
Path-contractions, edge deletions and connectivity preservation I

Gregory Gutina, M. S. Ramanujanb,1,∗, Felix Reidla, Magnus Wahlströma

aRoyal Holloway University, University of London, Egham, UK
bAlgorithms and Complexity Group, TU Wien, Vienna, Austria

Abstract

We study several problems related to graph modification problems under connectivity con-
straints from the perspective of parameterized complexity: (a) (Weighted) Biconnectivity
Deletion, where we are tasked with deleting k edges while preserving biconnectivity in an
undirected graph, and its generalization, (b) Vertex-deletion Preserving Strong Connectiv-
ity, where we want to maintain strong connectivity of a digraph while deleting exactly k
vertices, and (c) Path-contraction Preserving Strong Connectivity, in which the operation of
path contraction on arcs is used instead. The parameterized tractability of this last prob-
lem was posed in [Bang-Jensen and Yeo, Discrete Applied Math 2008] as an open question
and we answer it here in the negative: both variants of preserving strong connectivity are
W[1]-hard. Preserving biconnectivity, on the other hand, turns out to be fixed-parameter
tractable (FPT) and we provide an FPT algorithm that solves Weighted Biconnectivity Dele-
tion. Moreover, we show that the unweighted case even admits a randomized polynomial
kernel. Finally, we show that the most general case of the (unweighted) problem where one
would like to preserve ρ-vertex connectivity for any ρ is (non-uniformly) FPT parameterized
by k and ρ. This answers an open problem of Bang-Jensen et al. [1], who proved the fixed-
parameter tractability of the weighted, directed version of the same problem. All our results
provide further interesting data points for the systematic study of connectivity-preservation
constraints in the parameterized setting.

Keywords: Parameterized Complexity, Graph Connectivity, vertex deletion, path
contraction

1. Introduction

Some of the most well studied classes of network design problems involve starting with a
given network and making modifications to it so that the resulting network satisfies certain

IA preliminary version of this paper appeared in the proceedings of The 25th Annual European Sympo-
sium on Algorithms (ESA 2017). The research of Gregory Gutin was partially supported by Royal Society
Wolfson Research Merit Award. M. S. Ramanujan acknowledges support from Austrian Science Fund (FWF,
project P26696). Felix Reidl and Magnus Wahlström were supported by EPSRC grant EP/P007228/1.
∗Corresponding author
Email addresses: G.Gutin@rhul.ac.uk (Gregory Gutin), ramanujan@ac.tuwien.ac.at (M. S.

Ramanujan), felix.reidl@gmail.com (Felix Reidl), Magnus.Wahlstrom@rhul.ac.uk (Magnus
Wahlström)

1This author has now moved to the University of Warwick, Coventry, UK.

Preprint submitted to Journal of Computer and System Sciences September 20, 2018

connectivity requirements, for instance a prescribed edge- or vertex-connectivity. This class
of problems has a long and rich history (see e.g. [2, 3]) and has recently started to be examined
through the lens of parameterized complexity. Under this paradigm, we ask whether a (hard)
problem admits an algorithm with a running time f(k)nO(1), where n is the size of the input,
k the parameter, and f some computable function. A natural parameter to consider in this
context is the number of editing operations allowed and we can reasonably assume that this
number is small compared to the size of the graph.

To approach this line of research systematically, let us identify the ‘moving parts’ of the
broader question of editing under connectivity-constraints: first and foremost, the network
in question might best be modelled as either a directed or undirected graph, potentially
with edge- or vertex-weights. This, in turn, informs the type of connectivity we restrict, e.g.
strong connectivity or fixed value of edge-/vertex-connectivity. Additionally, the connectivity
requirement might be non-uniform, i.e. it might be specified for individual vertex-pairs. The
constraint one operates under might either be to preserve, to augment, or to decrease said
connectivity. Finally, we need to fix a suitable editing operation; besides the obvious vertex-
and edge-removal, more intricate operations like edge contractions are possible.

While not all possible combinations of these factors might result in a problem that cur-
rently has an immediate real-world application, they are nonetheless important data points
in the systematic study of algorithmic tractability. For example, if we fix the editing op-
eration to be the addition of edges (often called ‘links’ in this context) and our goal is
to increase connectivity, then the resulting class of connectivity augmentation problems has
been thoroughly researched. We refer to the monograph by Frank [3] for further results
on polynomial-time solvable cases and approximation algorithms. Under the parameterized
complexity paradigm, Nagamochi [4] and Guo and Uhlmann [5] studied the problem of aug-
menting a 1-edge- connected graph with k links to a 2-edge-connected graph. Nagamochi
obtained an FPT algorithm for this problem while Guo and Uhlmann showed that this prob-
lem, alongside its vertex-connectivity variant, admits a quadratic kernel. Marx and Végh [6]
studied the more general problem of augmenting the edge-connectivity of an undirected
graph from λ − 1 to λ, via a minimum set of links that has a total cost of at most k, and
obtained an FPT algorithm as well as a polynomial kernel for this problem. Basavaraju et
al. [7] improved the running time of their algorithm and further showed the fixed-parameter
tractability of a dual parameterization of this problem.

A second large body of work can be found in the antithetical class of problems, where
we ask to delete edges from a network while preserving connectivity. Probably the most
studied member of these connectivity preservation problems is the Minimum Strong Spanning
Spanning Subgraph (MSSS) problem: given a strongly connected digraph we are asked
to find a strongly connected subgraph with a minimum number of arcs. The problem is
NP-complete (an easy reduction from the Hamiltonian Cycle problem) and there exist a
number of approximation algorithms for it (see the monograph by Bang-Jensen and Gutin
for details and references [2]). Bang-Jensen and Yeo [8] were the first to study MSSS from
the parameterized complexity perspective. They presented an algorithm that runs in time
2O(k log k)nO(1) and decides whether a given strongly connected digraph D on n vertices and
m arcs has a strongly connected subgraph with at most m − k arcs provided m > 2n − 2.
Bang-Jensen et al. [1] extended this result not only to arbitrary number m of arcs but
also to λ-arc-strong connectivity for an arbitrary integer λ, and they further extended it to

2

λ-edge-connected undirected graphs.
We consider the undirected variant of this problem, however, we aim to preserve the

vertex-connectivity instead of edge-connectivity. As noted by Marx and Végh [6], vertex-
connectivity variants of parameterized connectivity problems seem to be much harder to
approach than their edge-connectivity counterparts.2 Moreover, even the complexity of the
problem of augmenting the vertex-connectivity of an undirected graph from 2 to 3, via a
minimum set of up to k new links remains open [6]. Our first main result in this direction is
the first FPT algorithm for the following problem3:

Input: A biconnected graph G, k ∈ N, w∗ ∈ R>0 and a function w : E(G)→ R>0.
Problem: Is there a set S ⊆ E(G) of size at most k such that G− S is biconnected

and w(S) > w∗?

Weighted Biconnectivity Deletion parametrised by k

Theorem 1.1. Weighted Biconnectivity Deletion can be solved in time 2O(k log k)nO(1).

We further show that this problem has a randomized polynomial kernelization when the
edges are required to have only unit weights. To be precise, all inputs for the unweighted
variant Unweighted Biconnectivity Deletion are of the form (G, k, w∗, w), where
w∗ = k and w(e) = 1 for every e ∈ E(G).

Theorem 1.2. Unweighted Biconnectivity Deletion has a randomized kernel with
O(k9) vertices.

We then study a more general version of the (unweighted) problem and obtain a proof
of non-uniform fixed-parameter tractability of this problem based on a recent meta-theorem
of Lokshtanov et al. [13]. This is our second main tractability result.

Input: A undirected graph G, integers ρ, k such that G is ρ-vertex connected.
Problem: Is there a set S ⊆ E(G) of size at most k such that G − S is ρ-vertex

connected?

Vertex-connectivity Deletion parametrised by k

Theorem 1.3. For every fixed k and ρ, the Vertex-connectivity Deletion problem
can be solved in time O(n6).

Along with arc-additions and arc-deletions, a third interesting operation on digraphs is the
path-contraction operation which has been used to obtain structural results on paths in
digraphs [2]. To path-contract an arc (x, y) in a digraph D, we remove it from D, identify

2Marx and Végh [6] compare [9] and [10] to [11] and [12] with respect to polynomial-time exact and
approximation algorithms.

3Note that since 1-vertex-connectivity is trivially equivalent to 1-edge-connectivity, the 1-vertex-
connectivity case was proved to be FPT by Bang-Jensen et al. [1].

3

x and y and keep the in-arcs of x and the our-arcs of y for the combined vertex. The
resulting digraph is denoted by D // (x, y). It is useful to extend this notation to sequences
of contractions: let S = (a1, a2, . . . , ap) be a sequence of arcs of a digraph D. Then D // S
is defined as (. . . ((D // a1) // a2) // . . .) // ap. Since the resulting digraph does not depend on
the order of the arcs [2], this notation can equivalently be used for arc-sets.

