
Uniform, Integral and Feasible Proofs for the

Determinant Identities

Iddo Tzameret* Stephen A. Cook†

Abstract

Aiming to provide weak as possible axiomatic assumptions in which one can develop basic

linear algebra, we give a uniform and integral version of the short propositional proofs for the

determinant identities demonstrated over GF (2) in Hrubeš-Tzameret [HT15]. Specifically,

we show that the multiplicativity of the determinant function and the Cayley-Hamilton the-

orem over the integers are provable in the bounded arithmetic theoryVNC
2; the latter is a

first-order theory corresponding to the complexity classNC
2 consisting of problems solvable

by uniform families of polynomial-size circuits andO(log2 n)-depth. This also establishes the
existence of uniform polynomial-sizeNC

2-Frege proofs of the basic determinant identities

over the integers (previous propositional proofs hold only over the two element field).
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1 Introduction

The complexity of linear algebraic operations such as matrix inverse and the determinant is well

studied (cf. Cook [Coo85]). It is well known that many linear algebraic operations like the deter-

minant can be computed quickly in parallel, and specifically are inNC
2, which is the complexity

class consisting of all languages that can be decided by uniform families of O(log2 n)-depth and

polynomial-size circuits (ignoring for now the distinction between function and language classes).

This complexity class captures fast parallel computation in the sense that a language in it can be
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decided in time O(log2 n) while using polynomially many processors working in parallel. In fact,

within the NC := ∪∞
i=0NC

i hierarchy, which consists of all polynomial-size circuit families of

poly-logarithmic depth, NC
2 is the weakest level known to compute the determinant (formally,

the weakest circuit class computing integer determinants is the class DET that lies betweenNC
1

andNC
2; see below).

Furthermore, the importance of linear algebra in bounded arithmetic and proof complexity

has been identified inmany works, and it has been conjectured that the determinant identities, and

specifically the multiplicativity of the determinant function DET(A) · DET(B) = DET(AB), for
two matrices A,B, can be proved in a formal theory that, loosely speaking, reasons with NC

2

concepts (Cook and Nguyen present this specific question in their monograph [CN10]; see also

[CF12, BBP95, BP98, Sol01, SC04]). This conjecture is aligned with the intuition that basic proper-

ties ofmany constructions and functions of a given complexity class are provable in logical theories

not using concepts beyond that class.

The weakest theory known to date to prove the determinant identities is PV which corre-

sponds to polynomial-time reasoning; this was shown by Soltys andCook [SC04] (cf. [CF12, Jeř05]).

Quite recently, Hrubeš and Tzameret [HT15] showed that at least in the propositional case, the de-

terminant identities expressing the multiplicativity of the determinant overGF (2) can be proved
with polynomial-size propositional proofs operating withNC

2-circuits (as well as with quasipoly-

nomial size Frege proofs). However, this does not lend itself immediately to the uniform framework

of bounded arithmetic. That is, the fact that a statement admits polynomial-size propositional

proofs in a certain proof-system does not imply that the same statement (suitably translated to

first-order logic) is provable in the bounded arithmetic theory corresponding to the proof-system.

For example, a short propositional proof may be shown to exist, but without knowing whether it

could be constructed uniformly, and let alone in a restricted computational model such as uniform-

NC
2—making it thus impossible to carry out directly in bounded arithmetic.

Furthermore, [HT15] crucially used in their construction elimination of division gates from

algebraic circuits, which we do not know how to do using uniform weak computational models

like uniform-NC
2 (since for general division elimination one needs to use the existential statement

about field assignments that do not nullify a given polynomial [Str73]).

The main goal of this work is to prove the determinant identities in the theoryVNC
2 (corre-

sponding to “NC
2-reasoning”). We will show that similar reasoning as in [HT15] can be carried

over toVNC
2, with further complications imposed by uniformity and parallelism. As a result of

working in bounded arithmetic it will also become possible to conclude short propositional-proofs

over the integers (while the previous propositional proofs worked only overGF (2)).

Organization. The preliminaries for this work are somewhat long. For this reason we begin with

a high-level overview of the results and their proofs in Section 2 (readers who are unfamiliar with some

of the concepts in the overview can consult the preliminaries section for those). The preliminar-

ies themselves are given in Section 3, consisting of basic definitions from bounded arithmetic, the

uniform complexity classNC
2, the corresponding theoryVNC

2 [CN10], basic definitions of al-

gebraic circuits, as well as proof systems operating with algebraic circuits establishing polynomial

identities (PI-proofs [HT09, HT15]). In Section 4 we give a much more detailed guide to the proof

of the determinant identities in the theory, while still leaving out many of the technical details and

proofs. Section 5 explains in somedetail howwe encode certain algebraic circuits in the theory. Sec-

tions 6 to 10 are dedicated to the construction in uniformNC
2 the PI-proof from [HT15]. Section

11 wraps-up the proof by establishing the reflection principle for Polynomial Identity (PI) proofs,
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and Section 12 providesVNC
2 proofs of further basic statement in linear algebra. We finish with

conclusions and open problems in Section 13. The appendix provides more background details

about bounded arithmetic as well as some technical lemmas that do not appear in the main text.

2 Overview

Our goal is to prove the determinant identities insideVNC
2. For the logical setting andVNC

2

see Section 3. Specifically, we want to have aΣB
1 -definable inVNC

2 function DET(·)with input
an integer matrix and output an integer represented as a binary string, such thatVNC

2 proves:

∀A,B n× nmatrices over Z, DET(A) · DET(B) = DET(AB) (1)

and

∀C n× n triangular matrix over Z, DET(C) = c11 · · · cnn. (2)

Note that these two identities can be considered as the defining identities of the determinant

polynomial, in the sense that every polynomial for which these two identities hold is the determi-

nant polynomial. Oneway of seeing this is to observe that every squarematrix is equal to a product

of upper and lower triangular matrices.

Integer numbers are represented as binary strings in the theory, where the least significant bit

(lsb) is 0 (resp. 1) when the integer is positive (resp. negative), and where the rest of the string is the

binary representation of the absolute value of the integer. An n× nmatrix over Z is encoded as a

two-dimensional array (cf. [CF12]).

It is not hard to show that we can prove simple facts about matrices, such as the definability of

matrix productAB, the statement expressing associativity and commutativity of matrix products

A(BC) = (AB)C and A + B = B + A, resp., and so forth (see for example [SC04, CN10] and

[HT15, Lemma 28] about these basic identities that can be proved already in the theory VNC
1,

that corresponds toNC
1).

All circuit classes discussed in this work (except when otherwise stated) are assumed to be uni-

form circuit classes. Formally, we require uniformity in the sense that the extended connection

language of the circuit family is inFO (see [CN10, Chapter A.5] for the definition).

Let us now sketch briefly how we define the determinant function in the theory and then how

we prove its identities (5) and (6) in the theory.

Defining the determinant function in the theory. Given an n × n integer matrix, the ΣB
1 -

definable string function (recall that we encode integers as strings) inVNC
2 for the determinant

is defined roughly as follows: first, construct an O(log2 n)-depth algebraic circuit computing the

determinant of n× n integer matrices, and then evaluate the circuit under the input assignment.

More specifically, the determinant function in the theory first constructs a recursive algebraic

circuit (or equivalently, a straight-line program) computing the symbolic n × n determinant with

division gates (“symbolic” here means that the algebraic circuit computes the determinant as the for-

mal polynomial over n2 distinct variables). This is done using the standard recursive formula of

the block-wise determinant (using “Schur complement”), simulating in a sense Gaussian elimina-

tion (cf. [HT15]). Then, eliminate the division gates in the determinant circuit using, among other

conversions, substitutions of power series in the circuit. Then, homogenize the circuit getting rid of

high degrees, balance the circuit to achieve the squared logarithmic depth, and finally evaluate the

result under the input integer matrix.
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The function that evaluates a balanced algebraic circuit in itself consists of several steps, as

follows: given as an input a balanced algebraic circuit, the function: (i) converts it into a layered

circuit (namely, a circuit in which each node connects only to the subsequent layer); (ii) transforms

it into aBoolean circuit computing the same polynomial over the integers (coded as bit-strings)while

taking care that the negations appear only in the bottom layer; and finally (iii) evaluates the Boolean

circuit using the fact that theMonotoneNC
2Circuit EvaluationProblem isNC

2-complete (under

AC
0-reductions [CN10]).

Note that since we show that the determinant function as defined above is ΣB
1 -definable in

VNC
2, by [CN10] it means that this function is in uniform-NC

2.

Proving the determinant equalities in the theory. Informally, the basic argument formalized

in the theory is that there exists a balanced PI-proof (for Polynomial Identity proof ), in symbols, a

Pc(Z)-proof (as in [HT15]; see Section 3.5), of these identities. Thus, by soundness of balanced

Pc(Z)-proofs, which we show is provable in VNC
2, these identities must be true. Informally, a

Pc(Z)-proof is a sequence of equations between algebraic circuits over Z, each of which is either

an instance of the polynomial-ring axioms orwas derived by addition ormultiplication of previous

equations.

More precisely, we demonstrate a ΣB
1 -definable function in VNC

2 that given an input n in

unary, outputs Pc(Z)-proofs of the determinant identities (see equations (5) and (6)). In this Pc(Z)-
proof every proof-line is an equation between depth O(log2(n)) algebraic circuits (without divi-
sion gates) of a polynomial syntactic-degree. To conclude the argument, we use the soundness of

O(log2(n))-depth Pc(Z)-proofs: using induction on proof-length we argue that for every assign-

ment of integers, the determinant identity (equations (5) and (6)) must hold.

One important observation in this work, that is central in constructing the PI-proofs in the

theory, is that for some parts in the construction the only properties that the theory is required to

express and prove about these PI-proofs are “local and syntactic” properties, namely the fact that

the each proof-line follows syntactically from previous ones.

For example, letC be an algebraic circuit of polynomial-size and exponential syntactic-degree;

e.g., (x2)2···2 − (x2)2···2 + 1, where (x2)2···2 is written as a chain of n product gates. The theory

cannot express the fact that C has exponential syntactic-degree (because the theory defines only

polynomially bounded number functions). Nevertheless, the theory can prove, for example, that

(x2)2···2 − (x2)2···2 + 1 = 1 has a legal PI-proof, using possibly an axiom of the form F − F = 0.
Overall, in our argument, the main “non-syntactic” property we need the theory to express

about algebraic circuits is the evaluation ofO(log2 n)-depth circuits overZ. The axiom ofVNC
2

is specifically tailored for this purpose (see Section 11.1). We also use the ability to power matrices

inNC
2 when balancing the PI-proofs in the theory.

2.1 Technical Challenges

Showing that the long and nontrivial constructions from [HT15] can be carried out in VNC
2

requires quite a lot of work. Themain technical obstacles that we face are parallelism and uniformity

as we explain in what follows.

Parallelism here means that the construction of the original PI-proofs from [HT15]must be done

by itself inNC
2. The construction in [HT15] is quite involved, and to make it parallel we need to

devise severalAC
0- andNC

2-algorithms (all ΣB
1 -definable inV

0 andVNC
2, respectively). In

factwe show thatmost parts of the construction can be carried out already inAC
0 (or its functional
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versionFAC
0), namely we carry out the construction inV0. Among the algorithms we devise are

the following ones:

(i) Division normalization: converting algebraic circuits with division gates into circuits with

a single division gate at the output gate (in FAC
0); This follow Strassen’s algorithm [Str73]. (ii)

Converting algebraic circuits C into the sum of their syntactic-homogeneous components, given

as input an upper bound on the syntactic-degree of C ; i.e., each summand C(i) is a syntactic-

homogeneous circuit computing the degree i homogeneous component ofC (inFAC
0); This also

follows Strassen’s algorithm [Str73], only that we show that for most purposes there is no need to

compute syntactic-degrees of nodes, rather upper bounds on syntactic-degrees suffice. Such upper

bounds are easy to compute inAC
0. (iii) AnFNC

2 algorithm for balancing an algebraic circuit of

size s and syntactic-degreed into a poly(s, d)-size algebraic circuit of depthO(log s·log d+log2 d),
given as input an upper bound on the syntactic-degree of C . This part combines the original bal-

ancing algorithm by Valiant et al. [VSBR83] with ideas fromMiller at al. [MRK88], and further new

ideas entailed by the need to work in FNC
2. Specifically, we use matrix powering to power adja-

cency matrices of graphs to find out, for example, whether a node has a directed path to another

node, as well as to compute coefficients of linear polynomials computed by circuits with syntactic-

degree 1.

By first balancing an input circuit and then evaluating it (both inFNC
2) our results give rise to:

(iv) an FNC
2 evaluation procedure for algebraic circuits of any depth (given as input an upper bound

on their syntactic-degree and assuming the syntactic degree of the circuit is polynomial1) that is

different from the previously known algorithm by Miller et al. [MRK88] (their algorithm does not

require the syntactic-degree as input) and that of Allender et al. [AJMV98] (which is implicit in that

work, and can be extracted from the text [All18]; see also Vinay [Vin91]).

Proving parallel algorithms for structural results on algebraic circuits is however not enough.

We further need to show that the correctness of these algorithms can be formalized efficiently with

PI-proofs and that these proofs are constructible in V
0 and VNC

2, in order to conclude that

VNC
2 proves the existence of a (uniformNC

2) function that constructs the low depth PI-proofs

of the determinant identities.

Uniformity here means that we need the whole proof to be constructible in uniform-NC
2. For

instance, we need to eliminate division gates from certain algebraic circuits and proofs. To elimi-

nate division gates like u/v (for two nodes u, v), one needs to find an assignment to the variables

in which the polynomial computed at node v is nonzero. In general we do not know how to do

this in the theory. Nevertheless, we show that for our purposes it is enough to eliminate only those

division gates that occur in some specific circuits. In order to eliminate division gates we will also

need to find ‘inverse elements’ in the ring of integers, and hence we will have to show that for our

purposes it is enough to consider only the inverse of 1 in Z.

Apart fromuniformity and parallelism, working in bounded arithmetic allows us toworkmore

easily over the integers, where previously short NC
2-Frege proofs of the determinant identities

were known only overGF (2) [HT15].

1Formally, we need to assume that the syntactic-degree of every node in the circuit when constant nodes are re-

places by corresponding variables is polynomially bounded.

6



2.2 Note on the Choice of Theory

It is interesting to consider whether the theory inwhich the determinant identities is proved can be

pushed even further down to a theory that corresponds to a complexity class that lies somewhere

betweenNC
1 andNC

2.

Cook and Fontes [CF12] developed a bounded arithmetic theoryV#L, corresponding toDET,
where DET is the class of functions that can be computed by uniform families of polynomial-size

constant-depthBoolean circuitswith oracle access to the determinant overZ (where integer entries

of matrices are presented in binary). In other words, DET is theAC
0-closure of integer determi-

nants. Complete problems for the class DET include computing matrix powers and the determi-

nant itself. We have the following class inclusions (we ignore here the distinction between function

and decision classes): NC
1 ⊆ DET ⊆ NC

2, to which the theoriesVNC
1 ⊆ V#L ⊆ VNC

2

correspond.

Our argument cannot be carried out in V#L since the evaluation of algebraic circuits, even

those with squared logarithmic depth (or those in algebraic-AC
1) over the integers, which is cru-

cial to our argument, is apparently not definable in V#L. Note that excluding the evaluation of

low-depth algebraic circuits all our arguments seem to carry over to V#L. This also includes for
example our algorithm for balancing algebraic circuits.2

Note also that the two classes #SAC
1 ⊆ TC

1 that are above DET but below NC
2, can

compute the required depth reduction and the evaluation of algebraic circuits. We believe that our

construction can be carried out more or less the same in theories corresponding to these classes. However,

for these two classes we are not aware of established bounded arithmetic theories, hence we shall

work inVNC
2.

3 Preliminaries

In this section we present some of the necessary background from bounded arithmetic as well as

algebraic circuit complexity. Specifically, we describe the two-sorted bounded arithmetic theory

VNC
2 as developed by Cook and Nguyen [CN10] and show how to define the evaluation of alge-

braic circuits over the integers in the theory, and then define algebraic circuits computing formal

polynomials and proof systems for polynomial identities [HT09, HT15] (cf. [PT16] for a survey).

We start with an exposition of bounded arithmetic.

Bounded arithmetic is a general name for weak formal systems of arithmetic, namely, fragments

of Peano Arithmetic. The bounded arithmetic theories we use are first-order two-sorted theories,

having a first-sort for natural numbers and a second-sort for finite sets of numbers, represent-

ing bit-strings via their characteristic functions (for the original single-sort treatment of theories

of bounded arithmetic see [Bus86, HP93, Kra95]). The theory V
0 corresponds to the complex-

ity class uniform-AC
0, andVNC

2 corresponds to uniform-NC
2. The complexity classesAC

0,

NC
2, and their corresponding function classesFAC

0 andFNC
2 are defined using a two-sorted

universe (specifically, the first-ordered sort [numbers] are given to the machines in unary represen-

tation and the second-sort as binary strings). See Section 3.2 below for the definitions ofNC
2 and

FNC
2, and Definition A.6 in the appendix forAC

0 andFAC
0.

Definition 3.1 (Language of two-sorted arithmetic L2
A). The language of two-sorted arithmetic, de-

2It is possible also to balance algebraic circuits to squared logarithmic depth in DET using some variants of the

algorithm in [AJMV98], as we were informed by Eric Allender [All18].
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noted L2
A, consists of the following relation, function and constant symbols:

{+, ·,≤, 0, 1, | |,=1,=2,∈}.

Wedescribe the intendedmeaning of the symbols by considering the standardmodelN2 of two-

sorted Peano Arithmetic. It consists of a first-sort universe U1 = N and a second-sort universe U2

of all finite subsets ofN, which are thought of as strings. The constants 0 and 1 are interpreted inN2

as the appropriate natural numbers zero and one, respectively. The functions+ and · are the usual
addition and multiplication on the universe of natural numbers, respectively. The relation≤ is the

appropriate “less or equal than” relation on the first-sort universe. The function | · |maps a finite

set of numbers to its largest element plus one. The relation =1 is interpreted as equality between

numbers, =2 is interpreted as equality between finite sets of numbers. The relation n ∈ N holds

for a number n and a finite set of numbersN if and only if n is an element ofN .

We denote the first-sort (number) variables by lower-case letters x, y, z, . . . , and the second-

sort (string) variables by capital lettersX, Y, Z, . . . .
We build formulas in the usual way, using two sorts of quantifiers: number quantifiers and

string quantifiers. A number quantifier is said to be bounded if it is of the form ∃x(x ≤ t ∧ . . . )
or ∀x(x ≤ t → . . . ), respectively, for some number term t that does not contain x. We abbreviate

∃x(x ≤ t ∧ . . . ) and ∀x(x ≤ t→ . . . ) by ∃x ≤ t and ∀x ≤ t, respectively. A string quantifier is

said to be bounded if it is of the form ∃X(|X| ≤ t∧ . . . ) or ∀X(|X| ≤ t→ . . . ) for some number

term t that does not containX . We abbreviate ∃X(|X| ≤ t ∧ . . . ) and ∀X(|X| ≤ t → . . . ) by
∃X ≤ t and ∀X ≤ t, respectively.

A formula is in the class of formulas ΣB
0 or ΠB

0 if it uses no string quantifiers and all number

quantifiers are bounded. A formula is inΣB
i+1 orΠ

B
i+1 if it is of the form∃X1 ≤ t1 . . . ∃Xm ≤ tmψ

or ∀X1 ≤ t1 . . . ∀Xm ≤ tmψ, where ψ ∈ Π
B
i and ψ ∈ Σ

B
i , respectively, and ti does not contain

Xi, for all i = 1, . . . ,m. We write ∀ΣB
0 to denote the universal closure ofΣB

0 (i.e., the class ofΣB
0 -

formulas that possibly have [not necessarily bounded] universal quantifiers on their front [left]). We

write T (t) to abbreviate t ∈ T , for a number term t and a string term T .
As mentioned before, a finite set of natural numbers N represents a finite string SN =

S0
N . . . S

|N |−1
N such that Si

N = 1 if and only if i ∈ N . We will abuse notation and identify N
and SN .

3.1 The TheoryV0

The base theoryV0, which corresponds to the computational classAC
0, consists of the following

axioms:

Basic 1. x+ 1 6= 0 Basic 2. x+ 1 = y + 1 → x = y

Basic 3. x+ 0 = x Basic 4. x+ (y + 1) = (x+ y) + 1

Basic 5. x · 0 = 0 Basic 6. x · (y + 1) = (x · y) + x

Basic 7. (x ≤ y ∧ y ≤ x) → x = y Basic 8. x ≤ x+ y

Basic 9. 0 ≤ x Basic 10. x ≤ y ∨ y ≤ x

Basic 11. x ≤ y ↔ x < y + 1

Basic 12. x 6= 0 → ∃y ≤ x(y + 1 = x)

L1. X(y) → y < |X| L2. y + 1 = |X| → X(y)
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SE. (|X| = |Y | ∧ ∀i ≤ |X| (X(i) ↔ Y (i))) → X = Y

Σ
B
0 -COMP. ∃X ≤ y∀z < y (z ∈ X ↔ ϕ(z)) , for all ϕ ∈ Σ

B
0

whereX does not occur freely in ϕ .

Here, the axiomsBasic 1 throughBasic 12 are the usual axiomsused to define PeanoArithmetic

without induction (PA−), which settle the basic properties of addition, multiplication, ordering,

and of the constants 0 and 1. The Axiom L1 says that the length of a string coding a finite set is an

upper bound to the size of its elements. L2 says that |X| gives the largest element ofX plus 1. SE
is the axiom for strings which states that two strings are equal if they code the same sets. Finally,

Σ
B
0 -COMP is the comprehension axiom scheme forΣB

0 -formulas (i.e., it is an axiom for each such

formula) and implies the existence of all sets which contain exactly the elements that fulfill any

givenΣB
0 property.

Proposition 3.2 (Corollary V.1.8. [CN10]). The theoryV0 proves the number induction axiom scheme

forΣB
0 -formulas Φ:

(Φ(0) ∧ ∀x (Φ(x) → Φ(x+ 1))) → ∀z Φ(z).

In the above induction axiom, x is a number variable and Φ can have additional free variables

of both sorts.

We seek to define the determinant function in a theory via aΣB
1 -formula, where a function is

said to be defined in a theory if the theory can prove that given an input to the function there always

exists a unique output. For the exact definition of definability of functions in V
0 (and VNC

2)

consult the appendix (SectionA).Note that theΣB
1 -definable functions ofV

0 (equivalently, theΣB
0 -

definable functions ofV0) are precisely theFAC
0 functions, and that theΣB

1 -definable functions

ofVNC
2 are precisely theFNC

2 functions (see Theorem 3.5 below).

3.2 The Complexity ClassNC
2

The uniform complexity classNC
2 is defined using an alternating time-space (nondeterministic)

Turing machine.

Alternating Turing machines. An alternating Turing machine is a nondeterministic Turing ma-

chine in which every state, except the halting states, is either an existential state or a universal state. A

computation in such amachine can be viewed as an (unbounded fan-in) tree of configurations as fol-

lows. A configuration is said to be existential (resp. universal) if its state is existential (resp. universal).

In a computation tree of an alternating Turing machine every existential configuration has one or

more children, such that each child is a configuration reachable in one step from the configuration

in the parent node; and every universal configuration has as its set of children all configurations

reachable in one step from the configuration on the parent in node. We say that a computation of

an alternating Turing machine is accepting when all the leaves of the computation tree are accept-

ing configurations. We say that an alternating Turing machine accepts an input x if there exists an

accepting computation tree whose root is the initial configuration with the input x.
A computation tree is said to have k alternations if the number of alternations between existen-

tial and universal states in every branch of the tree is at most k. An alternating Turing machine is

said to work in f(n) alternations if for every input x of length n the number of alternations in every

computation tree of x is at most f(n). A computation tree is said to have space s if the working
space used in every configuration of the tree is at most s. An alternating Turing machine is said
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to work in space g(n) if for every input x of length n the space of every computation tree of x is at
most g(n).

Definition 3.3 (UniformNC
2). The uniform complexity class NC

2 is defined to be the class of lan-

guages that can be decided by alternating Turing machines withO(log n) space and O(log2 n) time.

We define the function class FNC
2 as the function class containing all number functions

f(~x, ~X) and string functions F (~x, ~X), where ~x and ~X are number and string variables, respec-

tively, such that the relation of the function is defined (resp. bit-defined; seeDefinitionA.5) inNC
2

(a binary relation R is defined inNC
2 if the language containing the set of pairs in R is decidable

inNC
2).

NC
2 Boolean circuit families. Let {Cn}

∞
n=1 be a family of Boolean circuits (with fan-in atmost

two ∨,∧,¬ gates). We say that this family is anNC
2 circuit family if every circuitCn in the family

has depth O(log2 n) and size nO(n). A circuit taken from a given Boolean NC
2 circuit family is

said to be anNC
2-circuit. It is known that theNC

2 circuit value problem is complete underAC
0-

reductions for the class NC
2 (Definition 3.3). We say that {Cn}

∞
n=1 is a uniform NC

2-circuit

family if its extended connection language is in FO (we refer the reader to [CN10, page 455] for

the definitions). This definition coincides with Definition 3.3.

For the definition of uniformNC
1 (andAC

1) we also refer the reader to [CN10].

3.3 The TheoryVNC
2

Here we define the theoryVNC
2 as developed in [CN10]. It is an extension ofV0 over the lan-

guage L2
A where we add the axiom stating the existence of a sequence of values that represent

the evaluation of monotone Boolean circuits of O(log2(n))-depth. It is known (cf. [CN10]) that

the Monotone Boolean Circuit Value problem for circuits ofO(log2(n))-depth is complete under

AC
0-reductions forNC

2.

The NC
2 circuit value problem is the problem that determines the value computed by a

BooleanNC
2-circuit, given a 0-1 assignment to its input variables. An input circuit to the prob-

lem is encoded as a layered circuit with d + 1 layers, namely, a circuit in which every node in layer

j is connected only to zero or more nodes in layer j + 1. The actual evaluation of such an (NC
2)

circuit within the classNC
2 is done in stages, where we start from layer 0 and “compute” (using

alternations and nondeterminism) the values of every node in every layer. Formally, we define this

evaluation process as follows (see also [CN10, Chap. IX.5.6]).

The layered monotone Boolean circuit with d + 1 layers is encoded with a string variable I ,
with |I| ≤ n, which defines the (Boolean) input gates to the circuit. Then we have a string variable
G such that G(x, y), for x ∈ [d], holds iff the yth gate in layer x is ∧, and is ∨ otherwise. Also

the wires of C are encoded by a three-dimensional array, namely a string variable E such that

E(z, x, y) holds iff the output of gate x on layer z is connected to the input of gate y on layer z+1.
To compute the value of each of the gates in the circuit C on input I , simply compute the values

of the gates in each layer, starting from the input layer, in d + 1 stages, using the values of the

previous layer. The formula δLMCV (n, d, E,G, I, Y ) below formalizes this evaluation procedure

(where LMCV stands for “layered monotone circuit value”). The two-dimensional array Y stores

the result of computation, namely the evaluation string: for 1 ≤ z ≤ d, row Y [z] contains the gates
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on layer z that output 1.

δLMCV (n, d, E,G, I, Y ) ≡

∀x < n∀z < d
(
(Y (0, x) ↔ I(x))∧

(
Y (z + 1, x) ↔

((
G(z + 1, x) ∧ ∀u < n,E(z, u, x) →

Y (z, u)
)
∨ (¬G(z + 1, x) ∧ ∃u < n,E(z, u, x) ∧ Y (z, u))

)))
. (3)

The following formula states that the circuit with underlying graph (n, d, E) has fan-in two:

Fanin2(n, d, E) ≡

∀z < d ∀x < n∃u1 < n∃u2 < n∃v < n(E(z, v, x) →

(v = u1 ∨ v = u2)
)
. (4)

Finally, we arrive at the definition ofVNC
2:

Definition 3.4 (VNC
2). The theoryVNC

2 has vocabulary L2
A and is axiomatized by the axioms of

V
0 and the axiom:

Fanin2(n, |n|2, E) → ∃Y ≤ 〈|n|2 + 1, n〉δLMCV (n, |n|
2, E,G, I, Y ).

In this definition 〈·〉 is the pairing function, and 〈|n|2 + 1, n〉 is an upper bound on the length
needed for the two-dimensional array Y . Also, note that given a natural number n the binary

representation length of n, denoted |n|, that is, ⌈log2(n+1)⌉, is anAC
0 function of n (see [CN10,

Exercise III.3.30]).

Recall the concept of a ΣB
1 -definable function in a theory (see the appendix Section A). The

following is the main theorem forV0 andVNC
2:

Theorem 3.5. ([CN10, Corollaries V.5.2 and IX.5.31]) A function is ΣB
1 -definable in V

0 iff it is

Σ
B
0 -definable inV

0 iff it is inFAC
0. A function isΣB

1 -definable inVNC
2 iff it is inFNC

2.

