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Abstract

We introduce an extension of decision problems called resiliency prob-
lems. In a resiliency problem, the goal is to decide whether an instance
remains positive after any (appropriately defined) perturbation has been
applied to it. To tackle these kinds of problems, some of which might be
of practical interest, we introduce a notion of resiliency for Integer Linear
Programs (ILP) and show how to use a result of Eisenbrand and Shmonin
(Math. Oper. Res., 2008) on Parametric Linear Programming to prove
that ILP Resiliency is fixed-parameter tractable (FPT) under a certain
parameterization.

To demonstrate the utility of our result, we consider natural resiliency
variants of several concrete problems, and prove that they are FPT under
natural parameterizations. Our first results concern a four-variate prob-
lem which generalizes the Disjoint Set Cover problem and which is of
interest in access control. We obtain a complete parameterized complexity
classification for every possible combination of the parameters. Then, we
introduce and study a resiliency variant of the Closest String problem,
for which we extend an FPT result of Gramm et al. (Algorithmica, 2003).
We also consider problems in the fields of scheduling and social choice.
We believe that many other problems can be tackled by our framework.
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1 Introduction

Questions of integer linear programming (ILP) feasibility are usually answered
by finding an integral assignment of variables x satisfying Ax ≤ b. By Lenstra’s
theorem [28], this problem can be solved in O∗(f(n)) := O(f(n)LO(1)) time
and space, where f is a function of the number n of variables only, and L is
the size of the ILP. (Subsequent research has obtained an algorithm having the
above running time, with f(n) = nO(n), and using polynomial space, that is,
space LO(1) [15, 22].) In the language of parameterized complexity, this means
that ILP Feasibility is fixed-parameter tractable (FPT) parameterized by the
number of variables. Note that there are a number of parameterized problems
for which the only (known) way to prove fixed-parameter tractability is to use
Lenstra’s theorem1 [6]. For more details on this topic, we refer the reader to
[6, 8].

The notion of resiliency measures the extent to which a system can tolerate
modifications to its configuration and still satisfy given criteria. An organiza-
tion might, for example, wish to know whether it will still be able to continue
functioning, even if some of its staff become unavailable. In the language of
decision problems, we would like to know whether an instance is still positive
after any (appropriately defined) modification to the input. Intuitively, the re-
siliency variant of a problem is likely to be harder than the problem itself; a
naive algorithm would consider every allowed modification of the input, and
then decide whether a solution exists for each modification.

In this paper we introduce a framework for dealing with resiliency problems,
and study their computational complexity through the lens of fixed-parameter
tractability. We define resiliency for Integer Linear Programs by considering a
systemR of linear inequalities whose variables are partitioned into vectors x and
z. We denote by Rz all inequalities in R containing only variables from z. We
say that R is z-resilient if for any integral assignment of variables z satisfying
all inequalities of Rz, there is an integral assignment of variables x such that all
inequalities of R are satisfied. We prove in Theorem 2.3 that the obtained prob-
lem can be solved in FPT time for a suitable parameterization, using a result of
Eisenbrand and Shmonin on Parametric Integer Linear Programming [10].2 Our
approach provides a generic framework that captures many situations. Firstly,
it applies to ILP, a general and powerful model for representing many combina-
torial problems. Secondly, the resiliency part of each problem can be represented
as a whole ILP with its own variables and constraints, instead of, say, a simple
additive term. Hence, we believe that our method can be applied to many other
problems, as well as many different and intricate definitions of resiliency.

1Lenstra’s theorem allows us to prove a mainly classification result, i.e. the FPT algorithm
is unlikely to be efficient in practice. Nevertheless, Lenstra’s theorem indicates that efficient
FPT algorithms are a possibility, at least for subproblems of the problem under considerations.

2Note that the result of Eisenbrand and Shmonin is an improvement of an earlier result
of Kannan [23]. Unfortunately, Kannan’s theorem was based on an incorrect key lemma; the
proof of the theorem of Eisenbrand and Shmonin does not have this problem as it uses a
correct weaker version of the key lemma proved by Eisenbrand and Shmonin, see, e.g., [33].
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To illustrate the fact that our approach might be useful in different situa-
tions, we apply our framework to several concrete problems.3 Central among
them is the Resiliency Disjoint Set Cover problem (RDSCP) defined in
Section 3. RDSCP is a generalization of the Disjoint Set Cover problem,
and has practical applications in the context of access control [5, 29], where
an equivalent formulation of the problem is called the Resiliency Checking
problem, also given in Section 3. Given a set U of size n and a family F of m
subsets of U , the RDSCP asks whether after removing from F any subfamily
of size at most s the following property is still satisfied: there are d disjoint set
covers of U , each of size at most t.

Thus, RDSCP has five natural parameters n, m, s, d and t. Since the size
of a non-trivial instance can be bounded by a function of m only and since
in Resiliency Checking problem m is usually much larger than the other
parameters [5, 29], in this paper will only focus on parameters n, s, d and t.
Our main result, obtained using Theorem 2.3, is that RDSCP is FPT when
parameterized by n. This, together with some additional results, allow us to
determine the complexity of RDSCP (FPT, XP, W[2]-hard, para-NP-hard or
para-coNP-hard) for all combinations of the four parameters. Note that by
definition, a problem with several parameters p1, . . . , p` is the problem with one
parameter, the sum p1 + · · ·+ p` [6].

We then introduce an extension of the Closest String problem, a problem
arising in computational biology. Informally, Closest String asks whether
there exists a string that is “sufficiently close” to each member of a set of input
strings. We modify the problem so that the input strings may be unreliable –
due to transcription errors, for example – and show that this resiliency variant
of Closest String called Resiliency Closest String is FPT when pa-
rameterized by the number of input strings. Our resiliency result on Closest
String is a generalization of a result of Gramm et al. for Closest String
which was proved using Lenstra’s theorem [17]4.

We also introduce a resiliency variant of the scheduling problem of makespan
minimization on unrelated machines. We prove that this variant is FPT when
parameterized by the number of machines, the number of job types and the total
expected downtime, generalizing a result of Mnich and Wiese [32] provided the
jobs processing times are upper-bounded by a number given in unary.

Finally, we introduce a resilient swap bribery problem, from the field of
social choice, and prove that it is FPT when parameterized by the number of
candidates.

The remainder of the paper is structured in the following way. Section 2
introduces ILP resiliency and proves that it is FPT under a certain parameter-
ization. We then apply our framework to the previously mentioned problems.
We establish the fixed-parameter tractability of RDSCP parameterized by n in
Section 3 and use it to provide a parameterized complexity classification of the

3Our approach was slightly extended in [25], which allowed the authors of [25] to settle an
old conjecture in social choice theory.

4Although not being strictly the first problem proved to be FPT using Lenstra’s theorem
[38], it is considered as the one which popularized this technique [6, 8].
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problem. In Section 4, we introduce a resiliency variant of the Closest String
Problem and prove that it is FPT. We study resiliency variants of scheduling and
social choice problems in Sections 5 and 6. We conclude the paper in Section 7,
where we discuss related literature.

