
A Formal Model for Checking
Cryptographic API Usage in JavaScript

Duncan Mitchell1 and Johannes Kinder2[0000−0002−6517−1690]

1 Department of Computer Science, Royal Holloway, University of London, UK
duncan.mitchell.2015@rhul.ac.uk

2 Research Institute CODE, Bundeswehr University Munich, Germany
johannes.kinder@unibw.de

Abstract. Modern JavaScript implementations include APIs offering
strong cryptography, but it is easy for non-expert developers to misuse
them and introduce potentially critical security bugs. In this paper, we
formalize a mechanism to rule out such bugs through runtime enforcement
of cryptographic API specifications. In particular, we construct a dynamic
variant of Security Annotations, which represent security properties of
values via type-like information. We formalize Security Annotations within
an existing JavaScript semantics and mechanize it to obtain a reference
interpreter for JavaScript with embedded Security Annotations. We
provide a specification for a fragment of the W3C WebCrypto standard
and demonstrate how this specification can reveal security vulnerabilities
in JavaScript code with the help of a case study. We define a notion of
safety with respect to Security Annotations and extend this to security
guarantees for individual programs.

1 Introduction

The standardization of cryptographic APIs in JavaScript through the W3C Web
Cryptography API, WebCrypto [31], has made strong cryptography available
to web developers. In theory, this allows non-experts to implement true end-to-
end encryption of confidential data. However, mistakes are easily made when
developers use cryptographic APIs. For example, the JavaScript snippet in
Listing 1 generates secure keys and then encrypts and signs a message before
sending it. Here, the developer made the mistake of appending a signature of the
plaintext to the message, allowing an observer to identify retransmissions of the
same message. Mistakes like this undermine the security of the overall system,
even when the implementation of the cryptographic API itself is correct.

Such mistakes are not exclusive to JavaScript, but in fact common across
languages [8,16,20]. Alas, JavaScript exacerbates the problem, due to its dynamic
nature and unconventional semantics [22], which thwart traditional analysis
techniques and offer plenty of opportunities to violate API specifications. Existing
work on JavaScript focuses on the verification of protocol implementations
through restriction to small subsets of the language [2,14]. There is currently

1 const c = window.crypto.subtle;
2 const hmac = async (msg) => {
3 const alg = { name: "HMAC", hash: {name: "SHA-256"} };
4 const key = await c.generateKey(alg, false, ["sign", "verify"]);
5 return await c.sign({ name: "HMAC" }, key, msg);
6 }
7 const enc = async (msg) => {
8 const iv = crypto.getRandomValues(new Uint8Array(12));
9 const alg = { name: "AES-GCM", iv: iv };

10 const key = c.generateKey({name: "AES-GCM",
11 length: 256}, false, ["encrypt", "decrypt"]);
12 return await { iv: iv, ct: c.encrypt(alg, key, msg) };
13 }
14 let msg = new TextEncoder().encode("my message");
15 send({ct: enc(msg), sig: hmac(msg)});

Listing 1: Application code: signing before encrypting.

little support to help non-expert developers avoid introducing critical security
bugs into applications built on full JavaScript.

In this work, we introduce a mechanism which rules out misuse of trusted
APIs in JavaScript code through runtime enforcement. We extend the concept of
Security Annotations [19], type-like tags which represent security properties, such
as whether a value is ciphertext or a cryptographic key. Security Annotations are
orthogonal to the existing type system and composable to allow for the expression
of multiple distinct security properties.

In particular, we make the following contributions:

– We formalize a runtime semantics for Security Annotations in JavaScript
by extending an existing formal semantics for a core of JavaScript, S5 [22]
(Section 4).

– We mechanize Security Annotations, building upon an existing implementa-
tion of S5. We extend this to a reference interpreter for JavaScript programs
through extending the JavaScript-to-S5 desugaring relation (Section 5).

– We provide an annotated fragment of the WebCrypto API which defines safe
usage of the API through Security Annotations. Developers can replace the
WebCrypto API with this annotated copy, which allows our mechanism to
report violations of the otherwise implicit API specifications. We demonstrate
how this approach can be used to avoid common cryptographic pitfalls by
detecting violations of security properties in a case study (Section 5.3).

– We provide safety guarantees for this Security Annotation mechanism, and
extend these to describe resulting security guarantees for programs using the
annotated WebCrypto fragment (Section 6).

2

[S-Refl]
S ≺: S

[S-Top]
S ≺: Top

[S-Trans] S1 ≺: S2 S2 ≺: S3

S1 ≺: S2

[S-Perm] S1 ∗ . . . ∗ Sn permutes R1 ∗ . . . ∗Rn
S1 ∗ . . . ∗ Sn ≺: R1 ∗ . . . ∗Rn

[S-Width]
∗n+ki=1 Si ≺: ∗

n
i=1Si

[S-Depth] for each i, S′
i ≺: Si

∗ni=1S
′
i ≺: ∗ni=1Si

Fig. 1: Hierarchical Security Annotation judgments [19].

2 Background

We begin by introducing necessary background on Security Annotations (Sec-
tion 2.1) and our underlying JavaScript semantics (Section 2.2).

2.1 Security Annotations

Security Annotations represent security properties valid on objects or values
within a program [19]. For example, the return value of a trusted key generation
API is a valid cryptographic key, so could carry an annotation CryptKey. Annota-
tions are composable: if the value has also been generated as a cryptographically
secure random value (CSRV), then it can be annotated through composition
CSRV * CryptKey, via the commutative operator ∗. Security properties are hierar-
chical: for example, PrivKey is more specific than CryptKey. Security Annotations
therefore have a notion of subannotation judgments, e.g., PrivKey ≺: CryptKey.
Combined with the composition operator, this yields a lattice of security anno-
tations. We include the rules defining this lattice in Figure 1. These judgments
follow those given in Mitchell et al. [19]; additional rules governing reflexivity,
transitivity and permutations are included for completeness. In these rules, Si are
arbitrary Security Annotations and Top is the least specific Security Annotation,
representing a lack of security properties.

Mitchell et al. [19] enforce Security Annotations statically within a small
lambda calculus. The expression v asS adds S as an annotation to v, representing
newly valid security properties. Similarly, v drop S discards S from v, using a
cut operator to remove an annotation whilst ensuring super-properties remain
valid. We cut the annotation S2 from S1 via the following definition: cut(S1, S2)
is the annotation R with (i) S1 ≺: R and (ii) R ⊀: S2 such that whenever R′
also satisfies (i) and (ii) in place of R, then R ≺: R′ and R′ ⊀: R [19].

