Comparing ray-theoretical and finite-frequency teleseismic traveltimes: implications for constraining the ratio of S-wave to P-wave velocity variations in the lower mantle

Carlos A. M. Chaves¹, ², #, Jeroen Ritsema¹, and Paula Koelemeijer³

¹ Department of Earth and Environmental Sciences, University of Michigan, 1100 North University Ave, Ann Arbor, Michigan, USA.
² Departamento de Geofísica, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão 1226, São Paulo, São Paulo, Brasil.
³ Department of Earth Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK

Corresponding author: Carlos Chaves (calbertome@usp.br)

Abstract

A number of seismological studies have indicated that the ratio R of S-wave and P-wave velocity perturbations increases to 3–4 in the lower mantle with the highest values in the large low-velocity provinces (LLVPs) beneath Africa and the central Pacific. Traveltime constraints on R are based primarily on ray-theoretical modelling of delay times of P waves (ΔT_P) and S waves (ΔT_S), even for measurements derived from long-period waveforms and core-diffracted waves for which ray theory is deemed inaccurate. Along with a published set of traveltime delays, we compare predicted values of ΔT_P, ΔT_S, and the ΔT_S / ΔT_P ratio for ray theory (RT) and finite-frequency theory (FF) to determine the resolvability of R in the lower mantle. We determine the FF predictions of ΔT_P and ΔT_S using cross-correlation methods applied to spectral-element method waveforms, analogous to the analysis of recorded waveforms, and by integration using finite-frequency sensitivity kernels. Our calculations indicate that RT and FF predict a similar variation of the ΔT_S / ΔT_P ratio when R increases linearly with depth in the mantle. However, variations of R in relatively thin layers (< 400 km) are poorly resolved using long-period data (T > 20 s). This is because FF predicts that ΔT_P and ΔT_S vary smoothly with epicentral distance even when vertical P-wave and S-wave gradients change abruptly. Our waveform simulations also show that the estimate of R for the Pacific LLVP is strongly affected by velocity structure shallower in the mantle. If R increases with depth in the mantle, which appears to be a robust inference, the acceleration of P waves in the lithosphere beneath eastern North America and the high-velocity Farallon anomaly negates the P-wave deceleration in the LLVP. This results in a ΔT_P of about 0, whereas ΔT_S is positive. Consequently, the recorded high ΔT_S/ΔT_P for events in the southwest Pacific and stations in North America may be misinterpreted as an anomalously high R for the Pacific LLVP.

Key Words:

Body waves; Composition and structure of the mantle; Seismic tomography; Wave propagation
1 Introduction

The ratio of S-wave velocity variations (i.e., $d\ln V_S$) and P-wave velocity variations (i.e., $d\ln V_P$) provides an important seismological constraint on the thermochemical structure of the mantle. This ratio is written as $R = \frac{d\ln V_S}{d\ln V_P}$, where $d\ln V_S$ and $d\ln V_P$ are perturbations from a 1-D reference model for the mantle, PREM (Dziewonski and Anderson, 1981) in case of this paper. R is related to the bulk modulus and rigidity, which have different sensitivities to thermal and compositional heterogeneity.

A multitude of seismic models indicate that R increases from about 1–1.5 in the uppermost mantle to 3–4 in the lowermost mantle and that R is highest in the so-called large-low-velocity-provinces (LLVPs) in the lower mantle beneath Africa and the central Pacific Ocean (e.g., Robertson and Woodhouse, 1996; Su and Dziewonski, 1997; Masters et al., 2000; Bolton and Masters, 2001; Ritsema and van Heijst, 2002; Antolik et al., 2003; Houser et al., 2008; Della Mora et al., 2011; Koelemeijer et al., 2016; Moulik and Ekström, 2016). Values of R higher than 2.5 were originally used to argue that the LLVPs have distinct compositions (see Garnero et al. (2016) and McNamara (2018) for recent reviews) based on mineral-physics experiments on the effects of temperature on $d\ln V_S$ and $d\ln V_P$. (e.g., Karato and Karki, 2001; Matas and Bukowinsky, 2007; Brodholt et al., 2007). However, the phase transition of bridgmanite to post-perovskite also influences the behavior of R in D^\prime (e.g., Tsuchiya et al. 2004; Wookey et al., 2005; Koelemeijer et al. 2018). Therefore, it remains unclear whether LLVPs can be uniquely interpreted as thermochemical structures based purely on observations of R (e.g., Bull et al., 2009; Schuberth et al., 2009; Davies et al., 2012, 2015; Koelemeijer et al., 2018).

It is not trivial to estimate R in the mantle from an observational perspective. For example, in the upper mantle $d\ln V_P$ is well resolved below subduction zones and regions with dense station coverage. In contrast, the resolution of $d\ln V_S$ is superior in oceanic upper-mantle regions as surface waves and most normal modes are primarily sensitive to shear-wave velocity. In the lower mantle, shear-wave diffractions (i.e., Sdiff), reflections off the core-mantle boundary (CMB) (e.g., ScS) and core phases (i.e., SKS, SKKS) are recorded with higher amplitudes and over broader epicentral distance intervals than their P-wave counterparts (i.e., Pdiff, PcP, PKP, PKKP). In addition, data sets of differential traveltimes that provide the best constraints on seismic structure in the deep mantle (e.g. S-SKS and ScS-S), as they are insensitive to errors in the hypocenter and heterogeneity in the crust and upper mantle, are much smaller for P-wave phases and only provide limited sampling of the lower mantle (e.g., Tkalčić and Romanowicz, 2002; Simmons and Grand 2002; He and Wen, 2011).