2 ILP resiliency

Recall that questions of ILP feasibility are typically answered by finding an
integral assignment of variables x satisfying Ax ≤ b. To save space in what
follows, we will always implicitly assume that integrality constraints are part of
every ILP of this paper.

In order to define resiliency for ILP we introduce another set z of variables,
which can be seen as “resiliency variables”. We then consider the following ILP
denoted by R:

Ax ≤ b (1)

Cx+Dz ≤ e (2)

Fz ≤ g (3)

The idea is that inequalities (1) and (2) represent the intrinsic structure of the
problem, among which inequalities (2) represent how the resiliency variables
modify the instance. Inequalities (3), finally, represent the structure of the re-
siliency part. The goal of ILP Resiliency is to decide whether R is z-resilient,
i.e. whether for any integral assignment of variables z satisfying inequalities (3),
there exists an integral assignment of variables x satisfying (1) and (2). Note
that, in general, the value of x depends on z.

In R, we will assume that all entries of matrices in the left hand sides and
vectors in the right hand sides are rational numbers. The dimensions of the
vectors x and z will be denoted by n and p, respectively, and the total number
of rows in A and C will be denoted by m. Thus, the ILP Resiliency problem
is to decide the sentence

∀z ∈ Zp : Fz ≤ g ∃x ∈ Zn : Ax ≤ b ∧ Cx+Dz ≤ e . (ResILP)

Our main result establishes that ILP Resiliency is FPT when parameter-
ized by

κ(R) := n+ p+m, (4)

provided that part of the input is given in unary. To prove our main result we
will use the work of Eisenbrand and Shmonin [10]. A polyhedron P is a set of
vectors of the form P = {x ∈ Rν : Ax ≤ b} for some matrix A ∈ Rµ×ν and some
vector b ∈ Rµ. A polyhedron is rational if A ∈ Qµ×ν and b ∈ Qµ. For a rational
polyhedron Q ⊆ Qm+p, define Q/Zp := {h ∈ Qm : ∃α ∈ Zp s.t. (h, α) ∈ Q}.
The Parametric Integer Linear Programming (PILP) problem takes as
input a rational matrix J ∈ Qm×n and a rational polyhedron Q ⊆ Rm+p, and
asks whether the following expression is true:

∀h ∈ Q/Zp ∃x ∈ Zn : Jx ≤ h .
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Eisenbrand and Shmonin [10, Theorem 4.2] proved that PILP is solvable in
polynomial time if the number of variables n+p is fixed. An interesting question
arising from their result is whether this running time is a uniform or non-uniform
polynomial algorithm [8, 26], and in particular for which parameters one can
obtain an FPT algorithm. By looking more closely at their algorithm, one can
actually obtain the following result:

Theorem 2.1 ([10, Theorem 4.2], [9]). PILP can be solved in time

O∗(f(n, p)(ϕm)g(n,p)),

where ϕ ≥ 2 is an upper bound on the encoding length of entries of J , and f
and g are some computable functions.

Complexity remark. Firstly, note that PILP belongs to the second level of
the polynomial hierarchy, and is ΠP

2 -complete [10]. Secondly, the polyhedron Q
in Theorem 2.1 can be viewed as being defined by a system Rh+Sα ≤ t, where
h ∈ Rm and α ∈ Zp.

Remark about the proof Theorem 2.1. The main ingredient required for
the proof of Theorem 2.1 is a certain “partitioning theorem” [10, Theorem 3.3]
which states that the polyhedron Q can be partitioned into t pieces with “nice”
properties, that t = O(m2nϕn−1), where ϕ is a bound on the encoding length
of the largest number appearing in the matrix J , and this partitioning can be
carried out in time polynomial in t. The main result is then obtained by, for
each piece, solving a certain mixed integer linear program whose number of
variables only depends on n. The magnitude of numbers appearing in h or the
definition of Q never enter the complexity bounds.

Corollary 2.2. If all entries of J are given in unary, then PILP is FPT when
parameterized by n+m+ p.

Proof. Assume that there is an upper bound N ≥ 2 on the absolute values of
entries of J and N is given in unary. Thus, the running time of the algorithm of
Theorem 2.1 is O∗(H(n,m, p)(logN)g(n,p)), where H(n,m, p) = f(n, p)·mg(n,p).

It is not difficult to use the Cauchy-Schwartz inequality to derive that for
all integers r, s such that 0 ≤ r ≤ s, we have (log s)r ≤ 2r

2/2so(1) [6, Exercise

3.18]. Thus, (logN)g(n,p) ≤ 2g(n,p)
2/2No(1), which concludes the proof.

We now prove the main result of our framework, which will be applied in
the next sections to concrete problems.

Theorem 2.3. ILP Resiliency is FPT when parameterized by κ(R) provided
the entries of matrices A and C are given in unary.

Proof. We will reduce ILP Resiliency to Parametric Integer Linear
Programming. Given an instance A,C,D, F, b, e, g of ILP Resiliency, let us
first define J and Q. The polyhedron Q is (m+p)-dimensional with its elements
naturally divided into two parts (h, α), with h and α being m- and p-dimensional
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vectors, respectively. We further subdivide the vector h as h = (h1, h2) with h1

and h2 being m1- and m2-dimensional vectors, respectively, where m1+m2 = m.
Let Q be defined by the (in)equalities

h1 = b

h2 = e−Dα
Fα ≤ g .

Furthermore, let Jx ≤ h consist of the following two sets of inequalities:

Ax ≤ h1

Cx ≤ h2.

Having defined Q and J we obtain a PILP instance. We now claim that
this PILP instance is a yes instance if and only if the input ILP Resiliency
instance was a yes instance. Observe that the vector h = (h1, h2) is fully
determined by the integer vector α as h1 = b and h2 = e − Dα, and because
each α satisfies Fα ≤ g, the variables α correspond exactly to the variables z
of the ILP Resiliency problem. Thus,

∀h ∈ Q/Zp ∃x ∈ Zn : Jx ≤ h
⇔ ∀α ∈ Zp s.t. (Fα ≤ g)∃x ∈ Zn : (Ax ≤ b) ∧ Cx ≤ e−Dα
⇔ ∀α ∈ Zp s.t. (Fα ≤ g)∃x ∈ Zn : (Ax ≤ b) ∧ Cx+Dα ≤ e

⇔ ∀z ∈ Zp s.t. (Fz ≤ g)∃x ∈ Zn : (Ax ≤ b) ∧ (Cx+Dz ≤ e),

where the first sentence is PILP, the second follows from the definition of Q, the
third is by a simple rearrangement Cx ≤ e −Dα ⇔ Cx + Dα ≤ e, the last is
obtained by renaming α as z and is exactly the definition of ILP Resiliency
(equation (ResILP)).

