A pilot study to elucidate effects of artificial selection by size on the zebrafish (Danio rerio) fast skeletal muscle transcriptome.
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Abstract 

Fish size is a complex trait determined by the interaction of environmental and genetic factors. While evidence exists that fish body length is determined by muscle fibre composition, the molecular basis behind body size and muscle fibre composition remains yet to be fully understood. Here we use the model zebrafish (Danio rerio) to explore the molecular mechanisms involved in muscle fibre number, muscle growth and their effect on animal size. In order to do so, we used two lines of zebrafish artificially selected by Amaral and Johnston 2012 for body length to obtain large (L) and small (S) genetic lineages. After selection animals from the L-lineage were significantly bigger in length than individuals from the S-lineage (+6.6%, +6.7% and +5.5% for standard, total and fork lengths) and had larger and more muscle fibres (+15% and +24% on average fibre area and fibre number respectively) with individuals from S-lineage showing a higher fibre density (+17%). RNAseq analysis on fast skeletal muscle revealed differences in gene expression, splice variants (SV) abundance and single nucleotide polymorphism (SNPs) retention between lineages, indicating the complexity of the molecular processes involved in the determination of the trait. Despite the complexity we found that animals from the L-lineage had an enrichment in genes related to the dystroglycan complex (GO:0016011) while genes related to the proteasome (GO:0022624), sarcomere (GO:0030017), muscle homeostasis (GO:0046716) and response to stress (GO:0006950) were enriched on the S-lineage. We also found differences in expression, SV or/and SNPs retention for some key genes involved in the control muscle development such as mef2ca, mef2cb, stac3, map14a and components of the circadian system (per1a, per1b, per3 and cry2b). These preliminary results provide an initial insight of the molecular changes induced by artificial selection for size, that could aid future studies related to determination of fish growth.

Background
[bookmark: OLE_LINK2][bookmark: OLE_LINK3]Somatic growth involves the coordination of several physiological processes including food intake, digestion, absorption and incorporation of the nutrients necessary to sustain growth. Skeletal muscle represents up to 60% of the total body weight in fish, with 90% of it formed by fast skeletal muscle (Johnston et al., 1998), and hence plays a crucial role in determining animal size and mass. Manipulation of traits such as an increased growth rate and final size have a direct commercial impact on the industry, and has been driven by artificial selection in growth (Yáñez et al., 2015), in species such as Atlantic salmon (Salmo salar, (Gjedrem, 2004), tilapia (Oreochromis niloticus, (Charo-Karisa et al., 2006)) or gilthead sea bream (Sparus aurata, (Fernández-Díaz and Yúfera, 1997) (for a complete review on the subject see Gjedrem and Rye, 2018). In recent years, breeding programs are incorporating biotechnology-based approaches to increase efficiency of selection by identifying markers that explain a significant proportion of trait variability and select for them (as an example see Robledo et al., 2017). While there is an increasing number of molecular markers linked to growth, molecular mechanisms behind body size, growth rate or muscle fibre number have not yet been fully described. However, physiological processes such as net protein accumulation and activation of satellite cells are known to play an important role. 

[bookmark: OLE_LINK4][bookmark: OLE_LINK5]Essential to skeletal muscle growth is also a net accumulation of protein by shifting the balance between proteosynthesis and metabolism, a mechanism which is primarily regulated by the Pi3k/Akt/mTor pathway. The phosphorylation and activation of the mTor complex leads to the transcription of several components of the translational systems (such as ribosomal subunits, elongation factors, etc) increasing protein synthesis. Different studies in fish have shown that while  growth factors do not independently stimulate mTor phosphorylation (Garcia de la serrana et al., 2013), amino acids alone are can active protein synthesis through mTor pathway, and can act synergistically with growth factors for an increased response and activation of related pathways (Garcia de la serrana  et al., 2013; Johnston et al., 2011). 

Three main systems control muscle protein degradation that leads to atrophy: the proteasome, lysosomal (autophagy) and calpain/calpastatin (Johnston et al., 2011). Several components of the protein degradation systems are under control of signalling pathways such as Igfs through the Pi3k pathway which, in addition to stimulating protein synthesis, can also inhibit degradation by blocking the Foxo3 transcription factor that controls expression of some key proteasome components (Johnston et al., 2011). Similarly, amino acids (especially essential amino acids) are also able to produce a similar effect and reduce atrophy related components (Garcia de la serrana et al., 2017).

Post-embryonic growth of skeletal muscle is also regulated by the activation of myogenic precursor cells (MPCs) localized in the basal lamina of the muscle fibres (Johnston, 2006; Johnston et al., 2011). The activation of MPCs is a key step during myogenic growth and regeneration, occuring in response to endocrine, immune or nutritional signals. Activation of these MPCs result in an asymmetric division with a population of cells re-entering quiescence to replenish the MPC pool and a set of myoblasts exiting the cell cycle to facilitate either myofibrillogenesis to form new fibres in the fish, or nuclear accretion into pre-existing fibres to maintain an effective nuclear domain and drive myofibrillar growth. 
The process of myogenesis, with all its different events, is a complex process that requires the activation and coordination of complex molecular networks and signals including transcription factors (Myod, Myog, Myf5, Myf6, Sox8 or Pax3/7) (Johnston, 2006; Johnston et al., 2011), adaptive proteins (such as Crk, Crkl, Dock1 and Dock5) (e.g. Moore et al., 2007) or growth factors (Igf1, Igf2, Hgf or Gh) (Johnston, 2006; Johnston et al., 2011).

