assumption (𝛼, 𝑐)-dense, for any index 𝑖 such that |𝑉𝑖 | ≤ |𝑉 |/2 (i.e., for all but
at most one index 𝑖), it holds that |𝑉𝑖 | ≤ (𝛼 · 3𝑘/𝑖)𝑐 . If |𝑉 (𝐺) | > 𝑘𝑐 , and if 𝑐 is large enough then it
follows that almost all vertices of 𝐺 are found in the first few components. We shall see that this
suffices to allow for a simple marking procedure to capture all essential edges of (𝐺,𝑇 ).

3.2.1 Matroid constructions. Before we show the marking procedure, we need some additional
preliminaries. We refer to Oxley [34] for more background on matroids, and to Marx [31] for a more
concise, technical presentation, including the presentation of the representative sets lemma. For
further examples of usage of representative sets in kernelization„ see Kratsch and Wahlström [20].

Amatroid is a pair𝑀 = (𝐸,I) where I ⊆ 2𝐸 is the independent sets of𝑀 , subject to the following
axioms.
(1) ∅ ∈ I;
(2) if 𝐵 ∈ I and 𝐴 ⊆ 𝐵 then 𝐴 ∈ I; and
(3) if 𝐴, 𝐵 ∈ I with |𝐵 | > |𝐴| then there exists an element 𝑥 ∈ 𝐵 \𝐴 such that 𝐴 + 𝑥 ∈ I.

A basis of𝑀 is a maximum independent set of𝑀 ; the rank of𝑀 is the size of a basis.
Let 𝐴 be a matrix, and let 𝐸 label the columns of 𝐴. The column matroid of 𝐴 is the matroid

𝑀 = (𝐸,I) where 𝑆 ∈ I for 𝑆 ⊆ 𝐸 if and only if the columns indexed by 𝑆 are linearly independent.
A matrix 𝐴 represents a matroid𝑀 if𝑀 is isomorphic to the column matroid of 𝐴. We refer to 𝐴 as
a linear representation of𝑀 .
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We need three classes of matroids to build from. First, for a set 𝐸, the uniform matroid over 𝐸 of
rank 𝑟 is the matroid

𝑈 (𝐸, 𝑟 ) := (𝐸, {𝑆 ⊆ 𝐸 | |𝑆 | ≤ 𝑟 }) .
Uniform matroids are representable over any sufficiently large field.

The second class is a truncated graphic matroid. Given a graph𝐺 = (𝐸,𝑉 ), the graphic matroid of
𝐺 is the matroid𝑀 (𝐺) = (𝐸,I) where a set 𝐹 ⊆ 𝐸 is independent if and only if 𝐹 is the edge set of
a forest in𝐺 . Graphic matroids can be deterministically represented over all fields. The 𝑟 -truncation
of a matroid 𝑀 = (𝐸,I) for some 𝑟 ∈ N is the matroid 𝑀 ′ = (𝐸,I ′) where 𝑆 ∈ I ′ if and only if
𝑆 ∈ I and |𝑆 | ≤ 𝑟 . Given a linear representation of 𝑀 , over some field F, a truncation of 𝑀 can
be computed in randomized polynomial time, possibly by moving to an extension field of F [31].
There are also methods for doing this deterministically [25], but the basic randomized form will
suffice for us.
The final class is more involved. Let 𝐷 = (𝑉 ,𝐴) be a directed graph and 𝑆 ⊆ 𝑉 a set of source

vertices. A set 𝑇 ⊆ 𝑉 is linked to 𝑆 in 𝐷 if there are |𝑇 | pairwise vertex-disjoint paths starting in 𝑆

and ending in 𝑇 . Let𝑈 ⊆ 𝑉 . Then
𝑀 (𝐷, 𝑆,𝑈 ) = (𝑈 , {𝑇 ⊆ 𝑈 | 𝑇 is linked to 𝑆 in 𝐷})

defines a matroid over 𝑈 , referred to as a gammoid. Note that by Menger’s theorem, a set 𝑇 is
dependent in𝑀 if and only if there is an (𝑆,𝑇 )-vertex cut in 𝐷 of cardinality less than |𝑇 | (where
the cut is allowed to overlap 𝑆 and 𝑇 ). Like uniform matroids, gammoids are representable over
any sufficiently large field, and a representation can be computed in randomized polynomial
time [31, 34]. We will work over a variant of gammoids we refer to as edge-cut gammoids, which
are defined as gammoids, except in terms of edge cuts instead of vertex cuts. Informally, for a graph
𝐺 = (𝑉 , 𝐸) and a set of source vertices 𝑆 ⊆ 𝑉 , the edge-cut gammoid of (𝐺, 𝑆) is a matroid on a
ground set of edges, where a set 𝐹 of edges is independent if and only if it can be linked to 𝑆 via
pairwise edge-disjoint paths. However, we also need to introduce the “edge version” of sink-only
copies of vertices, as used in previous work [20]. That is, we introduce a second set 𝐸 ′ = {𝑒 ′ | 𝑒 ∈ 𝐸}
containing copies of edges 𝑒 ∈ 𝐸 which can only be used as the endpoints of linkages, not as initial
or intermediate edges.