To accurately estimate R in the mantle it is essential to compare $d\ln V_S$ and $d\ln V_P$ from joint inversions (e.g., Masters et al., 2000; Antolik et al., 2003; Mosca et al., 2012; Koelemeijer et al., 2016; Moulik and Ekström, 2016). However, it is cumbersome to thoroughly explore modelling trade-offs due to differences in P-wave and S-wave data coverage and differences in the sensitivities of body waves and normal modes to $d\ln V_S$ and $d\ln V_P$. For example, Koelemeijer et al. (2016) found that teleseismic P- and S-wave delay times point to high values of R in D^\prime, whereas normal modes, especially Stoneley modes, are explained best when R decreases from a maximum value of 3–4 near 2500 km depth to 1–2 at the CMB. They suspected this to be due to the neglected finite-frequency effects in their traveltime modelling. To and Romanowicz (2009), Malcolm and Trampert (2011), Schuberth et al. (2012), and Xue et al. (2015) also highlighted the finite-frequency effects on long-period direct and diffracted P- and S-wave waveforms. In addition, Tesoniero et al. (2016) argued that constraints on R from seismic tomography are biased by choices in model parameterization and regularization of the inversion.
In this paper, we address the resolvability of R in the lower mantle and specifically the high value of R in the Pacific LLVP by estimating teleseismic traveltimes from computed spectral-element waveforms for synthetic long-wavelength models of $\text{dln} V_S$ and $\text{dln} V_P$. Our analysis is centered around a collection of recorded traveltine delays of direct and diffracted P and S waves measured at relatively long periods ($T > 20$ s) described in Section 2. In Section 3, we compare ray-theoretical and finite-frequency predictions of traveltimes for different depth profiles of R to illustrate the resolution of 100-km scale depth variations of R in the lowermost mantle and the applicability of ray theory. In Section 4, we show that independently estimating R in the upper mantle and lower mantle is difficult when the azimuthal data coverage is poor. This is particularly relevant to travelttime studies of the Pacific LLVP. In Section 5, we investigate the effects of the crust on traveltine delays and the dependence of P-wave and S-wave sensitivity kernels on the 1-D reference velocity structure. Finally, we discuss the implications of our results for constraining R and the thermochemical nature of the mantle (Section 6).

2 Global observations of P-wave and S-wave travel time delays

![Fig. 1. Measurements of ΔT_S (left) and ΔT_P (right) of teleseismic P and S waves recorded within epicentral distance intervals of $\Delta = 60\text{--}95^\circ$ (top) and $\Delta = 95\text{--}130^\circ$ (bottom), corresponding to direct and diffracted waves respectively. The measurements are plotted as 8º-long arcs at the S-wave and P-wave ray turning points and aligned with wave propagation directions. The arcs are blue (or red) if ΔT_P or ΔT_S is negative (or positive). Note that ΔT_S is three times stronger than ΔT_P for arcs with the same color. The green circles indicate the “Pacific data”, the focus of this study.](https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggaa534/5957531)

Our analysis is based on 46,500 traveltine anomalies with respect to PREM of direct and diffracted S waves (ΔT_S) and P waves (ΔT_P), which form a subset of those used in the study of Koelemeijer et al. (2016). The traveltine anomalies are recorded for common earthquake-receiver pairs at epicentral distances larger than 60º when P and S waves turn below about 1500 km depth. At distances larger than
95°, P and S waves diffract along the CMB instead. ΔT\textsubscript{S} and ΔT\textsubscript{P} have been measured by waveform cross-correlation following the procedure outlined by Ritsema and van Heijst (2002). Contributions from the crust, station elevations, Earth’s elliptical shape, and earthquake relocations have been subtracted (Ritsema et al., 2011).

When plotted at the ray turning locations (Fig. 1), the variations of ΔT\textsubscript{S} and ΔT\textsubscript{P} resemble the long-wavelength structure of dlnV\textsubscript{S} and dlnV\textsubscript{P} in the lower mantle (e.g., Lekić et al., 2012; Koelemeijer et al., 2016). This indicates that seismic heterogeneity in the lower mantle contributes significantly to these delay times at distances larger than 60°. The negative values of ΔT\textsubscript{S} and ΔT\textsubscript{P} uncover the high-velocity circum-Pacific structure, which is likely related to ancient subduction (e.g., van der Meer et al., 2018). The LLVPs in the lowermost mantle beneath Africa and the Pacific are characterized by delayed S and P waves (i.e., positive values for ΔT\textsubscript{S} and ΔT\textsubscript{P}). Ray coverage of the Pacific LLVP (indicated by the green circles) is much better than the African LLVP.

Fig. 2 shows ΔT\textsubscript{S} plotted against ΔT\textsubscript{P} for the same epicentral distance intervals as in Fig. 1. The 46,500 traveltime pairs are divided into two groups. The “Pacific data” include 4,035 measurements for earthquakes in the southwest Pacific recorded at stations in North America. The S and P waves propagate mostly in a northeasterly direction, turning above or propagating through the LLVP beneath the central Pacific Ocean. These data correspond to the measurements highlighted by the green circles in Fig. 1. The “non-Pacific data” are the remaining 42,465 measurements.

In the non-Pacific data set, ΔT\textsubscript{S} and ΔT\textsubscript{P} vary between about -11 s and +11 s and between about -5 s and +5 s, respectively. The slope of the best-fitting line through these data is 4.8 for Δ = 60–95° (Fig. 2a) and 6.7 for Δ = 95–130° (Fig. 2b). This increase in slope has been used previously to infer that R increases with depth in the mantle (e.g., Masters et al., 2000). The increase of R in the mantle is also clear when comparing SS-wave and PP-wave delays with S-wave and P-wave delays (e.g., Ritsema and van Heijst, 2002).
Fig. 2. Measurements of ΔT_S (along the y-axis) and ΔT_P (along the x-axis) for common source-receiver combinations for epicentral distance ranges of (a) $\Delta = 60–95^\circ$ and (b) $\Delta = 95–130^\circ$. The non-Pacific measurements are shown using grey squares. The best-fitting lines through these data have been determined by principal component analysis to account for uncertainties in both ΔT_S and ΔT_P, with the values of the slopes indicated to the right. The Pacific data are shown using red squares. The size of each square is proportional to the number of measurements. The scale is indicated in the upper left of each panel. See also Fig. 1.

The Pacific data stand out from the non-Pacific data. The median values of the S-wave traveltime delays in the Pacific subset are about +7 s for $\Delta = 60–95^\circ$ and about +5 s for $\Delta = 95–130^\circ$. In comparison, the P-wave delays are small (i.e., < 1–2 s), especially for distances larger than 95°. The resulting relatively high $\Delta T_S / \Delta T_P$ ratio is the primary body-wave traveltime evidence for the relatively high R-value of the Pacific LLVP as discussed in Section 1.