2.2 S5: A Semantics for JavaScript

S5 [22] is a lambda calculus-like language which reflects the semantics of the strict
mode of EcmaScript 5.1 (ES5). S5 is accompanied by a desugaring function, which
takes native JavaScript source programs and translates them to S5 programs. S5

3

[E-Compat] e =⇒ e′

σΘ;E<e> → σΘ;E<e′>

[E-EnvStore] σ; e→σ σ′; e′

σΘ;E<e> → σ′Θ;E<e′>

[E-Control] e→e e′

σΘ;E<e> → σΘ;E<e′>

[E-Objects] Θ; e→Θ Θ′; e′

σΘ;E<e> → σΘ′;E<e′>

Fig. 2: The reduction relations for S5 [22].

itself is described via small-step semantics, incorporating ES5 features such as
getters, setters and eval. The language is not a complete reference implementation
for the entire standard but is tested against the official ES5 test suite.

Terms in S5 are 3-tuples comprised of an expression, e, a store σ (mapping
locations to values) and an object store Θ (mapping references to object literals);
the evaluation context is denoted E. The reduction relation → is split into four
parts dependent on which portions of the term are manipulated; their definitions
are given in Figure 2. For ease of reference, S5’s syntax is given in Appendix A;
full details of S5 are contained in the work of Politz et al [22].

3 Overview

We present an overview of our approach. First, we discuss how Security An-
notations express properties of cryptography APIs (Section 3.1). We describe,
through example, how such properties are enforced without changes to client
code (Section 3.2).

3.1 Annotating APIs with Security Annotations

We provide a thin layer of JavaScript code (a shim) which adds pre- and post-
conditions to WebCrypto APIs. Listing 2 gives an example of such a shim for the
encrypt API, which encodes the runtime specification for the API. This shim is
included directly into application code via require; line 15 redefines WebCrypto’s
encrypt. This is the only addition an application developer need make to their
codebase; the propagation of these annotations is governed by the mechanisms
formalized in Section 4. Security Annotations on arguments are checked against
the API’s preconditions, made explicit through annotation guards. Security An-
notations are then attached to return values of functions when these API calls
contain specific postconditions.

Lines 1-3 define the annotation lattice for this API; this implicitly contains
Top, which represents a lack of security properties. The syntax SecAnnS1 ∗ . . . ∗Sn

defines orthogonal annotations S1, . . . , Sn. Lines 2-3 use the syntax SecAnn S1 ∗
. . . ∗ Sn Extends S, to define new annotations S1, . . . , Sn with Si ≺: S for each i.

Security Annotations are enforced at function boundaries via arg : S, which
ensures arg meets the annotation guard S. For example, on line 8, we enforce that
if the symmetric encryption algorithm AES is selected, then the key argument

4

1 SecAnn <CSRV * Message * CryptKey>;
2 SecAnn <PrivKey * PubKey * SymKey> Extends <CryptKey>;
3 SecAnn <Plaintext * Ciphertext> Extends <Message>;
4
5 window.oldCrypto = window.crypto;
6 const encShim = async function(alg :S ["iv", <CSRV>], key, data) {
7 if (/AES/.test(alg.name)) {
8 (function(arg : <SymKey>) {})(key);
9 } else if (/RSA/.test(alg.name)) {

10 (function(arg : <PubKey>) {})(key);
11 } else { throw FailedSecurityCheck; }
12 var res = await window.oldCrypto.subtle.encrypt(alg, key, data);
13 return (cpAnn(data, res) drop <Plaintext>) as <Ciphertext>;
14 }
15 Object.defineProperty(window.crypto.subtle, "encrypt", {value: encShim});

Listing 2: An annotated shim of WebCrypto’s encrypt API.

to the function is annotated with SymKey. On line 6, :E checks that the specified
object property meets its guard. In this case, we check that the initialization
vector supplied as part of the alg object is a properly generated random value.

Postconditions are attached as annotations to return values. Encryption is
performed by the original API (line 12); annotations representing newly valid
security properties are then attached (line 13). First, cpAnn attaches all annotations
from the data argument to res: security properties of the data are not invalidated
as a result of encryption. The advantage of cpAnn is that we do not need to know
the precise annotations of data. The exception is that if data was annotated with
Plaintext (e.g., if it had been previously decrypted), we discard this annotation
via the drop operator. Finally, we attach Ciphertext to the return value via the
as operator.

3.2 Transparent Property Enforcement

The application in Listing 1 sends an encrypted, signed message across a network
via the send method (line 15). The application developer uses WebCrypto in
order to encrypt and sign this message; without our drop-in WebCrypto shim
this application will execute and the developer will be unaware of a security flaw.
Although individual wrapper functions for signing and encryption are correct,
there is a logical error that causes a security bug. In particular, a signature is
generated of the plaintext and sent alongside the corresponding ciphertext. This
undermines the security of the application: attacks against this signature can
reveal details about the underlying plaintext.

At runtime, the application builds the object to send: the ct property is
constructed by calling the developer’s enc function. This function is correct: the
array stored in iv is annotated with CSRV, the postcondition of WebCrypto’s

5

a := Atomic Annotations
S := a | S ∗ S | Top
w := str | num | true | false
w′ := null | undefined | func(x : S, . . .){e}
r := object references
l := locations
v := w<S> | r | w′

e := . . . | e as S | e drop S | cpAnn(e, e)
. . .

θ′ := {[av] str : pv, . . .}
θ := θ′<S>

σ := · | σ, l : v
Θ := · | Θ, r : θ
. . .

E′ := . . . | E′ as S | E′ drop S | cpAnn(E′, e) | cpAnn(v,E′)

Fig. 3: Syntax modifications to add Security Annotations to S5.

getRandomValues. The generateKey API, when the algorithm is symmetric (i.e., in
the case of both HMAC and AES), returns a valid symmetric key (annotated with
SymKey). The call to WebCrypto’s encrypt succeeds since each argument satisfies
the specification (Listing 2). Next, the developer calls hmac with argument the
unencrypted msg. Similarly, the key is correctly generated via the API. However,
there is an implicit precondition of sign—data to be signed must be ciphertext
to avoid common attacks against the signature revealing information about it.
By using our drop-in shim for WebCrypto, this bug is detected: since msg is not
annotated with Ciphertext an error is thrown on entry to sign, reporting the
violation to the developer.