Note that the fact that a function is defined in the theory does not mean that we can prove all

of its properties, or even anything interesting about it. To actually prove statements about a ΣB
1 -

definable function inVNC
2, for example, we need to carefully consider theΣB

1 -formula defining

it, formulate the property that we want to prove in the theory as a formula in the languageL2
A, and

verify that indeed the formula is provable in the theory.

3.4 Polynomials and Algebraic Circuits

For a good monograph on algebraic circuits and their complexity see Shpilka and Yehudayoff

[SY10]. LetG be a ring. Denote byG[X] the ring of (commutative) polynomials with coefficients

fromG and variablesX := {x1, x2, . . . }. A polynomial is a formal linear combination of monomi-

als, where amonomial is a product of variables. Two polynomials are identical if all their monomials

have the same coefficients. The degree of a polynomial is the maximal total degree of a monomial

in it.

Algebraic circuits and formulas over the ringG compute polynomials inG[X] via addition and
multiplication gates, starting from the input variables and constants from the field. More precisely,
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an algebraic circuitC is a finite directed acyclic graph (DAG)with input nodes (i.e., nodes of in-degree

zero) and a single output node (i.e., a node of out-degree zero). Input nodes are labeled with either

a variable or a field element in F. All the other nodes have in-degree two (unless otherwise stated)

and are labeled by either an addition gate+ or a product gate×. An input node is said to compute

the variable or scalar that labels itself. A + (or ×) gate is said to compute the addition (product,

resp.) of the (commutative) polynomials computed by its incoming nodes. An algebraic circuit is

called a formula, if the underlying directed acyclic graph is a tree (that is, every node has at most

one outgoing edge). The size of a circuit C is the number of nodes in it, denoted |C|, and the depth
of a circuit is the length of the longest directed path in it.

We say that a polynomial is homogeneous whenever every monomial in it has the same (total)

degree.

Definition 3.6 (Syntactic-degree d(·)). Let C be a circuit and v a node in C . The syntactic-degree
d(v) of v is defined as follows:

1. If v is a field element or a variable, then d(v) := 0 and d(v) := 1, respectively;

2. If v = u+ w then d(v) := max{d(u), d(w)};

3. If v = u · w then d(v) := d(u) + d(w).

An algebraic circuit is said to be syntactic-homogeneous if for every plus gate u+v, d(u) = d(v).
Given a circuitF and a node u inF ,Fu denotes the subcircuit ofF with output node u. IfF,G

are two circuits then

F⊕G and F⊗G

denotes any circuitH whose output node is u + v or u × v, respectively, whereHu is the circuit

F and Hv the circuit G. In other words, F⊕G denotes a circuit with output node + with the

two incoming subcircuits F andG, where F andGmay not be disjoint (so F⊕G is a set of possible

different circuits, fromwhichwe assume one is picked; the two subcircuitsF,G of the output node

of F⊕G are identical to F,G, respectively). Furthermore,

F +G and F ×G

denote the unique circuit of the form F ′⊕G′ and F ′⊗G′, respectively, where F ′, G′ are disjoint

copies of F and G. In particular, if F and G are formulas then so are F + G and F × G. For
example, (1 + x5)⊗x5 can be any of the following two circuits:

1��
+
❅❅x5

✟✟×
❆
❆❆x5 1��

+
❅❅x5

✏✏×

✆
✆

3.5 Polynomial Identity (PI-) Proofs

In this sectionwe give the necessary background on the PI-proof systemPc. This proof-systemwas

first introduced in [HT09] (under the name “arithmetic proofs” and for algebraic formulas instead

of algebraic circuits), and was subsequently studied in [HT15].

PI-proofs, as originally introduced in [HT09], denotedPc (andPc(G) whenwewish to be explicit

about the ringG), are sound and complete proof systems for the set of polynomial identities ofG,

written as equations between algebraic circuits. A PI-proof starts from axioms like associativity,
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commutativity of addition and product, distributivity of product over addition, unit element ax-

ioms, etc., and derives new equations between algebraic circuits F = G using rules for adding and

multiplying two previous identities. The axioms of Pc express reflexivity of equality, commutativ-

ity and associativity of addition and product, distributivity, zero element, unit element, and true

identities in the field.

Algebraic circuits in PI-proofs are treated as purely syntactic objects (similar to theway a propo-

sitional formula is a syntactic object in propositional proofs). Thus, simple computations such as

multiplying out brackets, are done explicitly, step by step.

Definition 3.7 (PI-proofs; System Pc(G), [HT09, HT15]). The system Pc(G) proves equations of the
form F = G over the ring G, where F,G are algebraic circuits over G. The inference rules of Pc are

(with F,G,H ranging over algebraic circuits, and where an equation below a line can be derived from the

one above the line):

R1
F = G

G = F
R2

F = G G = H

F = H

R3
F1 = G1 F2 = G2

F1 + F2 = G1 +G2

R4
F1 = G1 F2 = G2

F1 · F2 = G1 ·G2

.

The axioms are equations of the following form, with F,G,H circuits:

A1 F = F
A2 F +G = G+ F
A3 F + (G+H) = (F +G) +H
A4 F ·G = G · F
A5 F · (G ·H) = (F ·G) ·H
A6 F · (G+H) = F ·G+ F ·H
A7 F + 0 = F
A8 F · 0 = 0
A9 F · 1 = F
A10 a = b+ c , a′ = b′ · c′ (if a, b, c, a′, b′, c′ ∈ G,

are such that the equations hold inG);

C1 F⊕G = F +G
C2 F⊗G = F ·G

A Pc(G)-proof is a sequence of equations, called proof-lines, F1 = G1, F2 = G2, . . . , Fk = Gk ,

with Fi, Gi circuits, such that every equation is either an axiom or was obtained from previous equations

by one of the inference rules. The size of a proof is the total size of all circuits appearing in the proof. The

number of steps in a proof is the number of proof-lines in it.

A PI-proof can be easily verified for correctness in deterministic polynomial-time (assuming

the field (or ring) has efficient representation; e.g., the field of rational numbers or the the ring Z),

simply by syntactically checking that each proof line is derived from previous lines by one of the

inference rules.

3.6 Circuits and Proofs with Division

We denote by G(X) the field of formal rational functions in the variables X, where a formal ra-

tional fraction is a fraction of two formal polynomials with coefficients from G. In this work we
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will considerG to be the ring of integersZ. We will not be interested in ‘inverse elements’ inZ (ex-

cluding the element 1), nor much in the completeness or soundness of proof systems for rational

functions (like P−1
c (Z) described below), because the theory will only prove syntactical properties

of these proof systems (hence, no actual ‘division’ is performed over the integers).

It is possible to extend the notion of a circuit so that it computes rational functions in G(X)
([HT15]). This is done in the following way: a circuit with division F is an algebraic circuit which

may contain an additional type of gate with fan-in 1, called an inverse or a division gate, denoted

(·)−1. A division gate v−1 (i.e., a division gate whose incoming circuit is v) computes the rational

function 1/v̂ ∈ G(X), assuming v does not compute the zero polynomial. If the circuit with

division F contains some division gate v−1 such that v computes the zero polynomial, then we

say that the circuit F is not well-defined, and is otherwise well-defined. Note, for instance, that the

circuit (x2 + x)−1 overGF (2) is well-defined, since x2 + x is not the zero polynomial (although

it vanishes as a function overGF (2), for example).

We define the system P−1
c (G), operating with equations F = G where F and G are circuits

with division [HT15], as follows: first, we extend the axioms of Pc(G) to apply to well-defined

circuits with division. Second, we add the following new axiom:

D F · F−1 = 1 , provided that F−1 is well-defined.

Note that ifF−1 is well-defined then bothF is well-defined andF 6= 0. We sometimes call theP−1
c -

system PI-proof as well (although it operates with rational functions and not merely polynomial).

We say that a P−1
c -proof is syntactically correct if it is a correct P−1

c -proof except that in the

axiomD aboveF−1 is not necessarily well-defined. Since we do not know how to check in uniform

NC
2 that a circuit is well-defined, we do not know how to express the full correctness of P−1

c -

proofs in the VNC
2. For our purposes it is sufficient that VNC

2 expresses only the syntactic

correctness of P−1
c -proofs.

The syntactic-degree of a circuit C with division is defined as

d(C) := d(Num(C)) + d(Den(C)).

4 Carrying the Proof in the Theory: Overview

Here we provide a detailed overview of the proof of the determinant identities in the theory, as

highlighted before in Section 2.

We assume all polynomials are over the ring of integers Z. We reason insideVNC
2 (andV0)

about P−1
c (Z)- and Pc(Z)-proofs (Definition 3.7 and Section 3.6). We use the following reflection

principle, stating that if an equation has a proof then the equation is true:

Theorem 4.1 (Pc(Z)-reflection principle; InVNC
2). Let π be an O(log2 n)-depth Pc(Z)-proof of

the equation F = G. Then F = G is true in Z; that is, ∀α ∈ Zn(F (α) = G(α)).

Theorem 4.1 is proved as follows. We define the evaluation function for O(log2 n)-depth alge-
braic circuits overZ as the function that receives an integer assignmentA and anO(log2 n)-depth
algebraic circuit C . The algorithm then converts C into a layered and monotone Boolean NC

2

circuit, where the inputs are the bit-strings corresponding to A. And then evaluates the Boolean

circuit using evaluation ofNC
2 circuits (ΣB

1 -definable inVNC
2), and finally outputs the result

(see Section 11.1).
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We also need to show inVNC
2 that the rules and axioms ofO(log2 n)-depthPc(Z) are sound

with respect to the above evaluation function. This is proved by inspection of each of the axioms

and rules.

Note thatwe do not knowhow to prove the soundness ofP−1
c -proofs inVNC

2. This is because

the division axiom F · F−1 = 1 requires that F̂ 6= 0, and we do not know how to check inNC
2

that a circuit does not compute the zero polynomial. However, we observe that for our purposes

it is enough to show that given a specific object (a P−1
c -proof for the determinant identities) it is

possible to obtain from this object a new legitimate Pc-proof of the determinant identities. See the

example in the Eliminating division gates part below.

The determinant function DET in the theory. We now describe slightly informally the

(uniform-NC
2) determinant function DET defined in the theory. Essentially, each step in the

algorithm corresponds to a (more involved) step in the construction of the final PI-proof of the

determinant identities in the theory (as described after the algorithm below).

Algorithm DET (inVNC
2)

Input: an n× n integer matrixA.
Output: z ∈ Z, where z is the determinant ofA.

1. Write down an unbalanced algebraic circuit Detcirc−1(X) with division that computes the

symbolic n × n determinant polynomial, over the variables X = {xij}i,j∈[n]. This circuit
captures the standard recursive block-wise formula for computing the determinant of ma-

trices, using Schur complement (intuitively, it captures the Gaussian elimination procedure).

For details see Section 5.1.2.

2. Consider the circuit Detcirc−1(In + zX) as computing a univariate polynomial in the new

variable z. Using this circuit, construct a new circuitDetTaylor(X) computing the nth term
of the Taylor expansion ofDetcirc−1(In+zX) around z = 0. This is a circuitwith a division
gate, of exponential syntactic-degree, that computes the determinant as a polynomial. For

details see Section 6.2

3. Convert the circuit DetTaylor(X) into a syntactic homogeneous circuit without division of

syntactic-degree n, denotedDet#Taylor(X). For details see Section 6.3.

4. Make sure that constant leaves inDet
#
Taylor(X), when treated as if they are variables, do not

lead up to nodes of exponential syntactic-degree inDet
#
Taylor(X). This is done by construct-

ing the circuitDet⋆Taylor(X), based on Det#Taylor(X). For details see Section 10.1.1.

5. Balance Det⋆Taylor(X) via a (uniform) balancing algorithm, to yield a polynomial size and

O(log2 n)-depth circuit without division denoted Detbalanced(X) that computes the deter-

minant polynomial. For details see Section 10.

6. Evaluate the circuit Detbalanced(X) with the input assignmentA, using the algebraic circuit
evaluation function forO(log2 n)-depth circuits, and output the resulting integer in binary.
For details see Section 11.
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Since we show that all the parts in the algorithm above areΣB
1 -definable functions inVNC

2,

the determinant function as defined above isΣB
1 -definable in the theory (namely, totally recursive).

Given the function DET we now sketch the proof inVNC
2 of the two determinant identities

(5), (6) below.

Step 1: Existence ofP−1
c (Z)-proofswith division gates. We show inV0 aΣB

0 -definable func-

tion that given a natural number n outputs a P−1
c (Z)-proof π0 of the following equations

Detcirc−1(X) · Detcirc−1(Y ) = Detcirc−1(XY ) (5)

Detcirc−1(Z) = z11 · · · znn, (6)

forX, Y symbolicn×nmatrices; that is, the (i, j)th entry ofX and Y are the variables xij and yij ,
respectively, and Z a lower (equivalently, upper) triangular symbolic matrix in which the variable

zij is the (i, j)th entry of Z iff i ≥ j, and 0 otherwise.
These are equations between algebraic circuits over Z. This is a proof in which circuits have

exponential syntactic-degrees (though the theory cannot express this fact). The circuits in the proof

are not necessarily homogeneous, and have division gates. The theory can also only prove that the

P−1
c (Z)-proof is syntactically correct (Section 3.6). Note thatDetcirc−1(X) computes the determi-

nant as a rational function and not as a polynomial. The construction of the proofs uses only the

Σ
B
0 -COMP axiom and thus is done already inV0. See Section 5.2.1 for details.

Step 2: From the determinant polynomial to a rational function. For technical reasons relat-

ing to eliminating both division gates and high syntactic-degrees, we will need to construct in the

theory aP−1
c (Z)-proof of the determinant identities inwhich the determinant circuits appearing in

the identities that are proved are, firstly, written as polynomials and not as rational functions, that

is, as circuits without division; and secondly, have small syntactic-degree. Nevertheless, note that

some intermediate P−1
c (Z) proof-lines will contain the determinant written with division gates

and having high syntactic-degree. The first task is achieved in the current step, and the second task

in the next step.

Let F = F (x, z) be a circuit with division of syntactic-degree d. Similar to [HT15], we define

coeffzk(F ) as a circuit in the variables x, computing the coefficient of zk in F , when F is written

as a power series at z = 0. In other words,
∑d

i=0 coeffzi(F ) · z
i are the first d + 1 terms in the

Taylor expansion of F at z = 0.
Let DetTaylor(X) := coeffzn(Detcirc−1(In + zX)) be the circuit computing the nth term of

the Taylor expansion of Detcirc−1(In + zX) about z = 0. It is easy to see that DetTaylor(X)
computes the determinant function: since every variable xij is multiplied by z, the coefficient of
zn is precisely the determinant.

By construction, Detcirc−1(In + zX) will compute the determinant as a polynomial and will

have only one division gate (this is where we differ from [HT15]; due to the fact that we cannot

simply substitute division gates u−1 that compute 1 by the node 1, because the theory needs to

express the correctness of this substitution in some way). Furthermore, since we work over Z we

need to make sure that the only invertible ring element needed to be used is the element 1.

We then show inV0 the existence of a function that given a natural positive number n outputs
a P−1

c (Z)-proof of DetTaylor(X) = Detcirc−1(X), for the n × n symbolic matrix X . Combined
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with the previous step,V0 proves the existence of a P−1
c (Z)-proof, denoted π1, of the determinant

identities (5), (6), in which the determinant circuit in (5), (6) is replaced by DetTaylor . See Section

6.2.

Step 3: Reducing the syntactic-degree of the determinant polynomial. The circuit

DetTaylor(X) has exponential syntactic-degree (herewe oncemore differ from [HT15], sincewe do

not knowhow to formulate andprove the correctness of anNC
2-algorithm that eliminates 0 nodes

in general algebraic circuits, or nodes of high syntactic-degree that compute the zero polynomial).

However, for the next step, we needDetTaylor(X) to have a polynomial syntactic-degree. We show

inV0 that there exists aP−1
c (Z)-proof ofDetTaylor(X) = Det

#
Taylor(X), whereDet#Taylor(X) has

syntactic-degree n and no division. This is done simply by a direct construction of such a proof

using theΣB
0 -COMP axiom, and thus is carried out inV0.

Therefore, by previous steps, V0 proves the existence of a P−1
c (Z)-proof of the determinant

identities (5), (6), where the determinant in these two equations is replaced by Det
#
Taylor which is

an algebraic circuit with no division gates and of syntactic-degree n. Denote this P−1
c (Z)-proof by

π2 (this proof does contain the determinant circuit written as Detcirc−1 and DetTaylor but only in

intermediate proof-lines). See Section 6.3.

Step 4: Bringing division gates to the top. We say that a circuitC has a division at the topwhen-

ever C is of the form F · (G)−1 or (G)−1 · F , for two circuits F,G. If F,G do not have division

gates we say thatC has a single division gate at the top. We need our circuits to have a single division

gate at the top, because in the next step we need to replace division gates by an “approximating”

power series, but we do not know how to do it with nested divisions.

We devise an FAC
0 algorithm that takes an algebraic circuit with division, of any depth, and

outputs an algebraic circuit computing the same rational function that has a single division gate at

the top. Using this algorithm, we show inV0 how to convert the P−1
c (Z)-proof π2 into a proof in

which every circuit has a single division gate at the top or is division free. Denote the resulted proof

by π3. This step is shown in Section 7.

Step 5: Eliminating division gates. We now wish to eliminate the division gates from the

P−1
c (Z)-proof π3. Standard division elimination by Strassen [Str73] requires finding a total assign-

ment to the variables, such that no division gate in the circuit equals zero under this assignment.

However, we do not know how to uniformly find such assignments in uniform-NC
2, and so we

do not know how to uniformly eliminate division gates from general algebraic circuits inVNC
2.

We solve this by working out the division elimination only for those circuits in π3.
In fact, the only properties of the proof-sequence π3, as well as the proof-sequence π4 con-

structed during this stage, that we need to express in the theory are about the proof-sequences

having a good “local” behaviour, namely that proof-lines in the resulted Pc(Z)-proof obtained af-
ter division elimination, are derived syntactically correct from previous lines according to the rules

of Pc(Z).
We start with a simple example to illustrate the main idea in this and the next step, and then

describe the current step in more detail.

Example: Recall that the theory expresses only the syntactic correctness of P−1
c (Z)-proofs (due to

the fact thatwe cannot verify that division gates do not compute the zero polynomial). InV0we can

reason as follows about division elimination. Start with the following P−1
c (Z)-proof: x · x−1 = 1.
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Then, apply the linear transformation x 7→ 1 − x which yields (1 − x) · (1 − x)−1. Substitute

1− x by the term Invk(1− x) defined as:

Invk(1− x) := 1 + x+ x2 + · · ·+ xk,

which serves to “approximate” the inverse of 1−x up to degree k, in the sense that (1−x)·Invk(1−
x) = 1− xk+1. For a circuit F denote by F (i) the syntactic-homogeneous component of degree i
of F , which computes the sum of all (syntactic-)degree imonomials in F . Then,V0 can prove the

following statement:

“Let k ≥ 1 be a natural number. Given x · x−1 = 1, substitute 1 − x for x, and then

substitute the circuit Invk(1− x) for (1− x)−1. Assuming (1− x)(0) = 1 has a Pc(Z)-
proof, there exist Pc(Z)-proofs of syntactic-degree at most k for the following equations:

((1− x) · Invk(1− x))(0) = 1,

((1− x) · Invk(1− x))(i) = 0, for 1 ≤ i ≤ k.”

We now describe how to eliminate division gates in more detail. Similar to coeff(F ), the use
of Invk(F ), for a circuit F , involves using the inverse of the constant term of F , namely, the inverse

of F (0). This is why we need to make sure that the only invertible ring element to be used is 1 (and

thus it has an inverse in Z). For this purpose we show that the assignment of identity matrices to

the matrix-entry variablesX = {xij}, Y = {yij} and Z = {zij}, for i, j ∈ [n], in π3 will result
in all division gates u−1 computing polynomials with a constant term 1 (though this statement is

not expressed in the theory).

Assuming for simplicity that ri (for i ∈ J ) are all the variables appearing in π3 and b is the
assignment of identity matrices to the variables in π3, substitute in π3 the term (bi−wi) for each ri
(for all i ∈ J ) denoting the obtained proof by π′

3. Then, by our assumption about identity matrices

assignment, the all zero assignment 0 to the wi variables in π
′
3 does not nullify any division gate

in π′
3. Furthermore, we show that under this assignment every division gate provably in P−1

c (Z)
computes the polynomial 1. Therefore, in the theory, we construct this P−1

c (Z)-proof π′
3 (which is

simply a substitution instance of π3).
As exemplified above, let Invn(H) be the truncated power series of H−1 over the point de-

termined by the identity matrices to the variables of the entries of the matrices X, Y, Z . Loosely
speaking, this truncated power series serves as the inverse polynomial ofH “up to the nth power”.

Specifically, Ĥ · ̂Invn(H) = 1 + [terms of degree> n] (note again thatVNC
2 cannot necessarily

prove this equality, since general evaluation of (unrestricted depth) algebraic circuits is not known

to be defined in the theory). For every circuit C with a top division gate H−1, V0 proves there

exists a corresponding division-free circuit C ′, obtained by replacing the division gateH−1 in C
by Invn(H).

Let π4 be the corresponding division-free proof-sequence obtained from π′
3 by replacing every

circuit with the corresponding division-free circuit as above. By itself π4 is not a legalPc(Z)-proof,
since the axiomof division inP−1

c (Z) does not translate into an axiom inPc(Z). In otherwords, the
axiomDof division: F ·F−1 = 1 (provided that for every division nodeu−1 inF−1, includingF−1

itself, u does not compute the zero polynomial; see Definition 3.7), translates intoF ·Invn(F ) = 1,
which is neither a legal axiom, nor a true identity (sinceF ·Invn(F ) = 1+[terms of degree> n]). We
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fix this problem as follows: first, we break this equation into its lowern+1 syntactic homogeneous

components, thereby also getting rid of terms of syntactic-degree > n. Second, we will need to

construct explicitlyPc(Z)-proofs of (F ·Invn(F ))
(0) = 1 (using the notion of provably good division

gates; see Section 8, as well as Lemma 6.1).

Step 5 is shown in details in section 8.

Step 6: Eliminating high degrees. Here we eliminate the high syntactic-degree (> n) parts in
the circuits appearing in π4 (these high syntactic-degree circuits appear in the middle of the proof,

and not in the identities proved). This is done by homogenizing the proof π4. Specifically, we
show aΣB

0 -definable function inV
0 that receives an algebraic circuitG of syntactic-degree k and

converts it into a sum of k + 1 syntactic-homogeneous circuits
∑k

i=0G
(i) (computing the same

polynomial), in which every node is labeled with an upper bound on its syntactic-degree. We show

that for our purposes it is enough to work with upper bounds on syntactic-degrees rather than the

syntactic-degrees themselves.

More generally, we show aΣB
0 -definable function inV

0 that given a Pc(Z)-proof of an equa-
tion F = G of syntactic-degree n, decomposes the proof into n+ 1 Pc(Z)-proofs of F

(i) = G(i),

for i = 0, . . . , n, each proof having syntactic-degree at most i. Combining these proofs gives a low

syntactic-degree version of π4.
This also fixes the problem caused by division elimination described at the end of the previ-

ous step. We thus obtain a Pc(Z)-proof, denoted π5, of equations (5) and (6), where in these two

equations the determinant is written asDet
#
Taylor.

See Section 9 for more details.

Step 7: Balancing algebraic circuits in the theory. We ΣB
1 -define inVNC

2 a function that

receives an algebraic circuit C with size s and a number d which stands for an upper bound on

the syntactic-degree of C , and outputs a circuit denoted [C] computing Ĉ with depth O(log s ·
log d+log2 d) and size poly(s, d). Asmentioned before thisFNC

2-algorithmprovides anFAC
0-

implementation of most parts of the classic Valiant et al. [VSBR83] algorithm, combining it with

ideas from the Miller et al. [MRK88] algorithm and usages of matrix powering (which then entails

working inVNC
2).

More generally, we show a ΣB
1 -definable function in VNC

2 that receives a Pc(Z)-proof of
F = G with syntactic-degree d, and outputs a Pc(Z)-proof of [F ] = [G] in which every circuit is
of depthO(log s · log d+ log2 d) and the size of the proof is poly(s, d).

Applying this function to π5, we obtain aΣB
1 -definable function inVNC

2, which given n in

unary outputs a depth O(log2 n) Pc(F)-proof π6 of the determinant identities (5), (6), where the

determinant in the two identities is replaced by the appropriate balanced division free circuit of

syntactic-degree n computing the determinant, denotedDetbalanced. Note that the theory will now

express the fact that the PI-proof obtained is indeed a legitimate PI-proof.

See Section 10 for more details.

Step 8: Applying the reflection principle. We now reason in VNC
2 as follows: for every n

and every pair ofmatricesA,B overZ of dimensionn×n, by the definition of the functionDET in

the theory, DET(AB), DET(A) and DET(B) equals the value of applying the evaluation function
to the circuitDetbalanced with the input assignmentAB,A,B, respectively.

By the arguments above, there exists a depth O(log2 n) Pc(Z)-proof of Detbalanced(XY ) =
Detbalanced(X) · Detbalanced(Y ) for the two symbolic matricesX, Y of dimension n × n. But by
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the reflection principle for depth O(log2 n) Pc(Z)-proof from Theorem 4.1 this means that for

every input matrices over Z, Detbalanced(AB) = Detbalanced(A) · Detbalanced(B). We therefore

conclude DET(AB) = DET(A) · DET(B).
The same argument applies to the proof of the determinant identity (6), when using a symbolic

triangular (lower or upper) matrix and then using Theorem 4.1.

5 Encoding Circuits and PI-Proofs in the Theory

Here we explain how to encode algebraic circuits and PI-proofs in the theory. Specifically, in Sec-

tion 5.1.2 we describe the circuit Detcirc−1 , namely a circuit with division for the determinant. In

Section 5.1.3 we explain how to construct Detcirc−1 in V
0. Finally, in Section 5.2.1 we complete

Step 1 (in Section 4) in the construction of the proof in the theory: we construct a P−1
c (Z)-proof

of the determinant identities, where the determinant is written as Detcirc−1 . The construction in

the theory is syntactic in nature, and is done inV0 using theΣB
0 -COMP axiom.

5.1 Encoding Circuits

In order to talk about algebraic circuits, Boolean circuits and PI-proofs in the theory we need to fix

an encoding scheme for these objects. Basically,VNC
2 (in fact, alreadyV0) is rich enough to let

us encode syntactic objects in a rather natural way. Since every uniformAC
0 function is definable

inV0 we can assume basic encoding functions to be defined in the theory.

We show below how to constructDetcirc−1 in the theory. Encoding and constructing PI-proofs

in the theory follows similar lines, wewill not always define all the encoding details explicitly when

these objects are already constructible inV0.

5.1.1 Encoding of Algebraic Circuits in the Theory

Algebraic circuits are encoded using strings in the theory as follows: (i) a string of nodesV (inwhich

we assign natural numbers to nodes; this is convenient for our encoding schemes); (ii) a string of

gatesG, where each gate is a natural number interpreted as a pair of natural numbers (v, t) (using
the pairing function) where v is a node in V and t is a natural number that expresses that the gate

v is either +,× or (·)−1 (plus gate, times gate or a division gate, respectively) or is the ith input

(the first two connectives are binary and the third is unary); (iii) a two-dimensional string of input

gates I , where, if the first (lsb) of the ith string is 0, the ith string of I encodes a variable xj , and
otherwise it is a binary string representing an integer scalar—the index j of an input variable xj
is represented using the binary representation of j; and finally (iv) a string of directed edges E
between two nodes, where (u, v) ∈ E means that there is an incoming edge to v ∈ V emanating

from u ∈ V .

We show in Section 11.1 that there is aΣB
1 -definable function inVNC

2 that converts a non-

layered algebraic circuit into a layered circuit inVNC
2, where a layered circuit is a circuit inwhich

each node belongs to a specific layer and nodes in layer i have an outgoing edge only to nodes in

layer i+ 1. This will enable us to convert algebraic circuits to layered Boolean circuits as required
by the evaluation axiom ofVNC

2 (Definition 3.4).
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5.1.2 Circuit with Division for the Determinant

First we need to define the determinant circuit with division denoted Detcirc−1 . Similar to [HT15],

this is done using block-wise inversion and Schur complement and can be viewed as performing a

block Gaussian elimination: by considering the symbolic matrixX = {xij}i,j∈[n], consisting of n
2

distinct variables, defining the matrix inverseX−1 of X and then, by partitioningX into blocks,

we formulate a recursive definition of the determinant, using matrix inverse.