Bang-Jensen and Yeo [8] asked whether the problem of path- contracting at least k arcs
to maintain strong connectivity of a given digraph D is fixed-parameter tractable. Formally,
the problem is stated as follows:

Input: A strongly connected digraph D and an integer k.
Problem:Is there a sequence S = (a1, . . . , ak) of arcs of D such that D // S is also

strongly connected?

Path-contraction Preserving Strong Connectivity parametrised by k

Our first result is a negative answer to the question of Bang-Jensen and Yeo. That is, we
show that this problem is unlikely to be FPT.

Theorem 1.4. Path-contraction Preserving Strong Connectivity is W[1]-hard.

We follow up this result by considering a natural vertex-deletion variant of the problem and
extending our W[1]-hardness result to this problem as well. In this variant, the objective is
to check for the existence of a set of exactly k vertices such that on deleting these vertices
from the given digraph, the digraph stays strongly connected.

Theorem 1.5. Vertex-deletion Preserving Strong Connectivity is W[1]-hard.

Our Methodology. In particular the p-λ-Edge Connected Subgraph (p-λ-ECS)
problem where the objective is to delete k edges while keeping the graph λ-edge connected.
Call an edge deletable (we refer to it as non-critical in the case of vertex-connectivity) if
deleting it keeps the given (di)graph λ-edge connected, undeletable (critical) otherwise, and
call an edge irrelevant if there is a solution disjoint from the edge.

For an even value of λ and a λ-edge-connected undirected graph G, Bang-Jensen et al. [1]
proved that unless the total number of deletable edges is bounded by O(λk2), it is possible in
polynomial time to obtain a set F of k edges such that G−F is still λ-edge-connected. This
result does not hold for odd values of λ as can be seen, e.g., when λ = 1 and G is a cycle.
In this much more involved case, unless the total number of deletable edges is bounded by
O(λk3), it is possible in polynomial time to obtain either a set F of k edges such that G−F
is still λ-edge-connected or to identify an irrelevant edge.

Weighted Biconnectivity Deletion is similar to the case of odd λ as we find either
a solution or an irrelevant edge. The main difference between our FPT algorithm and the
one presented by Bang-Jensen et al. is the deep structural analysis necessitated by the shift
from edge-connectivity to vertex-connectivity in undirected graphs: While in the former case
the failure to find a solution means that G can be decomposed into a ‘cycle-like’ structure,
in our case no such simple structure arises. Instead, we perform a careful examination of
mixed cuts in the graph, each of which comprise precisely of one critical edge e and a vertex
w which we call the partner of e. We show that either a large number of critical edges share

4

a common partner or there is a large number of critical edges with pairwise distinct partners.
In the former case, we proof the existence of an irrelevant edge while in the latter case we
are able to construct a solution. Our result is based on a non-trivial combination of several
new structural properties of biconnected graphs and critical edges which we believe is of
independent interest and useful in the study of other connectivity-constrained problems.

The kernel stated in Theorem 1.2 relies on the powerful cut-covering lemma of Kratsch
and Wahlström [14] which has been central to the development of several recent kernelization
algorithms [15]. While Bang-Jensen et al. obtained a randomized compression for the p-
λ-ECS problem using sketching techniques from dynamic graph algorithms, we provide an
alternative approach and show that when dealing with undirected biconnectivity it is also
possible to obtain a (randomized) polynomial kernel. We believe that this approach could
be applicable for higher values of vertex- connectivity and for other connectivity deletion
problems, as long as one is able to bound the number of critical or undeletable edges in the
given instance by an appropriate function of the parameter.

Further related work. In the Minimum Equivalent Digraph problem, given a digraph
D, the aim is to find a spanning subgraph H of D with minimum number of arcs such that
if there is an x-y directed path in D then there is such a path in H for every pair x, y of
vertices of D. Since it is not hard to solve Minimum Equivalent Digraph for acyclic
digraphs, Minimum Equivalent Digraph for general digraphs can be reduced to MSSS
in polynomial time. Chapter 12 of the monograph of Bang- Jensen and Gutin [2] surveys
pre-2009 results on Minimum Equivalent Digraph. The first exact algorithm for the
Mnimum Equivalent Digraph problem, running in time 2O(m), was given by Moyles and
Thompson [16] in 1969, where m is the number of arcs in the graph. More recently, Fomin,
Lokshtanov, and Saurabh [17] gave the first vertex-exponential algorithm for this problem,
i.e. an algorithm with a running time of 2O(n).

2. Preliminaries

Graphs. For an undirected graph G and vertex set S ⊆ V (G), we denote by E(S) the set
of edges of G with both endpoints in S. For a pair of disjoint vertex sets X, Y ⊆ V (G), we
denote by E(X, Y) the set of edges with one endpoint in X and the other in Y . For a vertex
set X ⊆ V (G), we denote by NG(X) the set of vertices of V (G) \ X which are adjacent
to a vertex in X. We denote by δG(X) the set E(X, V (G) \ X). A vertex in a connected
undirected graph is a cut-vertex if deleting this vertex disconnects the graph. A biconnected
graph is a connected graph on two or more vertices having no cut-vertices.

For a directed or undirected path P , we denote by V (P) and E(P) the set of vertices
and edges in P , respectively. We further denote by Vint(P) the set of internal vertices of P .

We say that two paths P1 and P2 are internally vertex-disjoint if Vint(P1) ∩ Vint(P2) = ∅.
Note that under this definition, a path consisting of a single vertex is internally vertex-disjoint
to any other path.

For two internally vertex-disjoint paths P1 = v1, . . . vt and P2 = w1, . . . , wq such that
v1 6= w1 and vt = w1, we denote by P1 +P2 the concatenated path v1, . . . , vt−1, vt, w2, . . . , wq.
When we deal with undirected graphs, we will abuse this notation and also use P1 + P2

to refer to the concatenated path that arises when v1 = w1 and vt 6= wq or v1 = wq and

5

w1 6= vt or w1 = vt and v1 6= wq. In short, the two ‘orientations’ of any undirected path are
used interchangeably and when we need to differentiate between the two orientations, we
explicitly say that we are traversing the path from one specified endpoint to the other.

Definition 2.1. Let G be a graph and x, y ∈ V (G) two vertices. An x-y separator (an x-y
cut) is a set S ⊆ V (G) \ {x, y} (respectively S ⊆ E(G)) such that there is no x-y path in
G−S. A mixed x-y cut is a set S ⊆ V (G)∪E(G) such that |S ∩E(G)| = 1 and there is no
x-y path in G− S.

Let S ⊆ V (G)∪E(G). We denote by RG(x, S) the set of vertices in the same connected
component as x in the graph G − S. The reference to G is dropped if it is clear from the
context.

Definition 2.2. Let G be a graph and x, y ∈ V (G). Let P be a set of internally vertex-
disjoint x-y paths in G. Then, we call P an x-y flow. The value of this flow is |P|. We say
that an edge e participates in the x-y flow P if e ∈

⋃
P∈P P .

We denote by κG(x, y) the value of the maximum x-y flow in G with the reference to G
dropped when clear from the context.

Recall that Menger’s theorem states that for distinct non-adjacent vertices x and y, the
size of the smallest x-y separator is precisely κ(x, y). We extend the definition of flows to
vertex sets as follows. Let x ∈ V (G) and Y ⊆ V (G) be such that x /∈ Y . Let P be a set of
paths in G which have an endpoint in Y and intersect only in x. Then, we refer to P as an
x-Y flow, with the value of this flow defined as |P|.

Directed graphs. We will refer to edges in a digraph as arcs. For a vertex x in a digraph D
we write N−D (x) and N+

D (x) to denote its in- and out-neighbours, respectively. A sink is a
vertex with no out-neighbours and a source is a vertex with no in-neighbours. While we will
use path-contraction in digraphs only for single arcs, i.e. directed paths of length one, we
restate the more general definition for context.

Definition 2.3 (Bang-Jensen and Gutin [2]). Let P be an (x, y)-path in a directed multigraph
D. Then, D // P denotes the multigraph obtained from D by deleting all vertices of P and
adding a new vertex z such that every arc with head x (tail y) and tail (respectively head) in
V \ V (P) becomes an arc with head (tail) z and the same tail (respectively head).

The path-contraction of a single arc (x, y) is equivalent to identifying the vertices x and y
as a new vertex z and then removing the resulting loop as well as all arcs from z to N+(x)
and N−(y).

Parameterized Complexity. An instance of a parameterized problem Π is a pair (I, k)
where I is the main part and k is the parameter ; the latter is usually a non-negative integer.
A parameterized problem is fixed-parameter tractable if there exists a computable function
f such that instances (I, k) can be solved in time O(f(k)|I|c) where |I| denotes the size of I.
The class of all fixed-parameter tractable decision problems is called FPT and algorithms
which run in the time specified above are called FPT algorithms.