4 Security Annotations for S5

We formalize Security Annotations within S5 [22], starting with modifications to
the syntax (Section 4.1). We describe mechanisms for manipulating annotations
(Section 4.2), runtime enforcement (Section 4.3), and their effect on the rest of
S5 (Section 4.4).

4.1 Syntax

The additions and modifications to the syntax of S5 (given in Appendix A) to
incorporate Security Annotations are contained in Figure 3. We introduce atomic

6

annotations a, which represent a single security property, and general annotations
S, which are either Top, the least specific annotation, an atomic annotation, or
the composition of two annotations, given by ∗. Annotations are only attached
to certain prevalues w. Prevalues which should not be annotated are given by w′,
values are then either references r, w<S> or w′, where w<S> is syntactic sugar
for the pair of an annotatable value w along with its corresponding Security
Annotation S. An additional modification to the syntax reflects the addition
of annotations to objects: we consider pre-objects, θ′, which form objects when
annotated with a Security Annotation S. We annotate objects directly as opposed
to their references; properties within objects are annotated in the same manner
as values. When an object is modified, previously valid security properties on
the object are no longer guaranteed: modifying an object field should alter the
annotations associated to the field, and also the annotations of the overall object.

Additional expressions, e, based on manipulating security annotations, cover
the as, drop and cpAnn constructs. We add evaluation contexts, E′, to cover these
cases, where these are built in the same manner as in S5 (see Appendix A).
Finally, enforcement of Security Annotations is added to functions via the form
func(x : S, . . .); this does not require modification of the evaluation contexts.

4.2 Coercing Security Annotations

The evaluation judgments for coercion of annotations on values and objects are
given in Figure 4, distinguished by case analysis on values. The expression v as S
upcasts v to a more specific annotation, achieved by composing the previously
valid annotation with S. Dependent on whether we treat w<S> (in [E-AsW]), or
a reference r ([E-AsR]), we make use of distinct reduction relations (Figure 2).
In the former case, [E-Compat] is used to govern the evaluation. In the latter,
[E-Objects] is used to modify the object’s annotation in the object store. Finally,
we throw an error whenever a function, null or undefined is passed to one of
these expressions treating coercion of annotations (e.g., [E-AsW’]). The case
analysis for drop are similar; v drop S downcasts v to a less specific annotation.
This is accomplished via the cut operator (Section 2.1) to prune the S from the
annotation of v. Listing 2 illustrates the use of cpAnn to ensure properties of data
are still valid after encryption by copying annotations from one value (or object)
to another. As with as, the addition of newly valid annotations does not render
previous annotations invalid, so composition unifies them; the evaluation rules
are therefore similar in structure.

4.3 Checking Security Annotations

Figure 5 codifies the enforcement of Security Annotations at function boundaries.
[E-App] governs the case when arguments meet their annotation-guards and
the function is evaluated. This rule inspects the object store (to look up object
annotations when arguments are references) and modifies the variable store (to
bind arguments to the corresponding variables); we therefore use the standard
reduction relation rather than the split components (Figure 2). To reflect the

7

[E-AsW] v = w<S>

v as S′ =⇒ w<S ∗ S′>

[E-AsR] v = r Θ(r) = θ′<R> Θ′ = Θ[r/θ′<R ∗ S′>]

Θ; v as S′ →Θ Θ′; v

[E-AsW’] v = w′

v as S =⇒ throw NotAnnotatable

[E-DropW] v = w<S>

v drop S′ =⇒ w<cut(S, S′)>

[E-DropR] v = r Θ(r) = θ′<R> Θ′ = Θ[r/θ′<cut(R,S′)>]

Θ; v drop S′ →Θ Θ′; v

[E-DropW’] v = w′

v drop S =⇒ throw NotAnnotatable

[E-CpWW] v1 = w1<S1> v2 = w2<S2>

cpAnn(v1, v2) =⇒ v2<S1 ∗ S2>

[E-CpWR] v1 = w<S1> v2 = r Θ(r) = θ′<S2> Θ′ = Θ[r/θ′<S1 ∗ S2>]

Θ; cpAnn(v1, v2)→Θ Θ′; v2

[E-CpRW] v1 = r Θ(r) = θ′<S1> v2 = w<S2>

Θ; cpAnn(v1, v2)→Θ Θ;w<S1 ∗ S2>

[E-CpRR] v1 = r1 v2 = r2 Θ(r1) = θ′1<S1> Θ(r2) = θ′2<S2>
Θ′ = Θ[r2/θ′2<S1 ∗ S2>]

Θ; cpAnn(v1, v2)→Θ Θ′; v2

[E-CpW’V] v1 = w′

cpAnn(v1, v2) =⇒ throw NotAnnotatable

[E-CpVW’] v2 = w′

cpAnn(v1, v2) =⇒ throw NotAnnotatable

Fig. 4: Judgments for coercing annotations: as, drop and cpAnn.

hierarchy of the annotation lattice, this rule bakes in subsumption, e.g., enforce-
ment of CryptKey would accept the more specific PrivKey. A common JavaScript
paradigm is for non-annotatable values, e.g., functions, to be passed as arguments;
we insist the guard for such arguments is Top, i.e., no security precondition. For
any annotatable values, w<S>, we insist S satisfies the guard S′. For references
r, we look up the corresponding object and insist the annotation meets the
guard. Direct checking of object properties and the this argument is achieved via
source-to-source rewritings, described in Section 5.2. [E-AppFail] describes what
happens when annotation-checking fails, i.e., whenever an argument carries a less
precise annotation than its guard. FailedSecurityCheck is thrown to report the
potential security vulnerability to the user, rather than simply halting evaluation.

