Funcons for HGMP
The Fundamental Constructs of Homogeneous Generative Meta-Programming (Short Paper)

L. Thomas van Binsbergen
Royal Holloway, University of London

6 November, 2018
Reusable Components of Semantic Specifications

Martin Churchill¹, Peter D. Mosses², Neil Sculthorpe², and Paolo Torrini²

¹ Google, Inc., London, UK
² PLANCOMPS Project, Swansea University, Swansea, UK
p.d.mosses@swansea.ac.uk
http://www.plancomps.org

- Identifies fundamental constructs in programming (paradigm-agnostic)
- Each funcon is formally defined via MSOS (Mosses, Plotkin)
- An open-ended library of (fixed) funcons makes Funcons
- Object language programs are translated to Funcons
- Unified meta-language called Component-Based Semantics (CBS)
Modelling Homogeneous Generative Meta-Programming*

Martin Berger¹, Laurence Tratt², and Christian Urban³

1 University of Sussex, Brighton, United Kingdom
2 King’s College London, United Kingdom
3 King’s College London, United Kingdom

HGMP: programs manipulate meta-representations of program fragments as data and choose when and where to evaluate

- Formalisation of HGMP through a λ-calculus
- A semi-mechanical HGMPification ‘recipe’ applicable to calculi
Research questions

Can we apply the HGMPification recipe to Funcons?

What is the coverage of the added constructs?

Can we use them to describe real-world and academic languages?

In this paper we demonstrate

The HGMPification of *Funcons* by introducing funcons for HGMP

The potential of combining existing funcons with funcons for HGMP

A possible semantics of AST constructors in an example language (λ_v)
1 Introduction to funcons and funcon translations through λ_v
2 HGMPification of FUNCONS and λ_v
3 An example of combining funcons for HGMP with existing funcons
The PLanCompS project

- The PLanCompS project has identified over a hundred funcons
 - Procedural: procedures, references, scoping, iteration
 - Functional: functions, bindings, datatypes, patterns
 - Abnormal control: exceptions, delimited continuations

- A beta-version is available: https://plancomps.github.io/CBS-beta/
Example language

\[
\begin{aligned}
x & \in \text{vars} & ::= & \ldots \\
b & \in \text{bools} & ::= & \ldots \\
i & \in \text{ints} & ::= & \ldots \\
e & \in \text{exprs} & ::= & x \\
\quad & & \mid & b \\
\quad & & \mid & i \\
\quad & & \mid & \lambda x. e \\
\quad & & \mid & e_1 \ e_2 \\
\quad & & \mid & \text{let } x = e_1 \ \text{in } e_2 \\
\quad & & \mid & \text{ite } e_1 \ e_2 \ e_3 \\
\quad & & \mid & \text{this} \\
\quad & & \mid & e_1 + e_2 \\
\quad & & \mid & e_1 \leq e_2
\end{aligned}
\]
\[
\begin{align*}
\text{exprs}[b] &= \text{bools}[b] \\
\text{exprs}[i] &= \text{ints}[i] \\
\text{exprs}[x] &= \text{current-value} (\text{bound}(\text{vars}[x])) \\
\text{exprs}[\text{let } x = e_1 \text{ in } e_2] &= \text{let}_{\text{var}} (\text{vars}[x], \text{exprs}[e_1], \text{exprs}[e_2])
\end{align*}
\]

\[
\begin{align*}
\text{let}_{\text{var}} (x, e_1, e_2) &= \text{let} (x, \text{alloc-init} (\text{values}, e_1), e_2) \\
\text{let} (x, e_1, e_2) &= \text{scope} (\text{bind} (x, e_1), e_2)
\end{align*}
\]
\[
\text{exprs}[^b] = \text{boots}[^b] \\
\text{exprs}[^i] = \text{ints}[^i] \\
\text{exprs}[^x] = \text{current-value} (\text{bound}(\text{vars}[^x])) \\
\text{exprs}[\text{let } x = e_1 \text{ in } e_2] = \text{let}_v a r (\text{vars}[^x], \text{exprs}[^e_1], \text{exprs}[^e_2]) \\
\]

\[
\text{let}_v a r (x, e_1, e_2) = \text{let} (x, \text{alloc-init} (\text{values}, e_1), e_2) \\
\text{let} (x, e_1, e_2) = \text{scope} (\text{bind} (x, e_1), e_2) \\
\]