To establish that a problem under a specific parameterization is not in FPT (under
common complexity-theoretic assumptions) we provide parameter-preserving reductions from

6

problems known to lie in intractable classes like W[1] or W[2]. In such a reduction, an
instance (I1, k1) is reduced in polynomial time to an instance (I2, k2) where k2 6 f(k1) for
some function f . In the context of this paper we will use that Independent Set under its
natural parameterization (the size of the independent set) is W[1]-hard [18].

A reduction rule for a parameterized problem Π is an algorithm that given an instance
(I, k) of a problem Π returns an instance (I ′, k′) of the same problem. The reduction rule
is said to be sound if it holds that (I, k) ∈ Π if and only if (I ′, k′) ∈ Π. A kernelization is
a polynomial-time algorithm that given any instance (I, k) returns an instance (I ′, k′) such
that (I, k) ∈ Π if and only if (I ′, k′) ∈ Π and |I ′|+k′ 6 f(k) for some computable function f .
The function f is called the size of the kernelization, and we have a polynomial kernelization
if f(k) is polynomially bounded in k. A randomized kernelization is an algorithm which is
allowed to err with certain probability. That is, the returned instance will be equivalent to
the input instance only with a certain probability.

2.1. Monadic Second Order Logic

The syntax of Monadic Second Order Logic (MSOL) of graphs includes the logical con-
nectives ∨, ∧, ¬, ⇔, ⇒, variables for vertices, edges, sets of vertices and sets of edges, the
quantifiers ∀ and ∃, which can be applied to these variables, and five binary relations:

1. u ∈ U , where u is a vertex variable and U is a vertex set variable;

2. d ∈ D, where d is an edge variable and D is an edge set variable;

3. inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation is
that the edge d is incident to u;

4. adj(u, v), where u and v are vertex variables, and the interpretation is that u and v
are adjacent;

5. equality of variables representing vertices, edges, vertex sets and edge sets.

Counting Monadic Second Order Logic (CMSOL) extends MSOL by including atomic
sentences testing whether the cardinality of a set is equal to q modulo r, where q and r are
integers such that 0 6 q < r and r > 2. That is, CMSOL is MSOL with the following
atomic sentence: cardq,r(S) = true if and only if |S| ≡ q (mod r), where S is a set. We
refer to [19, 20, 21] for a detailed introduction to CMSOL.

2.2. Unbreakable graphs

We will require the following definitions and results from [13].

Definition 2.4. [Separation] A pair (X, Y) where X ∪Y = V (G) is a separation if E(X \
Y, Y \ X) = ∅. The order of (X, Y) is |X ∩ Y |. The separator of the separation (X, Y) is
the set X ∩ Y .

Roughly speaking, a graph is unbreakable if it is not possible to “break” it into two large
parts by removing only a small number of vertices. The formal definition follows.

7

Definition 2.5. [(s, c)-unbreakable graph] Let G be a graph. If there exists a separation
(X, Y) of order at most c such that |X \ Y | > s and |Y \X| > s, called an (s, c)-witnessing
separation, then G is (s, c)-breakable. Otherwise, G is (s, c)-unbreakable.

Finally, we need the following result which reduces the design of non-uniform FPT algo-
rithms for problems expressible in CMSO to designing FPT algorithms for the same problems
on a class of sufficiently unbreakable graphs.

Proposition 2.6. [13] Let ψ be a CMSOL sentence. For all c ∈ N, there exists s ∈ N
such that if there exists an algorithm that solves CMSOL[ψ] on (s, c)-unbreakable graphs in
time O(nd) for some d > 4, then there exists an algorithm that solves CMSOL[ψ] on general
graphs in time O(nd).

3. Preserving strong connectivity

In this section, we prove Theorem 1.4 and Theorem 1.5.

Theorem 1.4. Path-contraction Preserving Strong Connectivity is W[1]-hard.

Proof. We reduce Independent Set to Path-contraction Preserving Strong Con-
nectivity.

Construction. Let (G, k) be an instance of Independent Set. We now define a digraph D as
follows. We begin with the vertex set of D. For every vertex v ∈ V (G), D has two vertices
v−, v+. For every edge e = (u, v) ∈ E(G), the digraph D has k + 2 vertices ê, ê1, . . . , êk+1.
Finally, there are 2k + 4 special vertices x, y, x1, . . . , xk+1, y1, . . . , yk+1. This completes the
definition of V (D). We now define the arc set of D (see Figure 1).

• For every v ∈ V (G), we add the arc (v−, v+) in D .

• For every i ∈ [k + 1], we add the arcs {(x, xi), (xi, x), (y, yi), (yi, y), (y, x)}.

• For every edge e = (u, v) ∈ E(G) and i ∈ [k+1], we add the arcs {(ê, êi), (êi, ê), (v−, ê),
(ê, v+), (u−, ê), (ê, u+)} in D .

• For every v ∈ V (G), we add the arc (x, v−) and the arc (v+, y).

This completes the construction of the digraph D. Clearly, D is strongly-connected.
For an edge e = (u, v) ∈ E(G), we denote by Be the set of arcs {(v−, ê), (ê, v+),

(u−, ê), (ê, u+)} and by Fe, the set of arcs Be∪{(ê, êi), (êi, ê)|i ∈ [k+1]} ∪{(u−, u+), (v−, v+),
(x, v−), (v+, y), (x, u−), (u+, y), (y, x)}. We refer to the subgraph of D induced by Fe as
the edge-selection gadget in D corresponding to e (see Figure 1). The intuition here is
that, as we will prove formally, any solution in D will contain at most one of the two arcs
(u−, u+), (v−, v+).

Proof of correctness. We now argue that (G, k) is a yes-instance of Independent Set if and
only if (D, k) is a yes-instance of Path-contraction Preserving Strong Connectiv-
ity. In the forward direction, suppose that (G, k) is a yes-instance of Independent Set and
let X ⊆ V (G) be a solution. Observe that S = {(v−, v+) | v ∈ X} is a pairwise vertex-
disjoint set of arcs. We claim that S is a solution for the instance (D, k). That is, |S| > k
and D // S is strongly connected. The former is true by definition. We now argue the latter.

8

Figure 1: An illustration of the arcs in the reduced instance of Path-contraction Preserving Strong
Connectivity. The second figure only contains the arcs of the edge-selection gadget corresponding to the
edge e = (vi, vj) ∈ E(G). Vertices with a padlock have additional k + 1 pendant vertices with arcs in both
directions.

Claim 3.1. D′ = D // S is strongly connected.

Proof. Observe that it is sufficient to prove that D′′ = D −Q is strongly connected, where

Q =
⋃
v∈X

(N+(v−) ∪N−(v+)) \ {(v−, v+)},

andN+(v) and N−(v) are the sets of out-neighbours and in-neighbours of v. In other words,
for every arc (v−, v+) ∈ S, Q contains all the arcs that are lost when we path-contract this
arc. We begin by observing that the set Q is disjoint from {(v−, v+) | v ∈ V (G)}. This
follows from the definition of Q. Due to this observation and the presence of the arc (y, x),
it follows that the vertices in

P = {(v−, v+) | v ∈ V (G)} ∪ {x, y, x1, . . . , xk+1, y1, . . . , yk+1}

occur in a single strongly connected component of D′′. Hence, it suffices to argue that for
every e ∈ E(G), the vertex ê is also in the same strongly connected component of D′′.

Note that since X is an independent set in G, it must be the case that for any e = (u, v) ∈
E(G), either (u−, u+) /∈ S or (v−, v+) /∈ S. But this implies that either {(u−, ê), (ê, u+)} ∩
Q = ∅ or {(v−, ê), (ê, v+)} ∩ Q = ∅, implying that ê is also in the same strongly connected
component as the vertices in P . Thus, D′′ is strongly connected and so is D′. This completes
the proof of the claim and hence proves the correctness of the forward direction of the
reduction.

We now consider the converse direction. Suppose that (D, k) is a yes-instance of Path-
contraction Preserving Strong Connectivity and let S = {a1, . . . , ak} be a solution
for this instance. We require the following claim.

Claim 3.2. For every edge e = (u, v) ∈ E(G), |S ∩ {(u−, u+), (v−, v+)}| 6 1. Furthermore,
S ⊆ {(v−, v+) | v ∈ V (G)}.

9

Proof. For the first statement, suppose to the contrary that S contains both the arcs (u−, u+)
and (v−, v+) for some e = (u, v) ∈ E(G). Then, observe that in the graph D // S, the arcs
in the set Be are absent. Since Be contains all arcs incident to ê except the ones incident to
êi for i ∈ [k + 1], this disconnects the undirected graph underlying D // S, implying that S
is not a solution, a contradiction.