8

[E-App] ∀i ∈ {1, . . . , n} :
(
¬(vi = w′

i) ∨ (S′
i = Top)

)
∀i ∈ {1, . . . , n} :

(
¬(vi = wi<Si>) ∨ (Si ≺: S′

i)
)

∀i ∈ {1, . . . , n} :
(
¬(vi = ri ∧Θ(r) = θ<Si>) ∨ (Si ≺: S′

i)
)

σ′ = σ, l1 : v1, . . . , ln : vn where l1 . . . ln fresh in σ, e, v1, . . . , vn
Θσ; func(x1 : S′

1, . . . , xn : S′
n){e}(v1, . . . , vn)→ Θσ′; e[x1/l1 , . . . ,

xn /ln]

[E-AppFail] ∃i ∈ {1, . . . , n} : (vi = w′
i ∧ S′

i 6= Top)
∨∃i ∈ {1, . . . , n} : (vi = wi<Si> ∧ Si ⊀: S′

i)
∨ ∃i ∈ {1, . . . , n} : (vi = ri ∧Θ(r) = θ<Si> ∧ Si ⊀: S′

i)

Θ; func(x1 : S′
1, . . . , xn : S′

n){e}(v1, . . . , vn)
=⇒ Θ; throw FailedSecurityCheck

Fig. 5: Function application with Security Annotation enforcement.

4.4 Completing S5 with Security Annotations

The rest of S5 remains largely unchanged. After object fields are manipulated,
there is no guarantee the object annotation remains valid. For example, modifying
the keyUsages field of a key object returned from the generateKey API may
undermine the security of any future operation involving the key. Any previously
valid security properties on the object can no longer be guaranteed; Top is
therefore associated as the object’s annotation. Figure 6 includes judgments for
field manipulation, including adding fields which do not exist and writable ‘shadow’
fields. These semantics are transparent to annotations to allow prevalues to govern
control flow, e.g., the configurable property must be true in [E-DeleteField].

5 Security Annotations for JavaScript

We describe the mechanization of this model (Section 5.1) and a desugaring
relation which allows the execution of JavaScript with Security Annotations3. We
discuss the annotation checking of object internals (Section 5.2) and demonstrate
its operation on a case study (Section 5.3).

5.1 Implementing Security Annotations in S5

We mechanize Security Annotations on top of the existing reference implemen-
tation of S5 [22]. Alongside object and variable stores, we maintain a third
annotation store, the lattice of valid annotations in the program. Security Annota-
tions are declared via the SecAnn and Extends expressions described in Section 3.1.
These expressions modify the annotation store to reflect additions to the lattice
and evaluate to undefined. Using an annotation prior to declaration results in
an exception. The lattice is also inspected in function application (Figure 5)
3 An accompanying implementation is available at: https://github.com/
duncan-mitchell/SecAnnRefInterpreter.

9

https://github.com/duncan-mitchell/SecAnnRefInterpreter
https://github.com/duncan-mitchell/SecAnnRefInterpreter

[E-AddField] Θ(r) = {[extensible : true<S1> . . .] str'<S2> : av, . . .} Θ; r[str<S3>] ⇓ []
pv = [config : true<Top>, enum : true<Top>, value : v,writable : true<Top>]
Θ′ = Θ[r/{[extensible : true<S1> . . .] str<S> : pv, str'<S2> : av, . . .}]

Θ; r[str<S> = v]va →Θ Θ′; v

[E-SetField] Θ(r) = {pv . . . str<S1> : [. . . value : v′,writable : true<S2>], . . .}<S>
Θ′ = Θ[r/{pv . . . str<S1> : [. . . value : v,writable : true<S2>], . . .}<Top>]

Θ; r[str<S3> = v]va →Θ Θ′; v

[E-DeleteNotFound] Θ(r) = {av str1<S′> : pv1, . . .} str 6∈ {str1, . . .}
Θ; r[delete str<S>]→Θ Θ; false<Top>

[E-DeleteFound]
Θ(r) = {av str1<S1> : pv1, . . . , str<S

′> : [. . . configurable : true<S′>, . . .], strn<Sn> : pvn, . . .}<S>
Θ′ = Θ[r/{av str1<S1> : pv1, . . . strn<Sn> : pvn, . . .}<Top>]

Θ; r[delete str<S′′>]→Θ Θ′; true<Top>

[E-ShadowField]
Θ(r) = {[extensible : true<S1> . . .] str'<S2> : av, . . .} Θ; r[str<S3>] ⇓ [. . .writable : true<S4> . . .]

pv = [config : true<Top>, enum : true<Top>, value : v,writable : true<Top>]
Θ′ = Θ[r/{[extensible : true<S1> . . .] str<S> : pv, str'<S2> : av, . . .}]

Θ; r[str<S> = v]va →Θ Θ′; v

Fig. 6: Judgments for setting, deleting and adding fields.

to compare annotations with respect to subsumption. Section 4 describes func-
tions in which each argument is checked against some annotation guard. In
implementation, we retain enforcement-free functions and do not insist every
argument has an annotation-guard. This allows reuse of existing ES5 environment
implementations described in the work of Politz et al. [22].

5.2 A Reference Interpreter for Security Annotations in JavaScript

We execute JavaScript code with Security Annotations by extending the JavaScript-
to-S5 desugaring relation. We extend the syntax of JavaScript by adding Security
Annotations and function guards, as well as the expressions as, drop, cpAnn,
SecAnn and SecAnn Extends. Our desugaring rewrites these expressions into their
S5 equivalents, which are then executed in the reference interpreter.

Checking object properties. Listing 2 demonstrates the need for checking properties
of objects. We achieve this via source-to-source rewritings at the JavaScript level;
these are simplified by an assert function

let assert = function(arg, ann){ (function(x : ann) {})(arg); }.

There are three possible cases; first, obj :S [prop, S] checks obj[prop] meets S.
We check the specified property exists, and insist it satisfies the guard S:

if (typeof obj == 'object' &&
Object.getOwnPropertyNames(obj).indexOf(prop) >= 0) {
assert(x[prop], S);

} else { throw 'FailedSecurityCheck'; }

10

Second, obj :A S checks all properties meet the guard S; to achieve this we
iterate over all object properties:

if (typeof obj == 'object') {
let props = Object.getOwnPropertyNames(obj);
for (let iter = 0; iter < props.length; iter++) {
assert(obj[props[iter]], S);

}
} else { throw 'FailedSecurityCheck'; }.

Finally, obj :E [N, S] checks at least N properties satisfy S. As before, we
iterate over object properties, counting the number that meet the guard:

if (typeof obj == 'object') {
let props = Object.getOwnPropertyNames(x), successes = 0;
for (let iter = 0; iter < props.length; iter++) {
try { assert(x[props[iter]], S); successes++; } catch (e) { };

}
if (successes < N) { throw 'FailedSecurityCheck'; }

} else { throw 'FailedSecurityCheck'; }

Checking this. Functions have an implicit this argument, the context object in
which the current code is executing. In the manner of checking object properties,
we check this via the syntax function(: S, ...) { body(); } which is rewritten
to function(...){ assert(this, S); body(); }.