Regarding time complexity, the dimension of x is n, the dimension of α is p
and the number of inequalities of J is m1 +m2 = m, so applying Corollary 2.2
indeed yields the desired FPT algorithm.

3 Resiliency Disjoint Set Cover

The Set Cover problem is one of the classical NP-hard problems [16]. Its input
comprises a finite set U called the universe, a family5 F of m subsets of U , and
an integer t. It asks whether there is a subfamily T ⊆ F of cardinality at most t
such that ∪X∈TX = U (such a subfamily is called a set cover). We may assume
that t ≤ |U | since every set in a minimal set cover C must have an element of
U not contained in any other set of C. A natural generalization of Set Cover

5We use the term family as a synonym of multiset, i.e. a family may have multiple copies
of the same element. The operations of union, intersection and deletion on pairs F ,F ′ of
families are defined in the natural way using max{p, p′}, min{p, p′} and max{0, p−p′}, where
p and p′ are the numbers of copies of the same element in F and F ′, respectively.
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is the Disjoint Set Cover problem which takes an additional parameter d,
and asks for the existence of d disjoint set covers, each of cardinality at most t.
(Disjoint Set Cover was previously introduced in the literature [34, 35] in a
different way: find the maximum number of disjoint (arbitrary sized) set covers.
However, unlike our formulation, the previously introduced one does not extend
the Set Cover problem, where the set cover is required to be of bounded size.)

In the resiliency variant of Disjoint Set Cover studied in this paper, one
is given an integer s, and asks whether after the removal of any subfamily S ⊆ F
with |S| ≤ s, one still can find d disjoint set covers, each of size at most t (and
disjoint from S). More formally, we have the following:

Resiliency Disjoint Set Cover problem (RDSCP)
Input: A universe U , a multiset F of subsets of U , integers s, d and t.
Question: For every S ⊆ F such that |S| ≤ s, do there exist T1, . . . , Td ⊆
F \S such that for every i, j ∈ [d], we have |Ti| ≤ t,

⋃
X∈Ti X = U , and

Ti ∩ Tj = ∅ for all j 6= i?

In the above formulation of RDSCP and henceforth, for an integer p, [p] denotes
the set {1, 2, . . . , p}.

Observe that RDSCP has five natural parameters: n = |U |, m = |F|, s, d,
t. The study of Resiliency Disjoint Set Cover is motivated by a problem
arising in access control. As we mentioned earlier, we will only focus on the
parameters n, s, d and t, this choice being motivated by our application, which
we discuss in more detail in the next section.

3.1 Application of RDSCP

Access control is an important topic in computer security, and deals with the
idea of enforcing a policy that specifies which users are authorized to access a
given set of resources. Authorization policies are frequently augmented by ad-
ditional policies, articulating concerns such as separation of duty and resiliency.
The Resiliency Checking problem was introduced by Li et al. [29] and asks
whether it is always possible to form teams of users, the members of each team
collectively having access to all resources, even if some users are unavailable. It
is generally assumed that the number of users of an organization (which cor-
responds to the parameter m) is usually much larger than the set of resources
[29], hence our decision to focus on the parameters n, s, d and t.

Given a set of users V and set of resources R, an authorization policy is a
relation VR ⊆ V ×R; we say v ∈ V is authorized for a resource r if (v, r) ∈ VR.
Given an authorization policy VR ⊆ V × R, an instance of the Resiliency
Checking problem is defined by a resiliency policy res(P, s, d, t), where P ⊆ R,
s ≥ 0, d ≥ 1 and t ≥ 1. We say that VR satisfies res(P, s, d, t) if and only if for
every subset S ⊆ V of at most s users, there exist d pairwise disjoint subsets of
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users V1, . . . , Vd such that for all i ∈ [d]:

Vi ∩ S = ∅, (5)

|Vi| ≤ t and
⋃
v∈Vi

{r ∈ R s.t. (v, r) ∈ VR} ⊇ P. (6)

In other words, VR satisfies res(P, s, d, t) if we can find d disjoint groups of
users, even if up to s users are unavailable, such that each group contains no
more than t users and the users in each group are collectively authorized for the
resources in P .

Observe that there is an immediate reduction from Resiliency Checking
problem to Resiliency Disjoint Set Cover: the elements of the universe
are the resources, and the sets are in one-to-one correspondence with the users,
i.e. a set contains all resources a given user has access to. Thus, all positive
results for RDSCP imply the corresponding positive results for Resiliency
Checking problem.

3.2 The Parameterized Complexity Classification of RD-
SCP

As we observed earlier, RDSCP contains four natural parameters – n, s, d and
t. In the next two subsections we prove the results leading to the classification
of the parameterized complexity of RDSCP shown in Fig. 1. The FPT results
follow from Theorem 3.2 which is proved in Section 3.2.1. The remaining results
are obtained in Section 3.2.2.

3.2.1 Fixed-Parameter Tractability of RDSCP

In this subsection we prove that RDSCP is FPT parameterized by n. We first
introduce some notation. In the following, U,F , s, d, t will denote an input of
RDSCP, as defined previously. For all N ⊆ U , let FN = {X ∈ F : X = N}.
Notice that we may have FN = ∅ for some N ⊆ U .

Roughly speaking, the idea is that in order to construct several disjoint set
covers, it is sufficient to know how many sets were picked from FN , for every
N ⊆ U . (Observe that we may assume that a single set cover does not contain
more than one set from each FN .) We first define the set of all possible set
covers of the instance:

C =

{
{N1, . . . , Nb} : b ≤ t ∧ (Ni ⊆ U, i ∈ [b]) ∧

b⋃
i=1

Ni = U

}
.

Then, for any N ⊆ U , we denote the set of set covers involving N by CN , i.e.

CN = {c = {N1, . . . , Nbc} ∈ C : N = Ni for some i ∈ [bc]}.

Observe that since we assume t ≤ n, we have |C| = O(2n
2

).
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FPT W[2]-hard but XP para-(co)NP-hard

n, s, d, t

n, s, t n, s, d n, d, t s, d, t

n, t n, s n, d s, d s, t d, t

n s t d

Figure 1: Schema of the parameterized complexity of RDSCP. An arrow
A −→ B means that A is a larger parameter than B, in the sense that the
existence of an FPT algorithm parameterized by B implies the existence of an
FPT algorithm parameterized by A, and, conversely, any negative result param-
eterized by A implies the same negative result parameterized by B (The arrows
are provided only for parameters belonging to consecutive layers.)