Example

\[
\text{exprs}[\text{let } y = 1 \text{ in } y] = \text{scope} (\text{bind} ("y", \text{alloc-init} (\text{values}, 1)), "y") \\
\]
\[
\begin{align*}
\text{exprs}[\text{this}] &= \text{bound}"this""
\\
\text{exprs}[\lambda x. e] &= \text{function}(\text{closure}(\text{let}_\text{var}(\text{vars}[x], \text{given}_1, \text{let}"this", \text{given}_2, \text{exprs}[e])))
\\
\text{exprs}[e_1 e_2] &= \text{give}(\text{exprs}[e_1], \text{apply}(\text{given}, \text{tuple}(\text{exprs}[e_2], \text{given})))
\\
\text{given}_1 &= \text{first}(\text{tuple-elements}(\text{given}))
\\
\text{given}_2 &= \text{second}(\text{tuple-elements}(\text{given}))
\end{align*}
\]
\[
\text{exprs}[\text{this}] = \text{bound}(\text{"this"})
\]
\[
\text{exprs}[\lambda x. e] = \text{function(closure(let_var(vars[x], given_1, let(\text{"this"}, given_2, exprs[e]))))}
\]
\[
\text{exprs}[e_1 e_2] = \text{give(exprs[e_1], apply(given, tuple(exprs[e_2], given)))}
\]

\[
given_1 = \text{first(tuple-elements(given))}
\]
\[
given_2 = \text{second(tuple-elements(given))}
\]

Example
\[
\text{exprs}[(\lambda y. y) 1] = \text{give(function(closure(abs)), apply(given, tuple(1, given)))}
\]
\[
abs = \text{scope(bind("y", alloc-init(values, given_1)), scope(bind("this", given_2), body))}
\]
\[
body = \text{current-value(bound("y"))}
\]
exprs[ite e_1 e_2 e_3] = if-true-else($exprs[e_1], exprs[e_2], exprs[e_3]$)

exprs[$e_1 + e_2$] = integer-add($exprs[e_1], exprs[e_2]$)

exprs[$e_1 \leq e_2$] = integer-is-less-or-equal($exprs[e_1], exprs[e_2]$)
Overview

1. Introduction to funcons and funcon translations through λ_V
2. HGMPification of FUNCONS and λ_V
3. An example of combining funcons for HGMP with existing funcons
i) Add meta-representations (ASTs), with ↓ and ↑ modelling conversion

ii) Introduce a compilation phase, modelled by ⇒

iii) Add compile-time HGMP constructs

iv) Add run-time HGMP constructs
i) Add meta-representations (ASTs), with \(\downarrow \) and \(\uparrow \) modelling conversion
 New types: tags, asts

ii) Introduce a compilation phase, modelled by \(\Rightarrow \)

iii) Add compile-time HGMP constructs

iv) Add run-time HGMP constructs
i) Add meta-representations (ASTs), with ↓ and ↑ modelling conversion
 New types: tags, asts
 New funcons: ast, astv

ii) Introduce a compilation phase, modelled by ⇒

iii) Add compile-time HGMP constructs

iv) Add run-time HGMP constructs
i) Add meta-representations (ASTs), with ↓ and ↑ modelling conversion
 New types: tags, asts
 New funcons: ast, astv

ii) Introduce a compilation phase, modelled by ⇒
 (Run-time semantics of FUNCONS is modelled by →)

iii) Add compile-time HGMP constructs

iv) Add run-time HGMP constructs
i) Add meta-representations (ASTs), with ↓ and ↑ modelling conversion
 New types: tags, asts
 New funcons: ast, astv

ii) Introduce a compilation phase, modelled by ⇒
 (Run-time semantics of FUNCONS is modelled by →)

iii) Add compile-time HGMP constructs
 New funcons: meta-up, meta-down, meta-let

iv) Add run-time HGMP constructs
HGMPification

i) Add meta-representations (ASTs), with ↓ and ↑ modelling conversion
 New types: tags, asts
 New funcons: ast, astv

ii) Introduce a compilation phase, modelled by ⇒
 (Run-time semantics of FUNCONS is modelled by →→)

iii) Add compile-time HGMP constructs
 New funcons: meta-up, meta-down, meta-let

iv) Add run-time HGMP constructs
 New funcons: eval
Let \texttt{tags} be the type of funcon names (in our examples, \texttt{tags} are \texttt{strings})

- New value constructor \texttt{astv}(T, V_1, \ldots, V_k) for building ASTs, with
 - If \(T \) a type, then \(k = 1 \) and \(V_1 \) some value with \(V : T \)
 - If \(T \) a tag, then \(V_1, \ldots, V_k \) are \texttt{asts}

\[
\begin{align*}
T : \text{types} & \quad \Rightarrow \\
\text{astv}(T, V) \Downarrow V \\
T : \text{tags} \quad V_1 \Downarrow X_1 \ldots V_k \Downarrow X_k & \quad \Rightarrow \\
\text{astv}(T, V_1, \ldots, V_k) \Downarrow \text{funcon}_T(X_1, \ldots, X_k)
\end{align*}
\]
Dynamic semantics of meta-representations