For the second statement, we argue that no arc incident to x, y or {ê | e ∈ E(G)} can
be in S. Suppose to the contrary that for some i ∈ [k + 1], the arc (x, xi) ∈ S. Then, the
arcs from x to {v− | v ∈ V (G)} are all absent from D′, implying that D′ is not strongly
connected, a contradiction. On the other hand, if for some v ∈ V (G), we path-contract the
arc (x, v−), the arc from x to xi is absent in D // S for every i ∈ [k + 1]. Since |S| 6 k,
there is at least one i ∈ [k + 1] such that the arc (x, xi) is not in S. Since the arc (x, xi) is
absent from D // S, it follows that it is not strongly-connected, a contradiction. Finally, if S
contains the arc (y, x), the arc (xi, x) is not in D // S for any i ∈ [k + 1], implying that it is
not strongly-connected for the same reason as that in the previous case. Hence, we conclude
that no arc incident on x is in S. The argument for y is analogous and hence we do not
address it explicitly.

Suppose that for some e = (u, v) ∈ E(G) and i ∈ [k+1], there is an arc in {(ê, êi), (êi, ê)}
which is in S. Observe that in the former case, the arcs (ê, u+) and (ê, v+) are absent in
D // S, implying that the new vertex is a sink, a contradiction. In the latter case, the new
vertex is a source, a contradiction. Now, suppose that S contains an arc in Be. Then, for
some i ∈ [k + 1], the vertex êi is left as a source or sink in D // S, a contradiction. This
completes the proof of the claim.

The claim above implies that ifX is a solution for the reduced instance of Path-contraction
Preserving Strong Connectivity, then the set S of arcs corresponds independent set
in G. In other words, (G, k) is a yes-instance of Independent Set. This proves the correctness
of the reduction and completes the proof of the theorem.

We can prove a similar result for the Vertex-deletion Preserving Strong Connec-
tivity problem. The problem is formally defined as follows.

Input: A strongly connected digraph D and an integer k.
Problem:Is there a vertex set S of size (exactly) k such that the graph D − S is

strongly connected?

Vertex-deletion Preserving Strong Connectivity parametrised by k

We have to require “exactly k” rather than “at least k” since otherwise we could delete all
but one vertices of D and get a trivially strongly connected digraph.

Theorem 1.5. Vertex-deletion Preserving Strong Connectivity is W[1]-hard.

Proof. We will again use a reduction from Independent Set. Let G be a graph, an input
of Independent Set with parameter k. We first reduce Independent Set to Vertex-deletion
Preserving Connectivity with Undeletable Vertices: Given a connected graph H with some
vertices marked and parameter k, is there k unmarked vertices in H whose deletion keeps
H connected? To construct H, start from G with all vertices unmarked. Subdivide every

10

edge of G with a marked vertex. Add another marked vertex x with edges to all unmarked
vertices. It is easy to see that the reduction is correct since deleting two unmarked vertices
in H which are adjacent in G leaves the corresponding subdivision vertex isolated.

Now we reduce Vertex-deletion Preserving Connectivity with Undeletable Vertices to
Vertex-deletion Preserving Strong Connectivity. Replace every edge uv of H
by arcs uv and vu, unmark every marked vertex w of H and replace it by a directed cycle
of length k + 2 containing w (all other vertices of the cycle are new). Denote the resulting
digraph by D; note that it is strongly connected. To see the correctness, it suffices to observe
that we cannot delete less than k + 1 vertices of any directed cycle of length k + 2 and keep
D strongly connected. This completes the proof of the theorem.

4. Edge deletion to biconnected graphs

In this section, we present our FPT algorithm for the Weighted Biconnectivity
Deletion problem on undirected graphs. Recall that the problem is defined as follows:

Input: A biconnected graph G, k ∈ N, w∗ ∈ R>0 and a function w : E(G)→ R>0.
Problem:Is there a set S ⊆ E(G) of size at most k such that G− S is biconnected

and w(S) > w∗?

Weighted Biconnectivity Deletion parametrised by k

We refer to a set S ⊆ E(G) such that G − S is biconnected as a biconnectivity deletion
set of G. For an instance (G, k, w∗, w) of Weighted Biconnectivity Deletion and a
biconnectivity deletion set S of G, we say that S is a solution if |S| 6 k and w(S) > w∗.
The main result of this section is the following.

Theorem 1.1. Weighted Biconnectivity Deletion can be solved in time 2O(k log k)nO(1).

We will first make a short digression in order to define the notion of critical edges and list
certain structural properties that will be required in this and the following section.

4.1. Properties of critical edges

Definition 4.1. We denote by κ(G) the vertex-connectivity of a graph G. Let G be a ρ-
vertex connected graph. An edge e ∈ E(G) is called ρ-critical if κ(G − e) < ρ. We denote
by CriticalρG(e) the subset of E(G) comprising edges which are ρ-critical in G − e but not
in G. We denote by CriticalρG(∅) the set of edges which are already ρ-critical in G. In all
notations, we ignore the explicit reference to G and ρ when these are clear from the context.
We say that e is ρ-critical for a pair of vertices u, v in G if u and v are non-adjacent and e
participates in every u-v flow of value ρ in G.

The following lemma gives a useful structural characterization of edges which become ρ-
critical upon the deletion of a particular edge of the graph.

Lemma 4.2. Let G be a ρ-vertex connected graph. Let e = (x, y) and e′ = (u, v) be distinct
non-critical edges, i.e. they are not in CriticalρG(∅). Then the following are equivalent:

1. e′ ∈ CriticalρG(e).

11

Figure 2: An illustration of the edges e, e′ and the sets A and B in the proof of Lemma 4.2. Observe that
there are no more edges with one endpoint each in A and B.

2. There is a pair of vertices x′, y′ ∈ V (G) and a mixed x′-y′ cut X of size ρ in G − e,
where e′ ∈ X.

3. e′ participates in every x-y flow of value ρ in G− e.

Proof. We prove that (1) ⇒ (2), (2) ⇒ (3) and (3) ⇒ (1). Consider the first implication.
Since e′ ∈ CriticalρG(e), it must be the case that there are vertices x′, y′ such that e′ is ρ-
critical for the pair x′, y′. That is, x′ is non-adjacent to y′ and e′ is ρ-critical for the pair
x′, y′ in G′ = G − e. That is, e′ participates in every x′-y′ flow of value ρ in G − e. As a
result, the maximum value of any x′-y′ flow in G − e − e′ is precisely ρ − 1. By Menger’s
theorem, this implies the presence of a set S ⊆ V (G) of size ρ− 1 which intersects all x′-y′

paths in G− e− e′. Setting X = S ∪ {e′} completes the argument for the first implication.
Consider the second implication. Let A = RG−e(x

′, X) and let B = V (G) \ (A ∪ S) (see
Figure 2), where S = X \ {e′}. Observe that if u, v ∈ A or u, v ∈ B, then X \ {e′} would be
an x′-y′ separator of size ρ− 1 in G− e, a contradiction to G− e being ρ-vertex connected.
Hence, it must be the case that either u ∈ A and v ∈ B or vice-versa. We assume without
loss of generality that u ∈ A and v ∈ B.

By a similar argument, since e′ is not ρ-critical in G but is ρ-critical in G − e, it must
be the case that the edge e also has one endpoint in A and one endpoint in B. Again, we
assume without loss of generality that x ∈ A and y ∈ B. But now, observe that in the graph
G− e− S, every x-y path contains the edge e′. Since |S| = ρ− 1 and G− e is ρ-connected,
we conclude that e′ participates in every x-y flow of value ρ in G − e. This completes the
argument for the second implication.

For the final implication, observe that while G − e is ρ-connected, the fact that e′ par-
ticipates in every x-y flow of value ρ in G− e implies that e′ is ρ-critical in G− e. Since e′

is by definition, not ρ-critical in G, we conclude that e′ ∈ CriticalρG(e). This completes the
proof of the lemma.

4.2. The FPT algorithm for Weighted Biconnectivity Deletion

In this section, we will prove Theorem 1.1 by giving an algorithm for a more general ver-
sion of the Weighted Biconnectivity Deletion problem where the input also includes
a set E∞ ⊆ E(G) and the objective is to decide whether there is a solution disjoint from
this set. Henceforth, instances of Weighted Biconnectivity Deletion will be of the

12

form (G, k, w∗, w, E∞) and any solution S is required to be disjoint from E∞. We will refer
to edges of E(G) \ E∞ as potential solution edges. We say that a potential solution edge
is irrelevant if either the instance has no solution, or has a solution that does not contain
e. For an instance I = (G, k, w∗, w, E∞) and r ∈ N, we denote by HeavyI(r) the heaviest r
potential solution edges of G with respect to the function w. While this set is not necessarily
unique (if multiple edges have the same weight, i.e., the same image under the function w),
we will define HeavyI(r) as the first r edges of a fixed arbitrarily chosen ordering of the edges
of G in non-increasing order of their weights. If I is clear from the context, we simply write
Heavy(r) when referring to HeavyI(r).