The zebrafish with its high fecundity, low generation time, embryo transparency, regenerative capacity and a high-quality annotated genome, is used as a model in many fields of biology (Dodd et al., 2000). Despite not being used in aquaculture, the zebrafish is considered as an useful model to study fundamental questions of fish physiology such as nutrition, growth or immunology, allowing the researcher to generate strategies which can be translated into the aquaculture industry (Lee-Estevez et al., 2018; Opazo et al., 2017; Ribas and Piferrer, 2014; Ulloa et al., 2014). Previously, Amaral and Johnston used the short generation time of the zebrafish to artificially select two lines of animals by their body size, to simulate the selective pressure that can be present during an industrial breeding program (Amaral and Johnston, 2012a). The authors found that artificial selection for body size affected the levels of maternal mRNA in the oocyte and the transcriptional regulation of several components of the Igf-Akt-mTor system in response to food intake after a short period of starvation (Amaral and Johnston, 2012a). However, their work was restricted to the analysis of a limited number of genes and did not analyse the effect of artificial selection by size on the skeletal muscle fibre histology, the muscle transcriptome, or other genetic variants such as splice variants (SV) and single nucleotide polymorphisms (SNPs). 
Next generation sequencing technology has been demonstrated to be a powerful tool to study different aspects of fish skeletal muscle growth, development and physiology (Alexander et al., 2011; Garcia de la serrana Castillo et al., 2012; Garcia de la serrana et al., 2015; Mareco et al., 2015), by allowing the researcher to simultaneously study the transcriptional regulation of multiple genes and under different experimental conditions. The availability of a reference genome, in combination with sequencing technologies can additionally facilitate the study of SV abundance or the identification of SNPs. 
In this study, we analysed the fast skeletal muscle of the zebrafish from selected lineages generated by Amaral and Johnston, and investigated muscle fibre composition and used RNAseq to study the effects on fast skeletal muscle global gene expression, SV abundance and different retention of SNPs to better understand the molecular mechanisms behind muscle growth as a product of artificial selection.

Methods
Fish size selection
Animals from the large (L) and small (S) zebrafish were obtained from the lines previously generated by Amaral and Johnston, 2012a. Briefly, wild zebrafish were obtained from Mymensingh, Bangladesh and reared in 25L glass tanks at 27 ± 0.3°C, with a 12:12 photoperiod, in a UV sterilised fresh water recirculation system and fed with bloodworms to satiation once daily and thrice a day from a week prior to breeding. For each lineage, pre-separated males and females were introduced into a breeding tank in a 1 male to 2 female proportion, and eggs were collected the next day. Eggs were immediately cleaned with 10% (v/v) Hank’s solution and maintained in glass tanks (1L) under the same conditions as the recirculation system. After 7 days post fertilisation (dpf) the larvae were fed a combination of ZM-100 (Fish Food Ltd, Hampshire, UK) and microworms. 50% of the water was changed daily until 30dpf, where fish were transferred to the main recirculation system, and fed to satiation with a combination of ZM-200 (Fish Food Ltd, Hampshire, UK) and bloodworms (Ocean Nutrition, Belgium). Four rounds of experimental selection were conducted based on body size at 90 dpf. For the small-lineage, fish with fork length lesser than 75% of the mean fork length were bred with each other, and for the larger lineage, fish with fork length greater than 125% the mean fork length were bred with each other. An unselected line was also produced which was not subject to experimental selection for use as a reference sample set. Three replicates of the unselected (U), small (S) and large (L) lineages were bred with a selection of 20 fish per replicate for propagation. All breeding was conducted at ~120 dpf.

Fish sampling
Animals were sampled in 2012 from the 4th generation of selected zebrafish and followed the same protocol as described by Amaral and Johnston (Amaral and Johnston, 2012a). Total length (TL), fork length (FL) and standard length (SL) were measured in 40-50 animals from each line breed (L, U and S).
For muscle morphology analysis, 10 fish from L and 10 from the S lineages were photographed, and a 5-7 mm transverse section was obtained at 0.7 fork length. The muscle steak was photographed and the total cross-sectional area was estimated. The steaks were mounted on cork sheets and frozen in 2-methyl-butane (isopentane) cooled on liquid nitrogen to -159°C. The blocks were wrapped in foil and stored at -80°C, until further analysis. Muscle blocks were equilibrated to -25°C and 7mm sections cut using a cryostat. Sections were transferred onto L-poly-lysine coated slides for later histological analysis. Sections were stained with myosin ATPase to distinguish between fibre types and hematoxylin and eosin for morphometric analysis (Johnston and Temple, 2002). Photographs of tissue sections were taken at a magnification of ×200, and four fields, selected at random, were photographed per block per fish. 

RNA extraction and sequencing
Fast skeletal muscle was extracted from the frozen histological blocks washed in nuclease free water and homogenised in Lysing Matrix-D (Qbiogene) using 1mL of TRIzure (Sigma) in a FastPrep® machine (Qbiogene) and RNA extracted using chloroform:isopropanol method following manufacturer recommendations. Resulting pellets were washed in 1ml ice-cold 70% ethanol for a total of four times. The samples were air-dried and suspended in 50µl of RNase-free water, at 37°C. The RNA concentration, 260/280 and 260/230 ratios were measured using a NanoDrop® spectrophotometer (Fisher) and had a range between 2-2.15. RNA integrity was confirmed in a 1% (m/v) ethidium bromide agarose gel electrophoresis and further confirmed by the SickKids Hospital Sequencing services (Vancouver, Canada) before library preparation and sequencing.