- New function $\text{ast}(X_0, X_1, \ldots, X_k)$, with
 - X_0 (evaluates to) a tag or a type
 - X_1, \ldots, X_k (evaluate to) a single value or zero or more asts

\[
\frac{T : \text{types} \quad V : T}{\ast(T, V) \rightarrow \ast v(T, V)}
\]

\[
\frac{T : \text{tags} \quad V_1 : \text{asts} \ldots V_n : \text{asts}}{\ast(T, V_1, \ldots, V_n) \rightarrow \ast v(T, V_1, \ldots, V_n)}
\]

\[
X_i \rightarrow X_i'
\]

\[
\frac{\ast(X_0, \ldots, X_i, \ldots, X_k)}{\ast(X_0, \ldots, X_i', \ldots, X_k)}
\]
<table>
<thead>
<tr>
<th>Funcon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>meta-up(e₁)</code></td>
<td>Convert $e₁$ to its meta-representation</td>
</tr>
<tr>
<td><code>meta-down(e₁)</code></td>
<td>Compile and evaluate $e₁$, and splice the resulting AST at this location</td>
</tr>
<tr>
<td><code>meta-down(e₁)</code></td>
<td>Cancels out upwards conversion, potentially leaving a partially evaluated AST</td>
</tr>
<tr>
<td><code>meta-let(x, e₁, e₂)</code></td>
<td>Bind x to the value of $e₁$, making it available to $e₂$</td>
</tr>
<tr>
<td><code>eval(e₁)</code></td>
<td>Evaluate $e₁$ to an AST a, and evaluate the term represented by a</td>
</tr>
</tbody>
</table>
Example (1)

```
 eval(scope(bind("x", meta-up(given)))
      , meta-up(give(3, meta-down(bound("x"))))))
```

compiles to:

```
 eval(scope(bind("x", ast("given")))
      , ast("give", astv(naturals, 3), bound("x"))))
```

which evaluates to 3
Example (2)

```
print(meta-let("x"
    , astv(integers, read)
    , meta-down(ast("integer-add", astv(integers, 1), bound("x"))))))
```

compiles to:

```
print(integer-add(1, 7))
```

if the user inputs 7 during compilation
i) Add meta-representations (ASTs), with \(\downarrow \) and \(\uparrow \) modelling conversion
 New types: tags, asts
 New funcons: ast, astv

ii) Introduce a compilation phase, modelled by \(\Rightarrow \)
 (Run-time semantics of FUNCONS is modelled by \(\rightarrow \))

iii) Add compile-time HGMP constructs
 New funcons: meta-up, meta-down, meta-let

iv) Add run-time HGMP constructs
 New funcons: eval
HGMPification of λ_v

i) Add meta-representations (ASTs)

ii) Add compile-time HGMP constructs

iii) Add run-time HGMP constructs
Adding HGMP Constructs

\[e \in \text{exprs} ::= \ldots \]
\[\mid \text{eval } e \]
\[\mid \text{lift } e \]
\[\mid \text{let}_\downarrow x = e_1 \text{ in } e_2 \]
\[\mid \downarrow\{e\} \]
\[\mid \uparrow\{e\} \]

\[\text{exprs}[\text{eval } e] = \text{eval}(\text{exprs}[e]) \]
\[\text{exprs}[\text{lift } e] = \text{ast}(\text{values}, \text{exprs}[e]) \]
\[\text{exprs}[\text{let}_\downarrow x = e_1 \text{ in } e_2] = \text{meta-let}(\text{vars}[x], \text{exprs}[e_1], \text{exprs}[e_2]) \]
\[\text{exprs}[\downarrow\{e\}] = \text{meta-down}(\text{exprs}[e]) \]
\[\text{exprs}[\uparrow\{e\}] = \text{meta-up}(\text{exprs}[e]) \]
HGMPification of λ_V

i) Add meta-representations (ASTs)

ii) Add compile-time HGMP constructs

iii) Add run-time HGMP constructs
Recall translation of application:

\[
exprs[e_1 e_2] = \text{give}(exprs[e_1], \text{apply}(\text{given}, \text{tuple}(exprs[e_2], \text{given})))
\]

How do we translate the AST constructor for application?

\[
exprs[\text{ast}_{app}(e_1, e_2)] = \text{ast}(\text{"give"}, exprs[M], \text{ast}(\text{"apply"}, \ldots))
\]

We have duplicated the translation of application...
A funcon-translation \(\Psi \) is homomorphic if for each object language operator \(o \) we have an \(f_o \) such that:

\[
\Psi(o(M_1, \ldots, M_k)) = f_o(\Psi(M_1), \ldots, \Psi(M_k))
\]

