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1 Climate affects neighbour-induced changes in leaf chemical defences and tree 

2 diversity-herbivory relationships

3 Abstract

4 1. Associational resistance theory predicts that insect herbivory decreases with increasing 

5 tree diversity in forest ecosystems. However, the generality of this effect and its underlying 

6 mechanisms are still debated, particularly since evidence has accumulated that climate 

7 may influence the direction and strength of the relationship between diversity and 

8 herbivory. 

9 2. We quantified insect leaf herbivory and leaf chemical defences (phenolic compounds) of 

10 silver birch (Betula pendula) in pure and mixed plots with different tree species 

11 composition across twelve tree diversity experiments in different climates. We investigated 

12 whether the effects of neighbouring tree species diversity on insect herbivory in birch, i.e. 

13 associational effects, were dependent on the climatic context, and whether neighbour-

14 induced changes in birch chemical defences were involved in associational resistance to 

15 insect herbivory.

16 3. We showed that herbivory on birch decreased with tree species richness (i.e. associational 

17 resistance) in colder environments but that this relationship faded as mean annual 

18 temperature increased. 

19 4. Birch leaf chemical defences increased with tree species richness but decreased with the 

20 phylogenetic distinctiveness of birch from its neighbours, particularly in warmer and more 

21 humid environments. 

22 5. Herbivory was negatively correlated with leaf chemical defences, particularly when birch 

23 was associated with closely related species. The interactive effect of tree diversity and 

24 climate on herbivory was partially mediated by changes in leaf chemical defences. 

25 6. Our findings confirm that tree species diversity can modify the leaf chemistry of a focal 

26 species, hence its quality for herbivores. They further stress that such neighbour-induced 

27 changes are dependent on climate and that tree diversity effects on insect herbivory are 

28 partially mediated by these neighbour-induced changes in chemical defences.
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29 7. Future studies should investigate i) which tree species traits, ii) how tree species 

30 intermingling pattern and iii) to what extent climatic context ultimately affect associational 

31 resistance in mixed forests.

32 Keywords

33 Associational resistance, Betula pendula, biodiversity, leaf phenolics, mixed forests, 

34 phylogenetic diversity, plant-insect interactions, TreeDivNet 
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35 Introduction

36 The influence of plant species diversity on plant-herbivore interactions is an old but still topical 

37 question for ecologists (Castagneyrol, Kozlov, Poeydebat, Toïgo, & Jactel, 2019; Siemann, 

38 Tilman, Haarstad, & Ritchie, 1998). Ecological studies in forests have demonstrated that 

39 increased tree species diversity generally leads to lower amount of damage caused by insect 

40 herbivores, a phenomenon known as associational resistance (Barbosa et al., 2009; 

41 Castagneyrol, Jactel, Vacher, Brockerhoff & Koricheva, 2014; Iverson et al., 2014). But several 

42 other studies have also reported no change (Haase et al., 2015) or even increased insect 

43 herbivory when mixing tree species, i.e. associational susceptibility (Castagneyrol, Jactel, & 

44 Moreira, 2018; Schuldt et al., 2010). These inconsistent findings demonstrate the need for 

45 improved understanding of ecological processes underlying tree diversity effects on insect 

46 herbivory in forests. 

47 Early attempts to explain associational resistance were mainly based on processes determined 

48 by host plant density (e.g. the resource concentration hypothesis, Hambäck, Inouye, 

49 Andersson, & Underwood, 2014), or mediated by natural enemies (e.g. the natural enemies 

50 hypothesis, Moreira, Abdala-Roberts, Rasmann, Castagneyrol & Mooney, 2016) or by non-

51 host volatile chemical compounds (e.g. the semiochemical diversity hypothesis, Jactel, 

52 Birgersson, Andersson, & Schlyter, 2011). Only recently, researchers have recognized that 

53 associational resistance could also result from changes in host traits, such as nutritional quality 

54 and production of anti-herbivores defences, induced by heterospecific neighbours (Moreira, 

55 Abdala-Roberts, Parra-Tabla, & Mooney, 2014; Glassmire et al., 2016; Castagneyrol et al., 

56 2018). Indeed, several reviews have shown that tree diversity can promote plant productivity 

57 (Zhang, Chen, & Reich, 2012; Jactel et al., 2018), which in turn could result in reduced 

58 production of leaf chemical defences because of a trade-off between growth and defences 

59 (Herms & Mattson, 1992; Endara & Coley, 2011). Consistently, increased tree diversity was 

60 found to be associated with lower concentrations of leaf chemical defences, including 

61 polyphenols, tannins, glycosids and alkaloids (Castagneyrol et al., 2018; Muiruri et al., 2019; 

62 Rosado-Sánchez, Parra-Tabla, Betancur-Ancona, Moreira, & Abdala-Roberts, 2018; Walter et 

63 al., 2012). 

Page 3 of 36

Functional Ecology: Confidential Review copy

Functional Ecology: Confidential Review copy



4

64 Assuming that tree species traits involved in interactions with herbivores or in resource 

65 acquisition are phylogenetically conserved, greater tree phylogenetic diversity should amplify 

66 trait dissimilarity between species (Srivastava, Cadotte, MacDonald, Marushia, & Mirotchnick, 

67 2012) and hence, the magnitude of associational resistance mechanisms including the effect 

68 of tree diversity on defences. In particular, greater plant functional diversity is expected to i) 

69 extend resource concentration effects to herbivore species with wider diet breadth 

70 (Castagneyrol et al., 2014), ii) foster host-finding disruption due to the greater complexity of 

71 the visual and chemical environments (Jactel et al., 2011), and iii) increase resource use 

72 complementarity between plant species resulting in higher growth and lower defence levels. 

73 Consistently, the degree of phylogenetic or functional dissimilarity between focal plant 

74 species and their heterospecific neighbours was found to affect associational effects on 

75 herbivory, with greater impacts than plant species richness per se in most cases (Castagneyrol 

76 et al., 2014; Dinnage, 2013;Schuldt et al., 2014; Yguel et al., 2011).