Gene expression analysis, splice variants determination and SNP detection
RNASeq library preparation (1 µg RNA) of 6 individuals from L and 6 from S-lineages, sequencing (paired-end reads on an Illumina HiSEq 2500 sequencer), reads quality filtering, mapping, reads normalization, expression values, splice variants estimation and global statistical analysis for differences in expression were carried out by the bioinformatics department of SickKids Hospital Next Generation Sequencing service. In short, the DNase-treated RNA was used to prepare individually barcoded RNASeq libraries with the TruSeq RNA Sample Prep kit (Illumina). The 12 libraries were randomly distributed in two lanes (6 per line) of HiSeq2500 platform and sequenced following manufacturer’s recommendations (Illumina). Quality filtered paired-end reads were mapped against the zebrafish genome (Zv9) using Cufflinks v0.0.5. Reads abundance was estimated using the RSEM v1.2.15 (Li and Dewey, 2011). Normalized mapped reads for contig size and library depth were used to calculate global differences in gene expression between L and S lineages using the DESEQ v2.13.2 algorithm from the R-Bioconductor package (Love et al., 2014). A false discovery rate (FDR) cut-off of FDR < 0.05 and log2Fold-change threshold of 0.5 was applied. Differences on SV abundance were established by estimating differences in normalised counts at exon level for each gene between the two lineages using the R-build package DEXseq v1.28.0 (Anders et al., 2012). 
For SNP detection, low-quality reads (<20 phred) were removed using Trimmomatic program v0.38 (Bolger et al., 2014) and sequence reads from each animals were aligned against the zebrafish genome (Zv9) using BWA-MEM v0.7.12 assembly program (Li and Durbin, 2009). For SNP variant calls Samtools mpileup pipeline v1.6 (Li, 2011) was used. VCFtools v0.1.13 (Danecek et al., 2011), was used to filter the raw variants for strand bias, end distance bias, base quality bias, SNPs around gaps, low coverage and erroneously high coverage. We considered a minimum of 100 reads per animal, with high-confident variation. SNP Annotation was made using snpeff program v4.3t (Cingolani et al., 2012), where consensus for each trait was made and used as a basis for comparison between lineages.
Gene ontology enrichment analysis of the genes showing differences in gene expression, SV abundance and SNPs retention was performed using STRING v10.5 software (Franceschini et al., 2013) with a FDR cut-off of <0.05 (differential gene expression, SV and SNPs detection workflows are shown in Supplementary Figure 1).

Statistics
Data on muscle morphology was tested for normality and homoscedasticity, and subsequently analysed using an unpaired student’s t-test (overall significance level equal to 0.05). The distribution of fibre diameters was written using a suite of non-parametric statistical programs written in R (http://www.r-project.org/) developed from those previously described (Johnston et al., 2014). Fast muscle fibres were fitted using a kernel function into smooth probability distribution functions (PDFs) using an in-house program written in R v3.3.0. The average smoothing parameter used (0.284) was similar between groups. Bootstrap techniques (n=1000) were used to distinguish underlying structure in the distributions from random variation. A non-parametric Kolmogorov–Smirnoff two-sample test was used to test the null hypothesis that the PDFs of groups were equal over all diameters (Johnston et al., 2012). 

Differences between L and S lineages for fast skeletal muscle average fibre diameter, fibre density, fibre number and animal size were tested using standard R tools built in R-Studio v.1.1.419. Differences in FL, SL and FL were analysed using a two-way ANOVA with group (L or S) and sex (Male or Female) as factor followed by a Tukey HSD posthoc analysis. Differences were considered significant when p-val<0.05. With the exception of the All graphs, with the exception of the probability distribution functions (PDFs), were produced using the ggplot2 R-build package (Wickham, 2016).
For global DGE between L and S individuals the DESEQ v.2.13.2 a false discovery rate (FDR) cut-off of FDR < 0.05 was applied for significant differences.



Results and Discussion
In the present study we found that artificial selection by size increased the average length of the adult zebrafish. Individuals from the large (L) lineage displayed significantly increased standard length (SL), fork length (FL) and total length (TL) than animals from the S-lineage (+6.7%, +6.5% and +5.3% for SL, FL and TL respectively; p-val <0.05 for each measurement) regardless of the sex of the animals (Table 1) as previously observed by Amaral and Johnston (for a comprehensive discussion see Amaral and Johnston, 2012a). This is not surprising, as similar results has been observed for land animals previously (e.g. De Roos et al., 2008; Macarthur, 1949; Rubin et al., 2012), and fish (reviewed in Gjedrem and Rye, 2018) when selected for growth rate or final size. 
In this study we report for the first time significant differences in muscle fibre structure and size distribution between the two lineages as a result of size selection, with higher average fibre diameter (+15%; p-val<0.01) and number (+24%; p-val<0.001) (Figure 2A, B) in animals from the L-lineage. However, fibre density was higher in individuals from the S-lineage (+13%; p-val <0.01) (Figure 2C). While it might seem logical that a larger animal requires a higher number of muscle fibres, it cannot be concluded that they must also have a higher fibre density. For instance, coho salmon transgenic for growth hormone (Gh1) had similar average fibre diameter and fibre density than non-transgenic animals of matching size (Johnston et al., 2014). These results also suggest that size selection may have affected the processes of fibre formation, impacting hyperplastic and hypertrophic responses during growth. The effect on energy metabolism resulting from this phenotype, and selection pressures acting on the fish skeletal muscle remains yet to be fully elucidated.

In order to elucidate the molecular basis behind differences in size and muscle structure an RNAseq analysis was performed to investigate differences in gene expression, splice variants (SV) abundance and single nucleotide polymorphism (SNP) frequencies between the two lines. 
Despite the relatively low number of animals used (6 per group) and size being a highly complex polygenic trait, a preliminary exploration of the expression data generated by principal components analysis (PCA) show that individuals from S and L lineages segregated in two disperse, but clear, groups along the first component, indicating that artificial selection had some measurable effect on gene transcription (Supplementary File 2). The PCA, however, showed that two individuals from the L group (L06 and L23) were not completely separated (Supplementary File 2). Correlations between transcriptomic data, muscle morphology and further analysis by statistical outlier tests however indicate that the samples were from a single population, and were hence not discarded as outliers. 