Since we will only be dealing with biconnected graphs in this section, we will also drop the
explicit reference to ρ in the notations from Definition 4.1. For instance, when we say that
an edge is critical (non-critical), we imply that it is 2-critical (not 2-critical respectively).
Observe that no edge from the set CriticalG(∅) can be part of a solution. As a result, we
assume without loss of generality that for any instance (G, k, w∗, w, E∞), the set CriticalG(∅)
is contained in E∞. Furthermore, since the edges in E∞ can never be part of a solution,
we assume without loss of generality that for every edge e ∈ E∞, w(e) = 0. The proof
of Theorem 1.1 is based on the following lemma which states that either a) the number of
potential solution edges in the instance is already bounded polynomially in k, or b) a ‘small’
set of the heaviest edges in the instance must intersect a solution, or c) there is an irrelevant
edge which can be found in polynomial time. For ease of presentation, let use define the
polynomial µ(x) := 20x3 + 46x2 + x for the rest of this section.

Lemma 4.3. Let I = (G, k, w∗, w, E∞) be an instance of Weighted Biconnectivity
Deletion. If |E(G) \E∞| > µ(k), then the set Heavy(µ(k)) contains either a solution edge
or an irrelevant edge which can be computed in polynomial time.

Given Lemma 4.3, Theorem 1.1 is proved as follows. Let I = (G, k, w,w∗, E∞) be an instance
of Weighted Biconnectivity Deletion. If the number of potential solution edges in
this instance is already bounded by µ(k), then we simply enumerate all k-sized subsets of this
set (there are 2O(k log k) choices) and check in polynomial time whether one of these subsets
is a solution. Otherwise, we invoke Lemma 4.3 and either correctly conclude that the set
Heavy(µ(k)) contains a solution edge, or we compute an irrelevant edge e in polynomial time.
In the first case we branch on the set Heavy(µ(k)), reduce the budget k by 1 and the target
weight w∗ accordingly and recursively solve the resulting instance. In the second case, we
add the edge e to the set E∞ (thus decreasing the set of potential solution edges) and repeat.

Remark 4.4. There is also an alternative strategy to the above, as follows. Let S be the
set of all edges of weight at least w∗/k. Clearly S must be non-empty and any solution must
intersect S. If |S| 6 µ(k), then we branch on S as above. Otherwise, we will be able to either
find a biconnectivity deletion set S ′ ⊆ S with |S ′| = k or an irrelevant edge in S as in Lemma
4.3. In the former case, S ′ is already a solution; in the latter case, we proceed according to
the strategy above. Thus, this alternative strategy yields a slightly simpler proof, contains
one less branching step and will be used in the kernelization algorithm in Subsection 4.3.
On the other hand, the strategy above does not explicitly depend on w∗, and therefore always
gives a maximum-weight solution. In either case, the main technical challenges in the FPT
algorithm are exactly the same.

13

The rest of this section is devoted to proving Lemma 4.3. In order to do so, we will present
a greedy algorithm that runs in polynomial time and, assuming |E(G) \ E∞| > µ(k), will
either produce a biconnectivity deletion set of size k contained strictly within Heavy(µ(k)),
or it will identify an irrelevant edge. In the former case, we will argue that this implies that
there is always a solution intersecting Heavy(µ(k)). More precisely, the algorithm will delete
one potential solution edge from Heavy(µ(k)) at a time (while preserving biconnectivity),
and will trace in each step the number of edges of Heavy(µ(k)) that become critical due to
the removal of such an edge e, i.e., the size of the set CriticalG′(e) ∩ Heavy(µ(k)) where G′

is the subgraph of G remaining after deleting the edges before e. We will then show that if
|CriticalG′(e)∩Heavy(µ(k))| > µ(k)−k

k
, then G contains a special configuration from which we

can either recover the required biconnectivity deletion set or identify an irrelevant edge.

4.2.1. Preliminary results

From now on, we assume that the given instance has more than µ(k) potential solu-
tion edges and begin by proving the following lemma which shows that if we find some
biconnectivity deletion set of size k within Heavy(µ(k)), then there is a solution intersecting
Heavy(µ(k)).

Lemma 4.5. Let I = (G, k, w∗, w, E∞) be an instance of Weighted Biconnectivity
Deletion and let S ⊆ Heavy(µ(k)) be a biconnectivity deletion set of size k. If I is a
yes-instance, then there is a solution for I intersecting the set Heavy(µ(k)).

Proof. Suppose that this is not the case and let S ′ be a biconnectivity deletion set of size
at most k such that w(S ′) > w∗. Note that S ′ is disjoint from Heavy(µ(k)) and S is
contained in Heavy(µ(k)). Since |S ′| 6 |S|, we infer that w(S) > w(S ′), a contradiction to
our assumption that there is no solution intersecting Heavy(µ(k)). This completes the proof
of the lemma.

Let Ŝ = {f1, . . . , fr} ⊆ Heavy(µ(k)) be a set greedily constructed as follows. The edge f1 is
the heaviest potential solution edge. That is, w(f1) > w(e) for every e ∈ E(G)\E∞. For each
2 6 i 6 r, fi is the heaviest edge of Heavy(µ(k)) which is not critical in G− {f1, . . . , fi−1}.
We terminate this procedure after k steps if we manage to find edges {f1, . . . , fk} or earlier
if for some r < k, every edge of Heavy(µ(k)) is critical in G− {f1, . . . , fr}.

Observe that by definition, Ŝ is a biconnectivity deletion set. Therefore, if r = k,
then Lemma 4.5 implies that if there is a solution for the given instance, then there is one
intersecting Heavy(µ(k)) (as required in Lemma 4.3). On the other hand, suppose that
r < k. For each i ∈ [r], we denote by Ŝi, the set {f1, . . . , fi} and by Ŝ0, the empty set.
Recall that we have already assumed that the number of potential solution edges is greater
than µ(k) = 20k3 + 46k2 + k. As a result, we have the following observation.

Observation 4.6. There is an i ∈ [r] such that G−Ŝi is biconnected and |CriticalG−Ŝi−1
(fi)∩

Heavy(µ(k))| > µ(k)−k
k

= 20k2 + 46k.

Let i ∈ [r] be the index referred to in this observation. In the rest of the section, we let
F̂ = Ŝi−1, e = fi = (x, y) and G′ = G − F̂ . The following observation is a straightforward
consequence of Lemma 4.2 in our setting.

14

Figure 3: An illustration of Segment[i, i + 1] (the subpath of P1 between ei and ei+1) and P which is a nice
path for this segment.

Observation 4.7. Let G′ and e be as above. Then, κG′−e(x, y) = 2 and for any x-y flow
H = {H1, H2} of value 2 in G′ − e, the following holds.

1. Every edge of CriticalG′(e) is critical for the pair x, y in G′− e and hence lies on H1 or
H2.

2. For every edge e1 ∈ CriticalG′(e), say on H1, there is at least one vertex v on H2 such
that {e1, v} is a mixed x-y cut in G′ − e.

We refer to the vertex v above as a partner vertex of e1, and refer to the set of all partner
vertices of e1 as the partner set of e1 and denote this set by PartnereG′−e(e1). We do not
explicitly refer to H1 or H2 in this notation because these will always be clear from the
context. We will also drop the explicit reference to G′ and e when these are clear from the
context.

From Observation 4.6 and Obsevation 4.7, we now conclude the following:

Observation 4.8. Let G′ and e be as above. There is an x-y flow P = {P1, P2} of value 2
in G′ − e such that |E(P1) ∩ CriticalG′(e) ∩ Heavy(µ(k))| > 10k2 + 23k.

Henceforth, we work with this fixed x-y flow P = {P1, P2} in G′ − e.

Definition 4.9. Let G′,e = (x, y), P1 and P2 be as above. Let e1, . . . , et be some subset of
10k2+23k edges in CriticalG′(e)∩Heavy(µ(k))∩E(P1) in the order in which they appear when
traversing P1 from x to y (see Figure 3), where ei = (ui, vi) and we may have vi = ui+1.

• For i ∈ [t−1], we refer to the subpath of P1 from vi to ui+1 inclusively as Segment[i, i+1]
of P1 with the explicit reference to P1 dropped when clear from the context.

• A path P with endpoints u, v ∈ V (P1) ∪ V (P2) but internally vertex-disjoint from P1

and P2 is said to be a nice path for Segment[i, i+1] if u is contained in Segment[i, i+1]
and v ∈ Vint(P2).