77 Until now, studies on associational resistance have largely overlooked possible interactions 

78 with abiotic factors (but see Walter et al., 2012, Kambach, Kühn, Castagneyrol, & Bruelheide, 

79 2016). Yet, climate has well documented effects on herbivore activity, abundance and 

80 diversity, as well as on plant growth and the production of plant anti-herbivore defences, 

81 including leaf phenolics. This was demonstrated through both experiments (e.g. Pineau et al., 

82 2017; Bauerfriend & Fischer, 2013) and observational studies along latitudinal and elevation 

83 gradients (Kozlov, Lanta, Zverev, & Zvereva, 2015; Moreira et al., 2018a; Moreira, Galman, 

84 Francisco, Castagneyrol, & Abdala-Roberts, 2018b; Rodríguez-Castañeda, 2013; but see Moles, 

85 Bonser, Poore, Wallis, & Foley, 2011; Anstett, Chen, & Johnson, 2016). Importantly, recent 

86 studies showed an interplay between tree diversity and climatic conditions whereby climate 

87 could alter the effect of tree diversity on ecosystem processes (Castagneyrol et al., 2018; Jactel, 

88 Poeydebat, Van Halder, & Castagneyrol, 2019; Ratcliffe et al., 2017) and conversely, tree 

89 diversity could buffer the adverse effect of extreme climatic events on trees (Jactel et al., 

90 2017). Being able to account for the effect of climate is therefore a major opportunity to 

91 strengthen our understanding of the variability in the magnitude and direction of associational 

92 effects in mixed forests.

93 Using a unique network of tree diversity experiments ranging from temperate to boreal 

94 biomes (TreeDivNet; Paquette et al., 2018), we quantified insect leaf herbivory and leaf 
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95 chemical defences (phenolic compounds) in silver birch (Betula pendula) in plots with different 

96 tree species composition across twelve locations with different climates. First, we addressed 

97 the effects of tree species diversity on insect herbivory and leaf chemical defences in silver 

98 birch, asking which of tree species richness, phylogenetic diversity or their combination best 

99 explained both response variables.  We hypothesized that tree diversity was associated with 

100 lower herbivory (associational resistance) and lower chemical defence levels (due to higher 

101 complementarity and growth-defence trade-off), and that these effects were stronger when 

102 considering phylogenetic distinctiveness of the focal species instead of species richness, 

103 considering that phylogenetic diversity accounts for niche differentiation. Second, we tested 

104 whether diversity-herbivory and diversity-defences relationships depended on climate. Since 

105 there is no consensus in the available literature, we had no particular directional hypothesis 

106 regarding the influence of climate. Finally, we tested whether climate and diversity effects on 

107 insect herbivory were mediated by changes in leaf chemical defences. Our study is one of the 

108 first to investigate defence-mediated associational effects on insect herbivory in relation with 

109 the climatic context. We aimed at building toward a more comprehensive understanding of 

110 the interactive effects of tree species diversity and climate on forest resistance to insect pests.

111 Material and Methods

112 Natural history

113 The silver birch (Betula pendula Roth, Betulaceae) is a deciduous tree native to most of Europe 

114 (Beck, Caudullo, de Rigo, & Tinner, 2016) that tolerates an extremely wide range of climatic 

115 and edaphic conditions. In its native range, silver birch supports a large community of insect 

116 herbivores, especially lepidopteran and hymenopteran (i.e. sawflies) leaf chewers and miners 

117 (Beck et al., 2016; Zúbrik, Kunca, & Csóka, 2013).

118 Plot and tree selection in TreeDivNet experiments

119 TreeDivNet consists of 27 long-term tree diversity experiments specifically designed to 

120 investigate the effects of tree species diversity on forest functioning (Grossman et al., 2018). 

121 Because the experiments are globally distributed, TreeDivNet is particularly well suited to 

122 explore how tree diversity effects on herbivory vary with climate. We collected data from 

123 twelve sites belonging to six tree diversity experiments where silver birch was present (Fig. 1; 

124 Supporting Information Table S1). These sites encompassed temperate and boreal biomes of 
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125 the northern hemisphere and spanned over 17 decimal degrees in latitude, covering about 

126 half of the latitudinal span of silver birch (Beck et al., 2016). At each site, we selected silver 

127 birch monoculture plots and mixed species plots where silver birch was present. Tree species 

128 richness in those mixtures ranged from two to six species (including silver birch) and included 

129 broadleaved or coniferous species, or a mix of both. The species composition of mixture plots 

130 varied among sites. At certain sites, species composition types were replicated in two to three 

131 blocks. We randomly selected three to five birch trees in the core area of each experimental 

132 plot (i.e. avoiding border trees to limit edge effects). The final dataset was derived from 564 

133 trees planted in 157 plots.  

134

135 Figure 1. Map of the TreeDivNet experimental sites included in the study.

136 Leaf collection and damage assessment

137 Fifty leaves per birch tree were haphazardly sampled in mid-July 2017 (2014 for the three 

138 Finnish sites). We assessed insect leaf herbivory as the overall percentage of leaf area 

139 removed by three common feeding guilds of insect herbivores: chewers, miners and 

140 skeletonizers. We assigned each leaf to one of seven classes of damage: (A) 0 % of leaf area 

141 removed, (B) 1 to 5%, (C) 6 to 15%, (D) 16 to 25%, (E) 26 to 50%, (F) 51 to 75%, and (G) 76 to 

142 100%. To reduce unconscious bias in insect herbivory assessment, we split leaves from each 
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143 tree into two equal pools that were separately processed by two independent observers 

144 unaware of leaf origin. Then, we aggregated insect herbivory estimates at the tree level by 

145 averaging the median values of damage class of all leaves. In the case of the three Finnish sites 

146 (Satakunta areas 1, 2 and 3), the methodology differed slightly but was still consistent (see 

147 Muiruri et al., 2019). On average, insect herbivores damaged 3.91% (± 2.60%) of leaf area 

148 (damages ranged from 0.36 to 13.03% of leaf area; Supporting Information Table S2). We are 

149 confident that we did not underestimate herbivory by overlooking missing leaves since leaves 

150 did not start falling at the sampling time. The observed levels of insect herbivory were low and 

151 comparable with those observed in other studies on silver birch (e.g. Castagneyrol et al., 2018; 

152 Kozlov et al., 2015; Muiruri et al., 2019). 

153 Phylogenetic isolation

154 Given that tree species diversity effects on herbivores can be affected by phylogenetic 

155 dissimilarity between the tree species in the mixture, we used phylogenetic information to 

156 account for differences in tree species composition of mixed stands across the experiments 

157 (Srivastava et al., 2012). We used the phylomatic function from the brranching package in R 

158 (with tree R20120829; Chamberlain, 2018) to obtain an overall phylogenetic tree comprising 

159 the overall pool of tree species (Supporting Information Fig. S2). Node ages down to family 

160 level were derived from Magallón, Gómez-Acevedo, Sánchez-Reyes and Hernández-

161 Hernández (2015). Genus node ages were approximated by dividing the length of the edge 

162 from the family node to the tip by two. The same was subsequently done for species nodes 

163 considering edge length from the genus node to the tip. For each plot, we pruned the overall 

164 phylogenetic tree to obtain a sub-tree corresponding to the pool of tree species present in the 

165 plot. 