[bookmark: OLE_LINK1][bookmark: OLE_LINK6]A total of 91 genes were significantly up-regulated in animals from the L-lineage, as compared to 90 in the S-lineage (Table 2; Supplementary File 3 and 4). Despite the differences in gene expression found, we did not detect ontological enrichment for any GO category on the genes differently expressed. This may suggest that a broad spectrum of molecular networks are involved in size determination making characterisation of enrichment in any specific pathway challenging. However, we identified several components of the circadian clock system, such as per1a, per1b and cry2b (Baggs et al., 2009; Buijs et al., 2013). Despite the majority of studies in relation to the circadian network having focused on their role on the brain (Bhargava et al., 2015; Hermann et al., 2013), there is evidence that clock genes are expressed in others tissues, playing active roles in their regulation (Atwood et al., 2011). For instance in skeletal muscle, components of the clock system regulates the expression of several genes involved in muscle development such as Myod1, Fbox32, Pgc-1a/ß or Myh1 (Andrews et al., 2010; Aoyama and Shibata, 2017; Chatterjee and Ma, 2016; Riley and Esser, 2017). Similar relationships between clock genes and genes related to muscle development have also been described in fish (Amaral and Johnston, 2012b; Wu et al., 2016). However, while Myod1 remains the primary myogenic regulatory factor regulated by clock genes in mammalian skeletal muscle, studies in fish suggest that myf5 (Lazado et al., 2014) or myf6 (Amaral and Johnston, 2012b) may be also targets. It is interesting to notice that, despite not passing the filter of significance adopted in our study (FDR<0.05) we found two MRFs with differences in the number of reads mapped: myod1 (higher in L-zebrafish with 0.83 fold-change and uncorrected p-val=0.01) and myf6 (higher in S-zebrafish with 0.72 fold-change and uncorrected p-val=0.01); an effect which can be elucidated with a larger sample size. These results might indicate that circadian genes modulate growth through the regulation of myod1 and myf6 expression, but such role will need further experimental confirmation.
We also detected a higher expression of mapk14a on animals from the S-lineages (0.97 fold-change, FDR=0.04). The Mapk14a, also known as p38a, plays a critical role in controlling skeletal muscle development, growth, differentiation, metabolism and slow fibre phenotype (Akimoto et al., 2005; Keren et al., 2006; Meissner et al., 2007; Puri et al., 2000; Shi et al., 2008; Wright et al., 2007). p38 signalling is also involved in regulating the exit of myoblasts from the cell-cycle, maintaining them in a proliferative state (Gardner et al., 2015; Perdiguero et al., 2007). In this study we did not quantify the proportion of slow skeletal muscle between the two lineages, therefore it remains unclear if p38a transcription might be related to an increase in slow skeletal muscle fibres.

While RNAseq has proved a useful tool to understand fish skeletal muscle physiology at transcriptional level (Garcia de la serrana et al., 2015; Mareco et al., 2015), analysis of other functional modifications such as single nucleotide polymorphisms (SNPs) and splice variants (SV), are not normally considered due to the lack of reference genome for many fish species. In this study, we took advantage of the zebrafish genome to study the effect of artificial selection on SNPs frequencies and SV abundance. We found a total of 143 genes with differences in SV abundance (Table 3). Around 62% (92) of detected SV had a single exon spliced while the rest had two or more exons involved (Table 3). In 72% of the cases, shorter transcripts variants were found in animals from the S-lineage (Table 3). GO analysis of SV results showed an enrichment of genes with a LUC7 N-terminus domains (PF03194; FDR=0.04) in the L-lineage. The LUC7 is an U1 snRNA associated protein with a role in splice site recognition (Table 4). In the case of SV from the S-lineage animals, we report a significant enrichment of components of the myosin (GO:0005859; FDR=0.001) and sarcomere complex (GO:0030017; FDR=0.005) with myosin-related functional domains (Table 4), which may suggest sarcomere remodelling in response to size selection, a hypothesis whose physiological meaning will need further exploration. Interestingly, we have also found genes of particular interest for muscle development and function such as stac3, mef2ca and per3 (Table 3). Per3 is another component of the clock system, a network that not only regulates the circadian rhythm, but also regulates Myod1 controlling muscle growth and development. The myogenic enhancer factor-2 (Mef2) is a family of transcription factors that tightly regulate muscle development (Black and Olson, 1998; Estrella et al., 2015). The Mef2c transcription factor is crucial for normal muscle growth, maintaining sarcomeric integrity and regulating skeletal muscle glucose homeostasis (Anderson et al., 2015; Potthoff et al., 2007; Taylor and Hughes, 2017). The depletion of mef2ca and mef2cb causes severe heart malformation in zebrafish (Hinits et al., 2012, 2009). While the SV do not have a major effect on the mef2ca functional domains, the splice variant did modify the N-terminal region (FDR=0.02), a region needed for the interaction with other proteins and develop its functions (Ghosh et al., 2009; Perry et al., 2009). Stac3 was initially characterised in fish skeletal muscle (Bower et al., 2012), and is reported to act as a bridge between RyR1 and Dhpr, channel proteins involved in the depolarization-contraction calcium dependent cycle (Campiglio et al., 2018; Horstick et al., 2014; Nelson et al., 2013). It is interesting to note that the splice variant of stac3 present in L-lineage individuals had one of two SRC homologue 3 domains (SH3) located in the carboxy terminal region of the protein eliminated after splicing (FDR=0.00). SH3 domains are found in proteins that regulates the cytoskeleton and typically interact with adaptor proteins and kinases. How a shorter stac3 with a missing SH3 domain would affect the RyR-Dhrp system and its repercussions on the Ca2+ influx during depolarization-contraction cycle raise very intriguing questions that need to be investigated.