More formally, for a graph𝐺 = (𝑉 , 𝐸) and a set of source vertices 𝑆 ⊆ 𝐸 we perform the following
transformation.
(1) Let 𝐿(𝐺) be the line graph of 𝐺 , i.e., the vertices of 𝐿(𝐺) are 𝑉 (𝐿(𝐺)) = {𝑧𝑒 | 𝑒 ∈ 𝐸 (𝐺)},

and 𝑧𝑒𝑧𝑓 ∈ 𝐸 (𝐿(𝐺)) if and only if 𝑒 ∩ 𝑓 ≠ ∅. Let 𝑆𝐷 ⊆ 𝑉 (𝐿(𝐺)) be the vertices of 𝐿(𝐺)
corresponding to the edges 𝐸 (𝑆,𝑉 ) in 𝐺 .

(2) Convert 𝐿(𝐺) to a directed graph 𝐷𝐺 by replacing every edge 𝑧𝑒𝑧𝑓 ∈ 𝐸 (𝐿𝐺 ) by a pair of
directed edges (𝑧𝑒 , 𝑧𝑓 ), (𝑧𝑓 , 𝑧𝑒 ) in 𝐸 (𝐷𝐺 ).

(3) Finally, for every vertex 𝑧𝑒 ∈ 𝑉 (𝐷𝐺 ) introduce a new vertex 𝑧 ′𝑒 , and create a directed edge
(𝑣, 𝑧 ′𝑒 ) for every edge (𝑣, 𝑧𝑒 ) in 𝐷𝐺 .

Slightly abusing notation, we let 𝐸 refer to the vertices 𝑧𝑒 in𝐷𝐺 , and we let 𝐸 ′ refer to the vertices 𝑧 ′𝑒
in 𝐷𝐺 . The edge-cut gammoid of (𝐺, 𝑆) is the gammoid (𝐷𝐺 , 𝑆𝐷 , 𝐸 ∪𝐸 ′). Let us observe the resulting
notion of independence.

Proposition 3.5. Let𝐺 = (𝑉 , 𝐸) and 𝑆 ⊆ 𝑉 be given. Let𝑀 = (𝐸∪𝐸 ′,I) be the edge-cut gammoid

of (𝐺, 𝑆). Let 𝑋 ⊆ 𝐸 ∪ 𝐸 ′
be given, and let 𝐹 = (𝑋 ∩ 𝐸) ∪ {𝑒 | 𝑒 ′ ∈ 𝑋 ∩ 𝐸 ′}. Then 𝑋 is independent in

𝑀 if and only if there exists a set P of |𝑋 | paths linking 𝐹 to 𝑆 , where paths are pairwise edge-disjoint

except that if {𝑒, 𝑒 ′} ⊆ 𝑋 for some edge 𝑒 , then two distinct paths in P end in 𝑒 .

We let𝑈 (𝐸, 𝑝) denote the uniform matroid of rank 𝑝 on ground set 𝐸 (𝐺),𝑀𝐺 (𝑝) the 𝑝-truncated
graphic matroid of 𝐺 , and𝑀 (𝑇 ) the edge-cut gammoid of (𝐺,𝑇 ).
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If𝑀1 = (𝐸1,I1) and𝑀2 = (𝐸2,I2) are two matroids with 𝐸1 ∩ 𝐸2 = ∅, then their disjoint union is
the matroid

𝑀1 ⊎𝑀2 = (𝐸1 ∪ 𝐸2, {𝐼1 ∪ 𝐼2 | 𝐼1 ∈ I1, 𝐼2 ∈ I2}).
If𝑀1 and𝑀2 are represented by matrices𝐴1 and𝐴2 over the same field, then𝑀1⊎𝑀2 is represented
by the matrix

𝐴 =

(
𝐴1 0
0 𝐴2

)
We will define matroids 𝑀 as the disjoint union over several copies of the base matroids 𝑀 (𝑇 ),
𝑀𝐺 (𝑝) and 𝑈 (𝐸, 𝑝) defined above. We refer to the individual base matroids making up 𝑀 as the
layers of𝑀 .

Representative sets. Our main technical tool is the representative sets lemma, due to Lovász [28]
and Marx [31]. This result has been important in FPT algorithms [10, 31] and has been central to
the previous kernelization algorithms for cut problems, including variants of Multiway Cut [20].
We also introduce some further notions.