We define an ILP L over the set of variables x = (xc : c ∈ C) and z = (zN :
N ⊆ U), with the following system of inequalities:∑

c∈C xc ≥ d (7)∑
N⊆U zN ≤ s (8)∑

c∈CN xc ≤ |FN | − zN for every N ⊆ U (9)

0 ≤ zN ≤ |FN | for every N ⊆ U (10)

0 ≤ xc ≤ d for every c ∈ C (11)

Recall the definition of κ(•) in (4). Observe that κ(L) is upper bounded by a
function of n only. The idea behind this model is to represent a family S of at
most s sets by variables z (by deciding how many sets to take from each family
FN , N ⊆ U), and to represent the disjoint set covers by variables x (by deciding
how many set covers will be equal to c ∈ C). Then, inequalities (9) will ensure
that the set covers do not intersect with the chosen family S. However, while
we would be able to solve L in FPT time parameterized by n by using, e.g.,
Lenstra’s ILP Theorem, the reader might realize that doing so would not solve
RDSCP directly. Nevertheless, the following result establishes the crucial link
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between the resiliency of L and RDSCP.

Lemma 3.1. The RDSCP instance is positive if and only if L is z-resilient.

Proof. Let us denote by Lz the ILP consisting only of inequalities involving
variables z, i.e. inequalities (8) and (10). Suppose first that the instance is
positive (i.e., there exist d disjoint set covers, each of size at most t and disjoint
from S, for any S ⊆ F of size at most s), and let σz be an integral assignment
for z such that σz satisfies Lz.

Let S ⊆ F be any familly constructed by picking, in an arbitrary manner,
σz(zN ) sets in FN , for each N ⊆ U . Since σz(zN ) ≤ min{s, |FN |}, this con-
struction is indeed possible. And since S is a family of at most s sets, there

exist d disjoint set covers V = {T1, . . . , Td} such that
(⋃

i∈[d] Ti
)
∩ S = ∅.

Then, for each c ∈ C, let σx(xc) be the number of set covers of U being equal
to c. Clearly we have σx(xc) ∈ {0, . . . , d} and

∑
c∈C σx(xc) = d, and thus

inequalities (7) and (11) are satisfied. Then, for all N ⊆ U , we may assume
w.l.o.g. that |Ti ∩ FN | ≤ 1 for all i ∈ {1, . . . , d}. Hence

∑
c∈CN σx(xc) equals∣∣∣(⋃i∈[d] Ti

)
∩ FN

∣∣∣, which is the number of sets of FN involved in some set cov-

ers of U . Since
(⋃

i∈[d] Ti
)
∩S = ∅, we have

∑
c∈CN σx(xc) ≤ |FN |−σz(zN ), and

thus inequalities (9) are also satisfied for every N ⊆ U . Consequently, σx ∪ σz
satisfies L.

Conversely, let us assume that L is z-resilient, and let us show that the
RDSCP is positive. To this end, let S ⊆ F , |S| ≤ s. For each N ⊆ U , define
σz(zN ) = |S ∩FN |, which is thus an integral assignment of variables z satisfying
LZ . Hence, there exists a valid assignment σx such that σz and σx satisfy L.
Then, for c = {N1, . . . , Nb} ∈ C, b ≤ t, consider a family of sets Tc, where each
T ∈ Tc consists of a set chosen arbitrarily in SNi for each i ∈ [b]. By definition
of C, each T is a set cover of size at most t. It is possible to construct the sets
{T ∈ Tc : c ∈ C} so that they satisfy the following properties:
• they are all set covers of size at most t (by construction of the set C)
• they are d many of them (guaranteed by inequalities (7))
• they are all pairwise non-intersecting, and have an empty intersection with
S (guaranteed by inequalities (9)).

In other words, the instance is positive.

Since, as we observed earlier, κ(L) is bounded by a function of n only,
combining Lemma 3.1 with Theorem 2.3, we obtain the following:

Theorem 3.2. RDSCP is FPT parameterized by n.

3.2.2 Other Results for RDSCP

First observe that RDSCP with s = 0 and d = 1 corresponds exactly to the
classical Set Cover problem, which is NP-hard and even W[2]-hard param-
eterized by the size of the set cover (i.e. t in our case). Thus, we have the
following:
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Proposition 3.3. RDSCP is W[2]-hard with parameters (s, d, t) and para-NP-
hard with parameters (s, d).

We start by proving that RDSCP is XP when parameterized by (s, d, t).

Proposition 3.4. RDSCP can be solved in time O∗(mstd(m− s)td).

Proof. There are at most
(
m
s

)
≤ ms choices for S of size s and for each such a

choice there are at most (
t

(
m− s
t

))d
≤ td(m− s)td

choices for T1, . . . , Td, with |Ti| ≤ t for all i ∈ [d]. (Indeed, there are at most

t∑
i=1

(
m− s
i

)
≤ t
(
m− s
t

)
choices for each Tj .) For each such a choice we can decide whether T1, . . . , Td
are disjoint and whether each of them is a set cover in polynomial time. Thus,
the running time of the brute-force algorithm for RDSCP can be bounded by
O∗(mstd(m− s)td). The result follows.

Despite its simplicity, this result is actually somewhat tight: we will show any
smaller parameterization leads to a para-NP-hard or para-coNP-hard problem.

We now show that the problem is coNP-hard when d = 1 and t ≥ 3 is fixed,
implying para-coNP-hardness of RDSCP parameterized by (d, t).

Theorem 3.5. If d = 1 and t ≥ 3 is fixed, then RDSCP is coNP-hard.

Proof. We reduce from the δ-Hitting Set problem, in which we are given a
ground set V = {v1, . . . , vn}, a set S = {S1, . . . , Sm} with Sj ⊆ V and |Sj | = δ
for all j ∈ [m], and an integer k; the goal is to decide whether there is a set
C ⊆ V of size at most k such that C ∩ Sj 6= ∅ for all j ∈ [m]. This problem is
known to be NP-hard for every δ ≥ 2 [16].

In order to show the claimed coNP-hardness of our problem, we will con-
struct, from an instance I = (V, S, k) of δ-Hitting Set, an instance I ′ =
(U,F , d, t, s) of RDSCP with d = 1 and t = δ + 1 such that there exists a
hitting set of size k in I iff there exists a set X ⊆ F of size at most s such that
for every set cover T ⊆ F of size at most t, we have X ∩ T 6= ∅.

Hence, let I = (V, S, k) be an instance of δ-Hitting Set defined as above.
For every j ∈ [m], fix an arbitrary ordering of Sj , which can thus be seen as a
tuple (vi1 , . . . , viδ), allowing us to define Sj [x] = vix for all x ∈ [δ].

We now define an instance I ′ of RDSCP with universe U and family F
of sets. The universe consists of three parts: U = UV ∪ US ∪ {u∗}, where
US =

⋃m
j=1 P

j with P j = {pj1, . . . , p
j
δ} for every j ∈ [m], and UV contains

one element uVQ for every subset Q of δ − 1 elements among [n]. The family

F of sets consists of two parts: F = FV ∪ FS , where FV = {sV1 , . . . , sVn } and
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FS = {sS1 , . . . , sSm}. We now define the elements in each set. For every i ∈ [n],
the set sVi consists of {pjx : j ∈ [m], x ∈ [δ] such that Sj [x] = vi} together with
all elements uVQ such that i /∈ Q. For all j ∈ [m], sSj consists of u∗ together

with US \ P j . To conclude the construction of I ′, we let t = δ + 1, d = 1, and
s = k. Clearly this reduction can be done in polynomial time (recall that δ ≥ 2
is constant). An example of the reduction is shown in Figures 2 and 3.