Formally, we define an n×nmatrixX−1 whose entries are circuits with divisions, computing

the inverse ofX , as follows:

1. If n = 1, letX−1 := (x−1
11 ).

2. If n > 1, writeX as follows:

X =

(
X1 vt1
v2 xnn

)
, (7)

whereX1 = {xij}i,j∈[n−1], v1 = (x1n, . . . , x(n−1)n) and v2 = (xn1, . . . , xn(n−1)). Assum-

ing we have constructedX−1
1 , let the Schur complement be defined as

δ(X) := xnn − v2X
−1
1 vt1 . (8)

Since δ(X) computes a single non-zero rational function, δ(X)−1 is well-defined. Finally,

let

X−1 :=

(
X−1

1

(
In−1 + δ(X)−1vt1v2X

−1
1

)
−δ(X)−1X−1

1 vt1
−δ(X)−1v2X

−1
1 δ(X)−1

)
. (9)

The circuitDetcirc−1(X) is defined as follows:

1. If n = 1, letDetcirc−1(X) := x11.

2. If n > 1, partitionX as in (7) and let δ(X) be as in (8). Let

Detcirc−1(X) := Detcirc−1(X1) · δ(X) = Detcirc−1(X1) · (xnn − v2X
−1
1 vt1) . (10)

The definition in (9) should be understood as a circuit with n2 outputs which takes

X−1
1 , v1, v2, xnn as inputs and moreover, such that the inputs from X−1

1 occur exactly once. Al-

together, we obtain a polynomial-size circuit for X−1 and the determinant function of X . The

circuits obtained are unbalanced, have division gates and are of exponential syntactic-degree (see

Definition 3.6). The fact that Detcirc−1(X) indeed computes the determinant (as a rational func-

tion) stems, e.g., from the fact (shown in this work, or in [HT15]) that P−1
c (Z) can prove the two

identities that characterize the determinant. ThatX−1 computes matrix inverse is also proved in

the theory.

5.1.3 Constructing the CircuitDetcirc−1 inV
0

Here we show aΣB
0 -definable inV

0 function, denotedwriteX−1(n), that outputs themulti-output

circuit X−1 ((9) above) given as input a unary integer n. From X−1, in a similar manner we can

construct (the single-output circuit) Detcirc−1(X) using (10) above. Note that the definition in

(9) is implicitly a construction that usesΣB
1 -induction (that is, the number induction axiom as in

Proposition 3.2 in which we use ΣB
1 instead of ΣB

0 ): given that there exists a circuit for X−1
1 of

dimension (n − 1) × (n − 1), we constructX−1 of dimension n × n. However, since we do not
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have inV0, nor inVNC
2, the number induction axiom forΣB

1 -formulaswewill need to construct

the circuit “syntactically” using only theΣB
0 -COMP axiom by utilizing a natural encoding scheme.

This idea and similar encoding is then used in the sequel to construct all the P−1
c (Z)-proof in the

theory. For getting the final division free Pc(Z)-proofs using homogenization and balancing we

need to consider different arguments, including the axioms ofVNC
2, e.g., to be able to compute

matrix powering (see Sections 9, 10).

The circuit forX−1 is encoded as follows. It is a multi-output circuit. The string V encodes the

nodes in the circuit, as natural numbers, where a node number is interpreted as a tuple of natural

numbers as shown below (using theΣB
0 -definable inV

0 tupling number function). For each induc-

tive level d = 1, . . . , n in the inductive definition ofX−1 in (9), corresponding to the construction

of a d×d inverse matrix, we have a set of nodes (d, (i, j), ℓ) ∈ V , each interpreted as a three-tuple

of numbers where the second number is a pair of numbers in itself. In (d, (i, j), ℓ) ∈ V , the pair

(i, j), for i, j ∈ [d], is an entry in a d×dmatrix, meaning that the node (d, (i, j), ℓ) is part of a sub-
circuit ofX−1 that computes the (i, j)th entry in the dth inductive-step; ℓ is the running index of
the nodes in that part, where ℓ = 0 iff the node is what we consider an output node of the given level
d and the given entry (i, j). Nodes of the form (0, (i, j), 0) stand for the input node corresponding
to the variable xij (or scalar) in the input string I .

For example, (1, (1, 1), 0) is the node computing x−1
11 , because the first coordinate d = 1 refers

to “inductive” level 1 in (9), the second coordinate is (1, 1),meaning the (1, 1)-entry from the circuit

computing the inverse of x11, and the last coordinate is 0, meaning this is the output node of the

inverse of x11. Note that we use the numbers on the nodes in V to denote information on the

structure of the circuit, namely information about the edges in E and whether a gate is an input

node (this information is expressed also inG). This makes the construction of the corresponding

E andG easier.

Additionally, we have a stringG of natural numbers, each interpreted as a four-tuple encoding

the gate-type of each node inV , excluding the input nodes (0, (i, j), 0). That is, (d, (i, j), ℓ, g) ∈ G
means that node (d, (i, j), ℓ) ∈ V is of type+ if g = 0,× if g = 1 and division (·)−1 if g = 2, and
an input variable xij if g = (i, j), where, again, (·, ·) is the pairing function (note that the pairing
function (cf. [CN10]) is monotone increasing and that (1, 1) > 2, so we can distinguish between

the case of an arithmetic gate and an input gate). Finally, the string E encodes the edges between

nodes in the circuit. That is, (d, (i, j), ℓ, d′, (i′, j′), ℓ′) means that there is a directed edge from

node (d, (i, j), ℓ) to node (d′, (i′, j′), ℓ′).
Using the above encoding scheme it is possible now to bit-define the string function writeX−1

as a ΣB
0 -definable function in V

0. We only need to construct, given some level d, (i, j), the sub-
circuits whose nodes will be (d, (i, j), ℓ), for some ℓ, according to the definition in (9). We will use

the following notation and functions in the theory.

Notations andbasic functions for constructing sub-circuits. LetF be some “primitive” arith-

metic function, such as inner product of two n-element vectors over the integers, or one of the

functions in (9) used to define a minor or the matrix inverse X−1, such as δ(X)−1 (we use the

term minor to refer to a sub-matrix). We will denote by writeF (n, d, ℓ, I, O) the following string
function: the input to this string function are I , serving as the input nodes to the circuit andO the

output nodes of the circuit for F , d is the index “level” (used to record the induction-level of the

inductive circuit constructions as in (9)) and ℓ is the “running index” of a node in a given level d,
and n stands for the “dimension” of the operation defined by F (e.g., inner product of vectors of

size n, or matrix product of two n × n matrices has dimension n). The output is a string, but we
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abuse notation and assume it is three separate strings encoding the (output) circuit, for simplicity,

as follows: E, V,G as described above.

More formally, we define writeF (n, d, ℓ, I, O) = (E, V,G) as follows (similar to the above

notation): V is a string describing the vertices in an algebraic circuit. E is a string describing the

edges between vertices in V . G is a string describing the gate-types of vertices in V . Every vertex

is of the form (d, (i, j), ℓ) with d the recursive level in the definition of X−1 in (9), (i, j) means

that the node is in the (i, j)’s part of the definition ofX−1, and ℓ is the running index of nodes in
the same level d and same part (i, j), where ℓ = 0 iff the node is an output node of that level d (it is
not necessarily the output node of the whole circuit). Assume that F (I) is some algebraic function

with m0 integer inputs I and m1 integer outputs O. Then, we supply writeF (n, d, ℓ, I, O) with
the node indices (as encoded in V ) to be used as input nodes and output nodes for the (sub-)circuit

computing F . Here is an example of the input and output nodes of F1.

Example: Consider the multi-output circuit F1 := X−1
1 (In−1 + δ(X)−1vt1v2X

−1
1 ) from (9). We

want to construct the circuit F1 inV
0. Note that F1 is a recursive function in the sense that it uses

as inputs the outputsX−1
1 which are computed in the previous recursive level d− 1, together with

the “new” nodes in row d and column d inX . Therefore, the inputs of F1 are the following nodes:

(d− 1)2 input nodes forX−1
1 , 2(d − 1) input nodes for vt1 and v2, and finally one input node xdd

(needed for computing δ(X)−1), which sums up to d2 input nodes in total. The number of output

nodes forF1 is (d−1)2, as it defines a (d−1)× (d−1)minor ofX−1. Therefore, in our encoding

scheme, the input nodes for F1 (viewed as a d× dmatrix) are:




(d− 1, (1, 1), 0) . . . (d− 1, (1, d− 1), 0) (0, (1, d), 0)
...

. . .
...

...

(d− 1, (d− 1, 1), 0) . . . (d− 1, (d− 1, d− 1), 0) (0, (d− 1, d), 0)
(0, (d, 1), 0) . . . (0, (d, d− 1), 0) (0, (d, d), 0)




and the output nodes (viewed as a (d− 1)× (d− 1)matrix) are:




(d, (1, 1), 0) . . . (d, (1, d− 1), 0)
...

. . .
...

(d, (d− 1, 1), 0) . . . (d, (d− 1, d− 1), 0)


 .

Let F2, F3, F4 be the other three functions used in the definition of X−1 (9) (for the other

simpler three minors). We shall define similarly writeFi
functions for these Fi’s.

To show that writeX−1 is aΣB
0 -definable function inV

0 we need to demonstrate how to bit-

define this function using a ΣB
0 -formula (see Definition A.4 in Section A for bit-definability). In

our case we need to show how to bit-define writev·u using a ΣB
0 -formula, given two n-element

vectors of integers v, u representing nodes in the circuit. This is quite easy to do: simply output

a binary tree with the appropriate plus and products nodes, and plug the input nodes v, u to the

leaves accordingly. We provide a proof of this in the Appendix A.3. Herewe denote the nodes in the

circuit computing the inner-product v · u in level d using the running index: every node excluding
the output nodes of this leveld (which are unique for every fixedd and (i, j)) has a different running
index ℓ > 0, namely has the tuple (d, (i, j), ℓ) associated with level d and the (i, j) entry in the

matrix computed at level d.
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Similarly, we have Σ
B
0 -formulas for constructing other formulas like writevA and writeAvt ,

given the input nodes for an n×nmatrixA, and the input nodes for an n-elements vector v. Also,
given a node z it is immediate to output a circuit computing z−1 or −z, and given two matrices

A,B (i.e., 2n2 nodes) it is easy to give aΣB
0 bit-definition of writeA+B inV0.

Now that we set up the notation and the functions for constructing sub-circuits, we can bit-

define with aΣB
0 -formula writeX−1 inV0 as follows. First, for i = 1, . . . , 4, define InpFi

(d) and
OutFi

(d) to be the string functions that output the sequence of input and output nodes of the dth
recursive level ofX−1 for each of theFi’s, respectively, as shown forF1 in the example above. They

are allΣB
0 -definable string-functions inV

0. The bit-definition of writeX−1 is

writeX−1(n)(i) ≡

∃2 ≤ d ≤ n
(
∃1 ≤ j ≤ 4,writelevel(X−1)

(
n, d, 1, InpFj

(d),OutFj
(d)
)
(i)
)

∨ writex−1
11

(n, 1, 0, ((0, (1, 1), 0)), ((1, (1, 1), 0))) (i)
)
,

where writelevel(X−1)(n, d, ℓ, I, O) outputs (E, V,G) encoding a (sub-)circuit that is the dth induc-
tive level of X−1, and writex−1

11

(
n, 1, 0, ((0, (1, 1), 0)), ((1, (1, 1), 0))

)
is the string function that

outputs the encoding of the circuit “x−1
11 ”.

In the sequel we will be less formal about encoding inV0 circuits in the P−1
c (Z)-proofs in the

theory.

5.2 Encoding andWitnessing PI-proofs

Recall that P−1
c is a PI-proof system with division gates and with the division axiom D added

(Section 3.6). Also, recall from Step 5 (Section 4) that we are not going to express in the theory

the full correctness of P−1
c (Z)-proofs in the sense that the theory will express only the syntactic-

correctness of a P−1
c (Z)-proof (see definition in Section 3.6).

P−1
c (Z)- andPc(Z)-proofs are encoded as a two dimensional arrayS (that is, a string encoding

an array of strings), in which the ith string S[i], also called the ith row of S, is the ith equation in the
proof, written as a pair of circuits with division (and where circuits encoding is done as described

in Section 5.1.3).

Furthermore, the encoding of PI-proofswill always consist of additionalwitnesses for syntactic

correctness, as follows:

1. Each row S[i] specifies whether it is an axiom, and if not specifying the proof-lines from

which it was derived as well as the rule by which it was derived.

2. For the four rules R1-R4, we have the following convention to witness the correctness of ap-

plying the rule: the encoding of the circuitsF,G,H andF1, F2, G1, G2 in the antecedent and

consequence of the rules are identical, that is, with the same node numbers in their respec-

tive sets of nodes V . In other words, the respective strings encodingF,G,H, F1, F2, G1, G2

in the antecedent and consequence are identical.

3. For the axioms A1-A9, and the axiom D in P−1
c , the circuits F,G,H in both sides of the

equations are encoded identically, as in part 2 above.
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4. The scalar axioms A10 is encoded as a circuit with scalar inputs as usual. Only that we will

not verify their correctness, as this will not be needed.

5. The axioms C1, C2 needs a special treatment. Consider F1 ⊕ F2 = F1 + F2, and let V be

the set of node (numbers) belonging toF1⊕F2. Every node u ∈ V , excluding the plus at the

root, occurs as two different nodes u1, u2 in F1 + F2. To witness this rule we add a string

that stores (as an array of number pairs) the mapping from the nodes of F1 in F1 +F2 to the

nodes of F1 in F1 ⊕ F2, and similarly for F2. Given such a witness it is immediate to verify

(with aΣB
0 -formula) that the C1 axiom is applied correctly3. C2 is treated similarly.

When we talk about a PI-proof in the theory, unless otherwise stated, we assume that the proof

encoding includes its witness for syntactic correctness as above. When we talk about P−1
c (Z)-

proofs specifically, we shall say that “the theory proves the existence of a syntactic correctness

P−1
c (Z)-proof” to mean that the proof is encoded with the witness as above, only that we empha-

size that the proof and witness only ensure syntactic correctness (since division by zero may occur

in such proofs).

5.2.1 Existence of Proofs with Division for the Determinant Identities

Here we complete Step 1 of the argument (Section 4), by demonstrating that there is aΣB
0 -formula

with n as a number parameter that defines the P−1
c (Z)-proof of the two determinant identities (5),

(6).

Proposition 5.1 (in V
0). Given a positive natural number n there exists a syntactic correct P−1

c (Z)-
proof of the determinant identities (5) and (6) for n × n matrices, where the determinant in (5) and (6)

is written as the division free circuit Detcirc−1(A), for A, the n × n symbolic matrix X or Y , or their
productXY , or a symbolic triangular matrix Z .

Proof. It is enough to show that there exists a ΣB
0 -formula denoted write

P
−1
c (Z)⊢(5),(6)(n,W ), that

holds iffW is the syntactically correctP−1
c (Z)-proof of the identities (5) and (6) for n×nmatrices.

We construct thisΣB
0 -formula defining the polynomial-sizeP−1

c (Z)-proof demonstrated in [HT15,

Section 7.1] for the identities (5), (6).

Given a pair of n × n matrices X, Y , the expressions XY = A in the context of P−1
c is an

abbreviation of a sequence of n2 equalities between the appropriate entries. Note however that

whereas before we treated X−1 as a single multi-output circuit, here X−1 is a set of n2 separate

circuits for each of the entries inX−1 (this is achieved simply by taking the same singlemulti-output

circuit forX−1 as before, and duplicating each of the output gates together with its sub-circuit).

We exemplify ourV0-constructionwith the proof ofX ·X−1 = In below. This can potentially
be constructed by induction on n. However, similar to the construction of Detcirc−1 in the theory

(Section 5.1.3), we cannot use (number) induction onΣB
1 -formulas inVNC

2, and thus we need to

work out an encoding of the proof that can be constructed using aΣB
0 -formula.

If n = 1, we have x11 ·x
−1
11 = x−1

11 ·x11 = 1which is a P−1
c axiom. Otherwise, let n > 1 andX

be as in (7). We want to construct a polynomial-size proof ofX ·X−1 = In from the assumption

X1 ·X
−1
1 = In−1.

3One can also use an NL algorithm, formalizable in VNC
2 (since NL ⊆ NC

2), to verify that both sides of the

axiomC1 are different representation of the same circuit. However, it will not be easy to prove for ourP−1

c
(Z)-proofs

that they are correct with such a predicate of correctness.
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Denote a := δ(X), and A := In−1 + a−1vt1v2X
−1
1 − a−1vt1v2X

−1
1 , and B := v2X

−1
1 +

a−1(v2X
−1
1 vt1−xnn)v2X

−1
1 . Taken verbatim from [HT15, Proposition 7.2], using some rearrange-

ments, and the definition of a, we have:

X ·X−1 =

(
X1 vt1
v2 xnn

)
·

(
X−1

1 (In−1 + a−1vt1v2X
−1
1 ) − a−1X−1

1 vt1
−a−1v2X

−1
1 a−1

)

=

(
A −a−1vt1 + a−1vt1
B a−1(−v2X

−1
1 vt1 + xnn)

)

=

(
In−1 0
v2X

−1
1 − a−1av2X

−1
1 a−1a

)

=

(
In−1 0
0 1

)
.

To encode this we do the following: for every k = 1, . . . , n, we useΣB
0 -COMP to define the above

P−1
c (Z)-proof sequence, where k replaces n, namely, we construct the above P−1

c (Z)-sequence for
X ·X−1 of dimension k × k for each k = 1, . . . , n. Such a sequence can beΣB

0 -defined similar

to the encoding shown in Section 5.1.3: since we simply need to compose primitive constructions

of matrix multiplications (which are written as k2 separate equations for each entry), dot products,
plus and minus, construction of the identity matrix of dimension k, andX−1

1 (which we encoded

explicitly in Section 5.1.3). The proof sequence for k uses the proof ofX1 ·X
−1
1 = I , whereX1 has

dimension (k− 1)× (k− 1), and this is done by specifyingX1 ·X
−1
1 = I as a previous proof-line

from which we derive our new proof-line (in particular, no (string-)induction is needed for this).

Having P−1
c (Z)-proofs ofX ·X−1 = In andX

−1 ·X = In, we can now proceed to construct

the P−1
c (Z)-proofs of (5), (6) in the theory. This is done in exactly the samemanner, by formalizing

directly inV
0 the P−1

c (Z)-proof shown in [HT15, Section 7.1]. However, for constructing in the

theory the P−1
c (Z)-proof of (6) in [HT15, Section 7.1] we make sure that the diagonal elements of

the triangular matrixZ are in fact variables and not scalars. This is needed for us to be able to elimi-

nate division gates later: to eliminate division gateswe need every division gate to be provably good

under the identity matrix assignment (see Section 8), and specifically, these gates cannot compute

the zero polynomial. When the diagonal elements are not definable, namely contain division gates

that compute the zero polynomial, wewill not be able to establish that they are provably good.

6 From a Rational Function to the Determinant as a Polyno-

mial

Here we complete Step 2 (Section 4) in the construction of the proof in the theory: we construct a

P−1
c (Z)-proof of the determinant identities (5), (6), where the determinant is written as DetTaylor ,

which is a polynomial-size algebraic circuit without division gates for the determinant (of exponen-

tial syntactic-degree). We first need rst to provide the preliminaries for division elimination and

truncated Taylor expansions that we shall use in this and the next sections.

6.1 Preliminaries for Division Elimination

Let F be a division-free circuit and let F (0) be the syntactic homogeneous division free circuit that

computes the constant term ofF at the point 0; we show that such a syntactic homogeneous circuit

26



can be constructed inV0 in Section 9. We define the circuit Invk(F ) that will serve as an inverse
of F modulo high degree monomials, in the sense that

F · Invk(F ) = 1 + [monomials of degree greater than k] . (11)

Note that because we work overZ the only way for (11) to hold (for k > 1) is when F̂ (0) = 1, since
if the constant term inF is not 1, no product ofF can compute the constant term 1. In general, the

division elimination (as in Strassen [Str73]) needs to work over a field and have an inverse element

for F̂ (0). But in our application inside the theory we will always have F (0) as a circuit without

division, possibly with variables, that computes the polynomial 1, and hence we do not require an

inverse of F̂ (0).

Assume that F is good under the zero assignment, in symbols F̂ (0) = 1, and define the circuit
Invk(F ) as

Invk(F ) :=
(
1 + (1− F ) + (1− F )2 + · · ·+ (1− F )k

)
,

where powers like (1−F )k are abbreviation of (1−F ) · · · (1−F ), k times (written for instance

as a logarithmic in k depth circuit; since k will always be polynomial in our application this will be

enough for our purposes). The following lemma demonstrates that Invk(F ) can provably serve as
the inverse polynomial of F “up to the k-th degree”.

Lemma 6.1 (in V
0). Let F be a size s circuit without division, let η be a Pc(Z)-proof of F

(0) = 1,
and let k ≥ 1 be a natural number. Then there exists Pc(Z)-proofs of size s · poly(k) of the following
equations, in which every node in every circuit in the proofs appears with its syntactic-degree upper bound

(see Definition 9.1):

(F · Invk(F ))
(0) = 1 (12)

(F · InvkF )
(i) = 0, for 1 ≤ i ≤ k . (13)

Proof. Denote a = F (0). We construct the following simple Pc(Z)-proof sequences. We have

a(1− (1− F )) = aF , and by assumption that a = 1 has a Pc(Z)-proof η, we get a Pc(Z)-proof
of F = (1− (1− F )).

By definition Invk(F ) = (1 + (1 − F ) + (1 − F )2 + · · · + (1 − F )k). By elementary

rearrangement, we prove in Pc(Z):

F · Invk(F ) = (1− (1− F )) ·
(
1 + (1− F ) + (1− F )2 + · · ·+ (1− F )k

)

= 1 + (1− F ) + · · ·+ (1− F )k

− (1− F ) ·
(
1 + (1− F ) + (1− F )2 + · · ·+ (1− F )k

)

= 1 + (1− F ) + · · ·+ (1− F )k

− (1− F )− (1− F )2 − · · · − (1− F )k+1

= 1− (1− F )k+1 . (14)

From (14) and Theorem 9.2 in Section 9, we construct the Pc(Z)-proof of

(F · Invk(F ))
(0) = 1− ((1− F )k+1)(0),

wherein every node in every circuit in the proof appears with its syntactic-degree upper bound.

Specifically, from Theorem 9.2 we have Pc(Z)-proofs of
(
(1− F )k+1

)(0)
=
(
(1− F )(0)

)k+1
=
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(1 − F (0))k+1, and using η we have that the rightmost term is (1 − 1)k+1 = 0, and we conclude
(12).

To conclude (13) we proceed as follows. From (14) andTheorem9.2we constructPc(Z)-proofs
(F · Invk(F ))

(i) = (1 − (1 − F )k+1)(i), for all 1 ≤ i ≤ k, with all nodes appear with their

syntactic-degree upper bounds. From Lemma 9.3 in Section 9, we prove (1 − (1 − F )k+1)(i) =

1(i) − ((1− F )k+1)
(i)

= 0− ((1− F )k+1)
(i)
.

To construct thePc(Z)-proof of ((1−F )
k+1)(i) = 0, for 1 ≤ i ≤ k, in the theory we use again

Lemma 9.3. We omit the details. (Note that sinceF (0) = 1 by assumption, we have (1−F )(0) = 0,
meaning that all monomials in (1 − F ) are of positive total degree. Therefore (1 − F )k+1 can

only have monomials of degree greater than k, and so ((1− F )k+1)
(i)

= 0 is a true identity for all
i ≤ k.)

6.1.1 Extracting the Numerators and Denominators of Circuits with Division

We also need to show how to extract the denominator and numerator of circuits with divisions.

For every node v in a circuit F with division we introduce two nodes Den(v) and Num(v) that
will compute as polynomials (that is, they will be circuits with no division) the numerator and de-

nominator of the rational function computed by v, respectively, as follows:

1. If v is an input node of F , let Num(v) := v and Den(v) := 1.

2. If v = u−1, let Num(v) := Den(u) and Den(v) := Num(u).

3. If v = u1 · u2, let Num(v) := Num(u1) ·Num(u2) and Den(v) := Den(u1) · Den(u2).

4. If v = u1 + u2, let Num(v) := Num(u1) · Den(u2) + Num(u2) · Den(u1) and Den(v) :=
Den(u1) · Den(u2).

Let Num(F ) and Den(F ) be the circuits with the output node Num(w) and Den(w), respec-
tively, where w is the output node of F . In Section 7 we show that given a circuit with division F ,
there is aΣB

0 -definable function inV
0 that constructs the circuit Num(F ) · (Den(F ))−1.

6.2 A PI-Proof Reducing theDeterminant fromRational Function to Poly-

nomial

Like [HT15], in order to write the determinant as a polynomial instead of a rational function, we

will write the determinant as the coefficient of zn in the Taylor expansion of a certain circuit with
division. The coefficients of a Taylor expansion are defined as follows:

Definition 6.2 (Taylor expansion). Let F = F (x, z) be a circuit with division. Define coeffzk(F )
as a circuit in the variables x, computing the coefficient of zk in F , when F is written as a Taylor power

series at z = 0, in the following way:

Case 1: Assume that no division gate in F contains the variable z. Then we define coeffzk(F ) by induc-
tion on the structure of F as follows:

1. coeffz(z) := 1 and coeffzk(z) := 0, if k > 1.

2. If F does not contain z, then coeffz0(F ) := F and coeffzk(F ) := 0, for k > 0.
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3. coeffzk(F +G) := coeffzk(F ) + coeffzk(G).

4. coeffzk(F ·G) :=
∑k

i=0 coeffzi(F ) · coeffzk−i(G).

Case 2: Assume that z occurs in the scope of some division gate in F . We let F0 be the denominator of the

rational function computed by F when z = 0:

F0 :=
(
Den(F )

)
(z/0).

Note that F0 is not necessarily a constant, as it may contain variables different from z. If F̂0 = 0 then

coeff is undefined. Assume that F̂0 6= 0 and denote byG the circuit (1− F−1
0 · Den(F )). We let

coeffzk(F ) := F−1
0 · coeffzk

(
Num(F ) ·

(
1 +G+G2 + · · ·+Gk

))
. (15)

Note that z does not occur in any division gate inside Num(F ) ·
(
1 +G+G2 + · · ·+Gk

)
,

and so coeffzk(F ) is well-defined. In our applications, when using coeffzk(F ) we will need to

make sure that F̂0 = 1, and that we can prove in P−1
c (Z) that F−1

0 = 1.

The following are the main properties of coeffzk that we can use already in V
0 (similar to

[HT15]).

Lemma 6.3 (inV0). 1. If F0, . . . , Fk are circuits with division not containing the variable z, then

coeffzj

(∑k

i=0 Fiz
i
)
= Fj has a syntactically correct P

−1
c (Z)-proof, for each j ≤ k.

2. Assume that F,G are circuitswith division such that F = G has a syntactically correct P−1
c (Z)-

proof π of size s. Then, coeffzk(F ) = coeffzk(G) has a syntactically correct P
−1
c (Z)-proof of

size s · poly(k), for every natural number k.

3. Let F be a circuit without division, together with a witness for the syntactic-degree of all nodes in

F , where d(F ) = d. Then F =
∑d

i=0 coeffzi(F ) · z
i has a Pc(Z)-proof.

4

In both parts 1, 2 above the inverse elements of an integer a is written as a−1 (i.e., with an explicit

division gate. This will not be a problem for us since in our caseV0 can prove that a = 1).

Proof. The proofs of parts 1, 2 are almost identical to the proof of Theorem 9.2 in Section 9 for

eliminating high syntactic-degrees (namely, homogenizing Pc(Z)-proofs), and we omit the details.

The proof of part 3 is given in the appendix (Lemma C.2).

The determinant as a polynomial. We are now ready to define the circuit computing the de-

terminant as a polynomial. Let

DetTaylor(X) := coeffzn(Detcirc−1(In + zX)).

As explained in Section 4, DetTaylor(X) is a circuit of polynomial-size in n that computes the de-

terminant polynomial. This is because every variable from X in the circuit Detcirc−1(In + zX)
occurs in a product with z, and thus coeffzn(Detcirc−1(In+ zX)) computes the nth homogeneous

part of the determinant of In + X , which is simply the determinant of X . By the definition of

coeffzn , the circuit coeffzn(Detcirc−1(I + zX)) contains exactly one inverse gate, namely the inverse

of Den(Detcirc−1(In+zX)) at the point z = 0. Den(Detcirc−1(In+zX))(z/0) has an exponential
syntactic-degree which will be dealt with below in Section 6.3.

We can now use Lemma 6.3 to construct the desired P−1
c (Z)-proof:

4The only place where we need this part is the proofs of the Cayley-Hamilton theorem in Section 12. For witnesses

for syntactic-degree see the appendix Section C.
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Lemma 6.4 (inV
0). Let A be an n × n symbolic matrix X of distinct variables or the product of two

symbolic matrices XY or a triangular n × n symbolic matrix Z . Then there exists a polynomial-size

P−1
c (Z)-proof of DetTaylor(A) = Detcirc−1(A).