166 Many metrics have been developed to characterize phylogenetic diversity of a pool of species 

167 (Miller, Farine, & Trisos, 2017). Here, we computed Faith’s total phylogenetic diversity (PD, pd 

168 function in picante package; Kembel et al., 2010), mean pairwise phylogenetic distance (MPD, 

169 mpd function), mean phylogenetic distance between birch and associated species (β-MPD, 

170 comdist function) and birch evolutionary distinctiveness (ED, evol.distinct function; Redding & 

171 Mooers, 2006). PD and MPD are community-level phylogenetic diversity indices, whereas β-

172 MPD and ED are species-species indices representing the phylogenetic isolation of silver birch 

173 from other tree species present in each plot. ED was eventually preferred to other 
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174 phylogenetic diversity metrics because it was less correlated with species richness (Supporting 

175 Information Fig. S1).

176 Climate data

177 We extracted mean annual temperature and total annual rainfall averaged over the 1979-

178 2013 period (hereafter referred to as “temperature” and “rainfall” respectively) for each study 

179 site using the Climatologies at High resolution for the Earth's Land Surface Areas dataset 

180 (CHELSA; Karger et al., 2017; Supporting Information Fig. S4a). In the ORPHEE experiment, half 

181 of the plots were located in irrigated blocks sprinkled with 3 mm of water per night from May 

182 to October. An annual surplus of 552 mm was thus added to the rainfall amount obtained 

183 from the CHELSA database in these plots. To account for this additional irrigation treatment, 

184 data collected in the ORPHEE experiment were considered as data from two distinct sites 

185 (irrigated vs non-irrigated). Overall, our network of tree diversity experiments covered a 17° 

186 latitudinal gradient and encompassed 10°C of variation in the mean annual temperature and 

187 964 mm of variation in the annual rainfall.

188 Leaf phenolics

189 Leaf phenolics have been reported to confer resistance against insect herbivores in several 

190 tree species including birch (Forkner, Marquis, & Lill, 2004; Moreira et al., 2018b; Riipi et al., 

191 2005) and therefore represent a suitable proxy for assessing leaf chemical defences (or leaf 

192 nutritional quality to herbivores). We quantified the concentration of phenolic compounds on 

193 a subsample of five birch leaves - with little (<5%) or no damage - per tree, following a 

194 procedure based on ultra-high performance liquid chromatography (as in Moreira et al., 

195 2018b; Visakorpi, Riutta, Martinez-Bauer, Salminen, & Gripenberg, 2019). Following drying (at 

196 45°C during 72 hours) and grinding of leaves, we extracted phenolic compounds from 20 mg 

197 of powdered dry leaf tissue with 1 mL of 70% methanol in an ultrasonic bath for 15 min, 

198 followed by centrifugation (Moreira et al., 2014). We then transferred the extracts to 

199 chromatographic vials. Ultra-High-Performance Liquid-Chromatograph (UHPLC Nexera LC-

200 30AD; Shimadzu) equipped with a Nexera SIL-30AC injector and one SPD-M20A UV/VIS 

201 photodiode array detector was used to perform the chromatographic analyses. The 

202 compound separation was carried out on a Kinetex™ 2.6 µm C18 82-102 Å, LC Column 100 × 

203 4.6 mm, protected with a C18 guard cartridge. The flow rate was 0.4 mL min-1 and the oven 
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204 temperature was set at 25°C. The mobile phase consisted of two solvents: water-formic acid 

205 (0.05%) (A) and acetonitrile-formic acid (0.05%) (B), starting with 5% B and using a gradient to 

206 obtain 30% B at 4 min, 60% B at 10 min, 80% B at 13 min and 100 % B at 15 min. The injection 

207 volume was 3 µL. We identified four groups of phenolic compounds: flavonoids, ellagitannins 

208 and gallic acid derivates (hydrolysable tannins), proanthocyanidins (condensed tannins) and 

209 hydroxycinnamic acid (precursors to lignins). We quantified flavonoids as rutin equivalents, 

210 condensed tannins as catechin equivalents, hydrolysable tannins as gallic acid equivalents, 

211 and precursors to lignins as ferulic acid equivalents (Moreira et al., 2018a, b). Quantification 

212 of these phenolic compounds was achieved by external calibration using calibration curves at 

213 0.25, 0.5, 1, 2, and 5 μg mL-1. Total phenolic concentration was equal to 334.57 ± 107.48 mg 

214 g-1 of leaf dry matter on average and ranged from 13.51 to 775.08 mg g-1 (Supporting 

215 Information Table S3). 

216 Statistical analyses

217 First, we used linear mixed models (LMM) to test for the effects of tree species richness and 

218 birch phylogenetic distinctiveness on insect herbivory and leaf phenolic concentration (two 

219 normally distributed response variables). To test whether tree species richness, phylogenetic 

220 distinctiveness of birch or the combination of both best predicted the response variables, we 

221 built three models for each response variable with either (i) tree species richness, (ii) birch 

222 evolutionary distinctiveness (ED) or (iii) tree species richness and birch ED (main effects plus 

223 interaction) as predictors. We calculated the Akaike Information Criterion corrected for small 

224 sample size (AICc) of each model to identify the best model – with the lowest AICc - for a given 

225 response variable (Burnham & Anderson, 2002; Johnson & Omland, 2004). If the AICc 

226 difference between two models was less than two, they were considered equally likely. The 

227 best herbivory and phenolic models were used in the subsequent analyses.

228 Second, we used LMMs to test for the effects of climate on insect herbivory and leaf phenolic 

229 concentration. For each response variable, we used the full version of the best model(s) (with 

230 the lowest AICc) from the first step to which we added temperature and rainfall main effects, 

231 as well as all two- and three-ways interactions. 