We also detected numerous SNPs (Supplementary File 5), but focused on those variants that are unique to each lineage (Table 5, Supplementary File 6). Using these criteria, we identified a total of 94 SNPs that were differently retained between lineages distributed in intergenic regions (9), up-stream (15), downs-stream (9), 3’UTR (20), 5’UTR (19) or coding regions (19) (Supplementary File 6). We have to consider that the number of fixed SNPs observed might be an overestimation due to genetic drift. Genetic drift occurs when effective population is small, allowing the random fixation of SNPs. In our case the effective population was relatively small, therefore we cannot discard that a proportion of the fixed SNPs are not due to artificial selection by size and therefore should be treated carefully.
GO analysis of genetic differences on SNPs fixation in the L-lineage animals revealed an enrichment of components in the dytroglycan and sarcoglycan complex (GO:0016011; FDR=0.03, Table 6) that links the actin cytoskeleton with the extracellular matrix, essential to maintain muscle fibre integrity, while genes with SNPs in the S-lineage were enriched in terms related to the proteasome system (GO:0022624; FDR=0.008). Additionally, we found SNPs located in relevant genes for muscle development, such as members of the already mentioned Mef2 family (mef2aa and mef2ca) but also map4k5. In these cases, above mentioned SNPs were not located in coding regions but in UTRs. While SNPs in UTR regions do not modify the amino acid sequence, they can have significant effects on transcriptional regulation by introducing or removing recognition sites for miRNA, as occurs in the example of myostatin in Texel sheep (Clop et al., 2006). Though we have not found any link between SNPs located in UTR regions and differences in gene expression for the present data, we cannot rule out that under a different physiological context such differences could become more prominent. 

Though the study was designed as an exploratory experiment, it demonstrates the complexity of the molecular mechanisms involved (differences in gene expression, SV and SNPs) in size determination and skeletal muscle fibre structure. However, the construction of a coherent model incorporating these results is extremely complex and will need the support of further research to fully understand the role of the different modifications observed. Global analysis (combining gene expression, SV and SNPs) resulted in the identification of certain genes and pathways that were affected at multiple levels. A GO enrichment analysis of all genes either differently expressed or showing differences in SV and SNPs variants for each of the lineages was performed for each of the lineages (Table 7). GO analyses for L-lineage appeared to have an enrichment on components from the sarcolemma (GO:0042383, FDR=0.00) and sarcoglycan complex (GO:0016012, FDR=0.004). On the other hand, when all mechanisms found in the S-lineage were analysed together we found an enrichment on genes related to response to stress (GO:0006950, FDR=0.03), mRNA transcription (GO:0061419, FDR=0.03), muscle cell homeostasis (GO:0046716, FDR=0.04), protein binding (GO:00005515, FDR=0.01), metabolic pathways (PathwayID:1100, FDR=0.01) and HIF-1 pathway (PathwayID:1100, FDR=0.01).
Despite the complexity of the data obtained we have observed that some pathways and components seemed to be more affected. These results suggest that some pathways of the skeletal muscle are under higher pressure during artificial selection for size. Among those networks we found components of the sarcoglycan system repeatedly affected in animals from the L-lineages and elements involved in metabolism and transcription, circadian system and MEF2 family in individuals from the S-lineage. The observed differences in components and molecular networks between the lineages may correlate to the fundamental differences found at the level of the muscle fibre. It might be possible that larger fibres, such as those found in the L-lineage which possesses an increased volume of sarcomere, might require a more robust sarcoglycan system to maintain membrane integrity and avoid derived problems of muscle weakness and dystrophy (Goldstein and McNally, 2010). Similarly, smaller fibres are energetically more demanding than larger fibres, requiring higher energy to maintain ionic homeostasis and membrane potential (Jimenez et al., 2013; Johnston et al., 2012), perhaps suggesting the enrichment of GO terms related to metabolism and transcription. Among the different components affected at different molecular levels by artificial selection, a remarkable number of genes involved in the circadian system (per1a, per1b, per3 and cryo2b) were affected. The circadian system is a natural oscillator that regulates several biological processes. Studies in zebrafish (Amaral and Johnston, 2012b) and Atlantic cod (Lazado et al., 2014) indicate that the circadian clock system also regulates the expression of key component regulating muscle development such as MyoD and Myf5. We have no indication of how the changes in circadian related genes might affect muscle development. While there is no evidence of changes in the expression of myogenic regulatory factors (MRFs) or differences in SV abundance, we cannot discard their effect at protein level and their role to determining final size. For answering this question, we consider it necessary to carry out further studies. 

Conclusions
In the present work we analysed the molecular networks involved in final muscle fibre size using a zebrafish model,  artificially selected over 4 generations to be either large  (L-lineage) or small (S-lineage). After 4 generations of selection we found differences in final size but also on average fibre size and density, indicating that size selection also affected those parameters. RNAseq analysis to study gene expression, SV and SNPs retention showed the complexity of the molecular mechanisms involved in the determination of final size. 
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Table 1. Male and female zebrafish body parameters after 4 generation of artificial selection for length
	
	Lineage
	L
	U
	S

	Male
	SL (mm)
	32.52.1b
	30.03.1a#
	30.22.1a

	
	FL (mm)
	38.12.5b
	34.93.6a#
	35.32.5a#

	
	TL (mm)
	39.72.7b
	36.33.7a#
	37.32.6a

	Female
	SL (mm)
	34.53.0b
	35.44.0a#
	32.32.7a

	
	FL (mm)
	40.33.4b
	41.04.5b#
	37.93.1a#

	
	TL (mm)
	41.73.4
	42.64.6#
	39.83.1



	
	Lineage
	L
	U
	S

	Male
	SL
	32.52.1b
	30.03.1a#
	30.22.1a

	
	FL
	38.12.5b
	34.93.6a#
	35.32.5a#

	
	TL
	39.72.7b
	36.33.7a#
	37.32.6a

	Female
	SL
	34.53.0b
	35.44.0a#
	32.32.7a

	
	FL
	40.33.4b
	41.04.5b#
	37.93.1a#

	
	TL
	41.73.4
	42.64.6#
	39.83.1


Values are represented as meanSD (N=50). Differences between lineages within each sex are indicated with different letters (p-val<0.05). Differences between sexes for each lineage are indicated with a # (p-val<0.05). L=large, U=unselected, S=small, SL=standard length, FL= fork length and TL= total length.