Definition 3.6. Let 𝑀 = (𝐸,I) be a matroid and 𝑋,𝑌 ∈ I. We say that 𝑌 extends 𝑋 in 𝑀 if
𝑟 (𝑋 ∪ 𝑌 ) = |𝑋 | + |𝑌 |, or equivalently, if 𝑋 ∩ 𝑌 = ∅ and 𝑋 ∪ 𝑌 ∈ I. Furthermore, let 𝑐 = 𝑂 (1) be a
constant and let Y ⊆

(
𝐸
𝑐

)
. We say that a set Ŷ ⊆ Y represents Y in 𝑀 if the following holds: For

every 𝑋 ∈ I for which there exists some 𝑌 ∈ Y such that 𝑌 extends 𝑋 in𝑀 , then there exists some
𝑌 ′ ∈ Ŷ such that 𝑌 ′ extends 𝑋 in𝑀 .

The representative sets lemma now says the following.

Lemma 3.7 (representative sets lemma [28, 31]). Let𝑀 = (𝐸,I) be a linear matroid represented

by a matrix 𝐴 of rank 𝑟 + 𝑠 , and let Y ⊆
(
𝐸
𝑠

)
be a collection of independent sets of𝑀 , where 𝑠 = 𝑂 (1).

In time polynomial in the size of 𝐴 and the size of Y, we can compute a set Ŷ ⊆ Y of size at most(
𝑟+𝑠
𝑠

)
which represents Y in𝑀 .

We use the following product form of the representative sets lemma, with stronger specialized
bounds. Assume that the rank of 𝑀 is 𝑟 = 𝑟1 + . . . + 𝑟𝑐 , where 𝑟𝑖 is the rank of layer 𝑖 of 𝑀 . Then
Lemma 3.7 gives a bound on |Ŷ | as Θ((𝑟1 + . . . + 𝑟𝑐 )𝑐 ), but the following bound is significantly
better when the layers of𝑀 have different ranks.

Lemma 3.8 ([20, Lemma 3.4]). Let 𝑀 = (𝐸,I) be a linear matroid, given as the disjoint union of

𝑐 matroids 𝑀𝑖 = (𝐸𝑖 ,I𝑖 ), where 𝑀𝑖 has rank 𝑟𝑖 . Let Y ⊆
(
𝐸
𝑐

)
be such that every set 𝑌 ∈ Y contains

precisely one member in each layer 𝑀𝑖 of 𝑀 . Then the representative set Ŷ ⊆ Y computed by the

representative sets lemma will have |Ŷ | ≤ ∏𝑐
𝑖=1 𝑟𝑖 .

3.2.2 The marking step. For the marking process, fix an integer 𝑖0 (to be specified later). We define
a matroid 𝑀 as a function of 𝑖0 as the disjoint union of 𝑖0 − 1 copies of the edge-cut gammoid
𝑀 (𝑇 ) (on disjoint copies of the ground set), one copy of𝑀𝐺 (𝑘𝑐−𝑖0 ), and one copy of𝑈 (𝐸, 𝑘). That
is, 𝑀 = 𝑀1 ⊎ · · · ⊎𝑀𝑖0+1, where 𝑀1 through 𝑀𝑖0−1 are copies of 𝑀 (𝑇 ) (on disjoint copies of the
ground set), 𝑀𝑖0 = 𝑀𝐺 (𝑘𝑐−𝑖0 ), and 𝑀𝑖0+1 = 𝑈 (𝐸, 𝑘). We refer to the first 𝑖0 − 1 layers in 𝑀 as the
gammoid layers and the last two as the graphic matroid layer and the uniform layer. Note that a
linear representation of𝑀 over some common field F can be computed in randomized polynomial
time, since every layer of𝑀 can be represented over any sufficiently large field.

For each edge 𝑒 ∈ 𝐸, let 𝑡 (𝑒) be the set that contains a copy of 𝑧 ′𝑒 in every gammoid layer, and a
copy of 𝑒 in the graphic matroid and uniform layers. Let

𝐹 = {𝑡 (𝑒) | 𝑒 ∈ 𝐸}.
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We compute a representative set 𝐹 ⊆ 𝐹 in the matroid 𝑀 , and let 𝑍 ⊆ 𝐸 be the set of edges
represented in 𝐹 . An edge 𝑒 ∈ 𝐸 is marked if 𝑒 ∈ 𝑍 . We finish the description by observing the
bound on the number of marked edges.

Lemma 3.9. The total number of marked edges is at most 𝑘𝑐 .

Proof. Follows directly from the product form of the representative sets lemma. □

Finally, we note the correctness condition for the marking. Consider a partition T of 𝑇 and a
corresponding minimum multiway cut 𝑋 ⊆ 𝐸. Note that |𝑋 | ≤ 𝑘 since 𝐸 (𝑇,𝑉 ) is a multiway cut
for every partition, and say that 𝑋 is covered if all edges essential for T are marked. We then have
the following.

Lemma 3.10. Let 𝑉 = 𝑉1 ∪ . . . ∪𝑉𝑠 be the partition of 𝐺 − 𝑋 into connected components, where

|𝑉1 | ≥ . . . ≥ |𝑉𝑠 |. If |
⋃𝑠

𝑖=𝑖0 𝑉𝑖 | ≤ 𝑘𝑐−𝑖0 , then 𝑋 is covered.