232 Third, we tested whether the variability in insect herbivory was accounted for by phenolic 

233 concentration. Specifically, we included leaf phenolic concentration as a covariate in the full 
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234 model(s) from the second step. Two-ways interactions involving leaf phenolic concentration 

235 and either temperature, rainfall or tree diversity were also included in the model(s) to test for 

236 interactive effects. By comparing results of insect herbivory models without (second step) vs 

237 with leaf phenolics (third step), we tested whether the effects of tree diversity and climate on 

238 insect herbivory were mediated by changes in leaf chemical defences. That would be the case 

239 if a significant effect of tree species diversity and/or climate on insect herbivory became non-

240 significant after including leaf phenolic concentration as a covariate.

241 In the last two steps, full models were simplified following a backward selection approach, 

242 which consisted of sequentially dropping the terms with the lowest impact on model fit, 

243 starting with the highest order interactions. Model simplification was done by using log-

244 likelihood tests based on a χ² distribution with significance threshold set at α = 0.05.

245 In all models, we accounted for the hierarchical structure of data by using Plot nested within 

246 Block, nested within Site, as a random factor (i.e. 1|Site/Block/Plot in R syntax). By doing so, 

247 we accounted for the hierarchical structure of the data, as well as potential variance in the 

248 response variables arising from uncontrolled factors such as site location within birch 

249 distribution range, local soil properties, species pool, or tree planting density. Because of the 

250 nature of the TreeDivNet network, these factors were confounded with the Site. To further 

251 ensure that herbivory or defence patterns were not driven by uncontrolled factors at the site 

252 level, we regressed the residuals of the final models against latitude and climatic conditions 

253 (Supporting Information Fig. S5). We found no particular pattern in the residuals suggesting 

254 that no ‘hidden treatments’ at site level (associated with their latitudinal position) might have 

255 biased our test of diversity and climate effects.  

256 In all models, predictors were scaled and centred, which made it possible to compare the 

257 magnitude of the effects even when interaction terms were significant (Schielzeth, 2010). 

258 Collinearity among all predictors was found to be weak enough to limit inflation of the 

259 variance of estimated model parameters (variation inflation factors [VIFs] less than two). 

260 Model parameters were estimated by restricted likelihood estimation and the significance (α 

261 = 0.05) of the regression coefficients was tested with Student t-tests and Satterthwaite’s 

262 approximation for degrees of freedom. We evaluated model fit by calculating the percentage 

263 of variance explained by fixed (R²m) and by fixed plus random effects (R²c) (Nakagawa & 

264 Schielzeth, 2013). 
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265 Concentrations of all types of phenolic compounds were positively correlated with each other 

266 (Supporting Information Fig. S6), which made it inappropriate to use all phenolic types as 

267 predictors of insect herbivory in the same model (inflation of the variance of estimated model 

268 parameters). We therefore ran separate models for each type of phenolics. Concentrations of 

269 all types of phenolic compounds and concentrations of total phenolics co-varied with climate 

270 and diversity predictors, i.e. direction of effects were consistent across phenolic types (Table 

271 1; Supporting Information Table S4). We additionally summarized the information on phenols 

272 using a principal component analysis (PCA) with the concentrations of the four individual 

273 phenolic compounds (Supporting Information Fig. S7). The three first components of the PCA 

274 altogether explained 92% of the variance and the points were well homogeneously 

275 distributed. The first axis was associated with the concentrations of flavonoids and 

276 hydrolysable tannins, the second axis with the concentration of condensed tannins and the 

277 third with the concentration of lignin. Besides, PCA coordinates on the first three axes were 

278 all positively correlated with the concentration of total phenolics (Supporting Information Fig. 

279 S8). Based on these elements, we choose to present the results for total phenolic 

280 concentration only in the main text.

281 All analyses were conducted in R (version 3.5.1; R Core Development Team, 2013) with the 

282 following packages: lmerTest (Kuznetsova, Brockhoff, & Christensen, 2017), car (Fox & 

283 Weisberg, 2018), and MuMIn (Barton, 2018).

284 Results

285 Tree species diversity effects on insect herbivory and leaf phenolics

286 We found no significant effect of species richness or birch evolutionary distinctiveness (ED) 

287 per se on insect herbivory, and no interactive effect of the two diversity metrics either (Table 

288 1a). The herbivory model with species richness and the herbivory model with birch ED had the 

289 lowest AICc values, not differing by more than two units (Table 1a). These two models were 

290 thus used in the subsequent analyses while the herbivory model with both diversity metrics, 

291 which had a higher AICc value (Table 1a), was eliminated. 

292 We found a significant negative effect of birch ED on leaf phenolic such that birch leaves were 

293 less defended when birches were more phylogenetically distinct from their neighbours (Table 

294 1b). In contrast, we found a significant and positive effect of tree species richness on leaf 
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295 phenolic concentration. The phenolics model with birch ED only had a lower AICc value than 

296 the model with species richness only (Table 1b), but both of these models had higher AICc 

297 values than the model with both diversity variables included (Table 1b). Hence, the best 

298 phenolics model that was used in subsequent analyses was the model with both species 

299 richness and birch ED. 

300 Effects of climate and tree diversity on insect herbivory 

301 We found that insect herbivory on birch leaves significantly increased with increasing 

302 temperature (Fig. 2a; Table 2a) both in the model with tree species richness and in the model 

303 with birch ED. Rainfall had no significant effect on insect herbivory. 

304 The effect of tree species richness on insect herbivory was contingent upon temperature 

305 (significant species richness × temperature interaction; Table 2a). In particular, insect 

306 herbivory decreased with increasing tree species richness at low temperatures but was not 

307 affected by tree species richness at higher temperatures (Fig. 2b). In the final simplified model, 

308 tree species richness and temperature collectively explained 22% of the variability in insect 

309 herbivory (R²m = 0.22; R²c = 0.59). By contrast, there was no significant effect of the 

310 interaction between birch ED and temperature or rainfall (Table 2a). Independent effects of 

311 birch ED and temperature collectively explained 21% of the variability in insect herbivory (R²m 

312 = 0.21; R²c = 0.59).