Figure 2: A 3-Hitting Set instance with a universe U of size 4, and 2 sets.

Figure 3: Schema of the reduction w.r.t. the instance of Figure 2. For the sake
of readability, the elements of US are replaced by their corresponding indices in
U . The color of each set of FV corresponds to its vertex in the 3-Hitting Set
instance.

We now show that there is a one-to-one correspondence between S (the sets
of the δ-Hitting Set instance) and the set covers of I ′. More precisely, we
prove the following claim:

Claim: Every set cover of I ′ of size at most t = δ + 1 is of the form Tj =
{sVi1 , . . . , s

V
iδ
, sSj }, with Sj = {vi1 , . . . , viδ}.

Proof of claim: Let T ⊆ S be of size at most t. By construction, we need at
least δ sets from FV to be able to include all elements from UV (indeed, every
set B of δ− 1 sets of FV corresponds to a subset QB of [n], and thus B is only
able to cover UV \{uVQB}), and we also need at least one set from FS to contain

u∗. Hence, |T ∩ FV | = δ and T ∩ FS = {sSj } for some j ∈ [m]. Now, notice
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that sSj contains all elements in US but P j , which implies that T ∩ SV must

contain P j . However, this can only happen if T ∩ SV = {sVi1 , . . . , s
V
iδ
}, where

Sj = {vi1 , . . . , viδ}, /

Now, if I contains a hitting set C = {vi1 , . . . , vi|C|} of size at most k, then

because of the previous claim, {sVi1 , . . . , s
V
i|C|
} intersects every set cover T of I ′,

and is of size k = s.
Conversely, if X ⊆ F is a set of size at most s intersecting every set cover

T of I ′, then observe that since, for every j ∈ [m], the set sSj only belongs to

the set cover Tj , we can assume that sSj /∈ X (if it does, we can remove this set

and replace it by any other element of Tj). Hence we have X = {sVi1 , . . . , s
V
i|X|
},

and, as previously using the above claim, {vi1 , . . . , vi|X|} is a hitting set of I of
size at most s = k, which concludes the proof.

We next settle the case of RDSCP parameterized by (s, t).

Theorem 3.6. If s = 0 and t = 4, RDSCP is NP-hard.

Proof. We reduce from the 3-Dimensional Matching problem, in which we
are given three sets X, Y and Z of n elements each, a set M ⊆ X × Y × Z
of hyperedges, and an integer k. The goal is to find M ′ ⊆ M with |M ′| ≥ k
such that for all e, e′ ∈ M ′ with e 6= e′, e = (x, y, z), e′ = (x′, y′, z′), we have
x 6= x′, y 6= y′ and z 6= z′ (in that case, we will say that these two hyperedges
are disjoint). Let X = {x1, . . . , xn}, Y = {y1, . . . , yn} Z = {z1, . . . , zn}, and
M = {e1, . . . , em}. We then define the following universe:

U = {uX1 , . . . , uXm} ∪ {uY1 , . . . , uYm} ∪ {uZ1 , . . . , uZm} ∪ {uX , uY , uZ , u∗}

The family F of sets is comprised of FX , FY , FZ and F∗, where, for all ω ∈
{X,Y, Z, ∗}, let Fω = {sω1 , . . . , sωn}. For each hyperedge ej = {xi1 , yi2 , zi3}, the
set sXi1 (resp. sYi2 , sZi3) contains uXj (resp. uYj , uZj ) and uX (resp. uY , uZ), and

the set s∗j consists of all elements but uXj , uYj , uZj , uX , uY and uZ . To conclude
the construction, which can be done in polynomial time, we set d = k (and
recall that t = 4).

First, suppose that there exists a solutionM ′ for the 3-Dimensional Match-
ing problem. Without loss of generality, assume that |M ′| = k, M ′ = {e1, . . . , ek},
and that ei = (xi, yi, zi) for all i ∈ [k] (recall that all members of M ′ are pair-
wise disjoint). Then, observe that for all i ∈ [k], the set s∗i consists of all
elements but uXi , uYi , uZi , uX , uY and uZ . However, sXi consists of uXi and uX ,
set sYi consists of uYi and uY , and set sZi is composed of uZi and uZ . Hence,
sXi ∪ sYi ∪ sZi ∪ s∗i = U , and, since all members of M ′ are pairwise disjoint, we
thus constructed d disjoint set covers of size at most 4 each.

Conversely, suppose that there exist T1, . . . , Td, pairwise disjoint subfamilies
of F such that for all i ∈ [d], we have |Ti| = 4 and

⋃
X∈Ti X = U . We first claim

that for all i ∈ [d], Ti intersects FX (resp. FY , FZ and F∗) on exactly one set.
Indeed, otherwise, since |Ti| = 4 and since all sets in FX (resp. FY , FZ , F∗) only
contains uX (resp. uY , uZ , u∗) among {uX , uY , uZ , u∗}, Ti would not be able to
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cover all U . Thus, we know that for all i ∈ [d], we have Ti = {sXi1 , s
Y
i2
, sZi3 , s

∗
i4
},

for some (i1, i2, i3, i4) ∈ [n]× [n]× [n]× [m]. We claim that (xi1 , yi2 , zi3) = ei4 .
Indeed, observe that the set s∗i4 contains all elements but uXi4 , uYi4 , uZi4 , uX , uY
and uZ . By construction, the only way for Ti to cover U is that set sXi1 (resp.

sYi2 , sZi3) contains uXi4 (resp. uYi4 , uZi4) or, in other words, that xi1 (resp. yi2 , zi3)
belongs to hyperedge ei4 . Thus, there exist k pairwise disjoint hyperedges in
M .

4 The Closest String Problem

In the Closest String problem, we are given a collection of k strings s1, . . . , sk
of length L over a fixed alphabet Σ, and a non-negative integer d. The goal is
to decide whether there exists a string s (of length L) such that dH(s, si) ≤ d
for all i ∈ [k], where dH(s, si) denotes the Hamming distance between s and si
(the number of positions in which s and si differ). If such a string exists, then
it will be called a d-closest string. The problem was first introduced by Lanctot
et al. [27] and proved to be NP-complete in [14, 27]. Gramm et al. [17] proved
that the problem is FPT when parameterized by either d or k. It is common to
represent an instance of the problem as a matrix C with k rows and L columns
(i.e. where each row is a string of the input); hence, in the following, the term
column will refer to a column of this matrix.

The motivation for studying resiliency with respect to this problem is the
introduction of experimental errors, which may change the input strings [36].
While a solution of the Closest String problem tests whether the input strings
are consistent, a resiliency variant asks whether these strings will remain consis-
tent after some small changes. In the Resiliency Closest String problem we
allow at most m changes to appear anywhere in the matrix C. Equivalently, we
ask for the existence of a closest string for all matrices C̄ which are in Hamming
distance at most m from C.