Table 2. Top 10 genes with significant changes in their expression between L and S lineages after DESEQ analysis of the transcriptome ranked by Log2 fold-change. 
	Lineage
	Gene Name
	Log2FC
	FDR

	L
	irbp
	5.4
	0.03

	
	tir4bb
	5.4
	2.58E-06

	
	nr1d1
	4.8
	2.84E-07

	
	ccdc147
	4.4
	0.04

	
	per1a
	3.9
	0.03

	
	helt
	3.4
	0.01

	
	camk1ga
	2.7
	2.14E-04

	
	per1b
	2.6
	5.29E-06

	
	hspb6
	2.6
	0.01

	
	znf395b
	2.4
	2.63E-04

	
	
	
	

	S
	prph
	7.2
	5.35E-12

	
	stk33
	6.0
	1.70E-04

	
	vwc2
	5.7
	1.67E-03

	
	ccdc103
	5.1
	3.54E-03

	
	dnase1l4.1
	4.6
	4.89E-03

	
	hspa13
	4.5
	1.85E-16

	
	pdha1b
	3.7
	0.02

	
	il6
	3.5
	3.02E-03

	
	plin2
	3.1
	3.29E-05

	
	asb15b
	3.1
	0.03


Log2FC= Fold-change in 2 logarithmic scale. L=Large, S=Small, FDR=False Discovery rate.

Table 3. Differently expressed Splice Variants (SV) found between L and S lineages. 
	Gene location (Chromosome)
	Gene name
	Exons affected 
	FDR

	Ch1
	asah1b
	E3 (S)
	0.02

	
	cd99
	E13(S)-E14(S)
	0.017-0.00

	
	commd1
	E2(L)
	0.02

	
	mrpl16
	E6(S)
	0.00

	
	mrpl39
	E11(L)
	0.00

	
	odz3
	E1(L)
	0.03

	
	tmem39a
	E10(S)
	0.02

	
	mynnl*
	E1(S)
	0.00

	
	luc7l2
	E3(L)
	0.00

	
	cd22l*
	E3(L)-E5(L)-E9(S)
	0.02-0.03-0.00

	
	znf501l*
	E3(S)
	0.00

	Ch2
	cyp7a1a
	E1(S)
	0.02

	
	fam102ba
	E1(S)
	0.00

	
	Si_ch211_14a17.11
	E3(S)
	0.00

	
	u2surp
	E17(L)
	0.03

	
	tp53*
	E8(S)
	0.04

	Ch3
	lgals2a
	E1(S)-E3(L)-E4(L)
	0.00-0.00-0.02

	
	uqcrc2a
	E6(L)
	0.00

	
	luc7l3*
	E9(L)
	0.04

	
	znf45l*
	E5(L)
	0.00-0.00

	Ch4
	mapre3b
	E1(S)
	0.03

	
	ms4a17a.6
	E6(S)
	0.00

	
	ms4a17a.9
	E7(S)
	0.05

	
	vegfab
	E3(S)
	0.03

	
	nlrp12*
	E9(L)
	0.00

	Ch5
	alad
	E13(S)
	0.00

	
	aldh2.2
	E3(S)-E9(S)-E10(S)-E12(L)-E13(L)-E18(L)
	0.02-0.02-0.03-0.00-0.00-0.00

	
	anxa1b
	E1(L)
	0.02

	
	iqgap2
	E15(S)
	0.02

	
	mthfd2
	E17(S)-E18(S)
	0.00-0.00

	
	myhz1.1
	E8(S)
	0.00

	
	myhz1.2
	E8(S)
	0.00

	
	myhz2
	E23(L)-E24(L)-E25(L)-E26(L)-E33(S)-E34(S)
	0.02-0.00-0.00-0.00-0.00-0.00

	
	nccrp1
	E6(S)
	0.04

	
	prdx4
	E6(S)
	0.04

	
	zgc_63910
	E1(S)
	0.03

	Ch6
	alg6
	E8(L)
	0.00

	
	ercc3
	E15(S)
	0.00

	
	lnpb
	E1(S)
	0.02

	
	lrrc40
	E6(L)
	0.03

	
	sfrs3a
	E1(S)
	0.04

	
	cenps*
	E5(S)
	0.02

	Ch7
	aktip
	E10(S)
	0.03

	
	aprt
	E2(S)
	0.00

	
	cd82a
	E10(S)-E11(S)
	0.00-0.00

	Ch7
	nae1
	E17(S)
	0.05

	
	nqo1
	E5(S)
	0.01

	
	poln
	E25(S)
	0.03

	
	tnnt3b
	E15(S)
	0.00

	
	cda*
	E5(S)
	

	
	zgc_112102
	E2(L)
	