Proof. Using Lemma 6.3 parts 1 and 2 we construct in V
0 the P−1

c (Z)-proof demonstrated in

[HT15, Proposition 7.9] (see also Lemma 8.6). (Since we do not use part 3 of Lemma 6.3 we do

not need to construct a witness for the syntactic-degrees of any circuit in this case.)

6.3 Reducing the Syntactic-Degree of the Determinant Polynomial

We need to reduce the syntactic-degree of DetTaylor(X) := coeffzn(Detcirc−1(In + zX)), which
is exponential as we now explain. Similar reasoning applies to DetTaylor(A), whereA is an n× n
symbolicmatrixX of distinct variables or the product of two symbolicmatricesXY or a triangular

n× n symbolic matrix Z .
LetF (X) = F (x1, , . . . , xn) be a circuitwith division in the displayed input variables. Assume

that every input variable is now multiplied by a new variable z, to get F (zx1, . . . , zxn), which we
denote by F ′. Consider coeffzk(F

′) := F ′−1
0 · coeffzk

(
Num(F ′) ·

(
1 +G+G2 + · · ·+Gk

))

for G := (1 − F ′−1
0 · Den(F ′)), and F ′

0 :=
(
Den(F ′)

)
(z/0). By induction on the size of F ′,

inspecting the construction of coeffzk(·), it is easy to show that every subcircuit in coeffzk(F
′) has

a syntactic-degree atmost k, excluding occurrences of the subcircuitF ′−1
0 that has syntactic-degree

d(Den(F ′)) that may be greater than k.
Accordingly, coeffzn(Detcirc−1(In + zX)) contains occurrences of

Den (Detcirc−1 (In + zX)) (z/0), that are of syntactic-degree greater than n. To rem-

edy this we define Det
#
Taylor(X) as the circuit DetTaylor(X) in which we replace

the subcircuit Den (Detcirc−1 (In + zX)) (z/0) by the constant 1 (note that indeed

Den (Detcirc−1 (In + zX)) (z/0) computes the polynomial 1):

Det
#
Taylor(X) := 1 · coeffzn

(
Num(Detcirc−1(In + zX))·

(
1 + (1− 1 · Den(Detcirc−1(In + zX))) + (1− 1 · Den(Detcirc−1(In + zX)))2+

· · ·+ (1− 1 · Den(Detcirc−1(In + zX)))n
))

(16)

Lemma 6.5 (inV0). Let n be a positive natural number andA be an n×n symbolic matrixX of distinct

variables, or the product of two symbolic matrices XY , or a triangular n × n symbolic matrix Z . Then,
there exists a syntactically correct P−1

c (Z)-proof of Det#Taylor(A) = DetTaylor(A).

Proof. We assume thatA = X . The other cases are similar.

By previous constructions we can construct the circuitsDet
#
Taylor(X) andDetTaylor(X) inV0.

We first construct a P−1
c (Z)-proof of Den (Detcirc−1 (In + zX)) (z/0) = 1. We use Theorem

7.1 in Section 7 that will be proved in the sequel. Initially, construct directly a P−1
c (Z)-proof of

(Detcirc−1 (In + zX))(z/0) = Detcirc−1 (In), by substituting z by 0 and gradually replacing in the
proof 0·u to 0 and 0+u tou, foru any subcircuit. This is done usingΣB

0 -COMP and our encoding

scheme in Section 5.2.5

5Note that this is not done for an arbitrary circuit, namely, we do not know of anNC
2 algorithm that receives a

circuit C , such that Ĉ 6= 0, and discards in such a way every 0 constant in the circuit. We only build a P−1

c
(Z)-proof

that witnesses such a gradual procedure for discarding 0’s from the specific circuit (Detcirc−1 (In + zX))(z/0).
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Now, construct a P−1
c (Z)-proof of Detcirc−1 (In) = 1. This follows from the proof of Lemma

8.3. Another way to construct this P−1
c (Z)-proof is as follows: using Proposition 5.1 for construct-

ing the proof of Detcirc−1(Z) = z11 · · · znn, when Z is a symbolic triangular matrix: we can con-

struct a syntactically-correct P−1
c (Z)-proof of Detcirc−1 (In) = 1. Now using Theorem 7.1 part

(ii), we construct the proof of Den (Detcirc−1 (In + zX)) (z/0) = 1.
Using the P−1

c (Z)-proof of Den (Detcirc−1 (In + zX)) (z/0) = 1 and the Σ
B
0 -COMP ax-

iom we can show the existence of a P−1
c (Z)-proof of Det#Taylor(X) = DetTaylor(X). This is

done by constructing a P−1
c (Z)-proof that gradually substitutes each occurrence of the subcircuit

Den (Detcirc−1 (In + zX)) (z/0) in DetTaylor(X) by the constant 1.

From Proposition 5.1 and Lemma 6.5 we get:

Corollary 6.6 (inV
0). Given a positive natural number n there exists a syntactically correct P−1

c (Z)-
proof of the determinant identities (5) and (6) for n × n matrices, where the determinant in (5) and (6)

is written as the division free circuit Det#Taylor(A), for A, the n × n symbolic matrix X or Y , or their
productXY , or a symbolic triangular matrix Z .

7 Bringing Division Gates to the Top

Here we show a ΣB
0 -definable function in V

0 that receives an algebraic circuit F with division

gates and normalizes it as shown in Section 6.1.1, that is, converts it into a circuit with a single

division gate “at the top”, of the form Num(F ) · Den(F )−1 (formally, the output gate is a product

gate with one of its child being a division gate). We need to normalize circuits in such a way in

order to be able to eliminate division gates: as seen in the next section, we replace the gate G−1

with Invk(G); but for Invk(G) to be defined we need G to be a division free circuit (and can be

guaranteed only if there is only one division gate at the top).

We wish to show the following:

Theorem 7.1 (inV0). (i) If F is a circuit with division, then F = Num(F ) ·Den(F )−1 has a P−1
c (F)-

proof. (ii) Let F,G be circuits with division. Assume that F = G has a P−1
c (F)-proof. Then Num(F ) ·

Den(F )−1 = Num(G) · Den(G)−1 has a syntactically correct P−1
c (F)-proof such that every division

gate in every circuit in the proof occurs only at the top.

To prove this we first argue that division normalization is doable in AC
0. This follows the

similar reasoning as shown in Section 5.1.3: although the division normalization procedure as de-

scribed in Section 6.1.1 is defined by induction on the size of the circuit (and thus implicitly needs

Σ
B
1 -induction) it is uniform enough to be defined Σ

B
0 -formula (using ΣB

0 -COMP axiom) as fol-

lows.

Every internal node u in the input circuitF is duplicated into two copies denotedNum(u) and
Den(u). We then construct (in parallel) the divisionnormalized circuit bywiring the nodesNum(u)
andDen(u) for eachu inF as in the original definition: (i) If v is an input node ofF , letNum(v) :=
v andDen(v) := 1; (ii) ifu = v+wweconstructNum(u) := Num(v)·Den(w)+Num(w)·Den(v)
andDen(u) := Den(v)·Den(w); (iii) if v = u−1, let Num(v) := Den(u) andDen(v) := Num(u);
and finally (iv) if v = u1 ·u2, letNum(v) := Num(v1)·Num(v2) andDen(v) := Den(v1)·Den(v2).

Since the nodes Num(u) and Den(u) are known in advance for every node u, this construction
is doable in parallel, and specifically inFAC

0.

31



The proof of Theorem 7.1 is similar to the proof of Theorem 9.2 that is presented in details in

Section 9. We thus omit the details.

From Corollary 6.6 and Theorem 7.1 we get:

Corollary 7.2 (inV
0). Given a positive natural number n there exists a syntactically correct P−1

c (Z)-
proof of the determinant identities (5) and (6) for n × n matrices, where the determinant in (5) and (6)

is written as the division free circuit Det#Taylor(A), for A, the n × n symbolic matrix X or Y , or their
product XY , or a symbolic triangular matrix Z in which every circuit with division has only a single

division gate at the top.

8 Eliminating Division Gates

In this section we show in detail step 5 (in Section 4) which eliminates in the theory division gates

from the P−1
c (Z)-proof we obtained in Corollary 7.2.

A P−1
c (Z)-proof is said to be division axiom free if it does not use the axiom D of division: F ·

F−1 = 1. The identity matrices assignment ρ is defined to be the assignment of 0 and 1 elements to

the variables in (5), (6) such thatX = Y = Z = In. We say that a division gate u is provably good
under an assignment ρ to its variables wheneveru ↾ ρ = 1 has a division axiom freeP−1

c (Z)-proof.
In this case we also say that ρ is provably good for u. Accordingly, if ρ is provably good for all the

division gates in a circuitC we say that ρ is provably good for C .
To eliminate division gates we first make sure that every division gate u−1 that appears in the

P−1
c (Z)-proof is provably good under ρ. This will allow us to carry out the proof in the theory

as follows: by induction on circuit size it is easy to see that if every division gate in a circuit F is

good under ρ then Den(F ) (Section 6.1.1) is good under ρ as well (however, we cannot use such
Σ

B
1 -induction in the theory to conclude this fact; see below). We then proceed as follows. After

normalizing division gates (Section 7) in the P−1
c (Z)-proof obtained in Corollary 7.2, every circuit

with division in theP−1
c (Z)-proof has a single division gate and is of the formNum(F )·Den(F )−1.

We first linearly shift the variables by ρ, that is, replace every variable ri in the proof by ρ(ri)−wi

(the P−1
c (Z)-proof is still correct under this shift). Denote the shift ri 7→ ρ(ri)−wi by σ. Then we

replace every subcircuit Den(F ↾ σ)−1 in the shifted proof with Invk(Den(F ↾ σ)), for a suitable
k. We now need to simulate the axiom F ·F−1 = 1 that was replaced by F ↾ σ · Invk(F ↾ σ) = 1
in order to obtain a correct Pc(Z)-proof. This is done by using in Section 9 Lemma 6.1; for this

lemma we need to show that (Den(F ↾ σ))(0) = 1 is Pc(Z)-provable (note that (Den(F ↾ σ))(0)

computes precisely the value of Den(F ) under the identity matrices assignment, and that since

Den(F ) is good under ρ, as we mentioned above, (Den(F ↾ σ))(0) computes the polynomial 1).

The construction inV0 of the Pc(Z)-proofs of (Den(F ↾ σ))(0) = 1, for every F as above, is

done as follows. As a first attempt, observe that we can construct this Pc(Z)-proof by induction

on the size of F ↾ σ: for every gate u in F ↾ σ we construct the proof of Den(u)(0) = 1, using
the fact that every division gate in F ↾ σ evaluates to 1 under the zero assignment (this is because

σ shifts the variables to ρ, and the fact that every division gate is good under ρ). However, since
we do not have theΣB

1 -induction axiom inV
0, in Lemma 8.1 we will use a parallel construction

of the Pc(Z)-proof, as follows: using theΣ
B
0 -COMP axiom, for every gate u in F ↾ σ, construct

a Pc(Z)-proof of Den(u)
(0) = 1. This is done simultaneously for all gates u, using pointers to

“previous” proof-lines and direct constructions of P−1
c (Z)-proofs of u(0) = 1 that do not use the

division axiom D, for every gate u in F ↾ σ.

32



8.1 Identity Matrices are Provably Good Assignments

Here we explicitly inspect all the division gates in our P−1
c (Z)-proofs, making sure that they are

all provably good under ρ. We first make sure that this is sufficient for our purpose of eliminating

division (that is, applying Lemma 6.1).

Lemma 8.1 (in V
0). Let F be a circuit with division and assume that for every division gate u−1 in

F there exists a division axiom free P−1
c (Z)-proof of u ↾ ρ = 1. Then, there exists a Pc(Z)-proof of

Den(F ↾ σ)(0) = 1.

Proof. Simultaneously, for every node v in F we construct a Pc(Z)-proof of Den(v ↾ ρ) = 1, by
which we conclude that Den(F ↾ ρ) = 1 is provable in Pc(Z). Before showing this construction
we show how to get a Pc(Z)-proof of Den(F ↾ σ)(0) = 1 from a Pc(Z)-proof of Den(F ↾ ρ) = 1.

By the definition ofσ and by basic rearrangements inPc(Z)we have aPc(Z)-proof of Den(F ↾

ρ) = (Den(F ↾ σ)) ↾ 0 (where C ↾ 0 means substituting 0 for each variable in C). By the

construction of syntactic-homogeneous circuits (Section 9) the underlying graph of a (division free)

circuit C ↾ 0 and the structure of C(0) are identical: constant gates stays the same; variables xi
turns into 0 nodes; plus gatesw = v1+v2 add the zero copies, [v1, 0], [v2, 0] of v1, v2, respectively;
and product gates w = v1 · v2 multiply the zero-copies [v1, 0], [v2, 0] of v1, v2, respectively (in
particular, no plus gates are added to the circuit). Hence, (Den(F ↾ σ)) ↾ 0 = (Den(F ↾ σ))(0) is
Pc(Z)-provable.

We now come back to the construction of a Pc(Z)-proof of Den(v ↾ ρ) = 1, for every node v
in F . This is done by cases as follows.
Case 1: v is an input node. Hence Den(v) = 1 by definition of Den.
Case 2: v = w1 ◦ w2, for ◦ ∈ {+, ·}, then Den(v ↾ ρ) := Den(w1 ↾ ρ) · Den(w2 ↾ ρ). Thus we
construct the proof ofDen(w1 ↾ ρ)·Den(w2 ↾ ρ) = 1bypointing to the proofs ofDen(w1 ↾ ρ) = 1
and Den(w2 ↾ ρ) and using basic rules of Pc(Z) such as 1 · 1 = 1.
Case 3: v = u−1. This is the relatively more difficult case. We need to use the following claim:

Claim 8.2 (inV
0). If there exists a P−1

c (Z)-proof of u ↾ ρ = 1 in which we do not use the axiom D,

then there exists a Pc(Z)-proof of Num(u ↾ ρ) = Den(u ↾ ρ).

Proof of claim: This is proved in a similar way to the division gates normalization Theorem 7.1. We

omit the details. Claim

By definition Den(v) = Num(u). Since we have by assumption a P−1
c (Z)-proof of u ↾ ρ = 1,

by the claim we have a Pc(Z)-proof of Num(u ↾ ρ) = Den(u ↾ ρ), and from that, using pointers

to the Pc(Z)-proof of Den(u ↾ ρ) = 1, we get a Pc(Z)-proof of Den(v ↾ ρ) = 1.

We now need to inspect and provide appropriate division axiom free P−1
c (Z)-proofs for all

division gates in the P−1
c (Z)-proof of the determinant identities, denoted π3 (according to the no-

tation in Section 4). The proof π3 consists of: (i) the proof obtained from Proposition 5.1—we

deal with this part of the proof in Lemma 8.3; (ii) the proof obtained from Theorem 6.4, using the

transformation from Lemma 6.3—we deal with this in Lemma 8.6; (iii) the proof obtained from

Proposition 6.5 in Section 6.3—which is dealt with in Lemma 8.7.

Lemma 8.3 (inV0). All division gates F−1 in the proof obtained from Proposition 5.1 are provably good

under the identity matrices assignment.
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Proof. This is proved by direct construction of the P−1
c (Z)-proofs.

We need to show that every division gate F−1 in this proof is provably good under ρ. Let U be

the set of all the subcircuits u such that u−1 occurs in some circuit in π. We show that:

> An assignment is provably good forU iff the assignment is provably good for the equations

(5), (6).

By Claim 8.5 ρ is provably good for equations (5) and (6) which concludes the proof.

We only check> for the part of the proof π that proves equation (6), where C is a triangular

matrix (see [HT15, Proposition 7.6 (i)]). The inspection of the other parts is similar.

Assume thatU is an (upper or lower) triangularn×nmatrix. We show that in theP−1
c (Z)-proof

π of

Detcirc−1(U) = u11 · · · unn , (17)

all division gatesw−1 are provably good under the identity matrices assignment iff u−1
ii in (17) are

provably good under this assignment, for all i ∈ [n].
For a matrix A with entries aij we let A[k] := {aij}i,j∈[k]. Assume that U is a lower triangu-

lar matrix (the case for an upper triangular matrix is similar). Denote by 0 the zero vector of the

appropriate dimension (depending on the context). We write U as

U :=

(
U [n− 1] 0

t

v unn

)
.

The P−1
c (Z)-proof of (17) (in [HT15, Proposition 7.6.(i)]) proceeds, using the construction of

Detcirc−1(U) as follows (the explicit proof is omitted in [HT15]):

Detcirc−1(U) = Detcirc−1(U [n− 1]) · (unn − v(U [n− 1])−10
t
)

= Detcirc−1(U [n− 1]) · unn

= Detcirc−1(U [n− 2]) · (un−1,n−1 − v′(U [n− 2])−1 0
t
) · unn

= Detcirc−1(U [n− 2]) · un−1,n−1 · unn

= · · · =
n∏

i=1

uii

where v′ is v excluding the (n− 1)th coordinate.
Inspecting the proof sequence above we see that all the division gates in the proof appear in

the circuits computing the matrices (U [n − 1])−1, . . . , (U [1])−1. It thus suffices to show that all

division gates appearing in the circuits (U [n− 1])−1, . . . , (U [1])−1 are provably good under ρ iff
all u−1

ii , for i ∈ [n], are. Specifically, we show the following claim, from which it is immediate to

conclude that all these division gates u have division axiom freeP−1
c (Z)-proofs of u ↾ ρ = 1 (using

the Pc(Z)-axiom 0 · F = 0):

Claim 8.4. Every division gate in the circuits (U [n− 1])−1, . . . , (U [1])−1 is of the form

(uii − 0 · h)−1,

for some (possibly empty) vector of circuits with division h and some i ∈ [n].
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Proof of claim: For brevity, let Ui := U [i], for i = 1, . . . , n − 1, and let v(i) := (v1, . . . , vi), and
denote by In the identity matrix of dimension n. Denote

A = U−1
i−1

(
Ii−1 + δ(Ui)

−1vt(i−1)0U
−1
i−1

)
.

Then, by construction

U−1
i =

(
A −δ(Ui)

−1U−1
i−1v

t
i−1

−δ(Ui)
−10U−1

i−1 δ(Ui)
−1

)
(18)

and

δ(Ui) = uii − 0U−1
i−1v

t
(i−1) . (19)

We proceed by induction on i to show that all division gates in (Un−1)
−1, . . . , (U1)

−1 are of

the required form. The base case i = 1 holds by definition, since (U1)
−1 = u−1

11 .

The induction step (Ui)
−1 is proved as follows. By (18) all the division gates inUi appear either

in (Ui−1)
−1 or in δ(Ui)

−1. By induction hypothesis the division gates in (Ui−1)
−1 are all of the

form (ujj−0 ·h)−1, for some vector of circuits h and some j = 1, . . . , i−1. Moreover, the single-

output circuit δ(Ui)
−1 contributes the outermost division gate (uii − 0 · h)−1, to h = U−1

i−1v
t
(i−1) ,

which is of the correct form; as well as all the division gates in h itself. But all the division gates in
h appear in U−1

i−1, which by induction hypothesis all have the required form. Claim

It remains to show the following:

Claim 8.5 (inV0). All division gates in equations (5), (6) are provably good under ρ.

Proof of claim: For equation (6) above, this is immediate from the above, since every inverse gate that

appears in the proof (and equivalently in equation (17)) is one of (uii − 0 · h)−1, for some i ∈ [n],
which is provably good under the identity matrices assignment.

For equation (5), namely, Detcirc−1(X)Detcirc−1(Y ) = Detcirc−1(XY ), by definition and no-

tation in (7) we haveDetcirc−1(X) := Detcirc−1(X1) · δ(X) = Detcirc−1(X1) · (xnn − v2X
−1
1 vt1) ,

and (by induction on n the dimension ofX ), similarly to Claim 8.4 above, we can verify that every

division gate in Detcirc−1(X) is provably good under ρ. Similar reasoning applies to Detcirc−1(Y )
and Detcirc−1(XY ). We omit the details. Claim

This concludes the proof of Lemma 8.3.

Lemma 8.6. Every division gate F−1 that appears in the P−1
c (Z)-proof in Lemma 6.4 is provably good

under ρ.

Proof. We wish to show that every division gate F−1 that appears in the P−1
c (Z)-proof in Lemma

6.4 of

Detcirc−1(X) = DetTaylor(X), (20)

where DetTaylor(X) := coeffzn(Detcirc−1(I − zX)), is provably good under ρ. The cases where
A in Lemma 6.4 isXY or Z are similar.

We shall characterize all division gates in this proof. The goal of thisP−1
c (Z)-proof as shown in

[HT15, Proposition 7.9] is to show thatDetcirc−1(X) is equal to zn ·DetTaylor(X) +
∑

i<n z
i ·Qi
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and then apply Lemma 6.3 to extract the equality between the coefficients of zn. For this purpose,
the proof of (20) proceeds by first proving

Detcirc−1(zIn +X−1) = zn +
n−1∑

i=0

zi ·Qi (21)

where the Qi’s are circuits with division, and such that z does not occur in the Qi’s. We then use

theP−1
c (Z)-proof ofDetcirc−1(X)Detcirc−1(Y ) = Detcirc−1(XY ) proved in Section 5.2.1 to show

that Detcirc−1(zIn +X−1) · Detcirc−1(X) = Detcirc−1(zX + In). By this and (21), we get that

Detcirc−1(zX + In) = Detcirc−1(X) · (zn +
n−1∑

i=0

Qi). (22)

We use Lemma 6.3 to extract the coefficient of zn in (22) to get coeffzn(Detcirc−1(zX + In)) =
Detcirc−1(X), which is our desired identity.

We will first check that the division gates inDetcirc−1(zIn +X−1) are provably good under ρ.
The division gates inDetcirc−1(zIn+X

−1) include, among other gates, the gates in the circuitX−1.

But by the proof of Lemma 8.3 the division gates inX−1 are all provably good under ρ. The other
division gates inDetcirc−1(zIn +X−1) occur also inDetcirc−1(X). More precisely, let u−1 be a di-

vision gate inDetcirc−1(X); thenu−1 occurs also in the substitution instanceDetcirc−1(zIn+X
−1)

ofDetcirc−1(X). Such a division gate u−1 inDetcirc−1(zIn +X−1), by definition (10) ofDetcirc−1 ,

will occur in the following term Detcirc−1(zIn +X−1) = z · 1 + δ(X)−1 − (−δ(X)−1v2X
−1
1 ) ·

(X−1)−1
1 ·(−δ(X)−1X−1

1 vt1) (where (X
−1)−1

1 is (X−1)−1 without the rightmost column andwith-

out the lowest row). Note that in this termwe have only the division gate δ(X)−1 (terms like (X−1)−1
1

contain division gates, but they do not stand themselves as division gates, sinceX−1 is a notation

for a matrix, not a circuit whose root is a division gate).

We thus need to construct a free division axiomP−1
c (Z)-proof for the fact that the division gate

δ(X)−1 is 1, under ρ. But this already stems from the proof of Lemma 8.3 above.

Precisely the same reasoning shows that for every circuit F in the P−1
c -proofs of

Detcirc−1(X) = DetTaylor(X) in Lemma 6.4 we have: if z occurs in the scope of a division gate in
F then

(
Den(F )

)
(z/0) is provably good under ρ.

Lemma 8.7. Every division gate u−1 that appears in the P−1
c (Z)-proof in Lemma 6.5 is provably good

under ρ.

Proof. We consider the case whereA in Lemma 6.5 isX . The cases forXY,Z are similar.

By Section 6.3 every division gate in the P−1
c (Z)-proof of Lemma 6.5 is of the form

(Den (Detcirc−1 (In + zX)) (z/0))−1. Identical to the proof of Lemma 6.5, start by constructing

directly a P−1
c (Z)-proof of (Detcirc−1 (In + zX))(z/0) = Detcirc−1 (In), by substituting z by 0

and gradually replacing in the proof 0 · u to 0 and 0 + u to u, for u any subcircuit. Now, by the

proof of Lemma 8.3, all the division gates in Detcirc−1 (In) are provably good under ρ. By Lemma

8.1 we get that (Den (Detcirc−1 (In + zX)) (z/0)) = 1 has a division axiom free P−1
c (Z)-proof

(in fact, already a Pc(Z)-proof).

In order to be able to apply Lemma 6.1 in Section 9 we need to show how to construct in the

theory Pc(Z)-proofs of the fact that the division gates from Corollary 7.2, are equal 1.
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Corollary 8.8 (in V
0). Let π be the P−1

c (Z)-proof of (5) and (6) from Corollary 7.2, in which every

division gate in a circuit in π appears at the top as Den(F )−1, for some circuit F , and where the de-
terminant in (5) and (6) is written as Det#Taylor. For every such F in π there exists a Pc(Z)-proof of

(Den(F ↾ σ))(0) = 1 (where σ is the linear shift as defined above).

Proof. This follows from Lemma 8.1 and the fact that all division gates in π were shown to be

provably good under ρ in the lemmas that follow Lemma 8.1.

8.2 Eliminating Division

We are now ready to construct the division free PI-proof of the determinant identities (with some

restrictions). Note that we will need to use the fact that division gates are provably good in the next

section (Section 9).

We first define the following:

Definition 8.9 (Correct up to degreekPc(Z)-proof). Let k be a natural number. We say that aPc(Z)-
proof sequence π is correct up to degree k if (i) every proof-line in π is an equation between algebraic

circuits that was derived by one of the derivation rules of Pc(Z) from previous lines; or (ii) is a variant of

the division axiom D, where instead of F · F−1 = 1 we have the line F · Invk(F ) = 1; or (iii) is an
axiom of Pc(Z) different from D.

The witness for syntactic correctness of a correct up to degree k Pc(Z)-proof is similar to that

in Section 5.2. Note that we do not need to witness the syntactic-degree of nodes in circuits in a

correct up to degree k Pc(Z)-proof. In otherwords, there exists aΣ
B
0 -formulaψ(Z, k) that holds if

Z is a correct up to degree k Pc(Z)-proof (whereZ contains also the syntactic correctness witness

as in Section 5.2). The formulaΨ(Z, k) only needs to verify that in the division axiom D we have

F · Invk(F ) = 1, and checking whether a circuit is Invk(F ) is done without the need to witness
the syntactic-degree of F or Invk(F ).

Corollary 8.10 (in V
0). Given a positive natural number n, there exists a correct up to degree 2n

Pc(Z)-proof sequence of the determinant identities (5) and (6) for n× n matrices where the determinant

in (5) and (6) is written as the division free circuit Det#Taylor(A) of syntactic-degree n, for A, the n × n
symbolic matrixX or Y , or their productXY , or a symbolic triangular matrix Z .

Proof. By Corollary 7.2 there exists a syntactically correct P−1
c (Z)-proof π3 of the determinant

identities where the determinant in (5) and (6) is written as Det
#
Taylor , and in which each circuit

appearing in the proof has at most one division gate that appears as the root of the circuit.

The rest of the proof follows the sketch in Step 5 (Section 4). Assume that ri (for i ∈ J ) are all
the variables appearing in π3 and b is the assignment of identity matrices to the variables in π3 (that
is, the assignment of In to the (variables belonging to the) matricesX, Y, Z in π3).

Substitute in π3 the term (bi − wi) for each ri (for all i ∈ J ) denoting the obtained proof by

π′
3. The substitution is performed as follows: given π3 there is aΣ

B
0 -formulaΨ(π3, v) that is true

iff v is a node in a circuit in π3 that is labeled by a variable (more formally, v is a number in the

set of nodes V in a circuit in the proof and (v, t) ∈ G, where G is the string specifying the gates

of V , and t is a number that specifies one of the input variables; recall the encoding of circuits in

Section 5.1.1). Using Ψ(π3, v) we can define a ΣB
0 -formula Φ(π3, i) such that Φ(π3, i) is true iff

i ∈ π′
3, where π

′
3 is a string that encodes the desired substitution instance of π3. This is done using

a bounded number universal quantifier over nodes v in π3 and over all indices of circuits in π3, so
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that when Ψ(π3, v) holds, (v, t) ∈ G is replaced by “(bi − wi)” as follows: (v, t) is replaced by

(v, t′) where t′ specify a + gate; then we add four new nodes in V , new edges in E , new gates in

G, and new inputs to the input string I , encoding that the product gate v has two children: bi and
−1 · wi.

Accordingly, when we define the substitution instance above we also need to update the wit-

nesses for the proofs. The witnesses all stay the same except the witnesses for the P−1
c axioms C1

and C2, that is, F1 ⊕ F2 = F1 + F2 and F1 ⊗ F2 = F1 × F2, respectively. For these two axioms

we specify the new mappings of F1, F2 in the right hand side of the equation to the circuits in the

left hand side of the equation under the substitution. Since the substitution is defined by replacing

some leaves in Fi by some circuits then we only need to add new pairs to the original mapping to

update it appropriately.