We can write the translation of application as follows:

\[
\mathit{exprs}[e_1 \ e_2] = f_{\mathit{app}}(\mathit{exprs}[e_1], \mathit{exprs}[e_2])
\]

\[
f_{\mathit{app}}(M, N) = \mathit{give}(M, \mathit{apply}(\mathit{given}, \mathit{tuple}(N, \mathit{given})))
\]

and the translation of the AST constructor as follows:

\[
\mathit{exprs}[\mathit{ast}_{\mathit{app}}(e_1, e_2)] = \mathit{meta-up}(f_{\mathit{app}}(\mathit{meta-down}(\mathit{exprs}[e_1]), \mathit{meta-down}(\mathit{exprs}[e_2])))
\]
Overview

1. Introduction to funcons and funcon translations through λ_V
2. HGMPification of Funcons and λ_V
3. An example of combining funcons for HGMP with existing funcons
let fib = \(n \leq 2 \) \(1 (\text{this}(n + (-2)) + \text{this}(n + (-1))) \)

\text{in} let double = \(n \) \(n + n \)

\text{in} double (fib 7)
Delayed Arguments

Call-by-Value

\[
\text{let } \text{fib} = \lambda n. \text{ite} (n \leq 2) 1 (\text{this}(n + (-2)) + \text{this}(n + (-1))) \\
\text{in let } \text{double} = \lambda n. 13 + 13 \\
\text{in double (fib 7)}
\]
Call-by-Value

\[
\text{let } fib = \lambda n. \text{ite}\ (n \leq 2) 1 (\text{this}(n + (-2)) + \text{this}(n + (-1))) \\
\text{in let } double = \lambda n. 13 + 13 \\
\text{in double } (\uparrow \{fib\ 7\})
\]
Call-by-Value

\[
\text{let } \textit{fib} = \lambda n. \text{ite } (n \leq 2) 1 (\textit{this}(n + (-2)) + \textit{this}(n + (-1))) \\
\text{in let } \textit{double} = \lambda n. n + n \\
\text{in } \textit{double} (\uparrow\{\textit{fib} 7\})
\]
Delayed Arguments

Call-by-Value

\[
\text{let } fib = \lambda n. \text{ite} \ (n \leq 2) \ 1 \ (\text{this}(n + (-2)) + \text{this}(n + (-1))) \\
\text{in let } double = \lambda n. \text{eval} \ n + \text{eval} \ n \\
\text{in } double \ (\uparrow\{\text{fib} \ 7\})
\]
Call-by-Name

let fib = \n. \ite (n \leq 2) 1 (\this (n + (-2)) + \this (n + (-1)))
 in let double = \n. eval n + eval n
 in double (↑{fib 7})
let fib = \(n \mapsto \) \(\text{ite} \ (n \leq 2) \ 1 \ (\text{this}(n + (-2)) + \text{this}(n + (-1))) \)

in let double = \(n \mapsto !x + !x \)

in double (↑\{fib 7\})
Delayed Arguments

Call-by-Name + Sharing

\[
\begin{align*}
\texttt{let } fib & = \lambda n. \texttt{ite} (n \leq 2) 1 (\texttt{this} (n + (-2)) + \texttt{this} (n + (-1))) \\
\texttt{in let } double & = \lambda n. !x + !x \\
\texttt{in double} & (\uparrow\{ fib 7 \})
\end{align*}
\]

Sharing Construct

\[
e \in \texttt{exprs} \ ::= \ldots \\
| !x
\]

\[
\texttt{exprs}[!x] = \texttt{give(} \texttt{eval(} \texttt{current-value(} \texttt{bound(} vars[x] \texttt{)} \texttt{)}) \texttt{)}
\]

\[
, \texttt{seq(} \texttt{assign(} \texttt{bound(} vars[x] \texttt{)}, \texttt{ast(} values, \texttt{given} \texttt{)})\texttt{,} \texttt{given})\texttt{)}
\]
Conclusions

• Applying HGMPification to Funcons is relatively straightforward (details in paper)
• Adding object language ASTs risk duplication; solvable in homomorphic translations
• Potential benefits:
 - Widen the scope of the funcon approach to include HGMP languages
 - New method to formalise behaviour of programs in HGMP languages
Future work

Component-Based Semantics (CBS)
- More funcons: concurrency, non-determinism
- Static semantics of funcons

Funcons for Meta-programming
- Extend λ_v with pattern matching
- Integrate ideas of this paper into CBS
- Run-time version of **meta-up**, i.e. run-time quotation
- Extend OCaml Light semantics with MetaOCaml constructs
- Further case studies to investigate coverage of funcons for HGMP
Funcons for HGMP
The Fundamental Constructs of Homogeneous Generative Meta-Programming (Short Paper)

L. Thomas van Binsbergen
Royal Holloway, University of London

6 November, 2018