Proof. Let 𝑒 ∈ 𝑋 be an edge which is essential for T . Let T = {𝑇1, . . . ,𝑇𝑠 } where 𝑇𝑖 = 𝑇 ∩𝑉𝑖
for 𝑖 ∈ [𝑠]. Finally, define an independent set 𝐼 in𝑀 as follows. In the 𝑖:th gammoid layer, 𝑖 < 𝑖0, 𝐼
contains copies of vertices 𝑧𝑒 from the edges of 𝜕(𝑇𝑖 ) ∪𝑋 . In the graphic matroid layer, 𝐼 contains a
spanning forest for components 𝑉𝑖0 through 𝑉𝑠 . In the final layer, 𝐼 contains the edges of 𝑋 − 𝑒 . We
claim that 𝑡 (𝑓 ) extends 𝐼 if and only if 𝑓 = 𝑒 .
For the easier direction, we note that 𝑡 (𝑓 ) cannot extend 𝐼 if 𝑒 ≠ 𝑓 . If 𝑓 ∈ 𝐸 (𝑉𝑖 ) for some 𝑖 < 𝑖0,

then 𝑓 fails to extend 𝐼 in layer 𝑖 . Indeed, independence of 𝜕(𝑇𝑖 ) ∪ 𝑋 ∪ {𝑓 } in𝑀 (𝑇 ) would require
that 𝑋 ∪ {𝑓 } is linked to 𝑇 \𝑇𝑖 , since the vertices of 𝑇𝑖 are blocked off by the edges 𝜕(𝑇𝑖 ). But 𝑋
separates 𝑓 from 𝑇 \𝑇𝑖 , hence no such linkage is possible. If 𝑓 ∈ 𝐸 (𝑉𝑖 ) for 𝑖 ≥ 𝑖0, then 𝑓 fails to
extend 𝐼 in the graphic matroid layer. Finally, if 𝑓 ∈ 𝑋 then 𝑓 fails to extend 𝐼 in the uniform
matroid layer. Hence it remains to show that 𝑡 (𝑒) extends 𝐼 .
For the gammoid layers, this works precisely as in [20]. As noted in [20] (Prop. 1), whether a

sink-only copy 𝑣 ′ extends a set𝑈 in a gammoid (𝐷, 𝑆) depends on whether the original copy 𝑣 is
contained in the (𝑆,𝑈 )-min cut closest to 𝑆 . Here, including 𝜕(𝑇𝑖 ) in 𝐼 in layer 𝑖 effectively turns
this condition into a cut between 𝑋 and 𝛿 (𝑇 \𝑇𝑖 ). Hence if 𝑒 ′ does not extend 𝑋 ∪ 𝜕(𝑇𝑖 ), then there
is a min-cut 𝑋2 between 𝑋 and 𝑇 \𝑇𝑖 that is closer to 𝑇 \𝑇𝑖 than 𝑋 , and 𝑒 ∉ 𝑋2. This contradicts
that 𝑒 is essential for T .
For the last two layers, the statement is trivial. Hence 𝑡 (𝑓 ) extends 𝐼 if and only if 𝑓 = 𝑒 , as

promised, and 𝑒 ∈ 𝑍 . □

3.2.3 Correctness. We finish this section by showing that a choice of 𝑐 = Θ(𝛼 log𝑘) suffices, when
𝛼 is constant.

Lemma 3.11. Set 𝑖0 = 4𝛼 + 1. There is a value 𝑐 = Θ(𝛼 log𝑘) such that the following holds: If (𝐺,𝑇 )
is (𝛼, 𝑐)-dense, then 𝑍 contains all essential edges.

Proof. Let T be a partition of𝑇 and let𝑋 be a minimummultiway cut for T . Let𝑉 = 𝑉1∪ . . .∪𝑉𝑠
be the connected components of 𝐺 − 𝑋 sorted by decreasing value of cap𝑇 (𝑉𝑖 ), and let 𝑗 ∈ [𝑠] be
the index that maximizes |𝑉𝑗 |. By Prop. 3.4, cap𝑇 (𝑉𝑖 ) ≤ 3𝑘/𝑖0 for 𝑖 ≥ 𝑖0. If furthermore 𝑖 ≠ 𝑗 , then
|𝑉𝑖 | ≤ (𝛼 · 3𝑘/𝑖0)𝑐 = (3𝑘/4)𝑐 by the denseness guarantee on (𝐺,𝑇 ). Let 𝐼 = {𝑖0 − 1, . . . , 𝑠} \ { 𝑗}.
Then ∑

𝑖∈𝐼
|𝑉𝑖 | ≤ 𝑠 · (3𝑘/4)𝑐 ≤ 𝑘 · 𝑘𝑐 · (3/4)𝑐 .