By Lemma 8.8 the all zero assignment 0 to the wi variables in π
′
3 gives every division gate the

value 1.
For every circuit C with a top division gateH−1, let Inv2n(H) be the truncated power series

of H−1 over the zero assignment (we use 2n because this is the degree of the determinant iden-

tities). V0 proves there exists a corresponding division-free circuit C ′, obtained by replacing the

division gateH−1 inC by Inv2n(H). This is done like the substitution of variables describes above,
where now the nodes we define using aΣB

0 -formula Ψ(π3, v) are the inverse nodes u
−1, and the

substitution adds nodes and wirings while also using the subcircuit u itself (as needed to construct
Inv2n(u)).

Let π′′
3 be the corresponding division-free proof-sequence obtained from π′

3 by replacing every

circuit C with a division gate at the top byC ′ as above.

In π′′
3 every occurrence of the axiomD of divisionF ·F−1 = 1 is replaced byF ·Inv2n(F ) = 1.

Now substitute back the original variables X, Y, Z instead of the terms bi − wi . The resulting

sequence is a correct up to degree 2n Pc(Z) proof sequence of the desired determinant identities.

9 Eliminating High Degrees: Constructing PI-Proofs with

Polynomial Syntactic-Degrees

From now on all our algebraic circuits are division free. Let C be an algebraic circuit. Recall that d(C)
is the syntactic-degree ofC defined to be the maximal syntactic-degree of a node inC (Definition

3.6). Also, recall thatC(i) is a syntactic-homogeneous circuit computing the degree i homogeneous

part of Ĉ (see Section 3.4). For a node v in C , Cv denotes the circuit rooted at v.
We now show how to eliminate, within V

0, all nodes of syntactic degrees exceeding a given

number d, from circuits in a PI-proof of the equation F = G assuming the syntactic-degree of

F,G is at most d.
We first note that we do not know of anFAC

0 algorithm that computes the syntactic-degrees

of nodes in a given circuit (see also Section C). However, for our purposes it will be sufficient to

input an upper bound on the syntactic-degree of the circuit to be homogenized (except for the proof

of the Cayley-Hamilton theorem in Section 12 wherein we need to witness explicitly the syntactic-

degree of nodes in a proof in order to use Lemma 6.3 part (3); see Section C for the definition of

syntactic-degree witness).

Our algorithmswill receive a circuitC and a number d that will serve as an upper bound on the
syntactic-degree of the circuit (the theory does not need to verify the correctness of this syntactic-
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degree).

Homogenization Algorithm in UniformFAC
0

Input: an arithmetic circuitC of size s and a natural number d.

Optional input 1: A syntactic-degree witness for all the nodes in C (including the root that has

syntactic-degree d).

Optional input 2: A natural number i.

Output:

1. An arithmetic circuitC ′ of sizeO(d2 · s) computing the polynomial Ĉ such thatC ′ is a sum

of syntactic homogeneous circuits C ′ = C(0) + · · ·+ C(d) (C(i) = 0 for i > d(C)).

2. If optional input 1 was supplied, then for every gate v in C ′, the duplicate gate [v, j] for
j > d(v), is the circuit 0 (see below for the notation “[u, j]”).

3. If the input C is (declared to be)6 a (sum of) syntactic homogeneous circuits
∑

i∈I C
(i) for

I ⊆ {0, . . . , d} then output C , augmented with the nodes [u, j] = 0, for all nodes u ∈ C
and all j ∈ {0, . . . , d} \ I .

4. If optional input 2 was supplied, then C ′ = C(i), namely the ith homogeneous component.

If moreover the input circuit C is already a syntactic homogeneous circuits C(j) then the

output is the circuit 0 if j 6= i and is C(i) if j = i.

Algorithm:We follow the standard Strassen [Str73] algorithm, but instead of building the circuits

by induction from leaves to root we construct all nodes simultaneously as follows.

(1) Assumewedonot have thewitness for syntactic-degrees of all the nodes (namely, thewitness

was not supplied as an input). Every node v is duplicated d+1 times into the nodes [v, 0], . . . , [v, d].
For a node [v, i] we call i the syntactic-degree upper bound of [v, i], denoted as

dub([v, i]) := i.

The node [v, i] is (the root of) a syntactic-homogeneous circuit of syntactic-degree at most i

computing either 0or the degree ihomogeneous part of the polynomial Ĉv . The algorithm is doable

inFAC
0 because every new node [v, i] depends only on the copies of the two nodes u, w that goes

into v, and these nodes are already known from the input circuit, namely, they are [u, i], [w, i], for
i = 0, . . . , d+1, where v = u+w or v = u ·w inC . Hence, the wiring of the new circuit is done

in parallel for each of the new nodes as follows:

Case 0: v is a leaf inC . If v is a constantα, then define [v, 0] = α, and [v, i] = 0 for all i = 1, . . . , d.
Otherwise, v is a variable xj , and we define [v, 1] = xj , and [v, i] = 0 for all 1 6= i ∈ {0, . . . , d}.
Case 1: v = u+ w in C . Define [v, i] := [u, i] + [w, i] for every i = 0, . . . , d.
Case 2: v = u× w in C . Define [v, i] :=

∑
j+k=i

j,k=0,...,d
[u, j]× [w, k].

Finally, C(i) := r(i), for r the root of C , for all i = 0, . . . , d.

6The algorithm does not check for correctness ofC being a (sum of) syntactic homogeneous circuits.
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(2) Otherwise, assume that a witness for the syntactic-degree d(v) for every node v in C was

supplied as an input. In this case the algorithm is the same as above, except that the ith duplicate
[v, i] of a node v is defined to be the circuit 0 whenever i > d(v). More precisely:

Case 0: v is a leaf in C . If v is a constant α, then define [v, 0] = α. Otherwise, v is a variable xj ,
and we define [v, 1] = xj , and [v, j] = 0, for all 0 ≤ j ≤ d and j 6= 1.
Case 1: v = u + w in C . Define [v, i] := [u, i] + [w, i] for every i = 0, . . . , d(v), and [v, i] := 0
for i = d(v) + 1, . . . , d.
Case 2: v = u×w inC . Define [v, i] :=

∑
j+k=i

j,k=0,...,d
[u, j]× [w, k], for every i = 0, . . . , d(v), and

[v, i] := 0 for i = d(v) + 1, . . . , d.7

Finally, C(i) := r(i), for r the root of C , for all i = 0, . . . , d.

Note on syntactic-degree upper bounds. Notice that if we do not have a witness for syntactic-

degrees and assumingwe get as input a correct upper bound, that is, d ≥ d(C), the above algorithm
produces a syntactic homogeneous circuit in which each node [u, i] is of syntactic-degree i, except

that for [̂u, i] = 0, the syntactic degree of the circuit rooted at [u, i] can be smaller than i (but not
bigger). This means that the circuit contains in itself a witness for the upper bound of the syntactic-

degree of each node.

We will manage to work out our argument without the need to compute syntactic-degrees

except for the Cayley-Hamilton theorem shown in Section 12.

On the other hand, if we receive a syntactic-degree witness as an input then assuming [u, i] is
not the circuit 0, u has syntactic-degree at least i. Moreover, if the input to the algorithm is already

a sum of syntactic homogeneous circuits
∑k

i=0C
(i) then [u, i] = ∅ for i > k for every node u in

C .
We are going to construct Pc(Z)-proofs which witness the syntactic-degree of every node in:

Definition 9.1. Given aPc(Z)-proof π we say that every node in every circuit in the proof appears with
its syntactic-degree upper bound dub if every such node u is a pair of numbers [u, i] for dub(u) = i,
according to the construction in the homogenization algorithm above.

We have the following main theorem about homogenization of proofs:

Theorem 9.2 (in V
0). Let d be a natural number and assume that F = G has a correct up to degree

d Pc(Z)-proof. Then, for every k = 0, . . . , d, there exists a Pc(Z)-proof of F
(k) = G(k) of syntactic-

degree at most k, in which every circuit is a syntactic homogeneous circuit in which every node u appears
with its syntactic-degree upper bound, and dub(u) ≤ k.

We need the following lemmas before concluding this theorem.

Lemma 9.3 (in V
0). Let F1 ⊕ F2 and F1 ⊕ F2 be two circuits and let k be a natural number8. The

following have Pc(Z)-proofs, in which every circuit is a sum of syntactic homogeneous circuits in which

every node u appears with its syntactic-degree upper bound:

1. (F1⊕F2)
(k) = F

(k)
1 + F

(k)
2 ;

7Note that thismeans that provably inV0 there exists aPc(Z)-proof of [v, i] :=
∑

j+k=i

0≤j≤d(u),0≤k≤d(k)
[u, j]×[w, k],

for every i = 0, . . . , d, since [u, j] = 0 for j > d(u) and [w, k] = 0 for k > d(u).
8Recall that we mean here that we pick one such circuit out of all possible circuits of this form.
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2. (F1⊗F2)
(k) =

∑k

i=0 F
(i)
1 · F

(k−i)
2 .

Proof. Using the homogenizationFAC
0-algorithm abovewe construct (F1⊕F2)

(k). By definition,

(F1⊕F2)
(k) := F

(k)
1 ⊕F

(k)
2 , and by axiom C1, F

(k)
1 ⊕F

(k)
2 = F

(k)
1 + F

(k)
2 . We thus construct

this one-line proof, adding to the proof a witness for the application of axiom C1. Note that

given a circuit A ⊕ B we can construct inV
0 a witness for the correctness of applying C1 to get

A⊕B = A+B. The witness will say thatA inA⊕B is identical toA inA+B, by an explicit

mapping of nodes from the former to the latter copy; and similarly forB. Furthermore, note that

in this one-line Pc(Z)-proof every node u in every circuit appears with its syntactic-degree upper

bound: in (F1⊕F2)
(k) this is true by construction of (·)(k) and in F

(k)
1 + F

(k)
2 we simply specify

every node u in F
(k)
1 + F

(k)
2 to have the same syntactic-degree upper bound as its origin node in

(F1⊕F2)
(k) (note that this is indeed a true upper bound on the syntactic-degree of u).

This concludes 1. Part 2 is similar using the homogenization algorithm above.

We now conclude the proof of the theorem:

Proof of Theorem 9.2. For every k = 0, . . . , d, we devise a ΣB
0 -definable function inV

0 that pro-

duces aPc(Z)-proof ofF
(k) = G(k) with every node u in every circuit in the proof appears with its

syntactic-degree upper bound dub(u) (that is, it appears as [u, i] where i = dub(u)) and such that
dub(u) ≤ k. This is done in a manner resembling the algorithm above for homogenizing circuits.

Specifically, for every k = 0, . . . , d and every line S = T in π, we construct in parallel a part of

the proof of S(k) = T (k) (that taken collectively would amount to a proof of S(k) = T (k)).

Though some proof-lines S = T possess syntactic-degree witnesses while some are already

syntactic homogeneous, and some proof-lines do not fall into the two former categories, the proof

we show works for all these three cases; this stems from the way we defined the homogenization

algorithm: this algorithm constructs the nodes [u, i] for every original node u in its input and every
i = 0, . . . , d (even in the case where i exceeds the specified syntactic-degree of u in the syntactic-
degree witnesses input; and similar for the output of the homogenization algorithm part 3).

Case 1: S = T is an axiom of Pc(Z) of size s. We construct a Pc(Z)-proof of S
(k) = T (k) with

size s · poly(k) (and syntactic degree≤ k).
Lemma9.3 gives a proof (F1⊕F2)

(k) = (F1+F2)
(k) and (F1⊗F2)

(k) = (F1·F2)
(k), as required

for the axioms C1 and C2.

Axioms A1 and A10 are immediate. For the other axioms, consider for example the axiom

F1 · (F2 · F3) = (F1 · F2) · F3, where the circuits have size≤ s. We have to construct a proof of

(F1 · (F2 · F3))
(k) = ((F1 · F2) · F3)

(k) . (23)

By part (ii) of Lemma 9.3 the equations

(F1 · (F2 · F3))
(k) =

k∑

i=0

F
(i)
1

(
k−i∑

j=0

F
(j)
2 F

(k−i−j)
3

)
(24)

((F1 · F2) · F3)
(k) =

k∑

i=0

(
i∑

j=0

F
(j)
1 F

(i−j)
2

)
· F

(k−i)
3 , (25)

can be proved in Pc(Z). In Pc(Z), the right hand sides of both (24) and (25) can be written as∑
i+j+l=k F

(i)
1 F

(j)
2 F

(l)
3 by a proof of size roughly s(k + 1)4. (This gives the proof of (23) of size

s · poly(k).)
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Case 2: If the line S = T is S1 · S2 = T1 · T2, and it was derived using the rule R4 as follows:

S1 = T1 S2 = T2
S1 · S2 = T1 · T2

. (26)

From previous lines S1 = T1 and S2 = T2, we construct the derivation of S(k) = T (k) by using

the lines S1
(i) = T1

(i) and S2
(i) = T2

(i), for all i = 0, . . . , k, as follows: by Lemma 9.3, we can

construct the proofs of (S1 ·S2)
(k) =

∑
i=0,...,k S

(i)
1 ·S

(k−i)
2 and (T1 ·T2)

(k) =
∑

i=0,...,k T
(i)
1 ·T

(k−i)
2 .

Hence, (S1 ·S2)
(k) = (T1 ·T2)

(k) can be proved from the assumptionsS
(i)
1 = T

(i)
1 , S

(i)
2 = T

(i)
2 , i =

0, . . . k. (The proof has size roughly s · (k + 1)c(k + 1).)
Note that this is done independently and simultaneously for each proof-line (and specifically,

not by induction on proof-length). That is, given the rule application (26), we construct the (partial)

proof of (S1 · S2)
(k) = (T1 · T2)

(k)
using only the lines S1

(i) = T1
(i) and S2

(i) = T2
(i), for all

i = 0, . . . , k; and in addition, since we also want to record the information about which line was

derived from which previous lines we add pointers to previous lines. The latter can be defined via

a ΣB
0 -definable V

0 number function given as input the line-numbers of S1 = T1 and S2 = T2.
Hence the whole construction is inV0.

Case 3: S = T is the rule R1-R3. This is similar to the case for rule R4.

The fact that in the Pc(Z)-proof we constructed every node u in every circuit appears with its
syntactic-degree upper bound is clear from the construction, since we used the homogenization

algorithm to produce the syntactic homogeneous circuits and Lemma 9.3

We need the following claims:

Claim 9.4 (in V
0). Given a syntactic homogeneous circuit F (d) there exists a Pc(Z)-proof of

F (d) =
∑d

i=0

(
F (d)

)(i)
in which every node u in every circuit appears with its syntactic-degree upper

bound.

Proof of claim: This is by the definition of the homogenization algorithm: if the input to the algo-

rithm is the (already) syntactic homogeneous circuit F (d) then (F (d))
(i)

= ∅, for all i 6= d, and

(F (d))
(i)

= F (d), for i = d. Claim

Claim 9.5 (inV
0). Let F (x1, , . . . , xm) be a circuit without division, in the displayed input variables.

Assume that every input variable is now multiplied by a new variable z to get F (zx1, . . . , zxm), which
we denote by Fz . Then, there exists a Pc(Z)-proof of coeffzi(Fz) = F (i) in which every node u in every
circuit appears with its syntactic-degree upper bound.

Proof of claim: This is by construction of coeffzi(·) and (·)
(i)
. Consider the construction of coeffzi(·)

inV
0 as shown in the appendix Section B. Then, having each variable xj multiplied directly by z

in the circuit F ′ means that coeffzi(F
′) = F (i) are syntactically identical except for the bottom

level of the circuits, namely coeffz1(z · xj) = 1 · xj (ignoring zero terms, and applying basic

rearrangements), and coeffzr(z · xj) = 0 for all 1 6= r ≤ k and all j ∈ [n]. And accordingly,

xj
(1) = xj and xj

(r) = 0, for all 1 6= r ≤ k and all j ∈ [n]. Claim

Corollary 9.6 (in V
0). Given a positive natural number n there exists a Pc(Z)-proof of the determi-

nant identities (5) and (6), where the determinant in (5) and (6) is written as the division free circuit
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Det
#
Taylor(A), for A, the n × n symbolic matrix X or Y , or their product XY , or a symbolic trian-

gular matrix Z . Moreover, in this proof every circuit is a sum of syntactic homogeneous circuits in which

every node appears with its syntactic-degree upper bound dub.

Proof. By Corollary 8.10 there exists a correct up to degree 2n Pc(Z) proof-sequence π of the deter-

minant identities (5) and (6) where the determinant in (5) and (6) is written asDet
#
Taylor. By Lemma

6.1 and Corollary 8.8 we have a Pc(Z)-proof of (F · Inv2n(F ))
(i) = 0, for every 1 ≤ i ≤ 2n,

and a Pc(Z)-proof of (F · Inv2n(F ))
(0) = 1, for every proof-line F · Inv2n(F ) = 1 appearing in

π, and these proofs also contain the syntactic-degree upper bound for every node in every circuit.
Therefore, by Theorem 9.2 part (i) we have a Pc(Z)-proof of

(
Det

#
Taylor(X) · Det#Taylor(Y )

)(k)
= (Det#Taylor(XY ))(k), (27)

for every k = 0, . . . , 2n, and similarly for (6), wherein every node appearing in the proof has a

specified syntactic-degree upper bound.

Finally, we can conclude the corollary by reasoning as follows.

Recall the definition of Det
#
Taylor(X) from (16). Then Det

#
Taylor(X) is a division free circuit

such that everyX variable in it is a product of z. Thus, by Claim 9.5 (and its proof) we can assume

that Det
#
Taylor(X) is specified already as a syntactic homogeneous circuit when given as input to

the homogenization algorithm, meaning that the algorithm will output the same syntactic homo-

geneous circuit it got as an input (or a single homogeneous component as in part 3 of the output).

Thus, by Claim 9.4 there exist Pc(Z)-proofs of:

(Det#Taylor(X))(i) = 0, for all i < n, (28)

(Det#Taylor(X))(n) = Det
#
Taylor(X) . (29)

The same argument works for Det
#
Taylor(Y ). We proceed as follows.

By Lemma 9.3 we have a Pc(Z)-proof of

∑2n

i=0

(
Det

#
Taylor(X) · Det#Taylor(Y )

)(i)
=
∑2n

i=0

∑

l+j=i

0≤l≤2n,0≤j≤2n

Det
#
Taylor(X)(l)·Det#Taylor(Y )(j) .

(30)

This equals

∑2n

i=0

∑

l+j=i

0≤l≤n,0≤j≤n

Det
#
Taylor(X)(l) · Det#Taylor(Y )(j)+

∑2n

i=0

∑

l+j=i

n<l≤2n,n<j≤2n

Det
#
Taylor(X)(l) · Det#Taylor(Y )(j) , (31)

where the rightmost big term is a sum of only zeros, by construction of the homogeneous cir-

cuits (since Det
#
Taylor(X) and Det

#
Taylor(Y ) are specified as already syntactic homogeneous cir-

cuits when input to the homogenization algorithmDet
#
Taylor(X)(l) = Det

#
Taylor(Y )(l) = 0, for all
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l > n). We are thus left with the leftmost big sum in (31). We proceed with

∑2n

i=0

∑

l+j=i

0≤l≤n,0≤j≤n

Det
#
Taylor(X)(l) · Det#Taylor(Y )(j)

=
∑n

i=0
Det

#
Taylor(X)(i) ·

∑n

i=0
Det

#
Taylor(Y )

(i)

= Det
#
Taylor(X) · Det#Taylor(Y ),

where the first equation is by rearrangement and the second equation is by (28) and (29). By sum-

ming (27) for all i = 0, . . . , 2n and using similar reasoning for Det
#
Taylor(XY ), we conclude that

there exists a Pc(Z)-proof of

Det
#
Taylor(X) · Det#Taylor(Y ) = Det

#
Taylor(XY ).

The fact that in the above Pc(Z)-proof every proof-line is a sum of syntactic homogeneous

circuits in which every node appears with its syntactic-degree upper bound dub stems from the

construction.

10 Balancing Algebraic Circuits and Proofs in the Theory

We start by providing some background and overview of the NC
2-algorithm for constructing a

balanced circuit, given as an input an upper bound (in unary) on the syntactic-degree of the input

circuit.

The input to the algorithm isC, dwhereC is a syntactic-homogeneous circuit and d is an upper
bound on the syntactic-degree ofC in unary.

The output of the algorithm is a balanced circuit denoted [C] computing the polynomial Ĉ .
That is, if C has size s, then the depth of [C] is O(log s log d + log2 d) and the size of [C] is
poly(s, d).

The algorithm itself follows the general scheme of Valiant et al. [VSBR83] that proceeds by

induction on the logarithm of the degree of the polynomial computed by the circuit, however there

are differences that help us fit the algorithm inFNC
2 (for a very clear exposition of the [VSBR83]

algorithm we refer the reader to [RY08] (cf. [HT15]), though our treatment is self contained).

Specifically, we use a preprocessing step to record in advance for every pair of nodes w and

v if w is in the scope of the circuit rooted by v. Furthermore, in the first stage of the algorithm

(corresponding to the base case of the Valiant et al. algorithm) we need to compute the coefficients

of certain linear forms computed by possibly non-balanced circuits. We show that both the pre-

processing step and the first stage of the algorithm areAC
0-reducible to matrix powering; where

matrix powering is known to be computable inVNC
2 (cf. [CF12]). Another difference is thatwhile

Valiant et al. [VSBR83] use the notion of degree of a node, and Hrubeš and Tzameret [HT15] use

the syntactic-degree of a node, we are going to use the relaxed notion of syntactic-degree upper

bound dub(v) of a node v introduced in Section 9 and its variant d
+
ub(v) (defined below).

Notation: Recall that we now only work with division free circuits. We use the following notation

throughout this section: F,C are circuits and F̂ , Ĉ are the corresponding polynomials they com-

pute. For convenience we denote by f the polynomial F̂ . For a node v in F we write Fv to denote
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the subcircuit rooted at v and fv denotes the polynomial F̂v . We write u ∈ F to mean that u is a

node in the circuit F .

We will need to construct with an FNC
2 algorithm some linear polynomials computed by

Fv , whenever v ∈ F and dub(v) ≤ 1 as well as the linear polynomials ∂wfv whenever 0 ≤
dub(v) − dub(w) ≤ 1 (see below). However, we cannot directly compute the integer coefficients

in these linear polynomials because their (sub-)circuits are not balanced (and we apparently cannot

evaluate circuits of high-depth inVNC
2).

We show how to compute the linear polynomials we need in in Lemma 10.3 and Lemma 10.5.

To facilitate these lemmas we need to treat scalar nodes c ∈ Z occurring in the circuit as if they

are variables (and hence even circuits with only scalars get balanced throughout the balancing al-

gorithm). Formally, this means defining their syntactic-degree as 1 instead of 0, as follows (so that

both variables and scalars are now treated as syntactic-degree 1 circuits).

Denote by d+ub(·) the syntactic-degree upper bound defined similar to dub(·), except that scalar
nodes are associated with syntactic-degree upper bound 1 (instead of 0) in the algorithm for ho-

mogenizing circuits shown in Section 9. Note that any circuit Fv rooted by the node v such that

d+ub(v) ≤ 1 cannot contain product nodes (as this would make d+ub(v) > 1 by definition). In

Lemma 10.3 we show how to compute inFNC
2 a circuit with no product nodes.

Also note that it may happen that a node v in a circuit has polynomially bounded dub(u) but
exponential large d+ub(u), for example in case we have a linear chain of n products computing

(((2)2)2 . . .2) = 22
n

. We deal with this problem in Lemma 10.7.

Definition 10.1 (Partial derivative polynomial ∂wfv). Let w, v be two nodes in F . We define the

partial derivative of F with respect to w, denoted ∂wfv , as the following polynomial:

∂wfv :=





0, if w 6∈ Fv ,

1, if w = v, and otherwise:
∂wfv1 + ∂wfv2 , v = v1 + v2;
(∂wfv1) · fv2 , if either v = v1 · v2 and d

+
ub(v1) ≥ d+ub(v2)

or v = v2 · v1 and d
+
ub(v1) > d+ub(v2).

(32)

The idea behind this definition is the following: let w, v be two nodes in F and assume that

d+ub(w) >
d+ub(v)

2
(wewill use∂wfv only under this assumption). Then for any product nodev1·v2 ∈

Fv , w can be a node in at most one of Fv1 , Fv2 , namely the one with the higher syntactic-degree.

If we replace the node w in Fv by a new variable z that does not occur in F , then Fv computes a

polynomial g(z, x1, . . . , xn) which is linear in z, that is g(z, x1, . . . , xn) = h0 · z + h1 for some

polynomials h0, h1 in the x1, ..., xn variables, and ∂wfv = h0. Namely, ∂wfv is the standard

partial derivative ∂zg.

Proposition 10.2. Let w, v be two nodes in a syntactically homogeneous circuit F such that d+ub(w) >
d+ub(v)

2
. Then the polynomial ∂wfv has degree at most d

+
ub(v)− d+ub(w).

Proof. By induction on the size of Fv .

Base case: Fv is a single node. IfFv = w then ∂wfv = 1, and so d+ub(∂wfv) = 0 = d+ub(v)−d
+
ub(w)

and the claim holds. If Fv 6= w then ∂wfv = 0 and the claim holds similarly.

Induction step:

Case 1: v = v1 + v2. Then ∂wfv = ∂wfv1 + ∂wfv2 , and by induction hypothesis the degrees

of ∂wfv1 and ∂wfv2 are at most d+ub(v1) − d+ub(w) and d
+
ub(v2) − d+ub(w), respectively. Since F
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is syntactically homogeneous d+ub(v) = d+ub(v1) = d+ub(v2) and so the degree of ∂wfv is at most

d+ub(v)− d+ub(w).
Case 2: v = v1 ·v2. Assume that d+ub(v1) ≥ d+ub(v2). Then ∂wfv = (∂wfv1) ·fv2 and by induction
hypothesis the degree of ∂wfv1 is at most d+ub(v1) − d+ub(w). Thus, the degree of ∂wfv is at most

d+ub(v1)+d
+
ub(v2)−d

+
ub(w) = d+ub(v)−d

+
ub(w). The case where d

+
ub(v1) < d+ub(v2) is similar.

Comment: We have defined ∂wfv as a polynomial. Below we shall construct (polynomial-size and

balanced) circuits [∂wfv] that compute the polynomial ∂wfv . We will make sure that the construc-

tion of [∂wfv] is correct in the sense that it computes ∂wfv and also that it has a syntactic-degree
at most d+ub(v) − d+ub(w). The correctness of the construction follows from [VSBR83] (see also

[RY08, HT15]) where in our construction the notion of a syntactic-degree is used, instead of the

notion of degree.

Overview of the balancing algorithm: Let F be a syntactic-homogeneous arithmetic circuit

of syntactic-degree d. For every node v ∈ F we introduce the corresponding node [Fv] in [F ]

(intended to compute the polynomial f̂v); and for every pair of nodes v, w ∈ F such that d+ub(w) >
d+ub(v)

2
, we introduce the node [∂wfv] in [F ] (intended to compute the polynomial ∂wfv). Note that

given a syntactic-homogeneous circuit F , we can assume that every node comes with a number

that denotes its syntactic-degree—this stems from the FNC
2 algorithm for homogenization in

Section 9; but note that according to this algorithm circuits that compute zero may be assigned

higher syntactic-degrees than they actually possess. Since we are given an upper bound on the the

syntactic-degree of the circuit in advance this will not interfere with the algorithm.

The algorithm starts with a preprocessing step that determines some properties of the circuit

graph. Then it proceeds in steps i = 0, . . . , ⌈log d⌉. In each step i we construct:

1. Circuits computing fv , for all nodes v in F with 2i−1 < d+ub(v) ≤ 2i;

2. Circuits computing ∂wfv , for all pairs of nodesw, v inF with 2i−1 < d+ub(v)−d
+
ub(w) ≤ 2i

and d+ub(w) >
d+ub(v)

2
.

Each step adds depthO(log s) to the new circuit, which at the end amounts to a depthO(log2 d+
log d · log s) circuit. Furthermore, each node v in F addsO(s) nodes in the new circuit and each

pair of nodes v, w inF addsO(s) nodes in the new circuit. This amounts finally to a circuit of size

O(s3).
The preprocessing step and step i = 0 are done inFNC

2 as they both use matrix powering (in

fact the class DET, which is theAC
0-closure of matrix powering, suffices here). Each other stage

constructs a group of nodes (namely, a part of the circuit having depth O(log s)). Steps i = 1 to
i = ⌈log d⌉ are done inFAC

0 by constructing the nodes and wiring simultaneously. Thus overall

the balancing algorithm is inFNC
2.