Normalized histograms of ΔT_S, ΔT_P, and the $\Delta T_S / \Delta T_P$ ratio illustrate further that the Pacific measurements differ from the non-Pacific measurements (Fig. 3). In the non-Pacific data (Fig. 3a), the distributions of ΔT_S and ΔT_P are roughly centered around the same values. When the epicentral distance increases from $\Delta = 60–95^\circ$ to $\Delta = 95–130^\circ$, the distributions shift to more negative values but the change in the $\Delta T_S / \Delta T_P$ ratio from 1.39 to 1.30 is insignificant given the high standard deviations. In the Pacific data (Fig. 3b), the two distributions are offset with respect to each other. In addition, the differences between the two distance intervals are more significant with the $\Delta T_S / \Delta T_P$ ratio changing from 3.33 for the $\Delta = 60–95^\circ$ epicentral distance interval to 5.65 for $\Delta = 95–130^\circ$. However, the standard deviations are large and the distribution for $\Delta = 95–130^\circ$ is non-Gaussian because $\Delta T_S / \Delta T_P$ have opposite signs for a significant portion of the data. A comparison of Figs 2 and 3 further illustrates the large uncertainty in the $\Delta T_S / \Delta T_P$ ratio and therefore the inferred values for R. For the non-Pacific data, the mean $\Delta T_S / \Delta T_P$ ratio based on the histograms (Fig. 3) is 1.3–1.4, which is lower than the ratio of 2.6–3.6 based on the line fit to ΔT_S and ΔT_P (Fig. 2). This inconsistency between inferred R values based on different methods has been pointed out before (Koelemeijer et al., 2016; Tesoniero et al., 2016) and adds a significant uncertainty in the modelling of R (e.g., section 3.2).
Fig. 3. Normalized histograms of ΔT_S (in green), ΔT_P (in blue), and $\Delta T_S / \Delta T_P$ (in black) in the a) non-Pacific and b) Pacific data subsets for epicentral distance ranges of (left columns) $\Delta = 60–95^\circ$ and (right columns) $\Delta = 95–130^\circ$. Mean values and standard deviations of ΔT_S, ΔT_P, and the $\Delta T_S / \Delta T_P$ ratio are indicated. N is the number of measurements.

3 The effect of using ray theory or finite-frequency theory

To understand the global observations of the traveltime delays ΔT_S and ΔT_P and the traveltime ratio $\Delta T_S / \Delta T_P$ discussed in Section 2, we first explore differences between ray-theoretical (RT) and finite-frequency (FF) theory calculations. We predict the traveltime delays for models of $\text{dln}V_S$ and $\text{dln}V_P$ with the same lateral variations to simplify our modelling of the depth dependence of R. The $\text{dln}V_S$ structure is given by model S40RTS (Ritsema et al., 2011) truncated at spherical harmonic degree 12 (Fig. 4a). We call this model S12 from here on. As S12 is similar to the S-wave structure of other long-wavelength shear-wave velocity models (e.g. Ritsema and Lekić, 2020), we do not expect our calculations and conclusions to depend on our choice for S12 to represent large-scale mantle structure. The $\text{dln}V_P$ structure, which we call P12, is the same as S12 except for a depth-dependent scaling factor $R(z)$, defined as $\text{dln}V_S = R(z) \times \text{dln}V_P$. We assume that R is constant or piecewise linear with depth. We do not include crustal structure, but we explore the effects of the crust in Section 5. The source depth is 500 km for all simulations to avoid the influence of depth phases (i.e., pP, sP, sS) on the waveforms and ΔT_S and ΔT_P estimates.
We determine the ray-theoretical traveltime anomalies by integrating through S12 and P12 along geometric ray paths for an event depth of 500 km. We use the TauP method (Crotwell et al., 1999) and assume that the P-wave and S-wave ray paths can be accurately calculated for the PREM model. In so-called finite-frequency theory, ΔT_S and ΔT_P can be related to $d\ln V_S$ and $d\ln V_P$ via sensitivity kernels K_S and K_P for S waves and P waves, respectively.

Fig. 5 shows K_S and K_P for the PREM model computed using the approach by Zhao and Chevrot (2011) and Fuji et al. (2012) combined with normal-mode synthetic seismograms at periods longer than
15 s, equivalent to the period band for which ΔT_S and ΔT_P in our data set (Section 2) have been measured. As described in detail by Hung et al. (2001), the sensitivities of K_S and K_P are zero along the P- and S-wave ray paths. K_S is narrower than K_P because S waves are slower than P waves. Within the first Fresnel zone around the ray path, K_S is stronger than K_P by about a factor of three. When P and S waves diffract at distances larger than 90°, both K_S and K_P encompass the CMB. K_S peaks closer to the CMB than K_P, indicating that diffracted S waves are more sensitive to velocity heterogeneity at the base of the mantle than diffracted P waves.

We simulate the finite-frequency effects on traveltimes in two different ways. First, we measure traveltime delays from synthetic waveforms and denote the results using the notation FF$_{XC}$. We compute synthetics with the spectral-element method (SEM, Komatitsch and Tromp, 2002) at periods longer than 7 s for 3-D models of $d\ln V_S$ and $d\ln V_P$. We measure ΔT_S and ΔT_P by cross-correlating PREM and 3-D waveform segments around the theoretical arrival times. This is a similar approach to the one used to make the measurements described in Section 2, albeit that we use slightly different bandpass frequency bands and adjust the time windows depending on the applied frequency filter.

In a second finite-frequency approach, we estimate the effects on traveltimes by integrating the sensitivity kernels K_S and K_P through S12 and P12, denoting these results using the notation FF$_{INT}$. To minimise computational cost, we calculate K_S and K_P for the PREM model using the approach by Zhao and Chevrot (2011) and Fuji et al. (2012) at epicentral distance intervals of 1°, from 40° to 120° for only one station azimuth and we choose two moment tensors that maximize the radiation of teleseismic S waves and P waves. The traveltimes are then obtained by rotating the sensitivity kernels K_S and K_P, according to each source-station azimuth. Since the computation of synthetic waveforms for hundreds of earthquakes is demanding, we calculate the ray theoretical and the finite-frequency traveltime delays ΔT_S and ΔT_P for a selection of events and receivers, choosing 21 earthquakes and 3,961 stations uniformly distributed around the globe (Fig. 4b). Note that the P-wave and S-wave path coverage is not the same as the coverage in Fig. 1, but it is uniform across the globe.