5.3 Using the Reference Interpreter

We provide a reference implementation of Security Annotations for the correctness
of future implementations in native JavaScript. Our interpreter translates a subset
of Node.js programs into S5 programs; we demonstrate the scope of this reference
interpreter by describing the modifications to programs necessary for execution.
We outline how we envisage Security Annotations being used by developers to
detect security vulnerabilities through case study within our interpreter.

A client-server application. We implement a small chat application which takes
as argument a confidential message a client wishes to transmit to a server4. The
server and client negotiate a key exchange, and an encrypted copy of this message
is sent to the server, which decrypts it. We omit authentication from this case
study for simplicity of presentation. WebCrypto is not implemented in Node.js,
so we construct a synchronous mock using the Node.js crypto module.

Execution in S5. Library mocks are necessary to execute the case study in S5.
S5 does not support asynchronous code, so we construct a synchronous mock
of the networking API, net. An extension to asynchronous code is possible in
principle based on an existing formalization of JavaScript promises [18]. Second,
4 The source code for this application is available alongside the reference interpreter.

11

cryptographic operations are mocked as stub functions returning objects of the
same underlying structure. Finally, S5 programs do not take input, so we declare
process.argv to simulate this.

Completing the WebCrypto shim. Listing 3 contains an annotated shim of a
fragment of WebCrypto for use by developers. These method specifications follow
the same structure as Listing 2. getRandomValues fills the supplied array with
random values, so this array is annotated with CSRV. Despite the lack of a return,
the annotation on this array persists because the annotation is attached directly
to the object. generateKey constructs a key (or key pair) object for the supplied
algorithm; postconditions of this method are differentiated by case analysis.
deriveKey is used to compute a shared secret key from the other party’s public
key and the private key. The contract for decrypt is similar to encrypt; we do not
enforce Ciphertext against data—or that the IV is randomly generated—to allow
decryption of messages received across a network. importKey allows public keys
received across a network to be formatted for use with other WebCrypto APIs.
This API allows the upcasting of arbitrary data; however, without importKey, it
would be impossible to use WebCrypto across a network.

A security property violation. When constructing the IV, the developer ensures
that it can be encoded directly as an ASCII string. Despite correctly generating
an IV of the same size as the cipher block size (calling getRandomValues on a
Uint8Array of size 16), they reduce entropy of the IV by zeroing the top bit of
each element of this array. This causes the IV to contain only 112 bits of entropy,
less than the block size: a potential security flaw which does not visibly affect
runtime behavior. To detect such bugs, a developer includes our WebCrypto shim.
The IV is initially generated by a WebCrypto API call and annotated with CSRV;
however, the manipulation of the array drops the annotation (per [E-SetField]
in Figure 6). Since the iv property of the alg object is not annotated with CSRV,
the call to encrypt fails, FailedSecurityCheck is thrown and this security flaw
is reported to the developer. When the loss of entropy is removed, no error is
thrown; the security pre- and postconditions enforced in the shim are respected.

6 Properties of Security Annotations

We discuss safety guarantees for S5 programs with Security Annotations (Sec-
tion 6.1) and extend this to security guarantees (Section 6.2). Finally, we apply
this to prove security of our case study (Section 6.3). Throughout this section,
we assume all programs discussed terminate.

6.1 Safety Guarantees

We adopt a relatively modest notion of safety: first, a program is safe if it does
not evaluate to an exception as a result of a function argument failing to meet
the annotation guard. Second, the program should not coerce the annotation of
a non-annotatable value, e.g., null as <CSRV>. This gives us the definition:

12

1 SecAnn <CSRV * Message * CryptKey>;
2 SecAnn <PrivKey * PubKey * SymKey> Extends <CryptKey>;
3 SecAnn <Plaintext * Ciphertext> Extends <Message>;
4
5 window.oldCrypto = window.crypto;
6 let wc = window.oldCrypto.subtle;
7 const grvShim = function(arr) {
8 window.oldCrypto.getRandomValues(arr);
9 arr as <CSRV>;

10 };
11 const gkShim = async function(alg, extractable, keyUsages) {
12 let key = await wc.generateKey(alg, extractable, keyUsages);
13 if (/RSA|ECD/.test(alg.name)) {
14 key.privateKey = key.privateKey as <PrivKey * CSRV>;
15 key.publicKey = key.publicKey as <PubKey * CSRV>;
16 } else if(/AES|HMAC/.test(alg.name)) {
17 key as <SymKey * CSRV>;
18 } else { throw FailedSecurityCheck; }
19 return key;
20 };
21 const dkShim = async function(alg :S ["public", <PubKey>],
22 masterKey : <PrivKey>, derivedKeyAlg, extractable, keyUsages) {
23 let key = await wc.deriveKey(alg, masterKey, derivedKeyAlg, extractable,
24 keyUsages);
25 return (key as <SymKey>);
26 };
27 const decShim = async function(alg, key, data) {
28 if (/AES/.test(alg.name)) {
29 (function(arg : <SymKey>) {})(key);
30 } else if (/RSA/.test(alg.name)) {
31 (function(arg : <PrivKey>) {})(key);
32 } else { throw FailedSecurityCheck; }
33 var res = await wc.decrypt(alg, key, data);
34 return ((cpAnn(data, res) drop <Ciphertext>) as <Plaintext>);
35 };
36 const ikShim = async function(type, key, alg, extractable, keyUsages) {
37 let pubKey = await wc.importKey(type, key, alg, extractable, keyUsages);
38 return (pubKey as <PubKey>);
39 };
40 const wcShim = { generateKey: {value: gkShim}, deriveKey: {value: dkShim},
41 encrypt: {value: encShim}, decrypt: {value: decShim},
42 importKey: {value: ikShim}};
43 defineProperty(window.crypto, "subtle", { value: wcShim});
44 defineProperty(window.crypto, "getRandomValues", {value: grvShim});

Listing 3: An annotated shim for a fragment of the WebCrypto API.

13

Definition 1 (Annotation Safety). An S5 program is safe with respect to Security
Annotations (or, annotation safe) if the execution of the program does not result
in either a FailedSecurityCheck or NotAnnotatable exception.