10.1 Preliminaries for the Balancing Algorithm

Lemma 10.3 (inVNC
2). Given a (division free) algebraic circuitF of size swith no product gates, there

exists a depth O(log n) circuit computing F̂ of size poly(s), for n the number of variables.9

9Notice that if the input algebraic circuit F was a formula instead of a circuit, it would be trivial to output the

balanced formula computing F̂ : simply build a balanced binary tree whose leaves are all the variables occurring in

F (variables that occur more than once should also occur more than once in the resulting formula). Also, notice that

although there are no scalars inC , a monomial can occur with a coefficient in Ĉ different from 1.
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Proof. By assumption, the circuit F computes a big sum of variables, where a variable can occur

with an integer coefficient. We will now represent circuits with unbounded fan-in as adjacency

matrices. We first construct an upper triangular matrix A = {Aij}i,j∈[s] that represents F : for
every j > i ∈ [s], Aij is labeled with the number of edges from node i to node j in the circuit. In the

initial stage, A is a 0-1 matrix because every node i can have at most one directed edge to node j.
This construction is done already inV0.

Given such a matrixA representing F , the algorithm simply computesAs. The matrixAs has

c on its (i, r)th entry iff the number of different paths from node i to the output gate r is c. Thus,
we can consider the matrix As as corresponding to a depth 1 circuit: each leaf i in this circuit

represents the input variable xi or a scalar k ∈ Z, and is connected to the root r of the original
circuit with a single edge labelled with some integer c; this integer c is the total number of different

paths in the original circuit leading from the input node xi or a scalar k ∈ Z to the root. Thus cxi
or ck is the contribution of the input node xi or the scalar node k to the linear polynomial F̂ . It is
thus immediate to construct a circuit (of depth O(log n)) that computes the linear polynomial F̂ :
simply construct a big sum of the cxi’s and ck’s.

The fact that matrix powering is definable inVNC
2 is shown in Cook and Fontes [CF12].

We will also need the following two lemmas:

Lemma 10.4. There is aΣB
1 -definable function inVNC

2 for deciding, given a circuitC and two nodes

w, v in C , if w is in Fv .

Proof. This is similar to Lemma 10.3 above. We first construct the adjacency matrix AC of the

circuit C as a directed graph: the dimension of AC is s × s with s being the number of nodes in

C , each entry in AC is of number sort, and AC(w, u) is 1 iff w has a directed edge towards u or

w = u, and 0 otherwise.
Then, w has a directed path to v iff As

C(w, v) 6= 0, where matrix powering is definable in

VNC
2 as mentioned above.

Lemma 10.5. There is aΣB
1 -definable function inVNC

2 whose input is a (division free) circuit F with

n variables and a pair of nodes w, v in F where w is in Fv and 0 ≤ d+ub(v)− d+ub(w) ≤ 1, and whose
output is an O(log(n))-depth circuit computing ∂wfv .

Proof. In case v = w we output the circuit 1. Otherwise, first note that since 0 ≤ d+ub(v) −
d+ub(w) ≤ 1, either d+ub(v) ≤ 1 or d+ub(v) ≥ 2 and d+ub(w) > d+ub(v)/2. Hence, by Proposition
10.2, the polynomial ∂wfv is a linear polynomial a1x1 + · · ·+ anxn + b. Therefore, it remains to

show how to construct the circuit that computes this linear polynomial inVNC
2.

Fact 1: by definition of d+ub, for every node r in F we have d+ub(r) ≥ 1. Hence, for every product
gate u = t · s we have d+ub(u) = d+ub(t) + d+ub(s) ≥ 2.

Fact 2: there cannot be a product gate u in Fv such that w has two different paths directed from w
to u (recall that edges are directed from leaves to root).

This is because otherwise d+ub(v) ≥ d+ub(u) ≥ 2d+ub(w) ≥ 2 (the last inequality is by the fact
above), and hence d+ub(v)− d+ub(w) ≥ d+ub(w) ≥ 2 in contrast to the assumption.

Fact 3: Let ρ be a path from v to w (including v and excluding w) in Fv . Then there exist at most

one product gate in ρ.
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The reason is as follows: assume there are more than one product gates in ρ (occurring “above”
w). By Fact 1 every such product gate in ρ increases the syntactic-degree upper bound d+ub along ρ
by at least 1. Hence, d+ub(v) ≥ d+ub(w)+2 in contrast to the assumption that d+ub(v)−d

+
ub(w) ≤ 1.

We thus conclude that every product gate u 6= w in Fv , either does not have w in its scope, or

is the only product gate on the path from w to v along u. Let u = t · s be a product gate in Fv

that hasw in its scope, and assume without loss of generality thatFt hasw in its scope and Fs does

not (by Fact 2 it cannot be that both have w in their scope). We argue that Fs has no product gates.

Otherwise, by Fact 1 d+ub(s) ≥ 2 and so d+ub(v) ≥ d+ub(u) ≥ d+ub(w) + d+ub(s) ≥ d+ub(w) + 2 in
contrast to the assumption d+ub(v)− d+ub(w) ≤ 1.

LetU be the set of all product gatesu = tu·su inFv such thatFtu has (without loss of generality)

in its scopew. The above arguments imply that the polynomial ∂wfv =
∑

u∈U F̂su and that there

are no product gates in the Fsu ’s. But the set U is easily ΣB
0 -defined inV

0. And by Lemma 10.3

we can thus construct aO(log n) depth circuit, for n the number of variables, computing the sum∑
u∈U F̂su .

10.1.1 Taking Care of Nodes with High d+ub Measure

In this technical section we make sure that in the circuits we consider nodes have polynomially

bounded d+ub measure. For this purpose we show that the identities proved can be assumed to

be of polynomial syntactic-degree (irrespective of the other identities between circuits appearing

throughout the Pc(Z)-proofs), and then apply high syntactic-degree eliminations in proofs (Theo-

rem 9.2; now with d+ub replaced for dub).
First note the following:

Fact 10.6. All the statements about proof-construction and transformations that we presented up to this

point for dub also holds true for d
+
ub.

Fact 10.6 holds because of the following: letC be a circuit and letC ′ be the sum of its syntactic

homogeneous components with all nodes inC ′ appearingwith their syntactic-degree upper bound.

Let CY be C in which we substitution every scalar leaf c ∈ Z to a new variable yc. Then the

output of the homogenization algorithmon the inputCY results in a sumof syntactic homogeneous

components of CY such that every node appear with its syntactic-degree upper bound d+ub. If we
now substitution back the scalars c ∈ Z for the variables yc we get the circuit C

′ in which every

node appears with its syntactic-degree upper bound d+ub (instead of dub).

Lemma 10.7 (in VNC
2). Given a positive natural number n there exists a Pc(Z)-proof of the deter-

minant identities (5) and (6), where the determinant in (5) and (6) is written as the division free circuit

denoted Det⋆Taylor(A), for A, the n × n symbolic matrix X or Y , or their product XY , or a symbolic
triangular matrix Z . Moreover, in this proof every circuit is a sum of syntactic homogeneous circuits in

which every node u appears with its syntactic-degree upper bound d+ub, and d
+
ub(u) = O(n).

Proof. Let π be the Pc(Z)-proof in Corollary 9.6. Every node u in π appears with its syntactic-

degree upper bound dub(u). By Fact 10.6 we could have assumed that every node appears with the

syntactic-degree upper bound d+ub only that we need to make sure that d+ub for all nodes in π are

polynomially bounded. We do this as follows.

By inspection of Det
#
Taylor(X), we will show that we can construct inVNC

2 a Pc(Z)-proof

of Det⋆Taylor(X) = Det
#
Taylor(X), where Det⋆Taylor(X) is a division free circuit with all nodes u
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having d+ub(u) = O(n). We then homogenize this Pc(Z)-proof using Theorem 9.2 to get rid of all

nodes with high d+ub measure. Combining this proof with the Pc(Z)-proof in Corollary 8.10 we

obtain the desired proof.

We start by identifying a property that will help us to determine the d+ub measure of nodes.

Claim (Not necessarily in VNC
2). Let F be a circuit (possibly with division) over the variables

x1, x2, . . . . Assume that F has the following property:

Property6: either F is a scalar, or every scalar leaf α in F is a child of a plus gate u where
u := α + h and h contains at least one xi variable.

Then, d+ub(F ) = dub(F ).

Proof of claim: Since we are not proving this claim in the theory we can proceed by induction on

the size of F . If F := xi, then we are done. If F := α + v, for some scalar α, since v contains
some xi variables, d

+
ub(F ) = d+ub(v). We also have dub(v) = d+ub(v) by induction hypothesis, and

dub(v) = dub(F ) since v contains some xi variables, and we are done. If F := v + w with both

v, w different from a scalar, then the claim follows by induction hypothesis. Similarly, ifF := v ·w
then the claim follows by induction hypothesis. Claim

We proceed to prove Lemma 10.7. We show thatDetcirc−1(In + zX) has property6, and thus

d+ub(Detcirc−1(In + zX)) = dub(Detcirc−1(In + zX)).
Consider the circuitDetcirc−1(X). The only scalars inDetcirc−1(X) are the 0-1 constants that

occur in the identity matrix In−1 in (9). In (9) the scalars 0-1 all appear in a subcircuit of the form

0 + h or 1 + h for some h with xi variables as required by 6. Now consider Detcirc−1(In + zX),
which results by replacing the variables xij inDetcirc−1(X) by the term 0 + zxij or by 1 + zxij in
case i = j. But this substitution preserves the property 6.

We now argue that VNC
2 can construct a Pc(Z)-proof of Det

⋆
Taylor(X) = Det

#
Taylor(X).

Recall definition (16) of Det
#
Taylor(X) in Section 6.3.

The only scalar in Det
#
Taylor(X) is 1. In order to deal with nodes that have high d+ub values in

Det
#
Taylor(X) ↾ γ it suffices to deal with nodes in Den(Detcirc−1(In + zX)), since other parts in

(16) do not increase d+ub more than by a polynomial factor. For this purpose we construct using the

Σ
B
0 -COMP axiom a P−1

c (Z)-proof that eliminates 1 from products with 1 in Den(Detcirc−1(In +
zX)), using the axiom 1 · 1 = 1. This is done by pointing specifically to where the 1’s are in
Den(Detcirc−1(In + zX)); these areΣB

0 -definable number functions inV0. We omit the details.

10.2 Formal Description of the Balancing Algorithm

For a syntactically homogeneous circuitG and a natural numberm let

Bm(G) :=
{
t ∈ G : t = t1 · t2, where d

+
ub(t) > m and d+ub(t1), d

+
ub(t2) ≤ m

}
. (33)

Notice that Bm(G) is aΣ
B
0 -definable relation inV

0.

Note: In the construction of the balanced circuit ofF , given nodes v, w ∈ F , the notation [Fv] and
[∂wfv] stand for nodes (and not circuits). When we write [Fv] := C for a circuit C we mean that

the node [Fv] is defined to be the root of the circuitC , whereC possibly contains other (previously
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constructed) nodes like [Fu], for some u ∈ F . In other words, the algorithm simply connects the

node [Fv] to a circuit for which some of its leaves are already constructed nodes.

FNC
2-Algorithm for Balancing a Circuit F (Construction of [F ])

Input: F where F is a sum of one or more syntactic-homogeneous circuits over the variables

x1, . . . , xn, in which every node u appears with its syntactic-degree upper bound d
+
ub(u).

Output: A circuit [F ] computing the polynomial F̂ . That is, if s is the size ofF then depth([F ]) =
O(log s log d+ log2 d) and the size of [F ] is poly(s, d), where d = d+ub(F ).

Preprocessing step: For every pair of nodes w, v we prepare a list that determines whether w is

inFv . This is done by running in parallel for all pairsw, v inF theNC
2-algorithm in Lemma 10.4

for checking if w is in Fv described

Step i = 0:

Part (a):10 We construct the node [Fv], for all nodes v ∈ F such that d+ub(v) ≤ 1 = 2i.
Let v ∈ F be such that d+ub(v) ≤ 1.

Claim 10.8. F̂v = a1x1+ · · ·+ anxn+
∑

c∈J bcc, for a1, . . . , an, bc ∈ Z and J ⊂ Z. Furthermore,

there exists an FNC
2-construction that given F constructs the depth O(log n) circuit a1x1 + · · · +

anxn +
∑

c∈J bcc.

Proof of claim: Since d+ub(v) ≤ 1, there are no product gates in Fv . Thus, Fv is a circuit with only

plus gates, which means F̂v is as stated in the claim. By Lemma 10.3 (and Theorem 3.5) we can

construct in FNC
2 the circuit a1x1 + · · · + anxn +

∑
c∈J bcc (we do not evaluate the circuit).

Claim

We define

[Fv] := a1x1 + · · ·+ anxn +
∑

c∈J
bcc.

Part (b): Let w, v be a pair of nodes in F with 2d+ub(w) > d+ub(v):

Case 1: Assume w is not a node in Fv (this can be checked using the list from the preprocessing

step). Define

[∂wfv] := 0.

Case 2: Assume that w is in Fv and 0 ≤ d+ub(v) − d+ub(w) ≤ 1. Again, this is checked by the list
from the preprocessing step, and since we the input circuit F is assumed to contain the value of

d+ub for each node.
Thus, by Proposition 10.2, the polynomial ∂wfv is a linear polynomial a1x1 + · · ·+ anxn + b.

Using Lemma 10.5 and similar notation and reasoning as Claim 10.8 define

[∂wfv] := a1x1 + · · ·+ anxn +
∑

c∈J
bcc .

Step i+ 1:

10This base case uses an FNC
2 algorithm, but since it is done only in the base case, the whole algorithm still is in

FNC
2.
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The construction in this step is done inV0, assuming we have the list from the preprocessing

step above.

Part (a): Assume that for some 0 ≤ i ≤ ⌈log(d)⌉:

2i < d+ub(v) ≤ 2i+1.

Putm = 2i, and define (recall that here [∂wfv], [Ft1 ] and [Ft2 ] are nodes)

[Fv] :=
∑

t∈Bm(Fv)
t=t1·t2

[∂tfv] · [Ft1 ] · [Ft2 ] .

Part (b): Let w, v be a pair of nodes in F with 2d+ub(w) > d+ub(v):

Assume that w is in Fv and that for some 0 ≤ i ≤ ⌈log(d)⌉:

2i < d+ub(v)− d+ub(w) ≤ 2i+1.

Putm = 2i + d+ub(w). Define:

[∂wfv] :=
∑

t∈Bm(Fv)

[∂tfv] · [∂wft1 ] · [Ft2 ] ,

where here for every given t ∈ Bm(Fv), t1, t2 are nodes such that t = t1 · t2 and d
+
ub(t1) ≥ d+ub(t2),

or t = t2 · t1 and d
+
ub(t2) < d+ub(t1).

Finally, define [F ] as the circuit with output node [Fu], where u is the output node of F .

By construction, the algorithm computes the correct output: the fact that [F ] has the correct
depth stems from the construction as explained in the overview of the balancing algorithm above

(see also [VSBR83, RY08, HT15]). The fact that [F ] has the correct size stems from the fact that the

algorithm isΣB
0 -definable inVNC

2. The fact that [F ] computes F̂ is shownbelowby constructing

in VNC
2 a Pc(Z)-proof of F = [F ] for a syntactic homogeneous circuit F (this stems from

Lemma 10.11; see again [VSBR83, RY08, HT15]).

Note that given an algebraic circuitF with d+ub(u), for all nodes u inF , polynomially bounded,

our balancing algorithm provides a way to balance F already in FNC
2. As mentioned in Section

2, by first balancing an input circuit and then evaluating it (assuming e.g. it is over the integers,

as in the next section) this gives rise to anNC
2 evaluation procedure for algebraic circuits of any

depth (given as input an upper bound on their syntactic-degree in unary and assuming the syntactic

degree d+ub of the circuit is polynomial) that is different from the previously known algorithm by

Miller et al. [MRK88] (their algorithm does not require the syntactic-degree as input) and that of

Allender et al. [AJMV98] (which is implicit in that work but can be extracted from the text [All18]).

10.3 Balancing Proofs inVNC
2

For balancing Pc(Z)-proofs we need to show the proof-theoretic counterpart of the balancing al-

gorithm. This is similar to the proof-theoretic counterpart of the homogenization theorem shown

in Section 9. We start by showing some properties of the constructions of the base cases of the

balancing algorithm described in Lemmas 10.3 and 10.5 thatVNC
2 can prove.
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Lemma 10.9 (inVNC
2). (i) LetF be a circuit with no product gates and no scalars (and no division

gates). Assume that v = v1 + v2 is a node in F such that d+ub(v) ≤ 1. Then, there exists a Pc(Z)-
proof of [Fv] = [Fv1 ] + [Fv2 ].

(ii) Let F be a circuit with no scalars and syntactic-degree d, and a pair of nodes w, v in F , such that
w is in Fv and 0 ≤ d+ub(v)− d+ub(w) ≤ 1. Then, there is a Pc(Z)-proof of

[∂wFv] = [∂wFv1 ] + [∂wFv2 ], in case v = v1 + v2; (34)

[∂wFv] = [∂wFv1 ] · [Fv2 ], in case v = v1 · v2 and d
+
ub(v1) ≥ d+ub(v2)

or v = v2 · v1 and d
+
ub(v1) > d+ub(v2). (35)

Proof. Part (i). Consider Lemma 10.3. The circuit [Fv] is constructed according to this lemma by

first computing the integer coefficients of each of the input variables in the linear form computed

by Fv . It thus suffices to prove (inVNC
2) that for every input variable xi in Fv , the coefficient of

xi in Fv equals the sum of the coefficients of xi in Fv1 , Fv2 . Assuming we can prove this, we can

directly construct the Pc(Z)-proof of [Fv] = [Fv1 ] + [Fv2 ].
We use a result from Cook and Fontes [CF12], stating that the theory V#Lwhich is contained

in VNC
2, ΣB

1 -defines the string function PowSeqZ(n, s, A). This string function receives an

n× n integer matrixA and outputs a string coding the sequence of powers ofA: (A,A2, . . . , As).
Let F ′

v1
:= Fv1 ∪ {(v1, r)} and F ′

v2
:= Fv2 ∪ {(v2, r)}. That is, F

′
v1

is the (non-legit) cir-

cuit Fv1 to which we add the directed edge from v1 to the output node r in Fv , and similarly

F ′
v2
, so that Fv = F ′

v1
∪ F ′

v2
. Assume that Av, Av1 , Av2 are the 0-1 adjacency matrices of the

circuits Fv, F
′
v1
, F ′

v2
, respectively, where the dimensions of all the matrices all equal s, the num-

ber of nodes in Fv and the (u, w)th entry in all three matrices corresponds to a directed edge

from node u to node w. Using ΣB
0 -induction on the power i = 1, . . . , s, and using the strings

(Av, A
2
v, . . . , A

s
v), (Av1 , A

2
v1
, . . . , As

v1
), (Av2 , A

2
v2
, . . . , As

v2
), we argue that for every input node u

in Fv

Ai
v[u, r] = Ai

v1
[u, r] + Ai

v2
[u, r] ,

whereA[u, r] denotes the (u, r)th entry of the matrixA, and as before r is the output node of Fv .

Part (ii). Here we use the construction in Lemma 10.5.

Case 1: v = v1 + v2. According to Lemma 10.5, [∂wFv] is defined as the sum
∑

u∈U F̂su , where

U is the set of all product gates u = tu · su in Fv such that Ftu has (without loss of generality) in its

scopew, and where we construct eachFsu in the sum using Lemma 10.3, similar to part (i). Similar

to part (i) we proceed by the number ΣB
0 -induction on i = 1, . . . , s, where s is the size of Fv to

prove

Ai
v[u, r] =

∑

u∈U

Ai
su
[u, r] .

Case 2: v = v1 · v2. This is similar to case 1. According to Lemma 10.5 and using the terminology

of case 1 above, [∂wFv] is defined as the sum
∑

u∈U F̂su . Only that by assumption, the only product

gate that has w is in its scope must be v itself (because there can be no two nested product gates

withw in their scope by assumption d+ub(v)−d
+
ub(w) ≤ 1). Assume without loss of generality that

v1 hasw in its scope. Then, v2 does not havew in its scope (by assumption on degree, as explained

in the proof of Lemma 10.5). Thus, [∂wFv] =
∑

u∈U F̂su = F̂v2 = 1 · [Fv2 ] = [∂wFv1 ] · [Fv2 ].
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Recall that the length number function ⌈log2(n)⌉ isΣ
B
0 -definable function inV

0 (see [CN10]).

This is the main theorem of this section:

Theorem 10.10 (inVNC
2). 1. If F is a sum of one or more syntactic homogeneous circuits, of size

s and depth t, such that d+ub(F ) = d, then F = [F ] has a Pc-proof of size poly(s, d) and depth
O(t+ log s · log d+ log2 d).

2. Let π be a Pc(Z)-proof of F = G of syntactic-degree at most d and size s, and where every circuit
is a sum of syntactic homogeneous circuits with every node appearing with its d+ub value. Then,

[F ] = [G] has a Pc-proof of size poly(s, d) and depth O(log s · log d+ log2 d).

Theorem 10.10 will be proved analogously to Theorem 9.2: the proof is similar to the proof of

Theorem 9.2, only that instead of using Lemma 9.3 we use the analogous Lemma 10.11 below that

demonstrates some essential properties of [F ] that have short Pc(Z)-proofs.

Lemma 10.11 (inVNC
2). Let F1, F2 be syntactic homogeneous circuits of syntactic degree at most d

and size at most s. Then, there exist Pc(Z)-proofs of:

[F1 ⊕ F2] = [F1] + [F2] , (36)

[F1 ⊗ F2] = [F1] · [F2] , (37)

such that the proofs have size poly(s, d) and depthO(log d · log s+ log2 d). Furthermore, [z] = z has
a constant-size proof whenever z is a variable or an integer.

The proof of Theorem 10.10 is deferred to Section 10.3.2.

10.3.1 Proof of Lemma 10.11

We now prove Lemma 10.11. The proof is similar to Lemma 4.4 in [HT15], except that we use

d+ub(·) instead of syntactic-degrees d(·) and that we construct the Pc(Z)-proof in FNC
2 instead

of by induction on the structure of F (which would have necessitate usingΣB
1 -induction).

The statement concerning [z] = z is clear: if z is an integer, [z] and z are the same circuit. If z
is a variable, [z] is the circuit 1 · z.

We need to construct proofs of equations (36) and (37).

Letm(s, d) and r(s, d) be functions such that for any circuit F with d+ub(F ) = d and size s,
[F ] has depth at most r(s, d) and size at mostm(s, d). Since the balancing algorithm shown above

isΣB
0 -definable inVNC

2 we can choose

m(s, d) = poly(s, d) and r(s, d) = O(log2 d+ log d · log s).

Notation: In the following, [Fv] and [∂wFv]will denote circuits: [Fv] and [∂wFv] are the subcircuits
of [F ] with output nodes [Fv] and [∂wFv], respectively; the defining relations between the nodes

of [F ] (see the definition of [F ] above) translate to equalities between the corresponding circuits.

For example, if v andm are as in part (a) Case 2, of the definition of [F ], then, using just the axioms

C1 and C2, we can prove

[Fv] =
∑

t∈Bm(Fv)

[∂tFv] · [Ft1 ] · [Ft2 ] . (38)

Here, the left hand side is understood as the circuit [Fv] in which [∂tFv], [Ft1 ], [Ft2 ] appear as sub-
circuits, and so can share common nodes, while on the right hand side the circuits have disjoint nodes.
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Also, note that if F has size s and degree d, the proof of (38) has sizeO(s2m(s, d)) and has depth
O(r(s, d)). We shall use these kind of identities in the current proof.

Let λ(s, i) be a function such that

λ(s, 0) = O(s4) and λ(s, i) ≤ O(s4 ·m(s, d)) + λ(s, i− 1). (39)

Recurrence (39) implies λ(s, d) = poly(s, d).
The following proposition (which is similar to Proposition 4.10 in [HT15]) suffices to conclude

the lemma (it is enough to take F in the statement as either F1 ⊕ F2 or F1 ⊗ F2, and v as the root
of F ).

Proposition 10.12 (inVNC
2). Let F be a syntactically homogenous circuit of syntactic degree at most

d and size s. For every i = 0, . . . , ⌈log d⌉ there exists a Pc proof-sequenceΨi of size at most λ(s, i) and
depth at most O(r(s, d)), such that the following hold:

Part (a): For every node v ∈ F with

d+ub(v) ≤ 2i, (40)

Ψi contains the following equations:

[Fv] = [Fv1 ] + [Fv2 ] , in case v = v1 + v2, and (41)

[Fv] = [Fv1 ] · [Fv2 ] , in case v = v1 · v2. (42)

Part (b): For every pair of nodes w 6= v ∈ F , where w ∈ Fv , and with

d+ub(v)− d+ub(w) ≤ 2i and (43)

2d+ub(w) > d+ub(v), (44)

Ψi contains the following equations:

[∂wFv] = [∂wFv1 ] + [∂wFv2 ], in case v = v1 + v2; (45)

[∂wFv] = [∂wFv1 ] · [Fv2 ], in case v = v1 · v2 and d
+
ub(v1) ≥ d+ub(v2)

or v = v2 · v1 and d
+
ub(v1) > d+ub(v2). (46)

Proof. Similar to previous constructions the idea is to construct all parts of the Pc(Z)-proof simul-
taneously inVNC

2. This is done in an analogue manner to the balancing algorithm above.

Step i = 0. We need to devise the proof sequenceΨ0.

Part (a): proof of (41). Let d+ub(v) ≤ 20. By definition, [Fv] =
∑n

i=1 aixi + b, where ai’s are
integers and b is a sum of constant integers. Further, by construction [Fv] does not contain product
gates and thus v = v1 + v2, and we need to prove only (41). This stems from Lemma 10.9 part (i).

Part (b): proof of (45) and (46). Similarly to part (a) above, this follows from Lemma 10.9 part (ii).

Overall,Ψ0 will be the union of all the above proofs, so thatΨ0 contains all equations (41) (for

all nodes v satisfying (40)), and all equations (45) and (46) (for all nodes v, w satisfying (43) and (44)).

The proof sequenceΨ0 has size λ(s, 0) = O(s4) and has depthO(log s).
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Step i+ 1: We wish to construct the proof-sequenceΨi+1.

Part (a): proof of (41) and (42). Let v be any node in F such that

2i < d+ub(v) ≤ 2i+1.

Case 1: Assume that v = v1 + v2. We show how to construct the proof of [Fv] = [Fv1 ] + [Fv2 ].
Letm = 2i. From the construction of [·] we have:

[Fv] = [Fv1+v2 ] =
∑

t∈Bm(Fv)

[Ft1 ] · [Ft2 ] · [∂t(Fv1+v2)] . (47)

Since d+ub(v1) = d+ub(v2) = d+ub(v), we also have

[Fve ] =
∑

t∈Bm(Fve )

[Ft1 ] · [Ft2 ] · [∂t(Fve)], for e ∈ {1, 2} . (48)

If t ∈ Bm(Fv) then d
+
ub(t) > m = 2i. Therefore, for any t ∈ Bm(Fv), since d

+
ub(v) ≤ 2i+1,

we have d+ub(v)− d+ub(t) < 2i and 2d+ub(t) > d+ub(v) and t 6= v (since t is a product gate). Thus, by
construction, the proof-sequenceΨi contains, for any t ∈ Bm(Fv), the equations

[∂t(Fv1+v2)] = [∂tFv1 ] + [∂tFv2 ],

and we can compute the positions of these proof-lines in the string encoding of Ψi (using some

natural encoding). Therefore, pointing to these proof-lines inΨi as premises, we construct aPc(Z)-
proof that (47) equals:

∑

t∈Bm(Fv)

[Ft1 ] · [Ft2 ] · ([∂tFv1 ] + [∂tFv2 ])

=
∑

t∈Bm(Fv)

[Ft1 ] · [Ft2 ] · [∂tFv1 ] +
∑

t∈Bm(Fv)

[Ft1 ] · [Ft2 ] · [∂tFv2 ].
(49)

If t ∈ Bm(Fv) and t 6∈ Fv1 then [∂tFv1 ] = 0. Similarly, if t ∈ Bm(Fv) and t 6∈ Fv2 then

[∂tFv2 ] = 0. Hence we can prove
∑

t∈Bm(Fv)

[∂tFve ] =
∑

t∈Bm(Fve )

[∂tFve ], for e = 1, 2. (50)

Thus, using (48) we have that (49) equals:
∑

t∈Bm(Fv1 )

[Ft1 ] · [Ft2 ] · [∂tFv1 ] +
∑

t∈Bm(Fv2 )

[Ft1 ] · [Ft2 ] · [∂tFv2 ]

= [Fv1 ] + [Fv2 ].

(51)

The above proof of (51) fromΨi has sizeO(s
2 ·m(s, d)) and depthO(r(s, d)).