15

When e, P1, P2 are as in the definition above, we write w 6 w′ for vertices w,w′ ∈ V (P2) if
either w = w′ or w is encountered before w′ when traversing P2 from x to y, and similarly
for vertices on P1. Furthermore, for a set Q ⊆ V (P2) and vertex w ∈ V (P2), we say that
w < Q (w > Q) if w < q (w > q respectively) for every q ∈ Q. We need the following crucial
structural lemma regarding the structure of any path with endpoints in P1 and P2 but which
is otherwise disjoint from these two paths.

Lemma 4.10. Let G′, e = (x, y), P1, P2, e1, . . . , et be as above. Let P be a path in G′ with
endpoints u, v ∈ V (P1) ∪ V (P2) but internally vertex-disjoint from P1 and P2. Then the
following statements hold.

1. If u, v ∈ V (P1), then either u, v 6 u1, or u, v > vt, or there is a j ∈ [t − 1] such that
u, v lie on Segment[j, j + 1].

2. If u, v ∈ V (P2), then the subpath of P2 from u to v is internally vertex-disjoint from
the set

⋃t
i=1 Partner

e
G′(ei).

3. If u ∈ V (P1) and v ∈ V (P2), where u lies in Segment[i, i+ 1], then for every j 6 i and
every vertex w ∈ Partner(ej) we have w 6 v, and for every j > i + 1 and every vertex
w ∈ Partner(ej) we have w > v.

4. For every i ∈ [t − 1], there is at least one nice path for Segment[i, i + 1], and for any
i 6= j ∈ [t − 1], and paths P and P ′ which are nice paths for Segment[i, i + 1] and
Segment[j, j + 1] respectively, P and P ′ are internally vertex-disjoint.

Proof. For the first statement, suppose that there is an index i ∈ [t] such that u 6 ui but
v > vi. Since ei is critical in G′ − e, Observation 4.7 implies that there is a mixed x-y cut
X = {ei, q} where the vertex q lies on P2. However, the graph induced on V (P1) ∪ V (P)
contains an x-y path disjoint from X, a contradiction. This completes the argument for the
first statement.

The argument for the second statement is similar. Suppose to the contrary that there
is an i ∈ [t] and a vertex w ∈ Partner(ei) such that the subpath of P2 from u to v contains
the vertex w. Recall that due to Observation 4.7, the set X = {ei, w} is a mixed x-y cut
in G′ − e. But then u ∈ RG′−e(x,X), v ∈ RG′−e(y,X), and the path P is disjoint from X,
which contradicts X being an x-y cut.

For the third statement, suppose that there is a j 6 i and w ∈ Partner(ej) such that
w > v. Let X = {ej, w}. Due to Observation 4.7, we know that X is a mixed x-y cut in
G′ − e. Let A = RG′−e(x,X) and B = RG′−e(y,X). Since u ∈ Segment[i, i + 1] and j 6 i,
it follows that u ∈ B. Similarly, since w > v, it must be the case that v ∈ A. As above,
we find that P is a path disjoint from X connecting A and B, which contradicts that X is
an x-y cut. The argument for the case when there is a j > i and w ∈ Partner(ej) such that
w < v is analogous.

For the first part of the final statement, assume for a contradiction that for some i ∈ [t−1],
the path Segment[i, i + 1] does not have a nice path. Recall that ei is not critical in G′ but
is critical in G′ − e. Therefore, there is a ui-vi flow of value 2 in the graph G′ − ei; let
H = {H1, H2} be such a flow. If H1 or H2 intersects the internal vertices of P2, then this
implies the presence of a nice path for Segment[i, i + 1]. Hence, we assume that this does

16

not happen. We also conclude that e must occur in H1 or H2. Indeed, observe that e is
critical in G′− ei, since G′− ei is biconnected but G′− e− ei is not. Hence e ∈ CriticalG′(ei),
and by Lemma 4.2, e must participate in H. We may assume without loss of generality that
H1 contains the edge e. But now H2 is a path from ui to vi in G′, disjoint from both e, e′,
and Vint(P2). Clearly, H2 contains a subpath P in contradiction to the first statement of the
present lemma. We conclude that for every i ∈ [t− 1], Segment[i, i+ 1] has a nice path.

For the second part of the last statement, let P and P ′ be paths as described which
are not internally vertex-disjoint. Then P ∪ P ′ contains a walk, and therefore also a path,
with endpoints in V (P1), internally vertex-disjoint from V (P1)∪ V (P2), and with endpoints
in distinct segments on P1, in contradiction with the first statement of this lemma. This
completes the argument for the last statement and hence the proof of the lemma.

Let us now consider how partner sets can intersect.

Observation 4.11. Let G′, e = (x, y), P1, P2, e1, . . . , et be as above. Let ei, ej be a pair of
edges, 1 6 i < j 6 t, let w1, . . . , wr be the partner vertices of ei in the order they appear
on P2, and let w′1, . . . , w

′
s be the partner vertices of ej in the order they appear on P2. Then

wi 6 w′j for every i ∈ [r], j ∈ [s]. In particular, the set Partner(ei) ∩ Partner(ej) can consist
of at most one vertex w, which must then be the last vertex of Partner(ei) and the first vertex
of partner(ej) which is encountered when traversing P2 from x to y.

Proof. Let wi ∈ Partner(ei) and w′j ∈ Partner(ej). By Lemma 4.10 (4), Segment[i, i + 1] has
a nice path P with endpoints u ∈ V (P1) and v ∈ V (P2). By Lemma 4.10 (3), we have
wi ≤ v ≤ w′j. Thus, wi ≤ w′j and the claim follows.

Thus, there is a well-defined first and last element for each partner set and these two elements
(they may coincide) define a subpath of P2. Furthermore, the two subpaths corresponding
to the partner sets of any two critical edges on P1 do not have a ‘strict’ overlap and can only
intersect in one vertex – their respective endpoints.

Having identified some of the structure in the graph, we now proceed to examine two
cases. Recall that by Observation 4.8, the path P1 contains at least 10k2 + 23k edges of
CriticalG′(e) ∩ Heavy(µ(k)). We will consider one of two cases: either there is a sufficiently
large number of distinct partner sets, or there is a sufficiently large number of critical edges
with identical partner sets. We show how to handle each case in turn.

4.2.2. Many distinct partner sets

We first handle the first case, by formally arguing that if there are sufficiently many dis-
tinct partner sets, then Heavy(µ(k)) contains a solution edge. We begin with an observation
about connectivity.

Lemma 4.12. Let G′, e = (x, y), P1, P2, e1, . . . , et be as above. For each i ∈ [t], there is a
pair of internally vertex-disjoint ui-vi paths Pa, Pb in G′ − ei as follows.

1. Pa contains the edge e. Additionally, if i > 1, then Pa either contains ei−1 or intersects
Partner(ei−1), and if i < t, then Pa either contains ei+1 or intersects Partner(ei+1).

2. Pb has an endpoint each in Segment[i−1, i] and Segment[i, i+1], but does not intersect
P1 anywhere else except in these segments,

17

3. Pb contains the set Partner(ei) and is disjoint from the set Partner(ej) \ Partner(ei) for
any j ∈ [t], j 6= i, except possibly the vertices of

⋃
j Partner(ej) immediately preceding

and succeeding Partner(ei) on P2.

Proof. Let (Pa, Pb) be a pair of internally vertex-disjoint ui-vi paths in G′ − ei. This exists
since ei is not critical in G′. Let w ∈ Partner(ei). Since {w, ei} is a mixed x-y cut in G′ − e,
it follows that {w, e} is a mixed ui-vi cut in G′ − ei. Hence one path, say Pa, must pass
through e, and the other must pass through w. Since w was arbitrarily chosen, we find that
Pb contains every vertex of Partner(ei). Next, assume i > 1 and let w′ be the largest vertex
in Partner(ei−1) in the order <. Then {w′, ei−1} is a mixed x-y cut in G′ − e, thus Pa must
pass through either ei−1 or w′ on the way from ui to x. The dual argument holds for ei+1

if i < t. This covers the first property. For the second and third properties, consider again
the mixed cut {ei−1, w′}. Since Pb contains ui and vi, both of which are on the same side
in the above cut, Pb passes through the cut an even number of times; since Pa intersects
the cut, Pb cannot pass through the cut and so cannot intersect P1 in any segment before
Segment[i − 1, i], nor P2 in any vertex before w′. (Note that Pb may intersect w′, but it
cannot intersect any vertex on the other side of the cut.) An analogous argument holds for
ei+1 if i < t.

We now state and prove the lemma which handles the first case, i.e. there are a sufficiently
large number of distinct partner sets.

Lemma 4.13. Let G′, e = (x, y), P1, P2, e1, . . . , et be as above. Assume that there are more
than 3k distinct partner sets for the edges e1, . . . , et. Then the instance (G, k, w∗, w, E∞) has
a solution intersecting Heavy(µ(k)).