Although programs in S5 are deterministic, programs in JavaScript (or any
meaningful language) are not: their execution depends on the DOM or user input.
Suppose P is a program expecting input, we extend Definition 1 as follows:

Definition 2 (Annotation Safety for Programs with Input). P, is annotation
safe if no execution of the program results in either a FailedSecurityCheck or
NotAnnotatable exception.

Consider a family of S5 programs, Π, which are deterministic and simulate input
by declaring a global variable process.argv assigned to an object containing N
fields. For each field, fi suppose there is an accompanying value vi. For each vi,
we fix a base type and range over all possible prevalues (and undefined, which
simulates a lack of input). If vi is a reference to an object, we range over all
possible objects θ. The resulting family of programs represents the space of
possible executions for P. We can therefore reformulate Definition 2:

Lemma 3. Let P be an S5 program with input and Π the family of deterministic
programs p describing all possible inputs for P. Then P is annotation safe if and
only if every program p ∈ Π is annotation safe.

Proof. By construction, each execution of P is considered as a separate deter-
ministic program P so the result is immediate.

Since this family Π is very large, we formalize safety in terms of a subset of these
programs. Let π be the set of all p ∈ Π following exactly the same sequence of
evaluation judgments. This set of S5 programs corresponds to a single control-flow
path of P : so if any p is annotation safe, so are all programs in π. Since the union
of all (clearly disjoint) possible paths π is equal to the overall family of programs
Π, we can obtain a simpler notion of safety for P:

Theorem 4. Let Π be the family of deterministic programs describing all possible
inputs for P. Consider all disjoint subsets π ⊆ Π representing single control flow
paths of P, and for each, choose a single p ∈ π. Then P is annotation safe if
and only if each p is annotation safe.

Proof. Suppose first that P is annotation safe. Then by Lemma 3, we know every
P ∈ Π is annotation safe. Since each π ⊆ Π, each p must be annotation safe as
required. For the other direction, suppose each p is annotation safe. Pick one
such p, and the subset of Π to which it belongs, π. Let p′ be some other program
in π, and suppose that p′ is not annotation safe. Then the execution of p′ results
in either a FailedSecurityCheck or NotAnnotable exception. This means that the
final evaluation judgment applied in the evaluation of p′ is either [E-AppFail],
[E-AsW’], [E-DropW’], [E-CpW’V] or [E-CpVW’]. Since p and p′ both belong
to π, they follow the same sequence of evaluation judgments. But then p is not
annotation safe, which is a contradiction. Thus each p in π is annotation safe,

14

and extending this across all disjoint subsets π of Π, each program in Π must
be annotation safe. Applying Lemma 3 again, we are done.

This result says that if any set π is not safe, then some control-flow path in
P violates the Security Annotation specification of the program, indicating a
possible security vulnerability. This description of safety requires us to find these
subsets π to obtain a guarantee. In practice, this is equivalent to enumerating
all control flow paths of a program over all types of input values and objects,
which makes our mechanism ideally suited for combination with feedback-directed
fuzzing or dynamic symbolic execution [17].

6.2 Security Guarantees

Let L be a library and L′ an annotated shim of this library; any security guarantees
are conditional on the correctness of L, e.g., that WebCrypto itself is a correct
implementation of cryptographic primitives. Let P be an S5 program which calls
L, and suppose the developer of P in-lines this annotated shim in a program
P ′ = L′;P . We assume that P does not contain any expressions which manipulate
Security Annotations. We can make the following (overapproximate) claim, which
states that the whenever P ′ is annotation safe, it respects the security properties
enforced by the Security Annotation specifications of the methods in L′.

Lemma 5. Suppose P ′ is annotation safe. Then the Security Annotation speci-
fications described in L′ are respected.

Proof. Suppose a Security Annotation specification in L′ is not respected. Then
some function precondition fails, so the judgment [E-AppFail] is evaluated,
contradicting our assumption that P ′ is annotation safe. Since P does not
involve the manipulation of Security Annotations, any annotations must be the
postconditions of an API call in L′; hence these specifications are respected.

Analogously to Section 6.1, we extend this result to programs with input:

Theorem 6. Let P be a program with input and suppose P ′ = L′;P is annotation
safe. Then the Security Annotation specifications described in L′ are respected.

Proof. This is immediate from the combination of Theorem 4 and Lemma 5.

6.3 Security Guarantees in Practice

We use Theorem 6 to describe concrete security guarantees for the case study
outlined in Section 5.3, which are conditional on the correctness of WebCrypto.
Recall that after fixing the security vulnerability involving the ASCII-encoded
IV, when a message supplied as argument, the program executes without error; if
no message is provided the application simply reports this to the user and exits.
Both control-flow paths of this program are annotation safe. Referring to the
specifications described in our WebCrypto shim (Listing 3), there are two caveats
to our claim; the first assumes the developer does not leak keying material and
the second relates to the omission of authentication from the case study.

15

Theorem 7. Suppose that: (i) neither the symmetric key nor either party’s secret
keys are leaked across the network, and (ii), an attacker impersonates neither
party. Then encrypted messages sent by the client can only be read by the server.

Proof. The application does not manipulate annotations; when executed with
a non-annotated copy of the library the program is annotation safe. As de-
scribed above, both control-flow paths of the program are annotation safe with
our annotated library in-lined, we can directly apply Theorem 6. It remains to
demonstrate the specification enforced by the annotation library. The encryption—
via AES-CBC with a 128-bit key—is secure only when the symmetric key has
been securely derived, and the IV is a block-sized CSRV (Listing 2). Our Web-
Crypto specification enforces the CSRV portion of the contract directly: calling
getRandomValues annotates the IV with CSRV (lines 7-9 of Listing 3), and this array
is not subsequently modified, the annotation check on entry to encrypt passes.

Second, the symmetric key used for AES must be shared between the two
parties secretly. The key is derived through an ECDH key exchange; both the
server and client use generateKey (lines 11-20 of Listing 3) to compute a key
pair. Public keys are exchanged, and validated it through importKey (lines 36-39).
The client supplies their private key and the server’s public key to deriveKey

(lines 21-26). Neither key has been tampered with, so the client’s key is annotated
with PrivKey and the server’s with PubKey. This satisfies the guard of deriveKey,
and so the key for AES is computed, and annotated SymKey. The provenance of
the secret key as derived from safe API calls can be confirmed, so the guard
against the key in encrypt succeeds (line 10 of Listing 2). Therefore, only someone
in possession of the private key corresponding to the server’s public key can read
the message supplied as data to this API.