The proof of Case 2 where v = v1 · v2, and the proofs of Part (b) for equations (45) and (46)

are similar to Case 1 above, and are identical to those cases in the proof of Proposition 4.10 in

[HT15]; like Case 1, the only difference is that we construct with an FNC
2 construction all the

Pc(Z)-proofsΨi together, for every i = 0, . . . , ⌈log d⌉, where inΨi+1 we point to proof-lines that

appear inΨi (whose position can be computed using a reasonable encoding scheme for proof-lines).

For self containment we put these cases in the appendix Section D.

This concludes the proof of Proposition 10.12, and hence of Lemma 10.11.
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10.3.2 Proof of Theorem 10.10

Proof of Theorem 10.10. Part (i). We use the balancing algorithm above and Lemma 10.11 to con-

struct for every node v in F a (part of) the proof of [Fv] = Fv , simultaneously. We can use the

balancing algorithm because F is a sum of syntactic homogeneous circuits with all nodes appear-

ing together with their associated syntactic-degree upper bound d+ub .
Case 1: For a leaf u we construct the equation u = u, which is correct since [u] = u.
Case 2: For v = v1 ◦ v2, where ◦ ∈ {+, ·}, Lemma 10.11 gives [Fv] = [Fv1 ]◦ [Fv2 ]. We then point

to the equations [Fvi ] = Fvi , i ∈ {1, 2}, which gives a proof of [Fv] = Fv1 ◦ Fv2 = Fv .

The proof has size poly(s, d). The depth of the proof never exceeds the depth of F and the

depth of the proofs of [Fv] = [Fv1 ] ◦ [Fv2 ].

Part (ii). We assumed that π is a Pc(Z)-proof of F = G of syntactic-degree at most d and
size s, in which every circuit is a sum of syntactic homogeneous circuits with every node appearing

with its d+ub value. Similar to previous constructions, we are going to simultaneously construct a

(part of a) Pc(Z)-proof of [F1] = [F2] using pointers to previous lines (that we can compute in

parallel), for every proof-line F1 = F2 in π. This resembles the proof structure of Theorem 9.2.

Like part (i), we can use the balancing algorithm because by assumption each of the circuits F1, F2

is given to us as a sum of syntactic homogeneous circuits with all nodes appearing together with

their associated syntactic-degree upper bound d+ub.
Letm0 and k0 be such that (36) and (37) have Pc(Z)-proofs of size at mostm0 and depth k0,

whenever F1⊕F2, respectively, F1⊗F2 have size at most s′ and syntactic degree at most d.

Case 1: F = H is an axiom of Pc(Z). Then, [F ] = [H] has a Pc-proof of size c1m0 and depth

c2k0, where c1, c2 are some constants independent of s′, d. The axiom A1 is immediate and the

axiom A10 follows from the fact that [F ] = F̂ , for F = c, c ∈ Z.. The rest of the axioms are an

application of Lemma 10.11, as follows. Axioms C1 and C2 are already the statement of Lemma

10.11. For the other axioms, take, for example,

F1 · (G1 +G2) = F1 ·G1 + F1 ·G2 .

We are supposed to give a proof of

[F1 · (G1 +G2)] = [F1 ·G1 + F1 ·G2] ,

with a small depth. By Lemma 10.11 we have a Pc(Z)-proof

[F1 · (G1 +G2)] = [F1] · [G1 +G2] = [F1] · ([G1] + [G2]) = [F1] · [G1] + [F1] · [G2] .

Lemma 10.11 gives again:

[F1] · [G1] + [F1] · [G2] = [F1 ·G1] + [F1 ·G2] = [F1 ·G1 + F1 ·G2].

Here we applied Lemma 10.11 to circuits of size at most s′, and the proof of [F1 · (G1 +G2)] =
[F1 ·G1 + F ·G2] has size at most c0m0 and depth at most c1k0, for some constants c0, c1.
Case 2: An application of rules R1, R2 translates to an application of R1, R2. For the rules R3 and

R4, it is sufficient to show the following: if π uses the rule

F1 = F2 G1 = G2

F1 ◦G1 = F2 ◦G2

, ◦ ∈ {·,+},
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then there is a proof of [F1 ◦G1] = [F2 ◦G2], of size c1m0 and depth c2k0, from the equations

[F1] = [G1] and [F2] = [G2]. This is again an application of Lemma 10.11.

Altogether, we obtain a proof of [F ] = [G] of size at most c1s
′m0 and depth c2k0.

As a corollary of Theorem 10.10 and Corollary 10.7 we finally obtain the balanced PI-proof of

the determinant identities in VNC
2. Denote by Detbalanced the circuit obtained by applying the

balancing algorithm onDet⋆Taylor(X). That is,

Detbalanced(X) := [Det⋆Taylor(X)]. (52)

Corollary 10.13 (inVNC
2). Given a positive natural numbern there exists aO(log2 n)-depthPc(Z)-

proof of the determinant identities (5) and (6), where the determinant in (5) and (6) is written as the division

free circuitDetbalanced(A), forA, the n×n symbolic matrixX or Y , or their productXY , or a symbolic
triangular matrix Z .

11 Applying the Reflection Principle andWrapping Up

Here we conclude the proofs of the determinant identities in the theory by proving and applying

the reflection principle for Pc(Z)-proofs inVNC
2 (Theorem 4.1).

TheDeterminant FunctionDET inVNC
2. As presented in the introduction Section 4, given an

n×n integermatrixA, the determinant functionDET(A) inVNC
2 is defined to first construct an

O(log2 n)-depth algebraic circuit for the determinant polynomial of a symbolic n×nmatrix, and

then evaluate the circuit under A, using the fact that the evaluation of O(log2 n)-depth algebraic
circuits over the integers is definable in the theory as shown below.

Formally, the balanced circuit for the determinant constructed by DET is the circuit

Detbalanced(X) from (52). This construction was shown above (when constructing the PI-proofs).

11.1 AlgebraicNC
2-Circuit Value Problem

We show that there is an FNC
2 algorithm that receives an algebraic circuit over Z with n input

variables, size polynomial in n and depthO(log2 n), together with an assignment of integers to the

variables written as binary strings, and outputs the value of the circuit under the assignment.

The algorithm proceeds as follows: i) convert the input balanced algebraic circuit into a bal-

ancedBoolean circuit computing the same polynomial, where integers arewritten as binary strings;

ii) layer the circuit; iii) convert the layered circuit into amonotone circuit; iv) evaluate the balanced

monotone Boolean circuit using the evaluation function for such circuits which is ΣB
1 -definable

inVNC
2.

Step (i): frombalanced algebraic circuits to balanced Boolean circuits. We show how to trans-

form a polynomial-sizeO(log2 n)-depth algebraic circuit into a polynomial-sizeO(log2 n)-depth
Boolean circuit with anFNC

2 algorithm. We use the following two facts:

Fact 11.1 (By Vinay [Vin91]). Given an algebraic circuit of poly(n)-size and poly(n)-degree, our al-
gorithm (and the original [VSBR83] algorithm) that balances the circuit into O(log2 n)-depth, in fact

balances (with straightforward modifications) the circuit into O(log n)-depth in which the plus gates

have unbounded fan-in (and product remains a binary operation).
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Fact 11.2. The Boolean (multi-valued) function StringAdd computing the addition of two integers written

in binary is inFO-uniformFAC
0 (see [CN10, p. 85]). The Boolean (multi-valued) function StringMult

computing the product of two integers written in binary is in FO-uniform FTC
0 (see [CN10, IX.3.6]).

FromFact 11.2we conclude that inVNC
2we can construct a constant depth fan-in two circuit

for addition of two binary integers. Since a plus gate of unbounded fan-in can be simulated by

a polynomial-size and O(log n)-depth circuit of plus gates only, we get that in VNC
2 we can

construct a polynomial-size fan-in two Boolean circuit ofO(log n)-depth for computing iterated

addition of binary integers.

Using Fact 11.1 above, given an O(log2 n)-depth algebraic circuit we have the followingΣB
1 -

definable function inVNC
2 for constructing the corresponding polynomial-sizeO(log2 n)-depth

(fan-in two) Boolean circuit:

1. Every unbounded fan-in plus gate is replaced by a polynomial-size fan-in two and depth

O(log n) circuit computing the corresponding iterated sum of integers;

2. Every fan-in two product gate is replaced by a polynomial-size and depth O(log n) circuit
computing the corresponding product of two integers.

The resulting Boolean circuit is thus an O(log2 n)-depth circuit (with a fan-in two) and

polynomial-size in n. This Boolean circuit is encoded in the same way as algebraic circuits are en-

coded; namely, via the encoding scheme in Section 5.1.1 (with the obvious modifications: instead

of designating+, · we designate ∧,∨,¬).

Step (ii): layering Boolean circuits. For the evaluation of Boolean circuits in the theory we need

to have circuits that are layered, namely in which every node belongs to a single layer i, and nodes
in layer imay only go to nodes in layer i+ 1. We can convert withinFNC

2 anyO(log2 n)-depth
Boolean circuit from Step (i) above into a layered Boolean circuit, as follows.

FNC
2-algorithm for layering balanced Boolean circuits

Input: A Boolean circuit F of depth c log2 n, for some constant c (encoded as in Section 5.1.1).

Output: A layered Boolean circuit F ′ computing the same function as F .

Algorithm

1. LetA be the 0-1 adjacency matrices of F where the dimensions ofA equal s, the number of

nodes in F and the (u, w)th inA, denotedA[u, w] is 1 iff there is a directed edge from node

u to nodew inF . Using theΣB
1 -definable inVNC

2 string functionPowSeqZ(n, s, A), that
receives ann×n integermatrixA and outputs a string coding the sequence (A,A2, . . . , As)
of powers ofA, we find the shortest length of a directed path from a leaf in F to each of the

internal nodes in F : the shortest directed length of a path from a leaf u to a node v is the
minimal i such thatAi[u, v] 6= 0.

2. Let F ′ be the circuitF in which for every node u ∈ V , for V the set of nodes of F , change u
to (u, ℓ), where ℓ is the shortest directed length of a path from a leaf in F to u. Hence, ℓwill
serve as the layer of (u, ℓ) in F ′.
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3. We now add dummy edges and nodes “1 · u” to F ′, to force every node u to have edges

directed only to subsequent layers. Specifically, we scan the nodes of F ′ from layer 0 to the

top layer c log2 n, and for each node (u, ℓ) that is connected with a directed edge e to node
(v, j), for j > ℓ + 1, we discard e and add two new nodes and three new edges as follows.

Assuming that (v, j) = (u, ℓ) ◦ w, for ◦ ∈ {+, ·}, let (v, j) = ((u, ℓ) · 1) ◦ w, where the
new node 1 is on layer ℓ, the new node · is on layer ℓ+1 and two new edges are added from

(u, ℓ) to · and from 1 to ·, and a third edge is added from · to (v, j). After this the node (u, ℓ)
has a directed edge only to nodes in layer ℓ+1. Doing this sequentially for all c log2 n layers
we end up with a layered circuit F ′.

Step (iii): convert layered circuits into amonotone circuits. Herewe need to apply sequentially

De Morgan rules, from top layer to bottom layer, until all negation in the circuit are in the input

level. There is no need to add new layers, since the DeMorgan rules preserve the number of layers:

¬(A ∧B) → ¬A ∨ ¬B, ¬¬A→ true ∧ (true ∧ A), ¬(A ∨ B) → ¬A ∧ ¬B.

For balanced circuits this is done in FNC
2 precisely the same way as Part 3 in the algorithm

in Step (ii) above, only that we start from the top layer to layer 0.

Step (iv): evaluation of balanced monotone Boolean circuits. We define the function

Evalal(F,A) that receives the string variableF encoding an algebraic circuit over the integers and

an assignment of integers to the variables of F written as a two-dimensional arrayA, and outputs
the binary string representing the value of the algebraic circuit encoded by F underA.

Let us denote by Evallmb the Σ
B
1 -definable in VNC

2 function that evaluates a layered and

monotone Boolean circuit of depth O(log2 n) as shown in (3) (Section 3.3). By Steps (i) to (iii)

and using Evallmb we conclude that Evalal is Σ
B
1 -definable string function in VNC

2. Note that

the input Boolean variables are both the binary strings representing the integers input A and the

negation of these binary strings (we need their negation because this is the input to the monotone

circuit.)

11.2 Proving the Reflection Principle for Pc(Z)

We shall prove the following reflection principle for Pc(Z):

Theorem 11.3. (Theorem 4.1 restated; In VNC
2) Let π be an O(log2 n)-depth Pc(Z)-proof

of the circuit equation F = G. Then F = G is true in Z, in the sense that ∀A ∈
Zn (Evalal(F,A) = Evalal(G,A)).

Proof. The proof proceeds by the number induction (see Proposition 3.2) on the number of proof

lines in π, using Lemma 11.4 below.

Since the evaluation function Evalal isΣ
B
1 -definable inVNC

2 we can use this function in the

number induction axiom (see Section A.1). Speciffically, consider theΣB
0 -formulaQ(n) := ∀i ≤

n (Evalal(left(π
[i]), A) = Evalal(right(π

[i]), A)), where left(π[i]) and right(π[i]) are the left
(resp. right) hand side circuit in the ith proof-line in π. Then the induction states that assuming the

first line is true under an assignment A, namely, Q(0), and if Q(n) → Q(n + 1) is true, namely

if all proof-lines ≤ n are true under an assignment A, then also the (n + 1)th line is true under

A—then we finish the argument since we end up with ∀n ≤ length(π)(Q(n)).
It thus remains to prove each of the following cases: 1) Axioms of Pc(Z). We show that the

evaluation of Pc(Z) axioms under integer assignments is universally true: ∀α ∈ Zn(F (α) =
G(α)), when F = G is an axiom. For example, F + 0 = F holds for every integer assignment
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to F ; 2) The rules of Pc(Z) are sound under integer assignments. These two cases are proved in

Lemma 11.4.

Lemma 11.4. (in VNC
2) (i) Let F1, F2, G1, G2 be O(log2 n)-depth circuits, and A an assign-

ment of integers to their input variables. If Evalal(F1, A) = Evalal(G1, A) and Evalal(F2, A) =
Evalal(G2, A) then Evalal(F1 ◦ F2, A) = Evalal(G1 ◦ G2, A), for ◦ ∈ {+,×}. (ii) Let F,G be

O(log2 n)-depth circuits, F = G an axiom of Pc(Z) and A an assignment of integers to the input

variables of F,G. Then, Evalal(F,A) = Evalal(G,A).

Proof. Part (i). Let us consider the rule F1 = G1 and F2 = G2 derives F1 + F2 = G1 + G2. We

need to prove that Evalal(F1 + F2, A) = Evalal(G1 +G2, A).
Denote by StringAddfla(X, Y ) theΣB

0 -formula from Fact 11.2 for adding two binary integers

(we reserve the symbol StringAdd to denote the corresponding constant depth Boolean circuit).

Specifically, we have (see [CN10]):

Definition 11.5 (StringAddfla). TheΣ
B
0 -formula for computing carries in a carry-save adder is:

Carry(i,X, Y ) ↔ ∃k < i
(
X(k) ∧ Y (k) ∧ ∀j < i(k < j → (X(j) ∨ Y (j)))

)
.

And theΣB
0 -defining axiom for StringAddfla is (where⊕ is exclusive or):

R+(X, Y, Z) ↔
(
|Z| ≤ |X|+|Y |∧∀i < |X|+|Y |(Z(i) ↔ X(i)⊕Y (i)⊕Carry(i,X, Y )))

)
.

The definition of the Boolean circuitStringAdd is similar to theFO formula inDefinition 11.5:

Carry(i,X, Y ) is defined as above except that ∃k < i turns into∨k−1
i=0 and ∀j < i turns into∧i−1

j=0

andX(i), Y (i) are interpreted as the ith bits of the inputX, Y , that is the Boolean variable xi, yi,
respectively. Thus, StringAdd := X(i) ⊕ Y (i) ⊕ Carry(i,X, Y ) (where ⊕ here is built from

∧,∨,¬).

Since Evalal(F1, A) = Evalal(G1, A) and Evalal(F2, A) = Evalal(G2, A),

StringAddfla(Evalal(F1, A),Evalal(F2, A)) = StringAddfla(Evalal(G1, A),Evalal(G2, A)).

(53)

Recall that by construction, Evalal(F1 + F2, A) first converts the algebraic circuit F1 + F2

into a Boolean circuit of the form StringAdd(F ′
1, F

′
2), where F

′
1, F

′
2 are the monotone, layered and

Boolean versions of F1, F2, respectively, as described in the algorithm above (Steps (i) to (iii)), and

then evaluates it usingEvallmb(StringAdd(F
′
1, F

′
2), A) (and similarly forG1, G2) (for simplicity we

shall ignore here the fact that also StringAdd is turned into a monotone circuit). Therefore, we

can prove:

Evalal(F1 + F2, A) = Evallmb(StringAdd(F
′
1, F

′
2), A), (54)

Evalal(G1 +G2, A) = Evallmb(StringAdd(G
′
1, G

′
2), A). (55)

By (53), (54) and (55) it suffices to prove

Evallmb(StringAdd(F
′
1, F

′
2), A) = StringAddfla(Evalal(F1, A),Evalal(F2, A)), (56)

Evallmb(StringAdd(G
′
1, G

′
2), A) = StringAddfla(Evalal(G1, A),Evalal(G2, A)). (57)
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Let us prove (56) (as (57) is similar). By the discussion above

StringAddfla(Evalal(F1, A),Evalal(F2, A)) = StringAddfla(Evallmb(F
′
1, A),Evallmb(F

′
2, A)).

Hence, it remains to prove

Evallmb(StringAdd(F
′
1, F

′
2), A) = StringAddfla(Evallmb(F

′
1, A),Evallmb(F

′
2, A)). (58)

First note that the evaluation function Evallmb ((3) in Section 3.3) works the same for multi-

output circuits. Second, recall that the function Evallmb is defined so that given a circuit F it pro-

duces an evaluation string (as defined in (3)) for thewhole circuitF , and then outputs the evaluation
string only of the top layer (namely, the output nodes).

The idea of the proof of (58) is the following: consider the left hand side of (58). The evaluation

string of the circuit StringAdd(F ′
1, F

′
2) produced by Evallmb given A is the same as the combina-

tion of the separate evaluation strings of F ′
1 and F

′
2, excluding the top layers which belongs to the

evaluation of (the constant many layers of the circuit) StringAdd. Therefore, we can prove that

Evallmb(StringAdd(F
′
1, F

′
2), A) = Evallmb(StringAdd(Evallmb(F

′
1, A),Evallmb(F

′
2, A)), A)

(59)

(note that in (59) the rightmost input A on the right hand side does not have any effect, since the

circuit StringAdd(Evallmb(F
′
1, A),Evallmb(F

′
2, A)) has no variables).

Therefore, to conclude (58) it remains to show

Evallmb(StringAdd(Evallmb(F
′
1, A),Evallmb(F

′
2, A)), A)

= StringAddfla(Evallmb(F
′
1, A),Evallmb(F

′
2, A)). (60)

This is done by the number induction on theΣB
0 -formula

Ψ(i,X, Y ) := |X| = |Y | = i ∧ Evallmb(StringAdd(X, Y ), A) = StringAddfla(X, Y )

(note again that A on the left hand side does not have any effect when X, Y are interpreted as

constant binary strings (devoid of variables)). This is done using the evaluation string produced for

the Boolean circuit StringAdd by Evallmb. The idea is that theFO formula and the Boolean circuit

for StringAdd are almost identical. More generally, we have the following claim that is proved

by construction; and formally, by number induction on the depth of the circuit (equivalently, the

number of layers in C ′):

Claim 11.6. Let C be anFNC
2 function written in the language L2

A augmented with function symbols

for FNC
2 string and number functions. Further, let C ′ be the corresponding monotone layered Boolean

circuit for C . Then,VNC
2 can prove that C(A) = Evallmb(C

′, A).

The same reasoning is applied to StringMult, for dealing with the rule F1 = G1 and F2 = G2

derives F1 · F2 = G1 ·G2.

Part (ii) is similar to part (i) and we omit the details.

11.3 Wrapping Up

Using the definition of DET, Theorem 4.1 and Corollary 10.13 we are finally in a position to con-

clude the main theorem.
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Theorem 11.7 (Main theorem). The following determinant identities are provable inVNC
2:

∀n∀A(MatZ(A, n) ∧MatZ(B, n) → DET(A) · DET(B) = DET(AB)) , (61)

∀n∀A(triangMatZ(A, n) → DET(A) = A[1, 1] · · ·A[n, n]) . (62)

Where in (61)MatZ(A, n)means thatA is an n×n integer matrix, with integer entries are en-

coded by strings as usual, and triangMatZ(A, n)means thatA is a lower or uppern×n triangular
matrix, andA[i, j] is the (i, j)th integer entry inA .

Using the translation between bounded arithmetic theories and propositional proofs as shown

in [CN10] we can also extend the result in [HT15] to work over the integers:

Theorem 11.8. There are polynomial-size propositionalNC
2-Frege proofs of the determinant identities

over the integers.

In Theorem 11.8, NC
2-Frege is defined as in [HT15], namely, these are families of standard

propositional (Frege) proofs with size poly(n) in which every proof-line is a circuit of depth

O(log2 n), and where we augment the system with rules for manipulating circuits similar to the

rules C1, C2 in Pc (it is possible to characterize these proofs as restricted Extended Frege proofs).

Moreover, integers in the NC
2-Frege proofs are encoded by fixed length binary strings, that is

sequences of propositional variables. Note that for every fixed length of binary strings encoding

integers, we will have a different propositional proof.

12 Corollaries

Here we show some further theorems of linear algebra that can be proved inVNC
2, using similar

arguments as before. Specifically, we show that the Cayley-Hamilton theorem and the co-factor

expansion of the determinant are provable inVNC
2, as well as the hard matrix identities identified

by Soltys and Cook in [SC04].

The Cayley-Hamilton (C-H) theorem states that for the (univariate) characteristic polynomial of

a matrixA in the variable z, defined as

pA(z) := det(zI − A),

it holds that pA(A) = 0, where pA(A) is a univariate polynomial in the matrix A, product is
interpreted as matrix product, and scalar multiplication of a matrix is interpreted as usual, and

where the right hand side 0 stands for the all zero matrix.

The characteristic polynomial of a matrix is defined in the theory as follows: we introduce

a ΣB
1 -definable string function p(A, n) that receives an n × n integer matrix A and outputs a

division freeO(log2 n)-depth algebraic circuit with n2 input variables, where the coefficient of zi,
for i = 0, . . . , n, in the circuit is computed (as a sub-circuit) by

[
coeffzi

(
Det

#
Taylor(zIn − A)

)]
,

namely, the balanced circuit that extracts the (constant) coefficient of the determinant polynomial

of zIn−A; recall thatDet
#
Taylor is a division free circuit with a polynomial syntactic-degree. Thus,
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overall the string function p(A, n) outputs the following circuit, written as an O(log2 n)-depth
circuit, for the characteristic polynomial ofA:

p(A, n) :=
n∑

i=0

[
coeffzi

(
Det

#
Taylor(zIn − A)

)]
· zi. (63)

The C-A theorem is expressed in the theory as follows:

∀n∀A(MatZ(A, n) → eval (p(A, n), A) = 0n) , (64)

where 0n is the all zero n× n integer matrix, eval (X,A) is the string function that evaluates the
circuit C under the integer assignment A,MatZ(A, n) is the relation that holds iff A is an n × n
integer matrix, and p(·) is ΣB

1 -definable function that receives a matrix and outputs a circuit (in

fact a formula) that computes its characteristic polynomial (with a single input variable z).

Corollary 12.1. The Cayley-Hamilton theorem, expressed as in (64), is provable inVNC
2.

Proof. This follows the same line of arguments demonstrated for theVNC
2-proofs of the determi-

nant identities. We first construct usingΣB
0 -COMP the Pc(Z)-proof of the C-H theorem shown

in Proposition 9.4 in [HT15] and then use the reflection principle as in Section 11. The only differ-

ence is that we need to use part (3) in Lemma 6.3 (we did not use this part before), and for this we

need to supply the witnesses for the syntactic-degrees of the nodes in (63). This needs more work,

and is shown in the appendix in Lemma C.1.

Other basic results in linear algebra that are provable inVNC
2 are the cofactor expansion of

the determinant and the inversion principle, as follows.

The inversion principle is the following formula inVNC
2:

∀n∀A,B(MatZ(A, n) ∧MatZ(B, n) → (AB = I → BA = I)).

Soltys and Cook [SC04] showed that the inversion principle is equivalent in the theory LA (that

can be interpreted inVNC
2 by Cook and Fontes [CF12]11) to the following principles they called

collectively (including the inversion principle itself) the hard matrix identities:

AB = I ∧ AC = I → B = C

AB = I → AC 6= 0 ∨ C = 0

AB = I → AtBt = I .

Corollary 12.2. The inversion principle is provable inVNC
2.

For an n×nmatrixX letX[i|j] be the (n− 1)× (n− 1)minor obtained by removing the ith
row and jth column fromX (recall that a sumof integer numbers represented in binary is definable

inVNC
2 (cf. [CN10])).

Corollary 12.3. The following cofactor expansion of the determinant is provable inVNC
2:

∀n∀A

(
MatZ(A, n) →

(
DET(A) =

n∑

j=1

(−1)i+jA(i, j)DET(A[i|j])

))
.

11Though here we have to be careful, because the encoding of matrices and polynomials and the determinant we

introduce is different from the encoding of [SC04, CF12].

63



The proofs of Corollaries 12.2 and 12.3 are similar to the proof of Corollary 12.1. It uses

the adjoin of a matrix Adj(X) which is defined to be the n × n matrix whose (i, j)th entry is

(−1)i+jDET(X[i|j]), where DET is the determinant function (ΣB
1 -defined inVNC

2). Then we

proceed as in Corollary 12.1 following Proposition 9.1 and 9.2 from [HT15].

13 Conclusions and Open Problems

We established a proof of the basic determinant identities and other basic statements of linear al-

gebra such as the Cayley-Hamilton theorem in the weakest logical theory known to date. This

answers an open question of, e.g., Cook and Nguyen [CN10]. We achieved this by formalizing in

the theoryVNC
2 the construction of the PI-proof demonstrated inHrubeš-Tzameret [HT15], and

using a reflection principle for PI-proofs in the theory. Due to the central role of linear algebra and

the determinant function, these results are expected to be relevant to further basicwork in bounded

arithmetic.

As mentioned in Section 2.2 the complexity classes#SAC
1 ⊆ TC

1 that are above DET but

belowNC
2, can compute the required depth reduction and the evaluation of algebraic circuits, and

we believe that our construction can be carried outmore or less the same in theories corresponding

to these classes (though theories for these classes have not been investigated yet).

It will be very interesting to establish the same identities in a theory that corresponds to the

complexity class DET whose complete (under AC
0-reductions) problems are the integer deter-

minant itself and matrix powering; such a theory denoted V#L was introduced in [CF12]. This

would necessitate a completely new argument different from ours (possibly following Berkowitz’

[Ber84] algorithm for the determinant) and may also contribute to the simplification of the proofs.

The reason is that our argument utilizes crucially the evaluation of Boolean NC
2-circuits in the

theory, while it is not expected that such evaluation is doable in the classDET.
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Appendix

A Definability in Bounded Arithmetic

Here we give more details on the theoriesV0 andVNC
2. Specifically, we wish explain now how

to extend the language V0 and VNC
2 with new function symbols (in a conservative way; see

below).

Wewrite∃!yϕ to denote∃x(ϕ(x)∧∀y(ϕ(y/x) → x = y)), where y is a variable not appearing
in ϕ:
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Definition A.1 (Two-sorted definability). Let T be a theory over the language L ⊇ L2
A and let Φ be

a set of formulas in the language L. A number function f is Φ-definable in a theory T iff there is a

formula ϕ(~x, y, ~X) in Φ such that T proves

∀~x∀ ~X∃!yϕ(~x, y, ~X)

and it holds that12

y = f(~x, ~X) ↔ ϕ(~x, y, ~X). (65)

A string function F is Φ-definable in a theory T iff there is a formula ϕ(~x, ~X, Y ) in Φ such that T
proves

∀~x∀ ~X∃!Y ϕ(~x, ~X, Y )

and it holds that

Y = F (~x, ~X) ↔ ϕ(~x, ~X, Y ). (66)

Finally, a relationR(~x, ~X) isΦ-definable in a theory T iff there is a formula ϕ(~x, ~X, Y ) inΦ such that

it holds that

R(~x, ~X) ↔ ϕ(~x, ~X). (67)

The formulas (65), (66), and (68) are the defining axioms for f , F , andR, respectively.

Definition A.2 (Conservative extension of a theory). Let T be a theory in the language L. We say

that a theory T ′ ⊇ T in the language L′ ⊇ L is conservative over T if every L formula provable in

T ′ is also provable in T .