3.1 Linear increase of R in the mantle

Many studies have found that R increases with depth in the mantle (e.g., Robertson and Woodhouse, 1996; Masters et al., 2000; Ritsema and van Heijst, 2002). In this subsection, we compare RT and FF$_{XC}$ calculations of ΔT_S and ΔT_P for models S12 and P12 with a ratio R that increases linearly from 1 at the surface to 3 at the CMB ($R_0 = 1$; $R_{CMB} = 3$). The FF$_{XC}$ calculations are based on cross-correlations of waveforms that have been filtered using a lowpass corner frequency of 0.05 Hz (i.e., a period of 20 s).

Fig. 6a-c compares the RT and FF$_{XC}$ values of ΔT_S and ΔT_P for identical source-receiver pairs for different epicentral distance intervals. P and S waves turn in the lower 1000 km of the mantle for distances smaller than 95° and they diffract along the CMB for epicentral distances larger than 100°. ΔT_S varies more than ΔT_P because $d\ln V_S$ is at least a factor of two stronger than $d\ln V_P$ in the lower mantle.
Fig. 6. Ray-theoretical (RT) predictions and finite-frequency (FFXC) predictions (at periods T > 20 s) of ΔT_p and ΔT_s for a profile where R_0 = 1 at the surface and R_{CMB} = 3 at the CMB. RT values are plotted against FFXC values for ΔT_p in the top panels and ΔT_s in the bottom panels for epicentral distance intervals of (a) 60–75°, (b) 80–95°, and (c) 100–115°. The color in (a), (b), and (c) represents the number of estimates according to the scale shown on the right. The dashed line in each panel is the 1:1 identity line. (d) Frequency histograms of the time difference between the FFXC and RT values of ΔT_p (top) and ΔT_s (bottom) for the distance intervals of panels (a) in black, (b) in green, and (c) in red.

The RT and FFXC values of ΔT_p and ΔT_s agree to within 0.5 s and 1.0 s, respectively as shown in Fig. 6d. The estimates in Fig. 6 farthest from the identity line correspond to S waves and P waves that graze the margins of seismic anomalies so that ΔT_p and ΔT_s are particularly sensitive to the position of seismic anomalies along the ray paths and the geometry of the K_S and K_P sensitivity kernels. The discrepancy between RT and FFXC values of ΔT_p and ΔT_s is relatively large for diffracted waves for two reasons (Fig. 6c). First, the seismic velocity anomalies are strongest at the base of the mantle. Second, the ray theory assumes that P and S waves propagate along the CMB whereas the finite-frequency K_S and K_P kernels have sensitivities throughout D" and maxima well above the CMB (see Fig. 5).

Fig. 7 shows that theoretical predictions for ΔT_s and ΔT_p are correlated and thus that the distance-dependent global average of ΔT_s and ΔT_p and its ratio can be estimated accurately using ray theory for large-scale variations of dlnV_s and dlnV_p and when R varies smoothly with depth. The lines through graphs of ΔT_s and ΔT_p have slopes of 2.7–2.8 for 60–75° distance, 3.4–3.5 for 80–95° distance, and 3.9–4.1 for 100–115° distance. These slopes, determined by principal-component analysis of the estimates in 15°-wide intervals, have uncertainties smaller than 0.02. The ΔT_s / ΔT_p values for FF_INT are slightly higher than for RT and FFXC at distances larger than 60°, most likely due to simplifications we adopt for calculating K_S and K_P. We assume that the K_S and K_P kernels do not depend on the source mechanism (see Zhao and Chevrot, 2003). The change in sensitivity due to variations in the radiation pattern for different source-receiver azimuths is naturally taken into account in FFXC predictions based on one focal mechanism. However, the increase of ΔT_s / ΔT_p with distance is similar for RT, FFXC and FF_INT.
Fig. 7. (a) Ray-theoretical (RT) and (b) finite-frequency (FF\textsubscript{XC}) calculations (T > 20 s) of ΔT_S (along the y-axis) versus ΔT_P (along the x-axis) for a mantle with $R_0 = 1$ and $R_{\text{CMB}} = 3$, shown for epicentral distance intervals of 60–75°, 80–95° and 100–115° (from left to right). The red dashed lines are the best-fitting lines through ΔT_S and ΔT_P. Their slopes, determined by principal component analysis, are indicated on the right within each panel. The color of each circle plotted represents the number of estimates according to the scale shown at the top. (c) The $\Delta T_S / \Delta T_P$ ratio of the FF\textsubscript{XC} (black circles), FF\textsubscript{INT} (blue circles) and RT (yellow circles) values as a function of epicentral distance determined for 5°-wide distance intervals.

3.2 Variations of R within D"

Ray-theoretical and finite-frequency calculations of the $\Delta T_S / \Delta T_P$ ratio do not agree when the profile of R includes variations on a scale comparable to the width of the K_S and K_P kernels. Fig. 8 illustrates this for two sets of R profiles. In the top panel of Fig. 8, four profiles of R have different slopes in the lowermost 391 km of the mantle (see Fig. 8a). We call this layer D", but point out that D" is less than 300 km thick in most seismological studies. For each profile, R increases linearly from R = 1.25 at the surface to R = 4 at the top of D" (i.e., at 2500 km depth) to resemble the profiles of Koelemeijer et al. (2016). In D", R is either constant (i.e. $R_{\text{CMB}} = 4$), or it linearly decreases to $R_{\text{CMB}} = 1$ or 2, or it linearly increases to $R_{\text{CMB}} = 7$ or 9. In the bottom panel of Fig. 8, two profiles of R are similar as in Fig 8a but we vary the upper boundary of D" between Z = 2500 km, 2700 km, and 2800 km depth and explore only the extreme values of R at the CMB: $R_{\text{CMB}} = 1$ or $R_{\text{CMB}} = 9$ (see Fig. 8f).