7 Related Work

Checking cryptographic API Usage. Mitchell et al. [19] introduce Security Anno-
tations within a lambda calculus (discussed in Section 2.1); this paper extends
this work to JavaScript. Recent work on cryptographic API use in Android
applications shows that the majority of cryptographic bugs are due to misuse of
APIs [16]; Egele et al. [8] show that such errors are common. Nadi et al. [20] survey
usage of Java cryptographic APIs, and argue that the APIs are too low-level and
require implicit understanding of the underlying cryptographic protocols. Krüger
et al. [15] present CrySL, a domain specific language for the specification of correct
usage of cryptographic APIs, focusing on the Java Cryptography Architecture.
Our approach of encoding pre- and postconditions via security annotations on
values and objects embraces the dynamicity of JavaScript which is notoriously
difficult to statically analyze.

JavaScript analysis. While our approach is purely dynamic, various dialects
allow for the static checking of JavaScript code [6,23,7,30]. The effective use of
such static typing approaches would require modification of APIs and semantics,
e.g., prohibiting byte array indexing of Key types. Design-by-contract systems

16

for JavaScript [13] enforce program properties directly expressible within the
language. Our work focuses on security properties which cannot be directly
expressed in this manner. Previous work on cryptographic testing for JavaScript
focuses on implementations of the underlying cryptographic protocols. This work
runs parallel to our own: we assume the correctness of these implementations and
check existing usage of these APIs. Taly et al. [29] describe an automatic analysis
to ensure security-critical APIs correctly protect resources from untrusted code.
Domain-specific languages [3,14,2] have been proposed to enable verification of
bespoke implementations by cryptographic experts. Existing programs are not
amenable to this approach, since these languages are small subsets of JavaScript
without many of the common idioms and advantages of the language.

Type-based approaches for Security. Type systems for F#, such as F7 [1,4,5] and
F* [28], allow for the description of security properties of terms via dependent
types which are checked statically. Static security type systems [24] to enforce
secure information flow offer strong guarantees but have proved impractical in
the JavaScript setting. Work on JavaScript monitors for information flow [10,26]
provide mechanisms for dynamic enforcement of this in JavaScript; work on infor-
mation flow monitoring in the presence of libraries [11] extends the applicability
of monitor-based approaches. We follow a similar dynamic tag-based approach
as such approaches [10], however we adopt a fine-grained system allowing for
declassification coupled with precondition checking through annotation guards on
functions. COWL [27,12] is an information flow control system for web browsers
preventing third-party library code from leaking sensitive information, achieved
via the labeling of browser contexts.

Formalizing JavaScript. Various formalizations of JavaScript exist [25,21,9,22].
λJS [9] and its successor S5 [22] provide a small language modeling the key features
of JavaScript and have been extended to provide models for static and dynamic
analyses. S5 remains close to the minimal lambda calculus described by Mitchell
et al. [19], which allowed for a natural translation of Security Annotations.

8 Conclusions and Future Work

In this paper we described a formal model for Security Annotations in JavaScript,
a mechanism to help non-expert developers avoid introducing security-critical
bugs. We introduced a runtime semantics for Security Annotations in a core of
JavaScript and presented a reference implementation of this system. We specified
a partial fragment of the WebCrypto API in terms of Security Annotations, and
demonstrated how to use it to detect a potential security vulnerability. Finally,
we described the security guarantees offered by Security Annotations.

In future work, we plan to further develop Security Annotations as a runtime
analysis for JavaScript by implementing them as an extension for the full language
via source code instrumentation. The semantics described in this paper and
accompanying implementation serve as a reference to guide the correctness of
Security Annotations in full JavaScript.

17

References

1. J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis. Refinement
types for secure implementations. ACM Trans. Prog. Lang. Syst., 33(2):8:1–8:45,
2011.

2. K. Bhargavan, B. Blanchet, and N. Kobeissi. Verified models and reference imple-
mentations for the TLS 1.3 standard candidate. In IEEE Symp. on Security and
Privacy (S&P), 2017.

3. K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis. Defensive JavaScript – building
and verifying secure web components. In Found. of Security Analysis and Design
(FOSAD), 2014.

4. K. Bhargavan, C. Fournet, and N. Guts. Typechecking higher-order security libraries.
In Asian Symp. on Programming Languages and Systems (APLAS), 2010.

5. K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P. Strub. Implementing
TLS with verified cryptographic security. In IEEE Symp. on Security and Privacy
(S&P), 2013.

6. A. Chaudhuri, P. Vekris, S. Goldman, M. Roch, and G. Levi. Fast and precise type
checking for JavaScript. Proc. ACM Prog. Lang., 1(OOPSLA):48:1–48:30, 2017.

7. R. Chugh, D. Herman, and R. Jhala. Dependent types for JavaScript. In ACM
SIGPLAN Conf. on Object-Oriented Prog., Sys., Lang., and App. (OOPSLA), 2012.

8. M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel. An empirical study of
cryptographic misuse in android applications. In ACM SIGSAC Conf. on Comp.
and Comm. Security (CCS), 2013.

9. A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of JavaScript. In Eur.
Conf. on Object-Oriented Prog. (ECOOP), 2010.

10. D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. Jsflow: Tracking information
flow in JavaScript and its apis. In ACM Symp. on Applied Computing, 2014.

11. D. Hedin, A. Sjösten, F. Piessens, and A. Sabelfeld. A principled approach to
tracking information flow in the presence of libraries. In Principles of Security and
Trust (POST), 2017.

12. S. Heule, D. Stefan, E. Z. Yang, J. C. Mitchell, and A. Russo. IFC inside: Retrofitting
languages with dynamic information flow control. In Principles of Security and
Trust (POST), 2015.

13. M. Keil and P. Thiemann. Treatjs: Higher-order contracts for javascripts. In Eur.
Conf. on Object-Oriented Prog. (ECOOP), 2015.

14. N. Kobeissi, K. Bhargavan, and B. Blanchet. Automated verification for secure
messaging protocols and their implementations: A symbolic and computational
approach. In IEEE European Symp. on Security and Privacy (EuroS&P), 2017.

15. S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini. CrySL: Validating correct
usage of cryptographic APIs. In Eur. Conf. on Object-Oriented Prog. (ECOOP),
2018.