Proof. Let Z = {e1, . . . , et} and let ei1 , . . . , ei3k+1
, be a subset of Z such that for every 1 6

p < q 6 3k + 1, (a) iq > ip and (b) Partner(eip) 6= Partner(eiq). Let S = {ei1 , ei4 , . . . , ei3k−2
}.

Clearly |S| = k; we claim that S is a biconnectivity deletion set for G′.
To see this, let eij = (uij , vij) be an arbitrary edge of S, and let Pa, Pb be (uij , vij)-paths

given by Lemma 4.12. Then the path Pb remains in G′ − S; we will reconfigure Pa to be
disjoint from S. We will create a path P = Px + (x, y) + Py, by separately providing a path
Px from uij to x and a path Py from vij to y which are disjoint from Pb and neither of which
contains the edge e = (x, y). If j = 1, then eij is the first edge of S along P1 and we may
simply use Pa from uij to x as Px, so assume j > 1. If Pa intersects Partner(eij−1), then we
may produce Px by continuing along P2 to x. Otherwise Pa uses the edge eij−1. In this case,
produce Px by continuing along P1 to Segment[ij−3, ij−3 + 1], follow a nice path from this
segment to P2, and continue along P2 to x.

We argue that the resulting path Px is disjoint from Pb. If j = 1, then the claim is
trivial. If Pa intersects Partner(eij−1), then recall that Pa and Pb are internally disjoint, Pb
intersects Partner(eij), and Partner(eij−1) 6 Partner(eij). Thus Px lies entirely before Pb on
P2. Otherwise, Px uses a nice path P from Segment[ij−3, ij−3 + 1]. The initial part of Px
follows Pa, which is disjoint from Pb by Lemma 4.12; the part between uij−1 and P is disjoint
from Pb by Lemma 4.12(2); and Vint(P) is disjoint from Pb by Lemma 4.10(4). Let q be the
endpoint of P on P2, and let w be the first vertex of Partner(eij−2

) on P2. Then q 6 w by
Lemma 4.10(3), and we claim w < V (Pb) ∩ V (P2). Note that w /∈ Partner(eij) since the

18

three sets Partner(eij−2
), Partner(eij−1

), Partner(eij) are distinct and by Observation 4.11, let
w′ be the first vertex of Partner(eij) on P2. Assume for a contradiction that Pb intersects w.
Then Pb provides a path from w to eij that avoids eij−1

and w′; hence w′ /∈ Partner(eij−1
)

and Partner(eij−1
) ∩ Partner(eij) = ∅. But since Partner(eij−2

) 6= Partner(eij−1
), there must

be at least one further vertex w′′ ∈ Partner(eij−1
) such that w < w′′ < w′; this contradicts

that Pb intersects w by Lemma 4.10. Thus Px and Pb are internally vertex-disjoint. The
argument for Py is analogous to that for Px. Now Pa = Px+(x, y)+Py and Pb form a pair of
internally vertex-disjoint uij -vij -paths, and since eij ∈ S was chosen arbitrarily, we conclude
that G′ − S is biconnected. Since G is a supergraph of G′, G− S is also biconnected.

Finally, it follows from Lemma 4.5 that since S ⊆ Heavy(µ(k)) is a biconnectivity deletion
set of size k for G, there is a solution for the given instance intersecting Heavy(µ(k)). This
completes the proof of the lemma.

4.2.3. Identical partner sets

Due to Lemma 4.13, we assume that there are at most 3k distinct partner sets for the
edges of CriticalG′(e) ∩ Heavy(µ(k)) which lie on P1. Let e1, . . . , et be the set of all edges of
CriticalG′(e)∩Heavy(µ(k))∩E(P1), in the order they appear on P1 from x to y. We define a
set of exceptional edges; initially we set Î = {1 6 i < t | Partner(ei) 6= Partner(ei+1)} (later
we will define further exceptional edges). Then |Î| 6 3k by Observation 4.11; we study the
structure of contiguous stretches of edges ei, . . . , ej with indices disjoint from Î. Note that
all edges in such a stretch have identical partner sets. We make an observation about the
structure.

Lemma 4.14. Let Z = {ei, . . . , ej} be a set of edges of CriticalG′(e) ∩ Heavy(µ(k)) ∩ E(P1)
such that for every i 6 i′ < j′ 6 j, ei′ occurs before ej′ when traversing P1 from x to y and
PartnerG′−e(ei) = PartnerG′−e(ej). Then the following hold:

1. |PartnerG′−e(ei′)| = 1 and PartnerG′−e(ei′) = PartnerG′−e(ei) for every i 6 i′ 6 j, say
PartnerG′−e(ei′) = {w};

2. For every i 6 i′ < j and nice path P for Segment[i′, i′ + 1], V (P) ∩ V (P2) = {w}.

Proof. The first statement follows from Observation 4.11: since PartnerG′−e(ei) and PartnerG′−e(ej)
can intersect in at most one vertex, we have |PartnerG′−e(ei)| = 1, and since partner sets
appear in an “ordered” way on P2, we have PartnerG′−e(ei′) = PartnerG′−e(ei) for every
i < i′ 6 j. The second statement follows from the third statement of Lemma 4.10.

In light of Lemma 4.14, for any edge ei with i /∈ Î, we let w(i) denote the single partner
vertex of ei, i.e., PartnerG′−e(ei) = {w(i)}.

Definition 4.15. For each 1 6 i < t with i /∈ Î, we define Component[i, i + 1] as the set of
vertices reachable from V (Segment[i, i+ 1]) in the graph G′ − {ei, ei+1, w(i)} (see Figure 4).
We let Γ[i, i+ 1] denote the edge set E(Component[i, i+ 1]) ∪ E(w(i),Component[i, i+ 1]).

Observation 4.16. Let Z = [t] \ Î be the indices of non-exceptional edges ei. The following
hold.

• For every i ∈ Z, Segment[i, i+ 1] is contained in Component[i, i+ 1].

19

Figure 4: An illustration of the sets {Component[i, i+1] | i ∈ [t−1]} for t = 6, where the set Zi,i+1 represents
Component[i, i + 1]. Note that it is possible that Component[i, i + 1] contains a single vertex, in which case
this vertex must be the same as both vi and ui+1.

• For every i ∈ Z, NG′(Component[i, i+ 1]) = {ui, vi+1, w(i)}.

• For every pair i, j ∈ Z, i 6= j, the sets Component[i, i+ 1] and Component[j, j + 1] are
vertex-disjoint and they are disjoint from V (P2).

• For every pair i, j ∈ Z, i 6= j, Γ[i, i+ 1] and Γ[j, j + 1] are disjoint.

Proof. The first and second statements follow from the definition of Component[i, i+ 1]. For
the third statement, the second statement of Lemma 4.14 implies that Component[i, i+ 1] is
disjoint from V (P2) and the first statement of Lemma 4.10 implies that for every i 6= j, the
sets Component[i, i+ 1] and Component[j, j + 1] are vertex-disjoint. The final statement is a
direct consequence of the third statement. This completes the proof.

We need to consider one further complication. Recall that F̂ , as defined after Observation
4.6, denote the edges removed from the original graph G to create G′.

Definition 4.17. For each 1 6 i 6 t− 1, i /∈ Î, we say that Component[i, i + 1] is affected
if the set F̂ has an endpoint in Component[i, i+ 1] and unaffected otherwise.

Since |F̂ | < k, it follows that fewer than 2k of these disjoint vertex-sets can be affected.
We will treat these as a secondary set of exceptional indices; let Ĵ = {i ∈ [t] \ Î |
Component[i, i+] is affected}. We make a final observation.

Observation 4.18. Let e1, . . . , et be as above, with t > 10k2+23k. Then there is a contiguous
sequence a, . . . , b ∈ [t] of indices such that b > a + 2k + 3 and for every integral i ∈ [a, b],
Partner(ei) = Partner(ea) and Component[i, i+ 1] is unaffected.

Proof. We have |Î| 6 3k and |Ĵ | 6 2k− 2, hence [t] \ (Î ∪ Ĵ) decomposes into at most 5k− 1
parts. With t > (2k + 4)(5k − 1) + 5k − 2 = 10k2 + 23k − 6, one of these parts will contain
at least 2k + 4 indices, hence its bounding indices a, b will satisfy b > a+ 2k + 3.

We refer to such a sequence ea, . . . , eb of edges as an clean stretch of P1. The remaining
task towards the FPT algorithm is to show that a sufficiently long clean stretch contains an
irrelevant edge.

20

4.2.4. Reducing clean stretches

We will now restrict our attention to a single clean stretch [a, b], and prove that it contains
an irrelevant edge. To simplify the notation, let w = w(a). We have the following lemma,
where δH(Q) denotes the edges of H with one endpoint in Q.