For either RT or FF (FF\textsubscript{XC} and FF\textsubscript{INT}) and for any value of R_{CMB}, the $\Delta T_S / \Delta T_P$ ratio increases from 3.35 to 4.25 between epicentral distances of 50° and 85° when P and S waves turn above the D" layer. For distances larger than 85°, the RT traveltime predictions track closely the gradient of R in D". RT predicts that $\Delta T_S / \Delta T_P$ decreases with distance if R decreases in D" (i.e., for $R_{\text{CMB}} = 1$ and 2) and $\Delta T_S / \Delta T_P$ increases the fastest when the gradient of R in D" is strongest (i.e., when $R_{\text{CMB}} = 9$). FF\textsubscript{XC} values of $\Delta T_S / \Delta T_P$ for the five R profiles in Fig. 8a are closer to one another than for RT, because the sensitivity kernels K_S and K_P are broad in the lowermost mantle. At 120°, the range of $\Delta T_S / \Delta T_P$ values decreases with increasing period. It is 3.7 to 7.7 for T > 7 s, but only 4.2 to 6.3 for T > 20 s. Our FF\textsubscript{INT} predictions of $\Delta T_S / \Delta T_P$ (Fig. 8c) are higher than FF\textsubscript{XC} predictions for both period bands due to our modeling simplifications mentioned in section 3.1. The RT and FF predicted variations of the $\Delta T_S / \Delta T_P$ ratio with distance are similar for $R_{\text{CMB}} = 4$ because in this case the R profile is smooth (see also Section 3.1).
Fig. 8. (a and b) Depth profiles of R composed of two linear segments. For all profiles in (a), $R_0 = 1.25$ at the Earth’s surface and $R = 4$ at a depth of $z = 2500$ km, mimicking the profiles of Koelemeijer et al. (2016). At the core-mantle boundary, $R_{\text{CMB}} = 1, 2, 4, 7, \text{ or } 9$. The different segments in D" are shown using different shades of blue. For all profiles in (b), $R_0 = 1.25$ at the Earth’s surface and $R = 4$ at depths of $z = 2500$ km, 2700 km and 2800 km. At the core-mantle boundary, $R_{\text{CMB}} = 1$ or 9. (c and g) Ray-theoretical (RT), (d and h) FF$_{\text{INT}}$, and (e, f, i and j) FF$_{\text{XC}}$ values of the ratio $\Delta T_S / \Delta T_P$ as a function of epicentral distance for the profiles of R in (a) and (b). The FF$_{\text{INT}}$ results have been obtained by integrating K_S and K_P, determined from normal-mode synthetic seismograms at periods longer than 15 s. The FF$_{\text{XC}}$ results in (e) and (i) and in (f) and (j) have been determined using SEM synthetics that have been filtered using lowpass corner frequencies of 0.14 Hz (i.e., $T > 7$ s) and 0.05 Hz (i.e., $T > 20$ s), respectively.

Fig. 8f indicates that for traveltime measurements filtered with $T > 20$ s an increase of the $\Delta T_S / \Delta T_P$ ratio with distance does not rule out a decrease of R in the lowermost mantle. Based on these results, the increase of the $\Delta T_S / \Delta T_P$ ratio from 4.8 between 60–95° to 6.7 for 95–120° distance in our traveltime observations (Fig. 2) appears to be best explained when R increases to 9 at the CMB. The average value of R in D" is higher than obtained by Koelemeijer et al. (2016) based on normal-mode data and ray-theoretical modelling of traveltime data. Reconciling the differences requires a rigorous analysis of the data based on FF and for a large number of profiles R.

Fig. 8g–j show a systematic decrease of the range of $\Delta T_S / \Delta T_P$ ratios for $R_{\text{CMB}} = 1$ or 9 when D" becomes thinner (see Fig. 8b). The RT traveltime predictions still track the gradient of R in D", except when D" is 91 km thick (i.e., $Z = 2800$ km) and R linearly decreases from $R_Z = 4$ to $R_{\text{CMB}} = 1$ across D". The FF$_{\text{XC}}$ predictions of $\Delta T_S / \Delta T_P$ ratios tend to converge with increasing periods and as D" becomes thinner. For example, for a 91 km thick D" (i.e., $Z = 2800$ km), the $\Delta T_S / \Delta T_P$ values range from 5.5 to 6.2 for $T > 7$ s, and from 5.2 to 5.5 for $T > 20$ s at 120°. This illustrates the difficulty of estimating R in relatively thin (< 100–200 km) layers using long-period body waves due to their sensitivities to a
relatively broad depth range. The $\Delta T_S / \Delta T_P$ estimates for FF_{INT} are higher than for FF_{XC} for any R profile and layer thickness, again due to the maximized sensitivity to the radiation pattern. However the overall behavior of $\Delta T_S / \Delta T_P$ is the same for FF_{INT} and FF_{XC}.

4 Understanding the high $\Delta T_S / \Delta T_P$ ratio for the LLVP beneath the central Pacific

Figs 2 and 3 indicate that the measurements of ΔT_S and ΔT_P for S and P waves through the lower mantle beneath the central Pacific (i.e. the Pacific data) form an anomalous subset. Both ΔT_S and ΔT_P drop by about 1 s from the shortest (i.e., 60–95º) to the longest (i.e., 95–130º) distance intervals. ΔT_P has values around 0 s at distances larger than 95º so the $\Delta T_S / \Delta T_P$ ratio does not have a normal distribution. This would imply that R is anomalously high at the base of the mantle within the Pacific LLVP as interpreted in previous studies (e.g. Masters et al., 2000).

![Fig. 9](image_url)

Fig. 9. (a) Vertical cross-section through S12 across the central Pacific and North America. P12 is linearly scaled using $R_0 = 1$ and $R_\text{CMB} = 3$. Superposed are S-wave (dashed lines) and P-wave (solid lines) ray paths between the October 5, 2007 earthquake in the Fiji Islands region (lat = 25.3ºS; lon = 179.5ºE; depth = 540 km) (star) and stations in North America (triangles). The stations are distributed along a linear array between distances of 50º and 140º for a source azimuth of 55º. Hypothetical stations at distances shorter than 75º and longer than 125º are located in the Pacific Ocean and Atlantic Ocean, respectively. The LLVP and Farallon anomalies in the lower mantle and the seismic provinces TNA (tectonic North America) and SNA (stable North America) (definitions from Grand and Helmberger (1984)) in the upper mantle are indicated. The dashed line parallel to the surface is a horizon at 500 km depth. (b) Waveforms of the P-wave (in blue) and S-wave (in green) for PREM (dashed lines) and S12/P12 (solid lines) at distances of 75º, 90º, 105º, and 120º. The numbers to the right of the waveforms are ΔT_S or ΔT_P determined by cross-correlation. Stations are either located (b) at a depth of 500 km or (c) on the surface.

