How to make 5G security a reality

Chris Mitchell
Royal Holloway, University of London

www.chrismitchell.net
Information Security Group

Agenda

• Security – a high level look
• Assurance
• Role of standards
• Issues
• The way ahead?
Information Security Group

Agenda

• Security – a high level look
• Assurance
• Role of standards
• Issues
• The way ahead?
5G security – where are we?

- Release 15 (R15) of 5G incorporates updated security features by comparison with LTE.
- R15 is ready for deployment.
- Future releases (R16, R17, …) will likely incorporate further new features.
5G security – scope I

• Like previous generations of mobile networks (GSM, 3G and LTE), 5G security protects the mobile/network link, offering:
 – fraud prevention;
 – data/voice traffic security;
 – subscriber anonymity.

• Protects against eavesdroppers (active and passive) – but not against curious or malicious operators.
5G security – scope II

• That is the standardised features stop at the network, i.e. they do not offer end-to-end security.

• This is to some extent inevitable, since the 5G standards do not cover all means of network access (either for voice or data).
5G security – novel feature

- One new feature in R15 is enhanced mobile subscriber confidentiality.
- Achieved using asymmetric encryption of permanent mobile ID using public key of ‘home network’.
- Decryption done by home network.
- This addresses the ‘IMSI catcher’ threat.
5G – architectural issues

• Main focus of R15 security is enhanced mobile broadband (eMBB), offering reduced latency and higher bandwidth.

• Very much an evolution of LTE security (as LTE was over 3G, and 3G over GSM).

• No radical new techniques.

• Real issue, as ever, is achieving the right cost/risk balance.

• Designing security is about risk management!
Agenda

- Security – a high level look
- Assurance
- Role of standards
- Issues
- The way ahead?
Need for assurance

• As our reliance on mobile networks grows, the issue of assurance becomes ever more important.

• Operators need to have confidence that infrastructure equipment implements protocols correctly and does not have vulnerabilities.

• Errors/flaws in implementation threaten availability, a key plank of security.
Historical developments

• The IT industry has decades of experience in product and system security evaluations.

• From the Orange Book in the 1980s to today’s common criteria evaluations, standardised processes exist to enable assurance to be gained in IT security products and systems (primarily for government customers).

• Evaluation of ICT products/systems is not in such a mature state.
Scalability issues

• Some current national approaches to evaluation/certification of mobile products, such as the HCSEC in the UK, are not universally applicable.

• Whilst such a national approach works for some markets, the costs are clearly non-trivial and the approach does not scale.

• A harmonised system is needed to avoid duplication of effort.
Information Security Group

Agenda

• Security – a high level look
• Assurance
• Role of standards
• Issues
• The way ahead?
Common criteria

• The multipart international standard ISO/IEC 15408 describes how common criteria (CC) evaluations should be performed.

• CC evaluations are performed against protection profiles (PPs), with the PP being specific to a type of product or system.

• Whilst the underlying ideas are key, CC evaluations are very expensive and time-consuming and are likely too heavy for mobile telecommunications systems.
Within 3GPP, the Security Assurance Methodology (SECAM) has been developed as a framework for evaluating 5G products and systems.

This methodology relies on product-specific Security Assurance Specifications (SCASs), analogous to PPs.

A wide range of SCASs are being developed.
GSMA NESAS

- In parallel, GSMA has been developing its Network Equipment Security Assurance Scheme (NESAS).
- The scheme has been piloted, and is still being developed.
Advantages of standards approach

- Once the standards are in place, they will enable equipment certifications whose basis and scope is internationally recognised.
- Individual countries might choose to accept these evaluations unchanged or could require ‘supplementary’ evaluations to address issues outside the scope of the evaluation schemes.
- In either case, this should lead to significant economies of scale for manufacturers and operators.
Information Security Group

Agenda

• Security – a high level look
• Assurance
• Role of standards
• Issues
• The way ahead?
Quantum computing – the threat

- 5G security, as defined in R15, relies on a mix of symmetric crypto (essentially the same as 4G) and asymmetric encryption.
- The current key lengths and choices of algorithm make quantum computing a genuine threat to 5G security.
Quantum computing – the reality

• However, large scale quantum computing is still years away (indeed, some question whether it will ever be a reality).
• Since the main threat is to mobile/network authentication and key establishment, there is time to replace currently used techniques.
• Advance planning is in place to enable evolution to post-quantum crypto.
Security as a cost

• Security is a cost for manufacturers and operators.

• The current 5G security features are present primarily to:
 – prevent fraudulent network use;
 – give assurance to users that their privacy is not impacted by use of a broadcast communications medium.

• The current features are present by default and do not offer operators the opportunity to charge or offer a ‘high security’ premium product.
Cost versus benefit

• As has always been the case, adding new security features will require careful cost/risk analysis.

• A good example of this is the fact that only in 5G have IMSI catchers been fully addressed.

• The (ever-decreasing) cost impact of implementing asymmetric crypto on mobile devices was finally deemed worth paying to address the IMSI catcher threat.
New security features

- R16 and later versions of the standards will provide support growing numbers of vertical applications of 5G.
- This is likely to necessitate additional security features.
- Decisions will be made on a cost versus risk basis.
Information Security Group

Agenda

• Security – a high level look
• Assurance
• Role of standards
• Issues
• The way ahead?
Limits to security

• There is only so much that can be achieved by adding security features to 5G.
• End-to-end security is likely to be something requiring security at the application layer.
• There are limits also to the levels of availability possible for mobile networks, since coverage will never be 100%.
• We need to be realistic ...
A global approach to assurance

• The industry urgently needs agreement on a unified basis for product evaluation and certification.

• This should be provided by SECAM and/or NESAS.

• However, effort is needed to ensure the standards are delivered in a timely way.
Integration with other initiatives

• The recent EU Cyber Security regulation covering an assurance framework for a wide range of IT and ICT products potentially dovetails with current 3GPP/GSMA assurance standards efforts.

• Ultimately, we (users and operators alike) all need a unified, robust and cost-effective way of gaining an appropriate level of assurance in mobile systems.