For 𝑐 = log4/3 (𝑘𝑖0+1) = Θ(𝛼 log𝑘), this is upper-bounded by 𝑘𝑐−𝑖0 . Thus 𝐼 indexes a set of at least
𝑠 − 𝑖0 + 1 components whose total size is bounded by 𝑘𝑐−𝑖0 , and certainly the 𝑠 − 𝑖0 + 1 smallest
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components are not larger than this. Thus Lemma 3.10 applies, 𝑋 is covered, and 𝑍 contains all
essential edges. □

In Theorem 3.14, we combine this with the decomposition described previously to show the
existence of a multicut-covering set with 𝑘𝑂 (log𝑘) edges.

3.3 A constructive result
Now, with some slightly more involved calculations and a higher degree in the exponent, we show
that this can be achieved constructively. The marking process is the same as in the last section, but
we need to be more careful with the constants.

For this section, let 𝑐 = ⌊(log𝑛)/(log𝑘)⌋ − 1, to ensure that the number of edges marked is
𝑘𝑐 < 𝑛. We will treat this as 𝑐 = (1 − 𝑜 (1)) log𝑛/log𝑘 . We show that such a marking process is
possible until we reach a bound of 𝑐 = 𝑂 (log3 𝑘). Hence, we assume |𝑉 | = 𝑘Ω (log3 𝑘) in the sequel.
We use the Small Set Expansion approximation algorithm of Bansal et al. [3], which has a

ratio of 𝛼 ( |𝑆 |) = 𝑂 (log𝑛/
√
log |𝑆 |). By Lemma 2.7 we may then assume that for any non-empty set

𝑆 ⊆ 𝑉 , |𝑆 | ≤ |𝑉 |/2, we have cap𝑇 (𝑆) ≥ |𝑆 |1/𝑐/𝛼 ( |𝑆 |).
By Lemma 3.10, we wish to find a threshold value 𝑖0 such that if the components are sorted in

decreasing order of |𝑉𝑖 |, then the total number of vertices in components 𝑉𝑖 for 𝑖 ≥ 𝑖0 is at most
𝑘𝑐−𝑖0 . For this, it suffices to show that |𝑉𝑖 | ≤ 𝑘𝑐−𝑖0−1 for every 𝑖 ≥ 𝑖0. We set 𝑖0 = Θ(

√
𝑐 log𝑘) with

a constant factor to be decided. As above, we use cap𝑇 (𝑉𝑖 ) and the denseness bound as a proxy
to upper-bound |𝑉𝑖 |, making a possible exception for a component 𝑉𝑗 with cap𝑇 (𝑉𝑗 ) small but
|𝑉𝑗 | > 𝑛/2.
Let (𝐺,𝑇 ) be (𝛼, 𝑐)-dense with 𝛼 and 𝑐 as above. Let T be a partition of 𝑇 and 𝑋 a minimum

multiway cut for T . We show that the marking process with parameters 𝑐 and 𝑖0 cover all essential
edges of 𝑋 .

Lemma 3.12. Let𝑉 = 𝑉1 ∪ . . .∪𝑉𝑠 be the partition corresponding to connected components of𝐺 −𝑋 ,

ordered in decreasing value of cap𝑇 (𝑉𝑖 ). With the above parameters, |𝑉𝑖 | ≤ 𝑘𝑐−𝑖0−1 for all but at most

one index 𝑖 ≥ 𝑖0 − 1.

Proof. Let 𝑉𝑗 be the largest component, and assume for a contradiction that for some 𝑖 ≥ 𝑖0 − 1,
𝑖 ≠ 𝑗 , we have |𝑉𝑖 | > 𝑘𝑐−𝑖0−1. By the SSE approximation we use, for some 𝑝 = 𝑂 (1) we then have

𝛼 ( |𝑉𝑖 |) ≤
𝑝 log𝑛√

(𝑐 − 𝑖0 − 1) log𝑘
≤ (1 + 𝑜 (1))

𝑝𝑐
√
log𝑘

√
𝑐 − 𝑖0 − 1

,

where we can absorb the 1 + 𝑜 (1) factor into 𝑝 . Furthermore fix the constant in 𝑖0 so that 𝑖0 =

6𝑝
√
𝑐 log𝑘 + 1. By Prop. 3.4 we have cap𝑇 (𝑉𝑖 ) ≤ 3𝑘/𝑖 ≤ 3𝑘/(𝑖0 − 1), hence the denseness guarantee

is

|𝑉𝑖 | ≤ (3𝛼𝑘/(𝑖0 − 1))𝑐 = 𝑘𝑐 ·
(

3𝑝𝑐
√
log𝑘

6𝑝
√
𝑐 log𝑘

√
𝑐 − 𝑖0 − 1

)𝑐
= 𝑘𝑐 ·

(
1
2 ·

√
𝑐

(𝑐 − 𝑖0 − 1)

)𝑐
.