However, unidirectional sampling impedes our ability to constrain R in the lower mantle since $\text{dln}V_P$ in the uppermost mantle is likely to be strong yet poorly constrained compared to $\text{dln}V_S$, as pointed previously by Hock et al. (1997). To illustrate this, we single out the Pacific data, which are mostly based on recordings at stations in North America of earthquakes in the southwestern Pacific, especially the Tonga-Fiji region. The Tonga to North America path (Fig. 9a) includes 3-D velocity structures in the upper and lower mantle that affect the variation of ΔT_S, ΔT_P, and the $\Delta T_S / \Delta T_P$ ratio with epicentral...
distance. Observations of epicentral distance variations could thus potentially be misinterpreted as depth variations of \(R \). For the source-receiver geometry of Fig. 9a, wave propagation in the lower mantle is influenced by the Pacific LLVP and the Farallon anomaly, where the shear velocity is up to 2% lower and higher than in the ambient mantle, respectively. The shear velocity in the upper mantle beneath eastern North America (ENA) is even up to 12% higher than in the uppermost mantle beneath western North America (WNA).

To explore how the Pacific LLVP, the Farallon anomaly, and velocity variations in the uppermost mantle beneath North America contribute to \(\Delta T_S \) and \(\Delta T_P \) for the Pacific data, we analyze spectral-element-method waveforms for the setup shown in Fig. 9a. The waveforms in Figs 9b and 9c, filtered for periods longer than 20 s, are based on a profile of \(R \) with a linear increase with depth from \(R_0 = 1 \) to \(R_{\text{CMB}} = 3 \). To separate the contributions to \(\Delta T_S \) and \(\Delta T_P \) from heterogeneity in the lower mantle and upper mantle, we compute waveforms for stations located at a depth of 500 km (Fig. 9b) and stations on Earth’s surface (Fig. 9c). We determine \(\Delta T_S \) and \(\Delta T_P \) with respect to PREM by cross-correlating PREM and 3-D waveform segments as discussed before.

The seismically slow LLVP produces a strong S-wave traveltime delay, increasing \(\Delta T_S \) by nearly 6 s at 105°. At a distance of 120°, the fast Farallon anomaly in the lower mantle reduces \(\Delta T_S \) to 3.9 s (see Fig. 9b) and the high-velocity upper mantle beneath ENA reduces \(\Delta T_S \) further to 3.0 s (see Fig. 9c). In contrast, the LLVP and the Farallon anomaly produce smaller \(\Delta T_P \) perturbations because \(\text{dln}V_P \) is smaller than \(\text{dln}V_S \) in the lower mantle (as \(R_{\text{CMB}} = 3 \)). The LLVP only causes a delay in \(\Delta T_P \) of about 1.1 s, which, after propagating through the Farallon anomaly, is reduced to about 0.8 s at 120° (see Fig. 9b). The high-velocity anomaly in the upper mantle beneath ENA is relatively strong as \(R_0 = 1 \), reducing the P-wave delay further to about 0.2 s. Hence, the deceleration of the P-wave in the LLVP is as strong as its acceleration in the Farallon anomaly and the upper mantle beneath ENA. As a result, the recorded P-wave traveltime perturbation at surface stations in ENA is small, resulting in anomalously large (> 10) \(\Delta T_S / \Delta T_P \) ratios for diffracted P and S waves that do not relate to variations in \(R \) in the lowermost mantle.

5 Additional modelling complications

So far, we have illustrated the influence of the chosen modelling approach (ray-theoretical versus finite-frequency, see Section 3) and the strong effect of upper mantle structure (see Section 4) on estimates of \(R \) for the lower mantle. Additional complexities for interpreting global traveltime observations, such as those shown in Section 2, arise from the fact that crustal corrections are commonly applied and sensitivity kernels are computed for a standard reference model, which we explore in more detail now.

5.1 The influence of the crust

Traveltime variations due to crustal heterogeneity can be more than a second and must be determined accurately in order to isolate the effect of the mantle on \(\Delta T_S \), \(\Delta T_P \), and the \(\Delta T_S / \Delta T_P \) ratio in particular. According to the ray theory, \(\Delta T_S \) and \(\Delta T_P \) are proportional to the crustal thickness. However, the delay times inferred from cross-correlation of long-period P- or S-wave waveforms can be different from the ray-theoretical delay times due to the interference between the direct waves and reverberations within the crust.
We illustrate the importance of this effect using five seismic models consisting of a homogeneous crust over a mantle with the PREM velocity structure. In these five models, the crust is 15 km, 20 km, 25 km, 30 km, and 35 km thick, while we use a crustal thickness of 25 km as the reference model. We compute waveforms for periods longer than 15 s and an epicentral distance of 80˚ (Fig. 10). We estimate traveltime differences relative to the reference model using both ray theory and waveform cross-correlation, denoted as Δt_{RT} and Δt_{CC}, respectively. We write the difference between Δt_{CC} and Δt_{RT} as $\varepsilon = \Delta t_{CC} - \Delta t_{RT}$, which represents the systematic error when ray theory is used to estimate delay times due to the crust.

Since the crust is a low-velocity layer, P and S waves arrive respectively earlier and later for models with a thinner and thicker crust compared to the reference model (Fig. 10). The estimated delays for ray-theoretical calculations (Δt_{RT}) and estimates based on waveform cross-correlation (Δt_{CC}) differ by as much as 0.8 s. The error ε tends to be negative for S waves, indicating that the ray theory underpredicts the crustal delay time. For P waves, ε is negative for models with a thinner crust and positive for models with a thicker crust, and crucially, ε is not proportional to changes in crust thickness. Ritsema et al. (2009) found similar trends in ε.

Fig. 10. Spectral-element method waveforms of the P-wave (a) and the S-wave (b) for a seismic reference model with a 25-km thick crust (black dashed lines) and models with a crust that is 15 km (brown solid lines), 20 km (red solid lines), 30 km (green solid lines), or 35 km (blue solid lines) thick. In all models, the crust is homogeneous with a P-wave velocity of 6 km/s and a S-wave velocity of 3.5 km/s. Indicated are the delay times determined by waveform cross-correlation (Δt_{CC}) and ray theory (Δt_{RT}) and their differences (i.e., $\varepsilon = \Delta t_{CC} - \Delta t_{RT}$).