	
	leap2*
	E2(L)
	0.01

	Ch8
	cbwd
	E16(S)-E17(S)
	0.04-0.04

	
	mkrn4
	E8(S)
	0.05

	
	rps8b
	E1(S)
	0.04

	
	odf2b
	E18(S)
	0.00

	Ch9
	crfb5
	E3(S)
	0.00

	
	egfl6
	E5(L)
	0.03

	
	scrn3
	E6(S)-E7(S)
	0.00-0.00

	
	stac3
	E12(L)-E13(L)
	0.00-0.00

	
	tfpia
	E7(L)
	0.00

	
	tmem182
	E1(L)
	0.02

	
	tuba8l3
	E4(L)
	0.05

	Ch10
	akap2
	E5(S)
	0.03

	
	mef2ca
	E1(S)
	0.02

	
	rps25
	E1(L)
	0.00

	
	pcolcea*
	E1(S)
	0.04

	Ch11
	agpat2
	E1(S)
	0.03

	
	per3
	E1(L)-E2(L)-E4(L)-E5(L)-E21(S)
	0.02-0.00-0.03-0.00-0.01

	
	sos1
	E16(S)
	0.00

	
	hnrnpa1a*
	E1(S)-E2(S)
	0.00-0.03

	Ch12
	pde6g
	E5(L)
	0.00

	
	tefa
	E1(S)
	0.00

	
	uqcrc2b
	E7(L)
	0.00

	Ch13
	adss
	E1(S)
	0.03

	
	epcam
	E1(L)-E2(L)-E6(S)-E10(S)
	0.00-0.03-0.00-0.00

	
	h2afy2
	E5(L)-E6(L)
	0.00-0.00

	
	lycat
	E10(S)
	0.00

	
	mpc1
	E1(S)
	0.04

	
	ndufaf1
	E2(L)
	0.00

	
	oip5-as1*
	E1(L)-E2(S)-E3(S)
	0.00-0.00-0.00

	
	soul2
	E4(S)
	0.00

	
	srsf5a
	E8(L)
	0.00

	
	pbld2*
	E9(L)-E10(L)-E14(L)-E15(L)
	0.00-0.00-0.00-0.00

	
	dusp13a*
	E5(S)
	0.01

	Ch15
	sgcg
	E1(L)
	0.00

	
	ndufc2*
	E1(L)-E2(L)
	0.00-0.00

	
	phykpl*
	E12(S)
	0.00

	Ch16
	esrp1
	E1(L)
	0.02

	
	vegfaa
	E7(S)-E8(S)
	0.03-0.00

	
	leng8*
	E1(S)
	0.03

	Ch17
	fcf1
	E1(S)
	0.00

	
	fosl2
	E4(L)-E5(S)
	0.01-0.00

	
	tmem30aa
	E1(S)
	0.03

	Ch18
	cd276
	E1(S)
	0.00

	
	fan1
	E13(L)
	0.00

	
	hdc
	E13(L)
	0.05

	
	ssr3
	E1(L)
	0.00

	
	st14a
	E20(L)
	0.01

	Ch19
	btr18
	E20(S)
	0.04

	
	tbk1
	E21(S)
	0.03

	Ch20
	dll4
	E10(S)
	0.03

	
	lyrm2
	E10(S)
	0.03

	
	mep1a.1
	E14(L)
	0.03

	
	pcmt
	E1(S)-E2(S)
	0.03-0.00

	
	sell
	E9(S)
	0.00

	
	ccl38*
	E4(L)
	0.03

	
	Wu_fa18f11
	E1(S)
	0.01

	Ch21
	bbs1
	E17(S)
	0.00

	
	cct6a
	E3(S)
	0.02

	
	cdk9
	E9(S)
	0.02

	
	dpysl3
	E1(S)
	0.00

	
	fstl4
	E4(L)-E5(L)-E13(S)
	0.00-0.01-0.00

	
	fundc2
	E7(S)
	0.02

	
	klhl8
	E2(S)
	0.00

	
	mob1bb
	E1(S)
	0.01

	
	mzt2b
	E1(S)
	0.05

	
	ssh2b
	E17(S)
	0.02

	
	timd4
	E1(S)
	0.03

	
	txnl1
	E8(S)-E9(S)-E10(S)
	0.00-0.00-0.01

	
	ube2b
	E7(L)
	0.00

	
	zcchc10
	E5(S)
	0.00

	Ch22
	capzb
	E1(S)
	0.03

	
	dram2b
	E1(S)
	0.05

	
	mccc1
	E21(S)
	0.00

	
	plekhb2
	E1(S)
	0.00

	
	gls2b*
	E2(S)
	0.01

	
	tnfaip8
	E1(S)
	0.00

	
	trim35
	E6(L)
	0.03

	
	dnase1l4.2*
	E7(S)-E8(S)
	0.00-0.00

	Ch23
	ctc1
	E22(S)
	0.00

	
	ebp
	E1(S)
	0.00

	
	myl9a
	E5(S)-E6(S)
	0.05-0.00

	
	rca2.1
	E1(S)-E8(L)
	0.02-0.02

	Ch24
	ctdspla
	E7(L)
	0.03

	
	grnb
	E16(S)
	0.00

	
	mybpc2b
	E3(L)
	0.00

	
	smyhc2
	E2(S)-E3(S)-E6(S)
	0.02-0.00-0.03

	
	smyhc3
	E22(S)
	0.02

	Ch25
	sgcb
	E1(L)-E2(S)
	0.00-0.00

	
	tnni2a.1
	E6(S)
	0.02

	
	ube2q2
	E2(S)
	0.00

	
	tpm1*
	E2(S)
	0.03



The exon column indicates the gene exon/s affected by the splice variant. The lineage where the SV with the missing exon is more abundantly found are indicated in parenthesis as L (Large) and S (Small). *Indicates genes whose annotation has been updated using the latest version of the zebrafish genome (GRCz11). 
Lineages were the exon are lost after alternative splicing are indicated in parenthesis as E=exon, FDR= False discovery rate.

Table 4. GO enrichment analysis from genes with significant differences in SV abundance between L and S lineages. 
	Lineage
	Pathway ID/GO ID
	Description
	FDR

	L
	PF03194
	LUC7 N_terminus
	0.04

	
	
	
	

	S
	GO:0005859
	muscle myosin complex
	0.001

	
	GO:0030017
	sarcomere
	0.005

	
	GO:0005737
	cytoplasm
	0.026

	
	GO:0032982
	myosin filament
	0.030

	
	GO:0030016
	myofibril
	0.046


GO, Pathway ID and description were obtained from STRING online tool. GO= Gene Ontology, L=Large, S=small, ID=identity and FDR= False Discovery Rate