Resiliency Closest String (RCS)
Input: C, a k × L matrix of elements of Σ, d ∈ N, m ≤ kL.

Question: For every C̄, k × L matrix of elements of Σ such that the

Hamming distance of C and C ′ is at most m, does C̄ admit a d-closest
string?

As is standard, we first preprocess the instance in order to shrink the size of
the alphabet to at most k. This is easy because Hamming distance is measured
column-wise and it is thus sufficient to replace each column c ∈ Σk of C with
a column c′ ∈ [k]k satisfying ci = cj ⇔ c′i = c′j for all i, j ∈ [k], obtaining

a reduced instance matrix C ′ ∈ [k]k×L. Denote by πc the mapping satisfying
πc(i) = c′i for all i ∈ [k], and assume that πc is defined for all c ∈ [k]k even if C
does not contain any column c.

However, some caution is due because it is not immediately clear how ad-
versarial changes to C (i.e. the matrix C̄) translate to C ′. In other words,
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is C resilient if and only if C ′ is? Let us argue that it is. Observe that, for
any C̄ ∈ Σk×L, dH(C, C̄) =

∑L
`=1 dH(c`, c̄`). Now consider C ′ and a matrix

C̄ ′ ∈ [k]k×L obtained by same process, i.e. c̄′i = πc̄(i) for every column c̄
of C̄. Because for every ` ∈ [L], dH(c`, c̄`) = dH((c′)`, (c̄′)`), we have that

dH(C, C̄) =
∑L
`=1 dH(c`, c̄`) =

∑L
`=1 dH((c′)`, (c̄′)`) = dH(C ′, C̄ ′).

We continue by grouping columns into types by denoting the set of all pos-
sible columns T = [k]k. Using the observation that |T | ≤ kk, Gramm et al. [17]
proved that Closest String is FPT parameterized by k, using an ILP with a
number of variables depending on k only, and then applying Lenstra’s theorem.
Our approach builds on theirs.

Let #t be the number of columns of type t in C ′. For two types t, t̄ ∈ T
let δ(t, t̄) be their Hamming distance. Let zt,t̄, for all t, t̄ ∈ T , be a variable
meaning “how many columns of type t in C ′ are changed to type t̄ in C̄ ′” (we
allow t = t̄). Thus we have the following constraints:∑

t̄∈T

zt,t̄ = #t ∀t ∈ T (12)

∑
t,t̄∈T

δ(t, t̄)zt,t̄ ≤ m (13)

These constraints clearly capture all possible scenarios of how the input strings
can be modified in at most m places (while staying in the reduced alphabet
Σ′ = [k], but this is sufficient as argued previously). Then let #̄t be a variable
meaning “how many columns of C̄ ′ are of type t”, and let xt,ϕ represent the
number of columns of type t in C̄ ′ whose corresponding character in the solution
is set to ϕ. Finally, for every t ∈ T , let [ti 6= ϕ] be 1 if ti 6= ϕ and 0 otherwise. As
the remaining constraints correspond to our formulation of ILP Resiliency,
we have: ∑

t∈T
zt,t̄ = #̄t̄ ∀t̄ ∈ T (14)∑

ϕ∈Σ

xt,ϕ = #̄t ∀t ∈ T (15)

∑
t∈T

∑
ϕ∈Σ

[ti 6= ϕ]xt,ϕ ≤ d ∀i ∈ [k] (16)

This is the standard ILP for Closest String [17], except that #̄t are now
variables, and there exists a solution x exactly when there is a string at distance
at most d from the modified strings given by the variables #̄. Let L denote the
ILP composed of constraints (12), (13), (14), (15) and (16). Finally, let Z
denote variables zt,t̄ and #̄t for every t, t̄ ∈ T .

Lemma 4.1. The Resiliency Closest String instance is satisfiable if and
only if L is Z-resilient.

Proof. Constraints involving variables Z are (12), (13) and (14). Suppose first
that the instance is satisfiable, and let σZ be an integral assignment for Z.
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We construct C̄ ′ from C ′ by turning, in an arbitrary way, σZ(zt,t̄) columns of
type t to columns of type t̄. By constraints (12), C̄ ′ is well-defined, and by
constraints (13), the Hamming distance between C ′ and C̄ ′ is at most m. Then,
by constraint (14), matrix C̄ ′ contains σZ(#̄t) columns of type t, for every t ∈ T .
Since the instance is satisfiable, there exists a d-closest string s of C̄ ′. For t ∈ T
and ϕ ∈ Σ, define σx(xt,ϕ) to be the number of columns of type t in C̄ ′ whose
corresponding character in s is ϕ. Since, as we said previously, C̄ ′ has exactly
σZ(#̄t) columns of type t, constraint (15) is satisfied for every t ∈ T . Then,
since s is a d-closest string for C̄ ′, constraint (16) is also satisfied.

Conversely, suppose that L is Z-resilient and consider C̄ ′, a k × L matrix
with elements from Σ′ = [k] such that the Hamming distance of C ′ and C̄ ′ is
at most m. In polynomial time, we construct σZ(zt,t̄) for every t, t̄ ∈ T such
that (12) and (14) are satisfied. By definition of C̄ ′, constraint (13) is satisfied.
Thus, there exists an integral assignment σx satisfying (15) and (16). We now
construct s as a string having, for every column type t ∈ T in C̄ ′, σx(xt,ϕ)
occurrences of character ϕ, for every ϕ ∈ Σ (columns chosen arbitrarily among
those of type t in C̄ ′). Because of constraint (15), and since #̄t is the number of
columns of type t in C̄ ′, s is well-defined. Finally, observe that constraint (16)
ensures that s is a d-closest string of C̄ ′, which concludes the proof.

It remains to observe that for the above system of constraints L, κ(L) is
bounded by a function of k (since |T | = O(2k log2 k)). We thus obtain the
following result:

Theorem 4.2. RCS is FPT parameterized by k.

5 Resilient Scheduling

Makespan minimization on unrelated machines is a fundamental scheduling
problem [37]. We have m machines and n jobs, and each job has a vector
of processing times with respect to the machines pj = (p1

j , . . . , p
m
j ), j ∈ [n]. If

the vectors pj and pj′ are identical for two jobs j, j′, we say these jobs are of the
same type. Here we consider the case when m and the number of types θ are
parameters and the input is given as θ numbers n1, . . . , nθ of job multiplicities
and (with a slight abuse of notation) θ vectors pt = (p1

t , . . . , p
m
t ), t ∈ [θ], of

processing times of a job of type t. A schedule is an assignment of jobs to ma-
chines. For a particular schedule, let nit be the number of jobs of type t assigned
to machine i. Then, the completion time of machine i is Ci =

∑
t∈[θ] p

i
tn
i
t and

the largest Ci is the makespan of the schedule, denoted Cmax.
The problem is long known to be NP-hard already when all machines are

identical (cf. Garey and Johnson [16, SS9]). The parameterization by θ and m
might seem very restrictive, but note that when m alone is a parameter, the
problem is W[1]-hard even when the machines are identical (i.e. the number of
types θ = 1) and the job lengths are given in unary [21]. Also, Asahiro et al. [1]
show that it is strongly NP-hard already for restricted assignment when there
is a number pj for each job such that for each machine i, pij ∈ {pj ,∞} and all
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pj ∈ {1, 2} and for every job there are exactly two machines where it can run.
Mnich and Wiese [32] proved that the problem is FPT with parameters θ and
m.