Imprecision in a “crustal correction” of 0.7 s is large compared to the observed ΔT_P (0.8–1.1 s) for the SW Pacific to North America corridor that constrains the LLVP structure beneath the Pacific (see Section 4). If, as has been done in previous work, PREM (with a crustal thickness of 25 km similar to the reference model in Fig. 10) is used and if traveltime delays due to the relatively thick crust (> 35 km) beneath eastern North America are estimated using ray theory, the error ε would significantly bias the estimate of ΔT_P and consequently the $\Delta T_S / \Delta T_P$ ratio and inferences of R in the lower mantle.
5.2 Dependence of the sensitivity kernels K_S and K_P on 1D-velocity structure

In global tomographic inversions, it is generally assumed that the propagation paths of S and P waves can be computed using PREM. However, P- and S-wave paths may be different when waves traverse the LLVPs, especially near their turning depths. Ritsema et al. (1997) and Thorne et al. (2013) have shown that high amplitudes and sharp waveforms of S waves deep in the core shadow zone can be explained by a shear-wave velocity reduction across D'', which forces S waves to turn at a shallower depth in D'' and retards the onset of core diffraction to a larger distance than in PREM.

Fig. 11. Sensitivity kernels along a vertical axis through the wave turning point of (a) K_S and (b) K_P for PREM (black lines) and model M1 (red lines) at epicentral distances of 90°, 105°, and 120° (from left to right). The horizontal lines are the CMB and a horizon at 300 km above the CMB. See also Fig. 5.

A change in the background model also affects the sensitivity kernels K_S and K_P. Fig. 11 compares K_S and K_P computed for PREM and M1 for a period of $T = 15$ s. In M1 (Ritsema et al. 1997) the P-wave and S-wave velocities decrease in the lowermost 191 km of the mantle to values at the CMB that are 3% lower than in PREM (although there is no observational evidence for such a strong reduction in P-wave velocities). The sensitivity kernel K_P computed for PREM and M1 are similar apart from a minor difference in amplitude, because the sensitivity of P waves to $\text{dln}V_P$ in the lowermost 200 km of the mantle is relatively small. However, K_S has a different shape and amplitude for PREM and M1. This implies that the S-wave delay time ΔT_S due to a shear-wave velocity anomaly in D'' cannot be accurately determined assuming PREM wave paths.
Assuming a profile R = 1 (i.e. dlnV\textsubscript{P} and dlnV\textsubscript{S} are identical throughout the mantle), the P-wave delay time \(\Delta T\textsubscript{P} \) calculated using \(K\textsubscript{P} \) in PREM or M1 differs by about 0.1 s and the S-wave delay \(\Delta T\textsubscript{S} \) is about 0.5 s larger when using \(K\textsubscript{S} \) computed for M1 instead of PREM. These differences are not significant for our analysis of R across the mantle. However, when analyzing relatively thin depth variations (< 200 km) in the lowermost mantle as wide as the sensitivity kernels for M1 and PREM in Fig. 11, it is important to use sensitivity kernels that properly take modified wave propagation paths into account or to use full 3-D synthetic waveforms, as we have done in sections 3-5.

6 Discussion and Conclusions

6.1 Importance of finite-frequency simulations

Most studies of the ratio R (= dlnV\textsubscript{S} / dlnV\textsubscript{P}) in the mantle are based on ray theory. Ray theory is applicable to studies of traveltime measurements based on P-wave and S-wave onsets. However, when traveltimes are derived from the modelling of long-period waveforms and cross-correlation measurements, ray theory is inaccurate as pointed out by numerous researchers (e.g., Wielandt, 1987; Nolet and Dahlen, 2000; Hung et al., 2001). In this paper, we have assumed models for dlnV\textsubscript{S} and dlnV\textsubscript{P}, which are parameterized in the same manner as model SP12RTS of Koelemeijer et al. (2016). For this parameterization, we demonstrate that ray theory can be used to estimate smooth variations of R in the mantle. For example, Fig. 7 shows that ray theory accurately predicts the distance dependence of \(\Delta T\textsubscript{P} \), \(\Delta T\textsubscript{S} \), and the \(\Delta T\textsubscript{S}/\Delta T\textsubscript{P} \) ratio even when the traveltime anomalies have been derived from waveforms with periods longer than 20 s. Therefore, the increase of R in the mantle, consistently determined in numerous studies, is a robust result.

Ray theory is inadequate for resolving variations in R from long-period measurements of \(\Delta T\textsubscript{P} \) and \(\Delta T\textsubscript{S} \) over depth ranges comparable to the vertical widths of the \(K\textsubscript{P} \) and \(K\textsubscript{S} \) sensitivity kernels. Due to broad spatial averaging, finite-frequency theory predicts smaller and smoother epicentral distance variations of the traveltime anomalies than ray theory, especially for the longest periods as shown in Section 3.2. Our FF\textsubscript{INT} predictions of \(\Delta T\textsubscript{S}/\Delta T\textsubscript{P} \) based on Fréchet kernels for PREM using the normal-mode waveform modelling approach of Zhao & Chevrot (2011) and Fuji et al. (2012) are higher than FF\textsubscript{XC} based on the cross-correlation of waveforms. This is likely due to simplifications we adopt for calculating \(K\textsubscript{S} \) and \(K\textsubscript{P} \), but we note that the overall behavior of \(\Delta T\textsubscript{S}/\Delta T\textsubscript{P} \) has remained the same for FF\textsubscript{INT} and FF\textsubscript{XC}. Constraining R variations within a 400-km depth range in the mantle requires theories that adequately prescribe the sensitivities of \(\Delta T\textsubscript{P} \) and \(\Delta T\textsubscript{S} \) to dlnV\textsubscript{S} and dlnV\textsubscript{P} or use full-waveform modelling techniques. Future studies that combine traveltime measurements with normal mode data (such as Moulik and Ekstrom, 2016; Koelemeijer et al., 2016) must thus address differences in the sensitivities to dlnV\textsubscript{S} and dlnV\textsubscript{P}, especially when adopting a relatively fine-scale parameterization in the lowermost mantle, while they should also consider how the presence of anisotropy and dispersion affects constraints on R.

FF calculations are also required to accurately estimate the contributions from the crust to \(\Delta T\textsubscript{S} \) and \(\Delta T\textsubscript{P} \), as demonstrated in Section 5.1. Ray-theoretical estimates of the crustal contribution to the P-wave traveltime can result in errors as high as 0.7 s for typical thickness variations of the continental crust. This error is large compared to the recorded \(\Delta T\textsubscript{P} \) delays due to lower mantle heterogeneity and should be avoided to attain unbiased estimates of the \(\Delta T\textsubscript{S}/\Delta T\textsubscript{P} \) ratio. Recent global models S40RTS (Ritsema et al.,
2011) and SP12RTS (Koelemeijer et al., 2016) have incorporated such finite-frequency crustal corrections, while other recent global models have performed joint inversions for the mantle and crustal structure (Bozdag et al., 2016; Durand et al., 2016; French and Romanowicz, 2014; Lei et al., 2020).