Since 𝑐 = Ω(log3 𝑘), we have 𝑖0 = Θ(
√
𝑐 log𝑘) = 𝑜 (𝑐). Hence 𝑐/(𝑐−𝑖0−1) = 1+ (𝑖0+1)/(𝑐−𝑖0−1) =

1 + 𝑜 (1) and we claim

|𝑉𝑖 | ≤ 𝑘𝑐 ·
(
1 + 𝑜 (1)

2

)𝑐
≤ 𝑘𝑐−𝑖0−1,

contradicting our assumption. Indeed, 𝑘𝑖0 = 2Θ(𝑐1/2 log3/2 𝑘) ≤ 2𝑐 for some 𝑐 = Ω(log3 𝑘). Thus the
contradiction is complete and |𝑉𝑖 | ≤ 𝑘𝑐−𝑖0−1. □
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Since there are at most 𝑘 components, it follows that after the 𝑖0 − 1 largest components are
removed, the remaining components contain fewer than 𝑘𝑐−𝑖0 vertices in total, as required. Hence
we have the following.

Lemma 3.13. If |𝑉 (𝐺) | ≥ 𝑘Ω (log3 𝑘)
and (𝐺,𝑇 ) is (𝛼, 𝑐)-dense as above, then there is a process that

marks all essential edges of (𝐺,𝑇 ) while leaving at least one edge unmarked.

3.4 Completing the result
We now put the pieces together to show the non-constructive and constructive bounds on the size
of a multicut-covering set.

Theorem 3.14 (Theorem 1.1 restated). Let 𝐴 be a quasipolynomial expansion tester with ratio

𝛼 (𝑛, 𝑘). Let (𝐺,𝑇 ) be a terminal network with cap𝐺 (𝑇 ) = 𝑘 . There is a multicut-covering set 𝑍 ⊆ 𝐸 (𝐺)
with |𝑍 | ≤ 𝑘𝑂 (𝛼 (𝑛,𝑘) log𝑘)

, which furthermore can be computed in randomized polynomial time using

calls to 𝐴.

Proof. Set 𝑐 = Θ(𝛼 log𝑘) as in Lemma 3.11. If |𝐸 (𝐺) | ≤ 𝑘𝑐 then return 𝑍 = 𝐸 (𝐺). If there
is a vertex 𝑣 ∈ 𝑉 (𝐺) \ 𝑇 with 𝑑 (𝑣) ≤ 1, then delete it. This is clearly a correct reduction rule.
Otherwise, we compute a non-essential edge 𝑒 as follows. Call 𝐴 on (𝐺,𝑇 , 𝑐). If 𝐴 reports that
(𝐺,𝑇 ) is (𝛼, 𝑐)-dense, then Lemma 3.3 applies. Compute a set 𝑍 containing all essential edges, with
|𝑍 | ≤ 𝑘𝑐 , guaranteeing that there is a non-essential edge 𝑒 ∈ 𝐸 (𝐺) \ 𝑍 .
If 𝐴 returns a set 𝑆 ⊆ 𝑉 (𝐺), let 𝑘𝑆 = cap𝑇 (𝑆). Let (𝐺𝑆 ,𝑇 (𝑆)) be the recursive instance at 𝑆 ,

and note that |𝑉 (𝐺𝑆 ) | = |𝑁𝐺 [𝑆] | < |𝑉 | and |𝑆 | > 𝑘𝑐
𝑆
by definition of 𝐴. We may now proceed by

induction on |𝑉 | and assume that we can compute a multicut-covering set 𝑍𝑆 ⊆ 𝐸 (𝐺𝑆 ) of size
|𝑍𝑆 | ≤ 𝑘𝑐

𝑆
< |𝑉 (𝐺𝑆 ) |. On the other hand, we have

|𝐸 (𝐺𝑆 ) | = 1
2

∑
𝑣∈𝑉 (𝐺𝑆 )

𝑑𝐺𝑆
(𝑣) ≥ |𝑆 |

since 𝑑𝐺 (𝑣) = 𝑑𝐺𝑆
(𝑣) ≥ 2 for every 𝑣 ∈ 𝑆 and 𝑆 ⊆ 𝑉 (𝐺𝑆 ). Thus |𝐸 (𝐺𝑆 ) | ≥ |𝑆 | > 𝑘𝑐

𝑆
≥ |𝑍𝑆 |, and

there is an edge 𝑒 ∈ 𝐸 (𝐺𝑆 ) \ 𝑍𝑆 . By construction 𝑒 corresponds directly to an edge in 𝐺 , and we
have found a non-essential edge.

By Prop. 3.2 we may now contract 𝑒 in 𝐺 and repeat. This yields a graph 𝐺 ′ with |𝑉 (𝐺 ′) | < |𝑉 |,
hence by induction we can create a multicut-covering set 𝑍 for𝐺 ′, which is also a multicut-covering
set of 𝐺 by Prop. 3.2. Hence we can compute a multicut-covering set 𝑍 with |𝑍 | ≤ 𝑘𝑐 . □

We observe the following consequences.

Corollary 3.15. Let (𝐺,𝑇 ) be a terminal network with cap𝐺 (𝑇 ) = 𝑘 . The following holds.

(1) There is a multicut-mimicking network for (𝐺,𝑇 ) with 𝑘𝑂 (log𝑘)
edges.