A natural way to introduce resiliency is when we consider unexpected delays
due to repairs, fixing software bugs, etc., but we have an upper bound K on
the total expected downtime. We assume that the execution of jobs can be
resumed after the machine becomes available again, but cannot be moved to
another machine, that is, we assume preemption but not migration. Under
these assumptions it is the total downtime for each machine that matters, not
when the downtime actually occurs. Given m machines, n jobs, Cmax ∈ N and
K ∈ N, we say that a scheduling instance has K-tolerant makespan Cmax if,
for every d1, . . . , dm ∈ N such that

∑m
i=1 di ≤ K, there exists a schedule where

each machine i ∈ [m] finishes by the time Cmax − di. We obtain the following
problem:

Resiliency Makespan Minimization on Unrelated Machines
Input: m machines, θ job types p1, . . . , pθ ∈ Nm, job multiplicities
n1, . . . , nθ, K ∈ N and Cmax ∈ N.
Question: Does this instance have a K-tolerant makespan Cmax ?

Let xit be a variable expressing how many jobs of type t are scheduled to
machine i. We have the following constraints, with the first constraint describing
the feasible set of delays, and the subsequent constraints guaranteeing that
every job is scheduled on some machine and that every machine finishes by time
Cmax − di:

m∑
i=1

di ≤ K (17)

m∑
i=1

xit = nt ∀t ∈ [θ] (18)

θ∑
t=1

xitp
i
t ≤ Cmax − di ∀i ∈ [m] (19)

Theorem 2.3 and the system of constraints above implies the following result
related to the above-mentioned result of Mnich and Wiese [32].

Theorem 5.1. Resiliency Makespan Minimization on Unrelated Ma-
chines is FPT when parameterized by θ and m and with pmax ≤ N , where
pmax = maxt∈[θ],i∈[m] p

i
t, for some number N given in unary.

Proof. We recall the constraints (17)–(19) and denote the system by L. We
prove that the instance is satisfiable (i.e. has a K-tolerant makespan Cmax) if
and only if L is d-resilient. Suppose first that the instance is satisfiable, and let
σd be an integral assignment of variables di satisfying constraint (17), that is, we
have delays σd(d1), . . . , σd(dm) with total delay at most K. Thus, there exists a
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schedule where each machine i ∈ [m] finishes by time Cmax with expected delay
σd(di). By defining, for every machine i ∈ [m] and every type t ∈ [θ], σx(xit)
to be the number of jobs of type t assigned to machine i, we obtain an integral
assignment for variables xit satisfying constraints (18) and (19). That is, L is
d-resilient.

Conversely, suppose that L is d-resilient, and let us consider delays d1, . . . , dm
with total delay at most K, or, equivalently, an integral assignment σd of vari-
ables d satisfying constraint (17). Since L is d-resilient, there exists an assign-
ment σx of variables xit satisfying (18) and (19). Using the same arguments
as above, there exists a schedule where each machine i ∈ [m] finishes by time
Cmax − di.

Finally, observe that κ(L) is bounded by a function of θ and m, and all
coefficients appearing in L are bounded by N given in unary (recall the definition
of κ(•) in (4)).

6 Resilient Swap Bribery

The field of computational social choice is concerned with computational prob-
lems associated with voting in elections. Swap Bribery, where the goal is to
find the cheapest way to bribe voters such that a preferred candidate wins, was
introduced by Elkind, Faliszewski and Slinko [11] who showed its NP-hardness
and has subsequently received considerable attention [13]. The problem may
serve as a model not only of actual bribery, but also many other kinds of cam-
paigning, as a better measure of the notion of “margin of victory”, or as a tool
to actually detect bribery. It is natural to consider the case where an adversar-
ial counterparty first performs their bribery which is unknown a priori, but an
estimate on its budget is known. The question becomes whether, for each such
bribery, it is possible, within a given budget, to bribe the election such that
our preferred candidate still wins. The number of candidates is a well stud-
ied parameter [2, 7]. In this section we will show that the resilient variant of
Swap Bribery with unit costs (unit costs are a common setting, cf. Dorn and
Schlotter [7]) is FPT using our framework. Let us now give formal definitions.
Elections. An election E = (C, V ) consists of a set C ofm candidates c1, . . . , cm
and a set V of voters (or votes). Each voter i is a linear order �i over the set C.
For distinct candidates a and b, we write a �i b if voter i prefers a over b. We
denote by rank(c, i) the position of candidate c ∈ C in the order �i. Without
loss of generality, assume that the preferred candidate is c1.
Swaps. Let (C, V ) be an election and let i ∈ V be a voter. A swap γ = (a, b)i
in preference order �i means to exchange the positions of a and b in �i; denote
the resulting order by �γi ; the cost of (a, b)i is πi(a, b) (in the problem studied
in this paper, we have πi(a, b) = 1 for every voter i and candidates a, b). A
swap γ = (a, b)i is admissible in �i if rank(a, i) = rank(b, i) − 1. A set Γ of
swaps is admissible in �i if they can be applied sequentially in �i, one after the
other, in some order, such that each one of them is admissible. Note that the
obtained vote, denoted by �Γ

i , is independent from the order in which the swaps
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of Γ are applied. We also extend this notation and the notion of admissibility for
applying swaps in several votes and denote it V Γ. A bribery Γ is an admissible
set of swaps and its cost is the sum of the costs of all swaps (in the unit case
studied here, the cost is simply the cardinality of Γ).
Voting rules. A voting rule R is a function that maps an election to a subset
of candidates, the set of winners. We will show our example for rules which are
scoring protocols, but following the framework of the so-called “election systems
described by linear inequalities” [7] it is easily seen that the result below holds
for many other voting rules. With a scoring protocol s = (s1, . . . , sm) ∈ Nm,
a voter i gives s1 points to their most preferred candidate, s2 points to their
second most preferred candidate and so on. The candidate with most points
wins.

Resiliency Unit Swap Bribery
Input: An election E = (C, V ) with each swap of unit cost and with a
scoring protocol s ∈ Nm, the adversary’s budget Ba, our budget B.
Question: For every adversarial bribery Γa of cost at most Ba, is there

a bribery Γ of cost at most B such that E = (C, (V Γa)Γ) is won by c1?

Theorem 6.1. Resiliency Unit Swap Bribery with a scoring protocol is
FPT when parameterized by the number of candidates m.