313
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314 Figure 2. Relationships (a) between insect herbivory on silver birch leaves and mean annual 

315 temperature and (b) between insect herbivory and tree species richness for two contrasted 

316 temperature levels. The figure shows observed data (points) as well as model predictions (solid 

317 lines) and standard errors (shaded areas). In panel (a), species richness was set at a median 

318 value to compute predictions. “Warm” and “cold” temperature levels corresponded to 0.25 and 

319 0.75 quartiles of the observed temperature range, respectively.

320 Effects of climate and tree diversity on leaf phenolic concentration

321 Leaf phenolic concentration significantly increased with increasing temperature and tended 

322 to decrease with increasing rainfall but not significantly (Table 2b; Fig 3a). In addition, leaf 

323 phenolic concentration significantly increased with species richness (Table 2b; Fig. 3b) 

324 regardless of the climate (no significant interactions with rainfall or temperature). In contrast, 

325 the effect of birch ED on leaf phenolic concentration was contingent upon temperature and 

326 rainfall conditions (significant birch ED × temperature × rainfall interaction; Table 2b). 

327 Specifically, leaf phenolic concentration decreased with increasing birch phylogenetic 

328 distinctiveness independently of the temperature at low rainfall level (Fig. 3c), but decreased 

329 more markedly with increasing phylogenetic distinctiveness of birch in warm conditions only 

330 at high rainfall level (Fig. 3d). In the final simplified model, climate and tree species diversity 

331 collectively explained 46% of the variability in phenolic concentration of birch leaves (R²m = 

332 0.46; R²c = 0.67).
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333

334 Figure 3. Leaf phenolic concentration in birch leaves as a function of (a) temperature, (b) tree 

335 species richness and as a function of birch evolutionary distinctiveness (ED) for three 

336 contrasted levels of temperature under three contrasted levels of rainfall (c and d). The figure 

337 shows observed data (points) as well as model predictions (solid lines) and standard errors 

338 (shaded areas). “Warm” and “cold” temperature levels corresponded to 0.25 and 0.75 quartiles 

339 of the observed temperature range, respectively. “Low” and “high” rainfall levels corresponded 

340 to 0.25 and 0.75 quartiles of the observed rainfall range, respectively. The predictors that were 

341 not involved in the relationships shown were set at median values to compute predictions.
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342 Indirect trait-mediated effects of tree diversity and climate on herbivory

343 When we included leaf phenolic concentration as a covariate in the herbivory models – with 

344 either species richness or birch ED - we found that insect herbivory decreased with increasing 

345 leaf phenolic concentration in both cases (Table 3; Fig. 4a). In the two models, the positive 

346 effect of temperature on insect herbivory remained significant (Table 3), which indicated that 

347 the effect of temperature on insect herbivory was not mediated by leaf phenolics.

348 In the herbivory model with species richness, we found that the effect of species richness – 

349 that was contingent upon temperature – became non-significant after including leaf phenolic 

350 concentration as a covariate (Table 3), indicating that the effect of tree species richness on 

351 insect herbivory was mediated by leaf phenolics. Temperature and leaf phenolic 

352 concentration collectively explained 24% of the variability in insect herbivory (R²m = 0.24; R²c 

353 = 0.58).

354 In the herbivory model with birch ED, we found that birch ED effect on insect herbivory was 

355 contingent upon phenolic concentration in birch leaves (significant birch ED x phenolic 

356 concentration interaction, Table 3). In particular, when birch leaves had low phenolic 

357 concentration, insect herbivory decreased with increasing birch ED, while when birch leaves 

358 had high phenolic concentration insect herbivory increased with increasing birch ED (Fig. 4b). 

359 Temperature, birch ED and leaf phenolic concentration collectively explained 25% of the 

360 variability in insect herbivory (R²m = 0.25; R²c = 0.59). 

361
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362 Figure 4. Relationship (a) between insect herbivory and leaf phenolic concentration and (b) 

363 between insect herbivory and birch evolutionary distinctiveness (ED) for different levels of leaf 

364 phenolic concentration. The figure shows observed data (points) as well as model predictions 

365 (solid lines) and standard errors (shaded areas). “Low” and “high” phenolic concentration levels 

366 corresponded to 0.25 and 0.75 quartiles of the observed phenolic concentration range, 

367 respectively. The predictors that were not involved in the relationships shown were set at 

368 median values to compute predictions.

369 Discussion

370 With this study, we showed that the effect of tree species diversity on insect herbivory on 

371 silver birch leaves, i.e. associational effects, were climate-dependent and, in particular, varied 

372 with temperature. Our findings also showed that tree species diversity modified chemical 

373 defence levels in birch leaves and further suggested that such changes in leaf chemistry 

374 induced by heterospecific neighbours were partly climate-dependent. Finally, we found that 

375 associational effects were mediated by changes in defences under certain climatic conditions. 

376 Below we discuss mechanisms underlying the observed patterns.

377 Effects of tree diversity on insect herbivory are climate dependent 

378 We found no significant effects of either tree species richness or birch phylogenetic 

379 distinctiveness per se on background levels of insect herbivory on birch. In fact, we found 

380 evidence that tree diversity effects on herbivory were dependent on climate. This result could 

381 partly explain the variable effects of tree diversity on herbivory previously reported in the 

382 literature (Brezzi, Schmid, Niklaus, & Schuldt, 2017; Castagneyrol et al., 2014; Jactel, Moreira, 

383 & Castagneyrol, in press; Kambach et al., 2016; Ratcliffe et al., 2017; Schuldt et al., 2010, 2014; 

384 Vehviläinen, Koricheva, & Ruohomäki, 2007; Wein et al., 2016) including in studies focusing 

385 on birch trees (Castagneyrol et al., 2018; Haase et al., 2015; Muiruri et al., 2019; Setiawan, 

386 Vanhellemont, Baeten, Dillen, & Verheyen, 2014). Specifically, we provided evidence for 

387 changes in associational effects along the mean annual temperature gradient: associational 

388 resistance of birch to insect herbivory occurred in cold conditions whereas no associational 

389 effects could be detected in warm conditions. The mitigation of associational resistance with 
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390 increasing temperature could be due to the higher proportion of generalist (vs specialist) 

391 herbivore  species in warmer regions (Forister et al., 2015), that are less affected or even 

392 benefit from plant diversity (Castagneyrol et al., 2014). This finding might also be explained by 

393 the greater abundance and activity of herbivores in warmer climate that may in turn lower 