(2) A multicut-mimicking network with 𝑘𝑂 (log3 𝑘)
edges can be computed in randomized polynomial

time.

Proof. The first is immediate using 𝛼 (𝑛, 𝑘) = 1. For the second, we need to use Lemma 3.13.
We assume that |𝐸 (𝐺) | > 𝑘Ω (log3 𝑘) as required by Lemma 3.13, or else we return (𝐺,𝑇 ). As in
Theorem 3.14 it suffices to locate a single non-essential edge. By Bansal et al. [3] and Lemma 2.7,
there is a quasipolynomial expansion tester with a ratio 𝛼 ( |𝑆 |) = 𝑂 (log𝑛/

√
log |𝑆 |). Call this

algorithm with (𝐺,𝑇 , 𝑐) where 𝑐 = (1 − 𝑜 (1)) log𝑛/log𝑘 as in Section 3.3. If it finds a set 𝑆 , recurse
on 𝑆 as in Theorem 3.14; otherwise Lemma 3.13 applies. In both cases we locate a non-essential
edge. Eventually we reach the threshold where |𝐸 (𝐺) | = 𝑘𝑂 (log3 𝑘) , and return the resulting terminal
network (𝐺,𝑇 ) as multicut-covering set. □
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Additionally, if better approximation ratios for Small Set Expansion exist, in particular ratios
𝛼 = 𝑂 (log𝑘) or better, then we can improve 𝑘𝑂 (log3 𝑘) to a constructive bound of size 𝑘𝑂 (𝛼 log𝑘) .

3.5 Kernelization extensions and consequences
As noted, we get the following consequences.

Corollary 3.16. The following problems have randomized quasipolynomial kernels.

(1) Edge Multiway Cut parameterized by solution size.

(2) Edge Multicut parameterized by the solution size and the number of cut requests.

(3) Group Feedback Edge Set parameterized by solution size, for any group.

(4) Subset Feedback Edge Set with undeletable edges, parameterized by solution size.

Proof. For Edge Multiway Cut, let (𝐺,𝑇 , 𝑘) be an input. Known reduction rules can reduce
the instance to one with cap𝐺 (𝑇 ) ≤ 2𝑘 [20]. From this point, the kernel follows.

For EdgeMulticut, let the input be (𝐺, {(𝑠1, 𝑡1) . . . , (𝑠𝑟 , 𝑡𝑟 )}, 𝑝) and let 𝑘 = 𝑝+𝑟 . Create a set of 2𝑟
vertices𝑇 = {𝑠 ′1, . . . , 𝑡 ′𝑟 } and 𝑝 + 1 subdivided parallel edges between 𝑠 ′𝑖 and 𝑠𝑖 , and between 𝑡 ′𝑖 and 𝑡𝑖 ,
for each 𝑖 ∈ [𝑟 ]. Let𝐺 ′ be the new graph. We claim that 𝐼 = (𝐺, {(𝑠1, 𝑡1), . . . , (𝑠𝑟 , 𝑡𝑟 )}, 𝑝) is a positive
instance if and only if 𝐼 ′ = (𝐺 ′, {(𝑠 ′1, 𝑡 ′1), . . . , (𝑠 ′𝑟 , 𝑡 ′𝑟 )}, 𝑝) is. Indeed, any multicut for 𝐼 is a multicut
for 𝐼 ′, and every multicut for 𝐼 ′ containing at most 𝑝 edges leaves all new terminals 𝑠 ′𝑖 , 𝑡 ′𝑖 connected
to the old terminals 𝑠𝑖 , 𝑡𝑖 and is hence a multicut for 𝐼 . Furthermore cap𝐺′ (𝑇 ) = (𝑝 + 1)𝑟 = 𝑂 (𝑘2).
Now it suffices to compute a multicut-covering set 𝑍 for (𝐺 ′,𝑇 ) and contract all edges in 𝐸 (𝐺 ′) \𝑍 .

For Group Feedback Edge Set (GFES), we follow the approach of [20]. The input to GFES is a
tuple (𝐺,𝜙, 𝑘), where𝜙 is a direction-dependent labelling of the edges of𝐺 from somemultiplicative
group Γ, such that for every 𝑢𝑣 ∈ 𝐸, 𝜙 (𝑢𝑣) = 𝜙 (𝑣𝑢)−1 (where the inverse is the group inverse). The
goal is to remove 𝑘 edges such that in the remaining graph, there is an assignment 𝜆 : 𝑉 (𝐺) → Γ
such that for any 𝑢𝑣 ∈ 𝐸 (𝐺) we have 𝜆(𝑣) = 𝜆(𝑢) · 𝜙 (𝑢𝑣). We will not need any assumptions
about how the group elements are represented, other than the ability to test whether a product
of elements 𝜙 (𝑒) equals the group identity 1Γ or not. Refer to a simple cycle 𝐶 as unbalanced
if

∏
𝑒∈𝐸 (𝐶) 𝜙 (𝑒) ≠ 1Γ , with the product taken in order along 𝐶 . We first note that GFES has an