We can expand the language L and a theory T over the language L by adding symbols for

arbitrary functions f (or relations R) to L and their defining axioms Af (or AR) to the theory T . If

the appropriate functions are definable in T (according to Definition A.1) then the theory T +Af

(+AR) is conservative over T . This enables us to add new function and relation symbols to the

language while proving statement inside a theory; as long as these function and relation symbols

are definable in the theory, every statement in the original language proved in the extended theory

(with the additional defining-axioms for the functions and relations) is provable in the original

theory over the original language.

However, extending the language and the theory in such a way does not guarantee that one

can use the new function symbols in the comprehension (and induction) axiom schemes. In other

words, using the comprehension (and induction) axioms over the expanded language may lead to

a theory that is not a conservative extension. Therefore, definability will not be enough for our

purposes. We will show below precisely how to make sure that a function is both definable in the

theories we work with and also can be used in the corresponding comprehension and induction

axiom schemes (while preserving conservativity).

When extending the language with new function symbols we can assume that in bounded for-

mulas the bounding terms possibly use function symbols from the expanded language (because any

definable function in a bounded theory can be bounded by a term in the original language L2
A (cf.

[CN10])).

12Meaning, it holds semantically in the standard two-sorted modelN2.
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A.1 Introducing NewDefinable Functions inV
0 andVNC

2

Here we describe a process (presented in Section V.4. in [CN10]) by which we can extend the lan-

guage L2
A of V0 with new function symbols, obtaining a conservative extension of V0 that can

also prove the comprehension and induction axiom schemes in the extended language, and similarly for

VNC
2.

First note that every relation or function symbol has an intended or standard interpretation

over the standard model N2 (for instance, the standard interpretation of the binary function “+”

is that of the addition of two natural numbers). If not explicitly defined otherwise, we will always

assume that a defining axiom of a symbol in the language defines a symbol in a way that its inter-

pretation inN2 is the standard one. Note also that we shall use the same symbolF (~x, ~X) to denote
both the function and the function symbol in the (extended) language in the theory.

Definition A.3 (Relation representable in a language). LetΦ be a set of formulas in a languageL that

extends L2
A. We say a relation R(~x, ~X) (over the standard model) is representable by a formula from Φ

iff there is a formula ϕ(~x, ~X) in Φ such that in the standard two-sorted model N2 (and when all relation

and function symbols in L get their intended interpretation), it holds that:

R(~x, ~X) ↔ ϕ(~x, ~X). (68)

We say that a number function f(~x, ~X) is polynomially-bounded if f(~x, ~X) ≤ poly(~x, ~|X|).

We say that a string function F (~x, ~X) is polynomially-bounded if |F (~x, ~X)| ≤ poly(~x, ~|X|).

Definition A.4 (Bit-graph). Let F (~x, ~X) be a polynomially-bounded string function. We define the

bit-graph of F to be the relation R(i, ~x, ~X), where i is a number variable, such that

F (~x, ~X)(i) ↔ i < t(~x, ~X) ∧R(i, ~x, ~X) (69)

holds in the standard two-sorted model, for some number term t(~x, ~X).

Definition A.5 (ΣB
0 -definability from a language; Definition V.4.12. in [CN10]). We say that a

number function f(~x, ~X) isΣB
0 -definable from a language L ⊇ L2

A, if f is polynomially-bounded

and its graph13 is represented by aΣB
0 (L)-formulaϕ. We call the formulaϕ the defining axiom of f . We

say that a string function F isΣB
0 -definable from a languageL ⊇ L2

A, if F is polynomially-bounded

and its bit-graph (as in (69)) is representable by aΣB
0 (L)-formula ϕ. We call the formula ϕ the defining

axiom of F or, equivalently, the bit-defining axiom of F .

Note: We used the term defining axiom of a function f in both the case where f is defined from a

language (Definition A.5) and in case f is definable in the theory (Definition A.1). In general it is

important not to confuse these two notions. Nevertheless, we will show in the sequel that for our

purposes these two notions coincide: when we define a function from a language the function will

be definable also in the relevant theory, and so the defining axiomof f from the languagewill be the

defining axiom of f in the theory (when the theory is possibly conservatively extended to include

new function symbols).

The following is a definition ofAC
0 functions. This definition coincides with the definition

of FAC
0 as FO-uniform multi-output Boolean circuit families of polynomial-size and constant

depth [CN10].

13I.e., the relationR(~x, ~X, y), such that f(~x, ~X) = y iffR(~x, ~X, y) holds in the standard model.
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Definition A.6 (FAC
0). A string (number) function is in FAC

0 if it is polynomially-bounded and its

bit-graph (graph, respectively) is definable by aΣB
0 -formula in the language L

2
A.

Definition A.7 (AC
0-reduction). A number function f isAC

0-reducible to L ⊇ L2
A iff there is a

possibly empty sequence of functionsF1, . . . , Fk such thatFi is Σ
B
0 -definable fromL ∪ {F1, . . . , Fi−1},

for any i = 1, . . . , k, and f isΣB
0 -definable from L ∪ {F1, . . . , Fk}.

We are now finally ready to describe the standard process enabling one to extend a theory

T ⊇ V
0 over the language L2

A (and specifically, the theoriesV0 andVNC
2) with new function

symbols, obtaining a conservative extension of T such that the new function symbols can be used

in comprehension and induction axiom schemes in the theory (see Section V.4. in [CN10] for the

proofs):

(i) If the number function f is ΣB
0 -definable from L2

A, then T over the language L2
A ∪ {f},

augmented with the defining axiom of f , is a conservative extension of T and we can also

prove the comprehension and induction axioms forΣB
0 (f)-formulas.

(ii) If the string function F is ΣB
0 -definable from L2

A, then T over the language L2
A ∪ {F},

augmented with the bit-defining axiom of F , is a conservative extension of T and we can

also prove the comprehension and induction axioms forΣB
0 (F )-formulas.

(iii) We can now iterate the above process of extending the language L2
A(f) (or equivalently,

L2
A(F )) to conservatively add more functions f2, f3, . . . to the language, which can also be

used in comprehension and induction axioms.

By the aforementioned and by Definition A.7, we can extend the language of a theory with a

new function symbol f , whenever f is AC
0-reducible to L2

A. This results in an extended theory

(in an extended language) which is conservative, and can prove the comprehension and induction

axioms for formulas in the extended language. When defining a new function inV0 orVNC
2 we

may simply say that it isΣB
0 -definable or bit-definable in the theory and give itsΣ

B
0 -defining or bit-

defining axiom (this axiom can use also previouslyΣB
0 -defined (or bit defined) function symbols).

Extending the language ofV0 andVNC
2 with new relation symbols is simple: every relation

R(~x, ~X) which is representable by a∆1
1(L) formula ([CN10, Section V.4.1]), where L is an exten-

sion of the language with new function symbols obtained as shown above, can be added itself to

the language. This results in a conservative extension of V0 (VNC
2, resp.) that also proves the

Σ
B
0 -induction and comprehension axioms in the extended language.

A.2 Some Basic Formalizations inV
0

In this section we show how to formalize basic objects inV0. Most formalizations here are routine

(cf. [CN10, MT14]).

Natural number sequences of constant length For two numbers x, y let 〈x, y〉 := (x+ y)(x+
y + 1) + 2y be the pairing function, and let left(z), right(z) be the (ΣB

0 -definable inV
0) projection

functions of the first and second element in the pair z, respectively. We alsoΣB
0 -define inductively

〈v1, . . . , vk〉 := 〈〈v1, . . . , vk−1〉, vk〉, for any constant k > 2. Then V
0 proves the injectivity of

the pairing function and enables us handling such pairs in a standard way.
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Notation: Given a number x, coding a sequence of natural numbers of length k, we write 〈x〉ki , for
i = 1, . . . , k, to denote the number in the ith position in x. This is aΣB

0 -definable function inV
0

(defined via left(x), right(x) functions).

Natural and integer number sequences If we wish to talk about sequences of numbers (whether

natural, integers or rationals) where the length of a sequence is non-constant, we have to use string

variables instead of number variables. Using the number-tupling functionwe can encode sequences

as sets of numbers (recall that a string is identified with the finite set of numbers encoding it): a

sequence is encoded as a string Z such that, the xth number in the sequence is y if the number

〈x, y〉 is in Z . Formally, we have the following Σ
B
0 -defining formula for the number function

seq(x, Z) returning the xth element in the sequence Z :

y = seq(x, Z) ↔ (y < |Z| ∧ Z(〈x, y〉) ∧ ∀z < y ¬Z(〈x, z〉))

∨ (∀z < |Z|¬Z(〈x, z〉) ∧ y = |Z|).
(70)

Formula (70) states that the xth element in the sequence coded by Z is y iff 〈x, y〉 is in Z and no

other number smaller than y also “occupies the xth position in the sequence”, and that if no number

occupies position x then the function returns the length of the string variable Z .
We define the number function length(Z) to be the length of the sequence Z , as follows:

ℓ = length(Z) ↔ SEQ(ℓ, Z) ∧ ∃w < |Z|∃j < |Z|(Z(w) ∧ w = 〈ℓ − 1, j〉) . (71)

The defining axiomof length(Z) states thatZ encodes a sequence and is the lexicographically small-

est string that encodes this sequence and that ℓ− 1 is the largest position in the sequence which is
occupied (by definition there will be no pair 〈a, b〉 ∈ Z with a > ℓ− 1).

Array of strings We wish to encode a sequence of strings as an array. We use the function

RowArray(x, Z) to denote the xth string in Z as follows (we follow the treatment in [CN10, Def-

inition V.4.26, page 114]).

Definition A.8 (Array of strings). The string function RowArray(x, Z), abbreviated Z [x], is ΣB
0 -

definable inV0 using the following bit-definition:

RowArray(x, Z)(i) ↔ (i < |Z| ∧ Z(〈x, i〉)).

Matrices An n× n integer matrix is coded as an array of n strings, where each of the n strings is

itself an array that represents a row in the matrix, that is an array of n integer numbers.

A.3 Binary Tree Construction inV
0

Here we demonstrate a ΣB
0 -construction in V

0 of a binary tree encoding. This can be used to

construct a formula that computes for example the inner product of two vectors as in Section 5.1.3.

Specifically, we show that the string function F (n) that receives a number n, which we assume is

a power of 2 for simplicity, and outputs a string that describes the edges of a binary tree with n
leaves isΣB

0 -definable inV
0.

Consider the tree shown in the picture below. Each node in the tree belongs to a single layer

d = 1, . . . , log(n)+1, and in each layer d the nodes are labeled from 1 to 2log(n)+1−d. The wires of
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the tree T are encoded by a three-dimensional array, namely a stringE such thatE(d, u, v) holds
iff the output of gate u on layer d is connected to the input of gate v on layer d+ 1.

To show that the string functionF (n)ΣB
0 -definable inV

0 (equivalently,ΣB
1 -definable inV

0),

according to Section A.1 we need to demonstrate aΣB
0 -formula that bit-defines the tree encoding

as follows. Let

Φ(d, u, v) ≡ n ≤ du ∧ ∃x ≤ n(u = 2x→ 2v = u)∧

∃x ≤ n(u = 2x+ 1 → 2v = u+ 1). (72)

Then Φ(d, u, v) is true iff u is a node that occur in the dth layer (n ≤ du) and that if u is even

then u connects to node n/2 in the (d + 1)th layer, and otherwise it connects to node u+1
2

in the

(d+ 1)th layer. For the bit-definition of F (n) we introduce the followingΣB
0 -formula:

ϕ(n, i) ≡ i = (r, u, v) ∧ r < n ∧ u ≤ n ∧ v ≤ n ∧ Φ(r, u, v) .

B Algorithm for coeff

The following is similar to the homogenization algorithm from Section 9.

Algorithm for Constructing coeffzk(·) in UniformFAC
0

Input: an arithmetic circuitC of size s and a natural number k.
Output: an arithmetic circuit computing coeffzk(C).

Algorithm: Every node v inC is duplicated k+1 times into the nodes [v, 0], . . . , [v, k], such that

[v, i] is (the root of) a circuit computing the (polynomial) coefficient of zi in Ĉv . The algorithm

is doable in FAC
0 because every new node [v, i] depends only on the copies of the two nodes

u, w that goes into v, and these nodes are already known from the input circuit, namely, they are

[u, i], [w, i], for i = 0, . . . , k + 1, where v = u + w or v = u · w in C . Hence, the wiring of the
new circuit is done in parallel for each of the new nodes as follows:

Case 0: v is a leaf in C . If v 6= z then define [v, 0] = v, and [v, i] = 0 for all i = 1, . . . , k.
Otherwise, v = z and we define [v, 1] = 1, and [v, i] = 0 for all 1 6= i ∈ {0, . . . , k}.
Case 1: v = u+ w in C . Define [v, i] := [u, i] + [w, i] for every i = 0, . . . , k.
Case 2: v = u× w in C . Define [v, i] :=

∑
j+r=i

j,r=0,...,k
[u, j]× [w, r].

C Witnessing Syntactic-Degrees

Witnesses for syntactic-degrees For most part our work we do not need to witness precise

syntactic-degree of nodes, since syntactic-degree upper bounds are enough. However for the
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Cayley-Hamilton theorem we need to have witnesses for precise syntactic-degrees of nodes. We

sketch here how to obtain such witnesses.

Note that computing the syntactic-degree of a node in a circuit is doable in NC
2. This was

noted for example by Allender et al. [AJMV98] (replace every scalar gate by 0, every variable gate by
1, every product gate by+ and every plus gate bymax, and then evaluate the circuit withinNC

2;

e.g., using the algorithm implicit in [AJMV98], or the algorithm in [MRK88]). However, to actually

use this algorithm in the theory we would need also to prove its correctness; this is likely doable

(as we essentially show for the [VSBR83] circuit balancing algorithm in Section 10), but we will opt

for a shorter solution: we simply witness the syntactic-degrees of all the specific circuits (and their

nodes) we need.

Thewitness for the syntactic-degrees of nodes in a circuit is a string that stores pairs of numbers

(v, d), with v the node label and d its syntactic-degree. We can store each syntactic-degree as a

natural number since we will need to witness only circuits with polynomial syntactic-degrees.

It is easy to formulate aΣB
0 -formula φ(C,W )withC a circuit andW the string that contains

all the syntactic-degrees of the nodes in C , such that φ(C,W ) holds iff W is correct: for every

addition gate t = v1 + v2 it checks that d(t) = max{d(v1), d(v2)}, and for every product gate

t = v1 · v2 it checks that d(t) = d(v1) + d(v2), and for leaves it checks d(xi) = 1 and d(c) = 0
for c ∈ Z.

Lemma C.1 (inV0). There exists a witness for the syntactic-degree of all nodes in Det#Taylor(X).

Proof. We show how to witness in the theory V
0 the syntactic-degrees of the nodes in

Det
#
Taylor(X). Recall the definition of Det

#
Taylor(X) in (16). In order to compute the syntactic-

degree of nodes we do the following.

First we show that there is aΣB
0 -definable number function inV0 that computes the syntactic-

degree of a node v, givenn and the node v as inputs, where v is a node inNum(Detcirc−1(In+zX)),
assuming the syntactic-degree of v is at most n. The case for Den(Detcirc−1(In + zX)) is similar.

From this, using (16), we can conclude that there is a ΣB
0 -definable number function in V

0 that

computes the syntactic-degree of a node v, given n, in Det
#
Taylor(X), for all nodes of syntactic-

degree at most n.
Recall the encoding scheme for circuitsDetcirc−1(In+zX) described in 5.1.3, and let d denote

the “inductive level” in the definition of Detcirc−1 in (10). To compute the syntactic-degrees of

nodes that are at most n in Num(Detcirc−1(In + zX)) we wish to compute the pair of numbers

corresponding to the syntactic-degrees of (Num(v),Den(v)) for each node v in Detcirc−1(In +
zX).

Observe that every inductive level d in the circuitDetcirc−1(X) has a “base” syntactic-degree (as
a function of d), on top of which we add a number that depends on the gate we consider. For exam-

ple, consider the circuit F1 := X−1
1 (In−1 + δ(X)−1vt1v2X

−1
1 ) from (9). If we know the syntactic-

degree of the output nodes in level n − 1, namely the output nodes of X−1
1 , then we can easily

compute the syntactic-degrees of other nodes in F1. Note however that this cannot be computed

inductively in such a way withinV0, rather we need to show the explicit number functions. Also,

notice the the syntactic-degree of some nodes in F1 is exponential because the repeated multipli-

cation ofX−1
1 by itself, hence we shall need to consider only those nodes whose syntactic-degree

is polynomial in n.
It is enough to show that there is a ΣB

0 -formula that determines the (polynomial-bounded)

syntactic-degree pair (Num(v),Den(v)) of a node v, based on the inductive level d in which the

node occurs and the type or position of the gate in that level. For example, some gates in F1, for
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every level d, are leaves—for instance, the entries of In−1 correspond to scalar leaves that have

syntactic-degree pair (0, 0), and some others are variable leaves—for instance, vt1v2 corresponds
to an inner product with leaves variables from v1, v2, having syntactic-degree pair (1, 0), for every
level d.

We demonstrate this idea on δ(X)−1 which is the (n, n) entry of X−1 of dimension n × n.
Similar reasoning works for the rest of the entries ofX−1 as well as Detcirc−1(In + zX).

For instance, if n = 2 (note that δ(X) is defined forX of dimension n × n, only for n > 1),
then δ(X)−1 = (x22−x21 ·x

−1
11 ·x12)

−1. Thus, Num(δ(X)−1) = Den(x22)·Den(x21 ·x
−1
11 ·x12) =

Den(x22) · Den(x21) · Den(x
−1
11 ) · Den(x12) = 1 · 1 · x11 · 1. Hence, d(Num(δ(X)−1)) = 1.

Using witnesses for syntactic-degrees we can prove Lemma 6.3 part 3, which was used in the

proof of Theorem 12.1.

Lemma C.2 (in V
0). Given a division free circuit F of syntactic-degree d and a witness for the

syntactic-degrees of all nodes in F , there exists a Pc(Z)-proof of F =
∑d

k=0 F
(k). Moreover, F =∑d

i=0 coeffzi(F ) · z
i has a Pc(Z)-proof.

Proof. We shall prove the first statement (the second is similar). Note that a big sum is an abbre-

viation of a sum written as a logarithmic depth tree of plus gates with the summands at the leaves

(we also need to use obvious steps such as applying the associativity and commutativity of addition

axioms in Pc(Z)-proofs of big sums).

For every node v inF we construct simultaneously a (partial)Pc(Z)-proof sequence terminating

with

Fv =

d(v)∑

k=0

F (k)
v (73)

as follows:

Case 1: v is a variable xi. Then we construct a proof of Fv := xi =
∑d(v)

k=0 Fv
(k), which is immedi-

ate by construction. Similarly for a constant node.

Case 2: v = u⊕ w and let d = d(v). Then we use Lemma 9.3 to construct the following (partial)

Pc(Z) proof-sequence. In the witnesses for this proof-sequencewe add pointers to proof-lines that
are constructed in parallel (for nodes that appear closer to the leaf in the tree). We can compute the

line numbers to be pointed to just by looking at the current node (hence we can carry out the

construction in V
0). The pointers are constructed as number-functions by using the nodes (e.g.,

we can label line numbers with the nodes inF they correspond to, adding a secondary index to the

index of the line).

∑d

i=0
F (i)
v =

∑d

i=0
(Fu ⊕ Fw)

(i)
by assumption

=
∑d

i=0
(Fu

(i) + Fw
(i)) by Lemma 9.3

=
∑d

i=0
Fu

(i) +
∑d

i=0
Fw

(i) rearrangement

= Fu + Fw by “previous” lines

(add explicit pointers to the appropriate proof-lines)

= Fu⊕Fw = Fv by axiom C1.
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Case 3: v = u⊗ w and let d1 = d(u), d2 = d(w) and d = d(v) = d1 + d2. This is similar to the

Case 2 only that it is crucial here to use the specified syntactic-degrees of nodes along paths from

leaves to the root.

∑d

i=0
F (i)
v =

∑d

i=0
(Fu ⊗ Fw)

(i)
by assumption

=
∑d

i=0

∑

l+j=i

0≤l≤d1,0≤j≤d2

F
(l)
1 · F

(j)
2 . by Lemma 9.3 part (3)

=
∑d1

i=0
Fu

(i) ·
∑d2

i=0
Fw

(i) rearrangement

= Fu · Fw by “previous” lines

(add explicit pointers to the appropriate proof-lines)

= Fu⊗Fw = Fv by axiom C1.

D Remaining Proof of Proposition 10.12

Proof of Proposition 10.12 continued. This is taken almost verbatim from [HT15], except that we use

d+ub in instead of the true syntactic-degrees of nodes, and noticing that all predicates we use (like

t ∈ Bm(Fv)) are definable inVNC
2.

Case 2: Assume that v = v1 · v2. We wish to prove [Fv] = [Fv1 ] · [Fv2 ]. Letm = 2i. We assume

without loss of generality that d+ub(v1) ≥ d+ub(v2). By the definition of [·], we have:

[Fv] = [Fv1·v2 ] =
∑

t∈Bm(Fv)

[Ft1 ] · [Ft2 ] · [∂tFv].

If v ∈ Bm(Fv), then Bm = {v} and we have [Fv] = [Fv1 ] · [Fv2 ] · [∂vFv]. Since [∂vFv] = 1, this
gives [Fv] = [Fv1 ] · [Fv2 ], and we are done.

Otherwise, assume v 6∈ Bm(Fv). Thenm = 2i < d+ub(v1) (since, if d
+
ub(v1) ≤ m, then also

d+ub(v2) ≤ m and so by definition v ∈ Bm(Fv)). Further, because d
+
ub(v1) ≤ 2i+1, we have

[Fv1 ] =
∑

t∈Bm(Fv1 )

[Ft1 ] · [Ft2 ] · [∂tFv1 ] . (74)

Since d+ub(v) ≤ 2i+1 and d+ub(t) > m = 2i, for any t ∈ Bm(Fv), we have

d+ub(v)− d+ub(t) ≤ 2i and 2d+ub(t) > d+ub(v).

Since v 6= t,Ψi contains, for any t ∈ Bm(Fv), the equation:

[∂t(Fv1·v2)] = [∂tFv1 ] · [Fv2 ]. (75)

Using (75) for all t ∈ Bm(Fv), we can prove the followingwith aPc(F) proof of sizeO(s
2 ·m(s, d))
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and depthO(r(s, d)):

∑

t∈Bm(Fv)

[Ft1 ] · [Ft2 ] · [∂tFv] =
∑

t∈Bm(Fv)

[Ft1 ] · [Ft2 ] · [∂t(Fv1·v2)]

=
∑

t∈Bm(Fv)

[Ft1 ] · [Ft2 ] · ([∂tFv1 ] · [Fv2 ])

= [Fv2 ] ·
∑

t∈Bm(Fv)

[Ft1 ] · [Ft2 ] · [∂tFv1 ]. (76)

Since Bm(Fv1) ⊆ Bm(Fv), we can conclude as in (50) that

∑

t∈Bm(Fv)

[Ft1 ] · [Ft2 ] · [∂tFv1 ] =
∑

t∈Bm(Fv1 )

[Ft1 ] · [Ft2 ] · [∂tFv1 ] .

Using (74), (76) equals [Fv2 ] · [Fv1 ]. The above proof-sequence (using Ψi as a premise) has size

O(s2 ·m(s, d)) and depthO(r(s, d)).

We now append Ψi with all proof-sequences of [Fv] = [Fv1 ] + [Fv2 ] for every v from Case 1,

and all proof-sequences of [Fv] = [Fv1 ] · [Fv2 ] for every v fromCase 2. We obtain a proof-sequence

Ψ′
i+1 of size

λ(s, i+ 1) ≤ O(s3 ·m(s, d)) + λ(s, i),

and depthO(r(s, d)).
In Part (b), we extendΨ′

i+1 with more proof-sequences to obtain the finalΨi+1.

Part (b): proof of (45) and (46). Let v 6= w be a pair of nodes in F such that w ∈ Fv and assume

that

2i < d+ub(v)− d+ub(w) ≤ 2i+1 and 2d+ub(w) > d+ub(v).

Let

m = 2i + d+ub(w).

Case 1: Suppose that v = v1 + v2. We need to prove

[∂wFv] = [∂wFv1 ] + [∂wFv2 ] (77)

based onΨi as a premise. By construction of [∂wFv],

[∂wFv] =
∑

t∈Bm(Fv)

[∂tFv] · [∂wFt1 ] · [Ft2 ]

=
∑

t∈Bm(Fv)

[∂t(Fv1+v2)] · [∂wFt1 ] · [Ft2 ]. (78)

Since d+ub(v1) = d+ub(v2) = d+ub(v), we also have

[∂wFve ] =
∑

t∈Bm(Fve )

[∂tFve ] · [∂wFt1 ] · [Ft2 ], for e = 1, 2 . (79)
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Sincem = 2i + d+ub(w), we have d
+
ub(t) > 2i + d+ub(w), for any t ∈ Bm(Fv). Thus, by d

+
ub(v) −

d+ub(w) ≤ 2i+1, we get that for any t ∈ Bm(Fv):

d+ub(v)− d+ub(t) ≤ 2i and 2d+ub(t) > d+ub(v), and

t 6= v (since t is a product gate).

Therefore, for any t ∈ Bm(Fv),Ψi contains the equation

[∂t(Fv1+v2)] = [∂tFv1 ] + [∂tFv2 ].

Thus, based onΨi, we can prove that (78) equals:

∑

t∈Bm(Fv)

([∂tFv1 ] + [∂tFv2 ]) · [∂wFt1 ] · [Ft2 ]

=
∑

t∈Bm(Fv)

[∂tFv1 ] · [∂wFt1 ] · [Ft2 ] +
∑

t∈Bm(Fv)

[∂tFv2 ] · [∂wFt1 ] · [Ft2 ]. (80)

As in (50), using (79) we can derive the following from (80):

∑

t∈Bm(Fv1 )

[∂tFv1 ] · [∂wFt1 ] · [Ft2 ] +
∑

t∈Bm(Fv2 )

[∂tFv2 ] · [∂wFt1 ] · [Ft2 ]

= [∂wFv1 ] + [∂wFv2 ].

The proof of (77) fromΨi shown above has sizeO(s
2 ·m(s, d)) and depthO(r(s, d)).

Case 2: Suppose that v = v1 · v2. We assume without loss of generality that d+ub(v1) ≥ d+ub(v2)
and show how to prove

[∂wFv] = [∂wFv1 ] · [Fv2 ]. (81)

By construction of [∂wFv]:

[∂wFv] =
∑

t∈Bm(Fv)

[∂tFv] · [∂wFt1 ] · [Ft2 ]

=
∑

t∈Bm(Fv)

[∂t(Fv1·v2)] · [∂wFt1 ] · [Ft2 ]. (82)

Similar to the previous case, for any t ∈ Bm(Fv) we have

d+ub(v)− d+ub(t) < 2i and 2d+ub(t) > d+ub(v).

If v ∈ Bm(Fv) then Bm(Fv) = {v} and so (82) is simply [∂vFv] · [∂wFv1 ] · [Fv2 ] = [∂wFv1 ] ·
[Fv2 ] as required. Otherwise, assume that v 6∈ Bm(Fv). ThenΨi contains the following equation,

for any t ∈ Bm(Fv):
[∂t(Fv1·v2)] = [∂tFv1 ] · [Fv2 ].

Using premises fromΨi, we can then prove that (82) equals:

∑

t∈Bm(Fv)

([∂tFv1 ] · [Fv2 ]) · [∂wFt1 ] · [Ft2 ] =


 ∑

t∈Bm(Fv)

[∂tFv1 ] · [∂wFt1 ] · [Ft2 ]


 · [Fv2 ]. (83)
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As in (50), we have
∑

t∈Bm(Fv)
[∂tFv1 ] · [∂wFt1 ] · [Ft2 ] =

∑
t∈Bm(Fv1 )

[∂tFv1 ] · [∂wFt1 ] · [Ft2 ]. Also,

since v1 · v2 = v 6∈ Bm(Fv), we have d
+
ub(v1) > m = 2i + d+ub(w), and so

[∂wFv1 ] =
∑

t∈Bm(Fv1 )

[∂tFv1 ] · [∂wFt1 ] · [Ft2 ] . (84)

Hence by (84), (83) equals [∂wFv1 ] · [Fv2 ].
The above proof of (81) fromΨi has sizeO(s

2 ·m(s, d)) and depthO(r(s, d)).

We now appendΨ′
i fromPart (a) (which also containsΨi) with all proof-sequences of [∂wFv] =

[∂wFv1 ] + [∂wFv2 ] in Case 1 and all proof sequences [∂wFv] = [∂wFv1 ] · [Fv2 ] in Case 2, above.
We obtain the proof-sequenceΨi+1 of size

λ(s, i+ 1) ≤ O(s4 ·m(s, d)) + λ(s, i),

and depthO(r(s, d)), as required.
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