394 the resistance of mixed plant communities to herbivores. Supporting this view, associational 

395 resistance to the bean beetle, Callosobruchus maculatus, was found to decrease with the 

396 population density of this herbivore, likely because of conspecific avoidance behaviour 

397 (Merwin, Underwood, & Inouye, 2017; but see Fernandez-Conradi, Jactel, Hampe, Leiva, & 

398 Castagneryol, 2017). Higher herbivore density may also increase the probability for a host tree 

399 to be located and attacked, simply because proportionally more individuals will pass through 

400 the net of resistance mechanisms (e.g. resource concentration effect, host-finding disruption 

401 or predation by natural enemies), resulting in lower apparent resistance to herbivores. In 

402 support of this density-dependence hypothesis, our results showed that background insect 

403 herbivory on birch leaves, although low, markedly increased with increasing mean annual 

404 temperature (Kozlov et al., 2015; Wang et al., 2016). Several mechanisms have been proposed 

405 to explain the positive effect of temperature on herbivory, including direct effects on 

406 herbivores’ developmental rate, winter survival and activity and indirect effects through 

407 reduced plant nutritional quality inducing compensatory feeding (Bale et al., 2002; Bauerfeind 

408 & Fisher, 2013; Garibaldi, Kitzberger, & Ruggiero, 2011; Klapwijk, Ayres, Battisti, & Larsson, 

409 2012). 

410 We found no effect of rainfall on insect herbivory, neither directly nor through changes in the 

411 herbivore response to tree diversity. Yet, drought-induced water stress is known to increase 

412 tree susceptibility to defoliators (Carnicer et al., 2011; Jactel et al., 2012), and a previous study 

413 reported an increase in insect herbivory on birch under drought (Castagneyrol et al., 2018). 

414 We could not assess the effect of drought per se in the present study, and it is possible that 

415 annual rainfall does not reflect water availability to trees because of site-specific topology or 

416 edaphic conditions. Besides, ectophagous (skeletonizers and chewers) and endophagous 

417 (miners) herbivores may respond inconsistently to rainfall conditions because they live on the 

418 surface vs inside the leaves, which could also explain the absence of an overall response since 

419 we pooled the two groups. Therefore, the lack of effect of rainfall on herbivory in the present 

420 study should be interpreted with caution and this question should be further explored.
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421 Levels of leaf defences are shaped by both tree diversity and climate

422 Our results showed that tree diversity modifies leaf chemistry of focal birches – and hence 

423 their quality for herbivores. Specifically, the concentration of leaf phenolics increased with 

424 increasing tree species richness, but decreased with increasing birch evolutionary 

425 distinctiveness, used as a proxy for birch functional distinctiveness in experimental plots 

426 (Srivastava et al., 2012). Positive effect of plant species diversity on plant chemical defences 

427 have been previously reported in birch (Castagneyrol et al., 2018; Muiruri et al., 2019) and 

428 other plant species (Bustos-Segura, Poelman, Reichelt, Gershenzon, & Gols, 2017; Kostenko, 

429 Mulder, Courbois, & Bezemer, 2017; Moreira et al., 2014). The underlying mechanisms 

430 however are poorly understood and the opposing effects of species richness and functional 

431 diversity suggest they are complex. On the one hand, defence induction in richer plant 

432 community could arise in response to greater herbivory (Karban & Baldwin, 1997) due to 

433 associational susceptibility. However, herbivore-mediation of species richness effects on 

434 defences seems unlikely in our case since our results mainly report associational resistance 

435 (Fig. 2b) and we found a negative association between herbivory and defence concentration 

436 (Fig. 4a). On the other hand, it is plausible that the production of leaf phenolics reflected a 

437 trade-off between growth and defences. Indeed, assuming that ecologically important traits 

438 are phylogenetically conserved, increased allocation to growth in plots with functionally 

439 dissimilar species (e.g. through complementarity or facilitation) could lead to a concomitant 

440 reduction in defence investment (Bryant, Chapin, & Klein, 1983; Herms & Mattson, 1992). In 

441 this sense, studies have reported that experimental manipulation of resource availability (e.g. 

442 nutrients or water) can lead to concomitant and opposite modulations of growth and defence 

443 production (Gutbrodt, Dorn, & Mody, 2012; Lange et al., 2019). This process could be 

444 particularly strong in birch, a fast-growing, resource-acquisitive species. Consistently, a recent 

445 study found that tree species composition affected leaf chemistry in birch, with less defence 

446 compounds in phylogenetically more diverse mixtures (Castagneyrol et al., 2018). 

447 A meta-analysis by Koricheva, Larsson, Haukioja and Keinänen (1998) supports the view that 

448 tree diversity primarily affects the local abiotic conditions (specifically nutrient, water or light 

449 availability) and that such effects subsequently shape plant secondary chemistry. In particular, 

450 studies have demonstrated that crown illumination can affect leaf chemical composition, with 

451 shading associated with lower carbohydrate and phenol concentrations in leaves of birch trees 
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452 (Henriksson et al., 2003) and other species (Larsson, Wirén, Lundgren, & Ericsson, 1986; Mole, 

453 Ross, & Waterman, 1988). The opposing effects of tree species richness and birch phylogenetic 

454 distinctiveness on birch leaf phenolics could both relate to the relative heights or growth rates 

455 of the trees present in the plots and the light available to birch trees. Indeed, birch is a fast-

456 growing, early successional species that is expected to be more shaded in monocultures or in 

457 plots where it is present at high density (self-shading), than in mixtures where it is present at 

458 lower density and mixed with slow-growing tree species. In our study, species richness 

459 increase was correlated with the probability to include broadleaved species growing slower 

460 than birch trees and with a reduction of birch proportion (Supporting Information Figs. S2 and 

461 S3). Hence, the positive effect of species richness on leaf phenolic concentration in birch 

462 leaves might be explained by a reduction of shading in species-richer mixtures. On the 

463 opposite, the increase of birch phylogenetic distinctiveness was correlated with the 

464 proportion of fast growing coniferous (vs broadleaved) neighbours such as larches or pines 

465 (Supporting Information Figs. S2 and S3) that were generally taller than birch trees. The 

466 decrease of leaf phenolic concentration with birch phylogenetic distinctiveness could 

467 therefore result from lower light availability in plots where birch is more phylogenetically 

468 isolated (mixed with a greater proportion of conifers). However, birches are able to adapt their 

469 crown architecture to better compete with their neighbours for light acquisition (Lintunen & 

470 Kaitaniemi, 2010), therefore potentially limiting the impact of neighbours on crown 

471 illumination and leaf chemistry and explaining the relatively low phenolic concentration 

472 changes observed along tree diversity gradients. 