16. D. Lazar, H. Chen, X. Wang, and N. Zeldovich. Why does cryptographic software
fail?: A case study and open problems. In Asia-Pacific Workshop on Systems, 2014.

17. B. Loring, D. Mitchell, and J. Kinder. Sound regular expression semantics for
dynamic symbolic execution of javascript. In Proc. ACM SIGPLAN Conf. Pro-
gramming Language Design and Implementation (PLDI). ACM, 2019.

18. M. Madsen, O. Lhoták, and F. Tip. A model for reasoning about JavaScript
promises. Proc. ACM Prog. Lang., 1(OOPSLA):86:1–86:24, 2017.

19. D. Mitchell, L. T. van Binsbergen, B. Loring, and J. Kinder. Checking cryptographic
API usage with composable annotations. In ACM SIGPLAN Workshop on Partial
Evaluation and Prog. Manipulation (PEPM), 2018.

18

20. S. Nadi, S. Krüger, M. Mezini, and E. Bodden. Jumping through hoops: why do
java developers struggle with cryptography APIs? In Int. Conf. on Software Eng.
(ICSE), 2016.

21. D. Park, A. Stefănescu, and G. Roşu. Kjs: A complete formal semantics of JavaScript.
In ACM SIGPLAN Conf. on Prog. Lang. Design and Implementation (PLDI), 2015.

22. J. G. Politz, M. J. Carroll, B. S. Lerner, J. Pombrio, and S. Krishnamurthi. A
tested semantics for getters, setters, and eval in JavaScript. In Symp. on Dynamic
Languages (DLS), 2012.

23. A. Rastogi, N. Swamy, C. Fournet, G. M. Bierman, and P. Vekris. Safe & efficient
gradual typing for TypeScript. In ACM SIGPLAN-SIGACT Symp. on Principles
of Prog. Lang. (POPL), 2015.

24. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, 2003.

25. J. F. Santos, P. Maksimovic, D. Naudziuniene, T. Wood, and P. Gardner. JaVerT:
JavaScript verification toolchain. Proc. ACM Prog. Lang., 2(POPL):50:1–50:33,
2018.

26. J. F. Santos and T. Rezk. An information flow monitor-inlining compiler for securing
a core of javascript. In ICT Systems Security and Privacy Protection, 2014.

27. D. Stefan, E. Z. Yang, P. Marchenko, A. Russo, D. Herman, B. Karp, and D. Maz-
ières. Protecting users by confining javascript with COWL. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2014.

28. N. Swamy, J. Chen, C. Fournet, P. Strub, K. Bhargavan, and J. Yang. Secure
distributed programming with value-dependent types. In ACM SIGPLAN Int.
Conf. on Func. Prog. (ICFP), 2011.

29. A. Taly, Ú. Erlingsson, J. C. Mitchell, M. S. Miller, and J. Nagra. Automated
analysis of security-critical JavaScript APIs. In IEEE Symp. on Security and
Privacy (S&P), 2011.

30. P. Vekris, B. Cosman, and R. Jhala. Refinement types for TypeScript. In ACM
SIGPLAN Conf. on Prog. Lang. Design and Implementation (PLDI), 2016.

31. M. Watson. Web cryptography API. W3C recommendation, W3C, Jan. 2017.

19

A Syntax of S5

For convenience we provide the complete syntax of S5 from the work of Politz et
al. [22] in Figure 7.

r := object references
l := locations
v := null | undefined | str | num | true | false | r | func(x, ...){e}
e := v | x | l | x := e | op1(e) | op2(e, e) | e(e, ...) | e; e | let (x = e) e | if (e) {e} else {e}
| label: x e | break x e | err v | try e catch x e | try e finally e | throw e | eval(e, e)
| {ae str : pe, ...} object literals
| e[<o>] | e[<o> = e] object attributes
| e[e<a>] | e[e<a> = e] property attributes
| props(e) property names
| e[e]e | e[e = e]e | e[delete e] properties

o := class | extensible | proto | code | primval
a := writable | config | value | enum
ae := [class : e, extensible : e, proto : e, code : e, primval : e]

av := [class : v, extensible : v, proto : v, code : v, primval : v]

pe := [config : e, enum : e,value : e,writable : e] | [config : e, enum : e, get : e, set : e]

pv := [config : v, enum : v,value : v,writable : v] | [config : v, enum : v, get : v, set : v]

p := pv | []
op1 := string->num | log | prim->bool | ...
op2 := string-append | + | ÷ |>| ...
θ := {[av] str : pv, ...}
σ := · | σ, l : v
Θ := · | Θ, r : θ

Eae := [class : E′, extensible : e, proto : e, code : e, primval : e] | [class : v, extensible : E′, proto : e, code : e, primval : e]

| [class : v, extensible : v, proto : E′, code : e, primval : e] | [class : v, extensible : v, proto : v, code : E′, primval : e]

| [class : v, extensible : v, proto : v, code : v, primval : E′]

Epe := [config : E′, enum : e,value : e,writable : e] | [config : v, enum : E′,value : e,writable : e]

| [config : v, enum : v,value : E′,writable : e] | [config : v, enum : v,value : v,writable : E′]

| config : E′, enum : e, get : e, set : e] | [config : v, enum : E′, get : e, set : e]

| [config : v, enum : v, get : E′, set : e] | [config : v, enum : v, get : v, set : E′]

E′ := • | E′ := e | v := E′ | op1(E′) | op2(E′, e) | op2(v,E′) | E′(e, ...) | v(v, ..., E′, e, ...) | E′; e | v;E′ | let (x = E′) e

| if (E′) {e} else {e} | throw E′ | eval(E′, e) | eval(v,E′) | {Eae str : pe, ...} | {av str1 : pv, ..., strx : Epe, strn : pe, ...}
| E′[<o>] | E′[<o> = e] | v[<o> = E′] | E′[e<a>] | v[E′<a>] | E′[e<a> = e] | v[E′<a> = e] | v[v<a> = E′] | props(E′)

| E′[e]e | v[E′]e | v[v]E
′
| E′[delete e] | v[delete E′]

E := E′ | label : x E | break x E | try E catch e | try E finally e

F := E′ | label : x F | break x F Exception Contexts
G := E′ | tryG catch e Local Jump Contexts

Fig. 7: The syntax of S5 [22].

20

	A Formal Model for Checking Cryptographic API Usage in JavaScript