Proof. A standard way of looking at an election when the number of candidates
m is a parameter is as given by multiplicities of voter types: there are at most
m! total orders on C, so we count the voters and output numbers n1, . . . , nm!.
Observe that for two orders�,�′, the admissible set of swaps Γ such that�′=�Γ

is uniquely given as the set of pairs (ci, cj) for which either ci � cj ∧ cj �′ ci
or cj � ci ∧ ci �′ cj (cf. [11, Proposition 3.2]). Thus it is possible to define the
number of swaps π(i, j), for i, j ∈ [m!], required to bribe a voter of type i to
become of type j (since every swap is of unit cost, π(i, j) does not depend on
individual voters). Moreover, we can extend our notation rank(c, i) to denote
the position of c in the order of type i.

As in our approach to Resiliency Closest String, let zij , for all i, j ∈
[m!], be a variable representing the number of voters of type i bribed by the
adversary to become of type j, and let yi, i ∈ [m!], represent the election
E = (C, V Γa) after the adversarial bribery. The following constraints describe
all possible adversarial briberies and resulting elections:

m!∑
j=1

zij = ni ∀i ∈ [m!]

m!∑
i=1

zij = yj ∀j ∈ [m!]

m!∑
i=1

n∑
j=1

π(i, j)zij ≤ Ba
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The rest of the ILP is standard; variables xij will describe the second bribery
in the same way as zij and variables w will describe the election after this bribery,
on which we will impose a constraint which is satisfied when c1 is a winner:

m!∑
j=1

xij = yi ∀i ∈ [m!]

m!∑
i=1

xij = wj ∀j ∈ [m!]

m!∑
i=1

m!∑
j=1

π(i, j)xij ≤ B

m∑
k=1

∑
i:rank(c1,i)=k

wisk ≥
m∑
k=1

∑
i:rank(cj ,i)=k

wisk ∀j = 2, . . . ,m

We remark that the last constraint may be modified to contain a strict inequality
“>” which would ensure that c1 is the unique winner. Both formulations are
valid because the custom when studying bribery is to leave matters related to
tie breaking to be dealt with separately. For this reason we do not discuss
tie-breaking further.

The rest of the proof is similar to the proof of Lemma 4.1.

7 Discussion and Open Problems

For some time, Lenstra’s theorem was the only approach in parameterized al-
gorithms and complexity based on integer programming. Recently other tools
based on integer programming have been introduced: the use of Graver bases
for the n-fold integer programming problem [19], the use of ILP approaches in
kernelization [12], or, conversely, kernelization results for testing ILP feasibility
[20], and an integer quadratic programming analogue of Lenstra’s theorem [30].
Our approach is a new addition to this powerful arsenal.

However, there still remain powerful tools from the theory of integer pro-
gramming which, surprisingly, have not found applications in the design of pa-
rameterized algorithms. For one example take a result of Hemmecke, Köppe and
Weismantel [18] about 2-stage stochastic integer programming with n scenarios.
They describe an FPT algorithm (which builds on a deep structural insight) for
solving integer programs with a certain block structure and bounded coefficients.

Another important research direction is the optimality program in param-
eterized algorithms pioneered by Marx [31]. Many of the prototypical uses of
Lenstra’s algorithm lead to FPT algorithms which have a double-exponential

(i.e. 22k
O(1)

) dependency on the parameter, such as the algorithms for Clos-
est String [17] or Swap Bribery [7]. Very recently, Knop et al. [24] showed
that many of these ILP formulations have a particular format which is solvable
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exponentially faster than by Lenstra’s algorithm, thus bringing down the de-
pendency on the parameter down to single-exponential, cf. e.g. [24, Theorems 4
and 5, and Section 4.5] This leads us to wonder what is the true complexity of,
e.g., Resiliency Closest String? All we can say is that the complexity of
our algorithm is at best double-exponential but probably worse (depending on
the complexity of parametric ILP in fixed dimension). Is this the best possible,
or does a single-exponential algorithm exist?

References

[1] Yuichi Asahiro, Jesper Jansson, Eiji Miyano, Hirotaka Ono, and Kouhei
Zenmyo. Approximation algorithms for the graph orientation minimizing
the maximum weighted outdegree. In AAIM, LNCS 4508, pages 167–177,
2007.

[2] Robert Bredereck, Piotr Faliszewski, Rolf Niedermeier, Piotr Skowron, and
Nimrod Talmon. Elections with few candidates: Prices, weights, and cov-
ering problems. In ADT’15, LNCS 9346, pages 414–431, 2015.

[3] Jason Crampton, Gregory Gutin, Martin Koutecký, and Rémi Watrig-
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[25] Dusan Knop, Martin Koutecký, and Matthias Mnich. A unifying framework
for manipulation problems. In Proceedings of the 17th International Con-
ference on Autonomous Agents and MultiAgent Systems, AAMAS 2018,
Stockholm, Sweden, July 10-15, 2018, pages 256–264, 2018.

[26] Dexter C. Kozen. Theory of Computation. Springer, 2006.

[27] J. Kevin Lanctot, Ming Li, Bin Ma, Shaojiu Wang, and Louxin Zhang. Dis-
tinguishing string selection problems. In Proceedings of the Tenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’99, pages 633–642,
1999.

[28] Hendrik W. Lenstra Jr. Integer programming with a fixed number of vari-
ables. Mathematics of Operations Research, 8(4):538–548, 1983.

[29] Ninghui Li, Manesh Tripunitara, and Qihua Wang. Resiliency policies in
access control. ACM Trans. Inf. Syst. Secur., 12(4), 2009.

[30] Daniel Lokshtanov. Parameterized integer quadratic programming: Vari-
ables and coefficients. CoRR, abs/1511.00310, 2015.

[31] Dániel Marx. What’s next? future directions in parameterized complexity.
In The Multivariate Algorithmic Revolution and Beyond, pages 469–496.
Springer, 2012.

[32] Matthias Mnich and Andreas Wiese. Scheduling and fixed-parameter
tractability. Mathematical Programming, 154(1):533–562, 2014.

[33] Danny Nguyen and Igor Pak. Complexity of short Presburger arithmetic.
In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings
of STOC 2017, pages 812–820, 2017.

[34] Ashwin Pananjady, Vivek Kumar Bagaria, and Rahul Vaze. The online
disjoint set cover problem and its applications. In 2015 IEEE Conference
on Computer Communications, INFOCOM 2015, pages 1221–1229, 2015.

[35] Ashwin Pananjady, Vivek Kumar Bagaria, and Rahul Vaze. Optimally ap-
proximating the coverage lifetime of wireless sensor networks. IEEE/ACM
Trans. Netw., 25(1):98–111, 2017.

[36] Pavel Pevzner. Computational Molecular Biology: An Algorithmic Ap-
proach. MIT Press, 2000.

[37] Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer
Publishing Company, Incorporated, 3rd edition, 2008.
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