473 Because our study was not designed to determine the mechanisms underlying neighbour-

474 induced changes in leaf chemical defences, nor did it include tree growth or abiotic factors 

475 measurements, our lines of arguments are mostly speculative. Few studies have explicitly 

476 addressed the implication of growth-defence trade-offs in associational effects and they were 

477 inconclusive (Moreira et al., 2014; Rosado-Sánchez, Parra-Tabla, Betancur-Ancona, Moreira, 

478 & Abdala-Roberts, 2017). Future studies should specifically investigate the role that tree 

479 relative heights and architectures play in neighbour-induced changes of focal species 

480 chemistry. 

481 We found that the concentration of chemical defences increased with temperature, which 

482 contrasts with the results of previous studies on oaks and birches in temperate and boreal 

Page 19 of 36

Functional Ecology: Confidential Review copy

Functional Ecology: Confidential Review copy



20

483 biomes (Kuokkanen, Julkunen-Tiitto, Keinänen, Niemelä, & Tahvanainen, 2001; Moreira et al., 

484 2018a). Although there is ample literature on the variation of plant defences along climatic 

485 gradients, there is no consensus on the strength and direction of this relationship (Moles et 

486 al., 2011). Interestingly, we showed that climate also affected leaf phenolic concentration 

487 indirectly by modulating the tree diversity-defences relationships. Specifically, decrease in 

488 chemical defence levels of birch associated with greater tree phylogenetic diversity were 

489 stronger in warm and humid conditions. This indicates that climate and tree species 

490 composition jointly determined tree investment in chemical defences, likely through growth-

491 defence trade-offs.

492 Do leaf chemical defences mediate effects of climate and diversity on insect herbivory?

493 We found a negative relationship between leaf phenolic concentration and insect herbivory, 

494 supporting the view that these secondary metabolites act as defences against herbivores (in 

495 addition to being involved in other physiological processes; Forkner et al., 2004; Harborne & 

496 Williams, 2000). 

497 We found evidence that the effect of temperature on leaf herbivory was independent of the 

498 level of chemical defences. However, our results showed that the interactive effects of 

499 temperature and tree species richness on insect herbivory were mediated by changes in leaf 

500 chemical defence levels. This finding suggests that defence-mediated associational effects on 

501 insect herbivory are also climate-dependent. In our case, such effects were only observed in 

502 cold climates where chemical defences levels were low and where an increase in defences 

503 may have a stronger effect on background insect herbivory levels. 

504 We found that the effect of birch phylogenetic distinctiveness on herbivory varied with the 

505 levels of chemical defences in birch leaves. Specifically, associational effects shifted from 

506 resistance to susceptibility with the increase of leaf phenolics concentration. This finding 

507 suggests that mechanisms involved in birch associational resistance against herbivores, other 

508 than chemical defence, might have been at play (e.g. host-finding disruption, and resource 

509 dilution), and that an undetermined factor was simultaneously controlling the concentration 

510 of leaf chemical defences and interfering with these mechanisms. Forest structure, and more 

511 specifically relative heights of tree species, may for instance influence at the same time (i) leaf 

512 chemistry of a focal species by affecting crown illumination (Koricheva et al., 1998) and the 
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513 synthesis of photo-protective flavonoids (Agati & Tattini, 2010) and (ii) the apparency of this 

514 focal species to herbivores (Castagneyrol et al., 2019; Damien et al., 2016). In addition, 

515 nutrient availability may affect growth of trees and the concentration of carbon-based 

516 defences in leaves (Bryant et al., 1983; Koricheva et al., 1998). In turn, tree growth, as jointly 

517 determined by tree diversity (the relative competitive ability of the species) and nutrient 

518 availability, could affect apparency of the focal species to herbivores, as well as the abundance 

519 and diversity of canopy arthropods (Stone, Gehring, & Whitham, 2010) with consequences for 

520 multitrophic interactions.

521 Conclusion

522 By taking advantage of an international network of tree diversity experiments and a 

523 standardized sampling protocol, we addressed the independent and interactive effects of tree 

524 species diversity and climate on tree-herbivore interactions in temperate and boreal forests. 

525 Altogether, our findings show that insect herbivory depends on a complex interplay between 

526 tree species diversity and climatic conditions, and that diversity effects on insect herbivory are 

527 partially mediated by neighbour-induced changes in leaf chemical defences. Our findings also 

528 confirm that tree species diversity can modify leaf chemistry of a focal species – and hence its 

529 quality for herbivores - but further suggest that such neighbour-induced changes are 

530 dependent on climate. Nevertheless, our approach remains correlative in essence and the 

531 ecological mechanisms underlying such patterns need to be further elucidated. We also 

532 acknowledge that a limitation of this study is that we could not well control for the influence 

533 of the position of the sites within the distribution range of birch (e.g. marginal or central), nor 

534 for their spatial correlation, which could however influence tree-insect interactions through 

535 local adaptation processes. Future studies should be specifically designed to investigate 

536 whether diversity and climate interactively shape leaf chemistry of a focal host plant because 

537 they jointly influence resource availability and their allocation to growth vs defences by trees. 

538 Our study also supports the view that the phylogenetic or functional diversity of tree species 

539 is complementary to species richness in predicting tree-herbivore relationships, likely because 

540 it accounts for additional information relative to niche differentiation and functional 

541 dissimilarities between tree species. Finally, our findings suggest that tree diversity effects on 

542 herbivory levels should be viewed as a balance between multiple processes arising from 

543 different attributes of tree diversity (inter-specific variation of different traits). Future 
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544 research should investigate which traits of tree species drive associational effects on herbivory 

545 and address simultaneously multiple underlying mechanisms. For instance, it would be 

546 particularly interesting to explore the role of forest structure and tree spatial arrangement in 

547 associational effects, as it may be implied in both neighbour-induced changes in chemical 

548 defences through effects on individual crown illumination, as well as in focal plant apparency. 