𝑂 (log𝑘)-approximation. Indeed, GFES reduces easily to Group Feedback Vertex Set, which in
turn is a special case of the meta-problem Biased Graph Cleaning [41]. Lee and Wahlström [23]
showed that Biased Graph Cleaning admits an 𝑂 (log𝑘)-approximation, using an oracle for
testing whether cycles are unbalanced. Let 𝑋0 be an approximate solution with |𝑋0 | = 𝑂 (𝑘 log𝑘).
Let 𝑇 = 𝑉 (𝑋0) be the endpoints of 𝑋0. By assumption, 𝐺 − 𝑋0 admits an assignment 𝜆 : 𝑉 (𝐺) → Γ
as above, and such an assignment 𝜆 can be computed by starting with an arbitrary value from one
vertex of each connected component. We now follow [20] in untangling the group labels, so that
every edge except those in 𝑋0 receive the identity label by 𝜙 . As in [20], the solution to GFES now
corresponds to a multiway cut for some unknown partition T of 𝑇 , hence the multicut-mimicking
network can be used for kernelization.

Subset Feedback Edge Set with undeletable edges, parameterized by solution size, is covered
by the previous case, since it is a special case of GFES. Indeed, let 𝑆 ⊆ 𝐸 (𝐺) be the special edges.
We use labels 𝜙 from the group 𝑍𝑆

2 where every edge is labelled by 𝜙 by identity except the edges of
𝑆 , which flip one bit of the group element each. It is now easy to see that a cycle is balanced if and
only if it contains no edge from 𝑆 . It is furthermore easy to see that we can implement undeletable
edges by creating parallel (subdivided) copies of edges, using the same group labels. □

Remark. In the preliminary version of this paper [42], we additionally claimed results for the
0-Extension problem, building on results of Reidl and Wahlström [39]. Unfortunately, the proof of
this in [42] is incorrect, and we were unable to fix it. Concretely, using some terminology of [39],
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let 𝐼 = ((𝐺,𝑇 ), 𝜇, 𝜏) be an instance of 0-Extension for a terminal network (𝐺,𝑇 ) and a metric
𝜇. Assume that 𝐼 has an optimal solution 𝜆 with at most 𝑘 crossing edges, and that 𝐺 contains
a sparse cut, i.e., a set 𝑆 ⊆ 𝑉 (𝐺) such that cap𝑇 (𝑆) < |𝑆 |1/𝑐 < 𝑘 . Then the proof attempt in the
conference version [42] implicitly assumes that 𝜆 requires only 𝑂 (cap𝑇 (𝑆)) crossing edges inside
𝐺 [𝑆]. This does not appear to hold. Therefore we retract our previous claims in [42] regarding
quasipolynomial metric sparsifiers. The results of Reidl and Wahlström [39] are not affected by this.

4 DISCUSSION
We defined the notion of a multicut-mimicking network, and showed that every terminal network
(𝐺,𝑇 ) with 𝑘 = cap𝐺 (𝑇 ) admits one of size 𝑘𝑂 (log𝑘) , and that a multicut-mimicking network of size
𝑘𝑂 (log3 𝑘) can be computed in randomized polynomial time. The mimicking network is constructed
via contractions on𝐺 , i.e., it simply consists of a set of edges which form a multicut-covering set. As
a consequence of such a result, a range of parameterized problems, starting from Edge Multiway
Cut, have randomized quasipolynomial kernels.
A first question is how to bridge the gap between 𝑘𝑂 (log𝑘) and 𝑘𝑂 (log3 𝑘) . This may be partially

possible, depending on the precise approximation guarantee available for Small Set Expansion;
but a complete bridging via this approach would require a constant-factor approximation for SSE,
which has been conjectured not to exist under the small set expansion hypothesis. A more difficult
question is what the correct size of a multicut-mimicking network is in general, and whether one
of polynomial size exists and can be efficiently computed. A positive solution would confirm the
existence of a polynomial kernel for Edge Multiway Cut, which is one of the most significant
open questions in kernelization.

We finally note two questions in different directions. First, all results in this paper relate only to
edge deletion problems. Can an extension of the method be used to prove the existence or efficient
computability of a quasipolynomial mimicking network for vertex deletion multicut behaviour?
This may introduce significant additional difficulties, especially considering that approximation
algorithms for sparse vertex cuts are less well-developed than algorithms for Small Set Expan-
sion [26] (see also Agrawal and Maity for related FPT-results [1], and Louis, Raghavendra and
Vempala [27] on the approximability of Vertex Expansion).

Second, the preliminary version of this paper [42] contained mistaken claims about the existence
of quasipolynomial kernels and “metric sparsifiers” for 0-Extension instances, subject to a bound
on the number of crossing edges in a solution. Can such a result be established? On the other hand,
can evidence be established against the existence of a polynomial-sized exact metric sparsifier,
depending on a bound on the number of crossing edges 𝑘 of a solution, or is even such a result
plausible?
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