Table 5. Exons located SNPs specific for L or S lineages identified in the transcriptome.
	Coordinates
	Lineage
	Gene
	Gene location
	Reference
	Alternative

	chr1:47,641,836-47,641,876
	L
	mhc1zca
	exon
	G
	T

	chr12:19,437,129-19,437,169
	L
	atpaf2
	exon
	C
	T

	chr12:20,472,005-20,472,040
	L
	gspt1
	exon
	C
	T

	chr13:31,865,289-31,865,327
	L
	six4a
	exon
	G
	A

	chr1:33,037,934-33,037,974
	S
	cd99
	exon
	T
	C

	chr1:57,638,976-57,639,016
	S
	metrnl
	exon
	C
	G

	chr10:8,287,458-8,287,498
	S
	tln1
	exon
	C
	T

	chr12:19,551,929-19,551,969
	S
	neurl2
	exon
	C
	T

	chr12:20,212,618-20,212,658
	S
	aco2
	exon
	C
	T

	chr12:27,982,366-27,982,406
	S
	synpo2lb
	exon
	C
	A

	chr12:27,982,383-27,982,423
	S
	synpo2lb
	exon
	C
	G

	chr12:28,778,477-28,778,517
	S
	psme3
	exon
	T
	C

	chr13:42,568,565-42,568,605
	S
	cisd1
	exon
	A
	G

	chr20:16,239,376-16,239,416
	S
	zyg11
	exon
	C
	T

	chr20:16,239,379-16,239,419
	S
	zyg11
	exon
	C
	A

	chr3:53,252,390-53,252,430
	S
	trim35
	exon
	C
	T

	chr6:28,939,846-28,939,886
	S
	atp1b1a
	exon
	G
	C

	chr6:31,702,554-31,702,594
	S
	pgm1
	exon
	A
	G

	chr6:32,089,738-32,089,778
	S
	dock7
	exon
	C
	T


Coordinates indicated the location of the SNPs based on the zebrafish genome assembly Zv9 version. Reference nucleotide is based on the Zv9 version of the zebrafish genome.
S=Small, L=Large.

Table 6. GO enrichment analysis from genes showing SNPs differently fixed between L and S lineages. 

	Lineage
	Pathway ID/GO ID
	Description
	FDR

	L
	GO:0016011
	dystroglycan complex
	0.028

	
	GO:0016012
	sarcoglycan complex
	0.028

	
	
	
	

	S
	GO:0022624
	proteasome accessory complex
	0.006

	
	GO:0044444
	cytoplasmic part
	0.006

	
	GO:0005622
	intracellular
	0.021

	
	3050
	Proteasome
	0.016


GO, Pathway ID and description were obtained from STRING online tool. GO= Gene Ontology, L=Large, S=small, ID=identity and FDR= False Discovery Rate

Table 7. Global GO enrichment analysis of genes differently expressed genes, genes affected by SV variations and genes containing SNPs variant. 
	Lineage
	Pathway ID/GO ID
	Description
	FDR

	
	GO:0042383
	sarcolemma
	0.000

	L
	GO:0016011
	dystroglycan complex
	0.004

	
	GO:0016012
	sarcoglycan complex
	0.004

	
	
	
	

	S
	GO:0033554
	cellular response to stress
	0.003

	
	GO:0006950
	response to stress
	0.036

	
	GO:004471
	single-organism biosynthetic process
	0.036

	
	GO:0061419
	positive regulation of transcription from RNA polymerase II promoter in response to hypoxia
	0.036

	
	GO:0046716
	muscle cell cellular homeostasis
	0.046

	
	GO:0005515
	protein binding
	0.017

	
	GO:0016829
	lyase activity
	

	
	1100
	Metabolic pathways
	0.017

	
	4066
	HIF-1 signaling pathway
	0.017

	
	
	
	


GO, Pathway ID and description were obtained from STRING online tool. GO= Gene Ontology, L=Large, S=small, ID=identity and FDR= False Discovery Rate









Figures
Figure 1. Probability density functions of muscle fibre diameter from individuals of the L and S lineages. 
[image: ]
Probability density functions (PDFs) of muscle fibre diameter. Zebrafish were selected based on size over four generations, and histological analyses were performed on 10 individuals per lineage. The dashed lines represent the average PDFs of groups and the solid line the PDF of the combined groups. The shaded area represents the 1000 bootstraps of the combined group. Green and red dashed lines represent S and L lineages respectively.







Figure 2. Fast skeletal muscle fibre area, number and density from individuals of the L and S lineages.
[image: ]
Boxplot showing differences in average fibre area (A), number (B) and density (C) between L (red) and S (green) lineages. Zebrafish were selected based on size over four generations, and histological analyses were performed on 10 individuals per lineage. Statistical differences are indicated as * (p-val<0.05), ** (p-val<0.01) or *** (p-val<0.001).
Supplementary Materials
Supplementary File 1. DGE, SV and SNPs workflow.
Workflow diagram showing the main steps (green boxes) taken for the estimation of differentially expressed genes, splice variants abundance and SNPs variants identification from the RNAseq data. Programs used and their verions used in each step are indicated. Steps with key decisions (yellow rombus) and discarded data (red boxes) are also indicated. 

Supplementary File 2. Principal Components analysis
Principal Components Analysis of the differential gene expression analysis from all genes analysed in the RNAseq experiment. A) Individuals from the L and S lineates are shown as dark or light blue circles respectively B) Individuals from the L and S lineages are represented by dots with their own colour code. 

Supplementary File 3. Differential Gene Expression (DGE)
Genes identified during the DGE analysis between individuals from the S and L lineages after DESEQ analysis of the transcriptome as a whole. 
Id= gene identity; baseMean= average normalized reads from the two lineages for an individual gene; baseMeanL= average normalized reads from individuals of the L-lineage for a given gene; baseMeanS= average normalized reads from individuals of the S-lineage for a given gene; FDR= False discovery rate.

Supplementary File 4. DGE individual counts
[bookmark: _GoBack]DESEQ normalized reads (counts) from each individual zebrafish sequenced for each gene identified.

Supplementary File 5. SNPs identified in the RNAseq data.
List of SNPs identified on S and L-lineages. Gene name, Ensembl identifier and reference sequence are based on the Zv9 version of the zebrafish genome. 

Supplementary File 6. Differently retained single nucleotide polymorphisms (SNPs).
List of SNPs identified only in one of the lineages or the other. Coordinates are based on the zebrafish genome assembly Zv9. S=Small, L=Large.
UTR= Unstralated Region, S=small-lineage, L=Large lineage
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