6.2 The ratio \(R \) in the Pacific LLVP

In Section 4, we discussed how the variation of the \(\Delta T_S / \Delta T_P \) ratio with epicentral distance could be misinterpreted in regions when azimuthal P-wave and S-wave path coverage is poor. We suggested that the Pacific LLVP produces delays of the P and S waves that are overprinted by the traveltime perturbation in the uppermost mantle beneath North America. The recorded \(\Delta T_P \) anomaly is small (< 0.2 s) because P-wave acceleration in the high-velocity uppermost mantle beneath eastern North America erases the delay accrued during propagation through the LLVP, resulting in an anomalously high \(\Delta T_S / \Delta T_P \) traveltime ratio (see Fig. 3).

![Fig. 12](https://example.com/fig12.png)

Fig. 12. (a) Predicted values of \(\Delta T_S \) based on cross-correlation of computed SEM waveforms at \(T > 20 \) s for the event and source-receiver geometry from Fig. 9a. The squares indicate the ranges of \(\Delta T_S \) for the Pacific data for distances smaller and larger than 90° from Fig. 3. (b) Predicted values of \(\Delta T_P \) (top panel) and the \(\Delta T_S / \Delta T_P \) ratio (lower panel) for linear depth profiles of \(R \) with \(R_0 = 1.25 \) and \(R_{CMB} \) varying between 1.5 and 3.5. The squares indicate the ranges of \(\Delta T_P \) for the Pacific data for distances smaller and larger than 90°. (c) As in (b), but now for linear depth profiles of \(R \) with \(R_{CMB} = 2.5 \) and \(R_0 \) varying between 1.0 and 2.0.

To further investigate the combined effects of the velocity variations in the upper and lower mantle on \(\Delta T_S, \Delta T_P, \) and \(\Delta T_S / \Delta T_P \), we show in Fig. 12 how traveltime predictions vary for different values of \(R_0 \) and \(R_{CMB} \) for the same source-receiver geometry as used in Section 4. Fig. 12a shows that model S12...
predicts a decrease of ΔT_S with epicentral distance in the Pacific data. Fig. 12b shows that, if $R_0 = 1.25$, as assumed in Section 4, the predicted values of ΔT_P explain the Pacific data within their uncertainty ranges for $R_{CMB} < 3$. Fig. 12c indicates that ΔT_P can also be explained when $R_0 > 1.25$, in other words, if $d\ln V_P$ in the upper mantle is slightly weaker than assumed in this study. This further demonstrates the trade-off for constraining R independently in the upper and lower mantle and that it is important to study how uncertainties in surface-wave models of the upper mantle (e.g., Burdick and Lekić, 2017) map into uncertainties in ΔT_P and the ratio R in the lower mantle.

6.3 Implications for the thermochemical structure of the lower mantle

Based on the modelling results from this paper, we argue that the interpretation of LLVPs as compositional distinct structures from teleseismic traveltimes is uncertain. Finite-frequency effects conceal thin layers with anomalous gradients in V_S and V_P and seismic heterogeneity in the lower mantle cannot be distinguished from that in the upper mantle using only teleseismic traveltimes. Although normal-mode based studies, which automatically include finite-frequency effects, also find $R > 2.5$ in the lowermost mantle (e.g. Ishii and Tromp, 2001; Moulik and Ekström, 2016; Koelemeijer et al., 2016), such high R-values and the negative correlation between shear-wave and bulk-sound velocity could also be explained by the phase transition from bridgmanite to post-perovskite (Tsuchiya et al. 2004; Wookey et al., 2005; Davies et al., 2012; Koelemeijer et al., 2018).

In addition to high R-values, other characteristics have been used to infer a chemically distinct origin of the LLVPs. Body-wave waveforms indicate that the LLVPs have strong seismic-wave speed gradients along their margins (Ni et al., 2002; Wang and Wen, 2007; He and Wen, 2012). Normal-mode and solid-earth tide studies suggest that the LLVPs are relatively dense overall (e.g., Ishii and Tromp, 1999; Trampert et al., 2004; Moulik and Ekström, 2016; Lau et al., 2017) or possibly only near the CMB (Koelemeijer et al., 2017) or in parts of the LLVPs (Lu et al., 2020; Koelemeijer, 2020). However, the use of the self-coupling approximation in normal-mode studies of the density structure has been questioned (Al-Attar et al., 2012; Akbarashrafi et al., 2018). This only leaves the tidal tomography study of Lau et al. (2017) as an independent study favouring large-scale dense structures, although it is unclear how their results are affected by the contribution of CMB topography to the excess ellipticity, or whether the same density anomaly can be contained in a thin basal layer (Romanowicz, 2017). Furthermore, sharp sides have also been observed in isochemical models of the LLVPs (Davies et al., 2012). Whether the LLVPs can thus be interpreted uniquely as thermochemical structures remains an open question based on our analysis.

Acknowledgements

The facilities of IRIS Data Services, and specifically the IRIS Data Management Center, were used for access to waveforms, related metadata, and/or derived products used in this study. IRIS Data Services are funded through the Seismological Facilities for the Advancement of Geoscience (SAGE) Award of the National Science Foundation under Cooperative Support Agreement EAR–1851048. All Figures were produced using the GMT software (Wessel et al., 2013). This research has been supported by FAPESP grants 2014/17779–3 and 2016/11580-6 to CC, NSF grant EAR–1416695 to JR, and a Junior Research Fellowship from University College Oxford and a Royal Society University Research Fellowship.
(URF\RI\180377) to PK. The authors acknowledge computing time provided on the Blue Gene/Q and DaVinci supercomputers supported by the CRC (Rice University) and LCCA (University of São Paulo) agreement and on the AGUIA supercomputer supported by HPC-STI (University of São Paulo). The SPECFEM3D_Globe software has been provided the Computational Infrastructure for Geodynamics (CIG). All data used in this study are available by contacting the corresponding author at calbertome@usp.br. We thank editor Ian Bastow, Satoru Tanaka, and an anonymous reviewer for helpful comments.
References