549 Importantly, the climatic context in which plant-herbivore interactions occur should be 

550 accounted for in future studies for a better understanding of the processes at play. By doing 

551 so, the study of tree diversity effects on tree resistance to insect herbivores interactions will 

552 move toward a more predictive framework.
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805 Tables
806 Table 1. Effects of tree species diversity on (a) insect herbivory and (b) leaf phenolic concentration. Comparison of models with species richness, birch 
807 evolutionary distinctiveness (ED) or both diversity metrics as predictors. Bold predictors have a significant effect. AICc*: best (lowest) AICc. 

Random intercept effects (Variance ± sd)
Predictors Standardized 

estimate ± sd df t-
value P-value R²m (R²c) AICc

Site Block:Site Plot:Block:Site
a) Herbivory    

w/ Sp. richness 0.00 (0.57) 2322.47* 3.10 ± 1.76 0.25 ± 0.50 0.46 ± 0.68
 Intercept 3.81 ± 0.53 11.28 7.24 <0.001   
 Species richness -0.03 ± 0.09 143.74 -0.34 0.737   

w/ Birch ED 0.00 (0.57) 2322.57* 3.10 ± 1.76 0.25 ± 0.50 0.46 ± 0.68
Intercept 3.81 ± 0.53 11.28 7.25 <0.001
Birch ED 0.01 ± 0.09 122.90 0.11 0.916
w/ Sp. Richness and Birch ED 0.00 (0.57) 2328.52 3.07 ± 1.75 0.25 ± 0.50 0.45 ± 0.67

 Intercept 3.75 ± 0.53 11.42 7.12 <0.001   
 Species richness 0.01 ± 0.10 140.37 0.11 0.916   
 Birch ED 0.16 ± 0.13 128.18 1.20 0.231   

 
Sp. richness x Birch 
ED 0.27 ± 0.17 135.56 1.56 0.121   

b) Phenolics
w/ Sp. richness 0.00 (0.65) 5819.74 5930 ± 77 0 ± 0 1663 ± 41
Intercept 332.29 ± 23.67 10.09 14.04 <0.001
Species richness 4.35 ± 4.67 146.67 0.93 0.353
w/ Birch ED 0.02 (0.65) 5810.79 5953 ± 77 0 ± 0 1446 ± 38

 Intercept 331.80 ± 23.68 10.09 14.01   
 Birch ED -15.05 ± 4.71 126.40 -3.19 0.002   

w/ Sp. Richness and Birch ED 0.03 (0.65) 5798.61* 5997 ± 77 0 ± 0 1375 ± 37
Intercept 332.00 ± 23.87 10.26 13.91 <0.001
Species richness 10.74 ± 4.90 141.50 2.19 0.030
Birch ED -19.33 ± 6.87 147.95 -2.82 <0.006
Sp. richness x Birch 
ED -0.43 ± 8.98 156.27 -0.05 0.962
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809 Table 2. Effects of tree diversity, temperature and rainfall on (a) insect herbivory and (b) leaf phenolic 
810 concentration. Predictors that were excluded from the final model during simplification are not shown. 
811 Bold predictors have a significant effect.

Predictors Standardized 
estimate ± sd df t-value P-value R²m (R²c)

a) Herbivory
w/ Sp. richness 0.22 (0.59)

Intercept 3.81 ± 0.43 10.35 8.93 <0.001
Species richness -0.05 ± 0.09 142.59 -0.551 0.582
Temperature 1.21 ± 0.46 10.26 2.64 0.024
Sp. richness x Temperature 0.19 ± 0.09 135.27 2.14 0.034

Variance ± sd
Site 1.95 ± 1.40
Block:Site 0.25 ± 0.50
Plot:(Block:Site) 0.41 ± 0.64

 w/ Birch ED    0.21 (0.59)
 Intercept 3.82 ± 0.42 10.34 9.05 <0.001  
 Temperature 1.21 ± 0.45 10.24 2.68 0.023  

Variance ± sd
 Site 1.91 ± 1.38  
 Block:Site 0.25 ± 0.50  
 Plot:(Block:Site) 0.45 ± 0.67  
b) Phenolics w/ Sp. Richness and Birch ED 0.46 (0.67)

Intercept 327.30 ± 13.30 6.89 24.62 <0.001
Species richness 11.47 ± 4.39 148.33 2.61 0.010
Birch ED -13.37 ± 5.16 140.89 -2.59 0.011
Temperature 53.06 ± 14.32 6.82 3.71 0.008
Rainfall -31.14 ± 13.33 6.83 -2.34 0.053
Birch ED x Temperature -8.84 ± 4.89 124.77 -1.81 0.073
Birch ED x Rainfall -5.15 ± 4.75 131.52 -1.09 0.280
Temp. x Rainfall 29.79 ± 12.72 6.72 2.34 0.053
Birch ED x Temp. x Rainfall -13.22 ± 4.15 121.02 -3.19 0.002

Variance ± sd
Site 1586.60 ± 39.82
Block:Site 0.00 ± 0.00

 Plot:(Block:Site) 993.60 ± 31.52  
812
813
814
815
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816 Table 3. Effects of leaf phenolic concentration on insect herbivory as a covariate of tree diversity, 
817 temperature and rainfall. Predictors that were excluded from the final model during simplification are 
818 not shown. Bold predictors have a significant effect.

Predictors Standardized 
estimate ± sd df t-value P-value R²m (R²c)

Herbivory w/ Sp. Richness 0.24 (0.58)
Intercept 3.96 ± 0.43 9.30 9.20 <0.001
Temperature 1.41 ± 0.45 9.57 3.15 0.011
Phenolics -0.29 ± 0.12 466.99 -2.39 0.017

Variance ± sd
Site 1.77 ± 1.33
Block:Site 0.30 ± 0.55

 Plot:(Block:Site) 0.42 ± 0.65
Herbivory w/ Birch ED 0.25 (0.59)

Intercept 3.99 ± 0.44 9.29 9.11 <0.001
Birch ED 0.02 ± 0.10 111.88 0.22 0.826
Temperature 1.41 ± 0.46 9.54 3.11 0.012
Phenolics -0.25 ± 0.12 476.63 -2.04 0.042
Birch ED x Phenolics 0.23 ± 0.10 285.52 2.42 0.016

Variance ± sd
Site 1.84 ± 1.36
Block:Site 0.31 ± 0.55

 Plot:(Block:Site) 0.35 ± 0.59  
819
820
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