Lemma 4.19. Let G′ = G− F̂ be as above and let Z = {ea, . . . , eb} be a clean stretch. Then
for every a 6 i < b, (a) Component[i, i + 1] is unaffected, (b) NG′(Component[i, i + 1]) =
NG(Component[i, i+1]) = {ui, vi+1, w} and (c) δG′−w(Component[i, i+1]) = δG−w(Component[i, i+
1]) = {ei, ei+1}.

Proof. Statement (a) holds by definition. For statements (b) and (c), the neighbourhoods
and incident edges are the same in G as in G′ since the components are unaffected, and it
follows from the definition of Component[i, i+1] that NG′(Component[i, i+1]) = {ui, vi+1, w}
and δG′−w(Component[i, i+ 1]) = {ei, ei+1}.

Lemma 4.20. Let G′, Z = {ea, . . . , eb} be as above. For any i ∈ [a+ 1, b− 1], the following
hold:

1. There is a vi-{w, ui+1} flow of value 2 in the graph G[Component[i, i+ 1] ∪ {w}].

2. There is a ui-{w, vi−1} flow of value 2 in the graph G[Component[i− 1, i] ∪ {w}].

Proof. We show the first statement; the proof of the second is analogous. If vi = ui+1, then
the statement follows by considering the single-vertex path vi in combination with the nice
path for Segment[i, i+1], hence assume that vi 6= ui+1. Since ei is not critical in G′ it follows
that there is a ui-vi flow of value 2 in G′ − ei. However, observe that due to Lemma 4.19,
{w, ui+1} is a ui-vi separator in G′ − ei. Hence of the two paths of the flow, one contains w
and the other contains ui+1. Truncating these paths at w and at ui+1 produces a flow in G′.
By Lemma 4.19, this truncated flow must remain in G′[Component[i, i+ 1]∪{w}], and since
G is a supergraph of G′ it also exists in G. This completes the proof of the statement.

Lemma 4.21. Let G′, Z = {ea, . . . , eb} be as above. For any i ∈ [a+ 1, b− 1] and ui-vi path
P in G− w − ei, there exists paths P1, P2, P3 such that P = P1 + P2 + P3 and the following
hold:

1. P1 is a ui-ua path such that for every a 6 j < i, P1 contains ej and vj occurs before
uj when traversing P1 from ui to ua.

2. P3 is a vi-vb path such that for every i < j 6 b, P3 contains ej and uj occurs before vj
when traversing P2 from vi to vb.

3. E(P2) disjoint from {ej | j ∈ [a, b]} and V (P2) is disjoint from
⋃
j∈[a,b−1] Component[j, j+

1].

Proof. Observe that ui lies in the set Component[i− 1, i]. Furthermore, by Lemma 4.19, we
know that δG−w−ei(Component[i− 1, i]) = {ei−1}. Since Component[i− 1, i] does not contain
vi, it must be the case that P contains the edge ei−1 and furthermore, vi−1 is encountered
before ui−1 when traversing P from ui to vi. We can then repeat the same argument for

21

Figure 5: An illustration of the paths used in the proof of Lemma 4.22. The dashed lines represent the uj-vj
path R.

ei−1, ei−2 and so on until ea. Hence, we conclude that ua lies on P and that P1, which is the
subpath of P from ui to ua, contains every ej such that a 6 j < i. Furthermore, for every
a 6 j < i, vj is encountered before uj when traversing P1 from ui to ua. This completes the
argument for the first statement.

A symmetric argument implies that vb lies on P and that P3, which is the subpath of P
from vi to vb, contains every ej such that i < j 6 b. Furthermore, for every i < j 6 b, uj is
encountered before vj when traversing P2 from vi to vb.

For the final statement, observe that E(P1)∪E(P3) contains the set {ea, ea+1, . . . , eb}\ei.
Therefore, the subpath of P from ua to vb, which we denote by P2, is disjoint from the set
{ea, ea+1, . . . , eb}. From Lemma 4.19, we infer that the only way P2 can contain a vertex of
Component[j, j + 1] for some j ∈ [a, b − 1] is if it contains either ej or ej+1. Since we have
already ruled this out, we conclude that P2 is disjoint from the set

⋃
j∈[a,b−1] Component[j, j+

1]. This completes the proof of the lemma.

We are now ready to prove our lemma concerning irrelevant edges.

Lemma 4.22. Let G′, Z = {ea, . . . , eb} be as above where b > a+2k+3. Let j ∈ [a+1, b−1]
be such that for every f ∈ {ea+1, . . . , eb−1}, w(f) > w(ej). Then, ej is irrelevant.

Proof. In order to prove the lemma, we need to argue that if there is a solution for the
instance (G, k, w∗, w, E∞), then there is one which does not contain ej. Let S be a solution
for this instance. If S is disjoint from ej, then we are done. Suppose that this is not the case.
We first argue that there is an edge which is not in S and has certain special properties. We
will then argue that replacing ej with this special edge also leads to a solution for the same
instance.

Claim 4.23. There exists j′ ∈ [a+ 1, b− 1] such that S is disjoint from Γ[j′− 1, j′]∪{ej′}∪
Γ[j′, j′ + 1].

22

Proof. We first observe that S is disjoint from {ea, . . . , eb} \ {ej} by Lemma 4.21. Next, for
` ∈ {0, 1, . . . , k} let `′ = a+ 2`. Since there are 2k + 2 edges in the set {ea+1, . . . , eb−1} and
by Observation 4.16, it follows that there are k + 1 edge-disjoint sets K1, . . . , Kk+1 where

K` = Γ[`′ + 1, `′ + 2]
⋃

Γ[`′ + 2, `′ + 3].

Since |S| 6 k, we conclude that there is an index j′ such that S is disjoint from Γ[j′−1, j′]∪
{ej′} ∪ Γ[j′, j′ + 1]. This completes the proof of the claim.

Furthermore, by our choice of ej, it follows that w(ej′) > w(ej). Let S ′ = S \ {ej} ∪ {ej′}.
Clearly, |S ′| 6 k and w(S ′) > w(S). We now argue that S ′ is also a biconnectivity deletion
set.

Observe that in order to do so, it suffices to prove that there is a uj′-vj′ flow of value 2 in
G−S ′. Let Q = {Q1, Q2} be a vj′-{w, uj′+1} flow of value 2 in the graph G[Component[j′, j′+
1] ∪ {w}] where Q1 is incident with w and Q2 with uj′+1 (see Figure 5). This flow exists
by Lemma 4.20. Similarly, let T = {T1, T2} be a uj′-{w, vj′−1} flow of value 2 in the graph
G[Component[j′ − 1, j′] ∪ {w}] where T1 is incident with w and T2 with vj′−1. By Observa-
tion 4.16, we know that Component[j′, j′ + 1] and Component[j′ − 1, j′] are vertex-disjoint.
Therefore, J1 = Q1 + T1 is a uj′-vj′ path in G − S ′ and furthermore, J1 is contained in
G[Component[j′ − 1, j′] ∪ Component[j′, j′ + 1] ∪ {w}].

Since S is a solution containing ej, it follows that there is a uj-vj flow of value 2 in the
graph G−S. In particular, there is a uj-vj path R in the graph G−S−w− ej. We assume
without loss of generality that j > j′. The arguments in the other case are exactly the same.
Due to Lemma 4.21, we know that R = R1 +R2 +R3 where the paths R1, R2 and R3 satisfy
the stated properties.

Let R′1 be the subpath of R1 from uj to uj′+1, R
′′
1 be the subpath of R1 from vj′−1 to ua.

Now, observe that H = R′1+Q2+ej′+T2+R′′1 +R2+R3 is also a uj-vj path in G−S−w−ej.
Futhermore, H intersects J1 only in {uj′ , vj′}.

Now, C = H + ej is a cycle in G− S −w such that S ∩E(C) = ej and S ′ ∩E(C) = ej′ .
Therefore, J2 = C− ej′ is a uj′-vj′ path in G−S−w. Since C intersects J1 only in {uj′ , vj′},
we conclude that J2 is internally vertex-disjoint from J1 and contains no edges of S ′. Thus,
we have demonstrated a uj′-vj′ flow {J1, J2} of value 2 in the graph G − S ′, implying that
S ′ is a biconnectivity deletion set and hence a solution for the instance (G, k, w,w∗, E∞).
Therefore, we conclude that the edge ej is irrelevant, completing the proof of the lemma.

Combining Lemma 4.13 and the fact that we can clearly locate the irrelevant edge ej (in
the statement of Lemma 4.22) in polynomial time, we obtain Lemma 4.3, our main ob-
jective. This concludes the description of our algorithm for Weighted Biconnectivity
Deletion.

4.3. A randomized kernel for Unweighted Biconnectivity Deletion

We now present our randomized kernel for the Weighted Biconnectivity Deletion
problem where instances are of the form (G, k, w∗, w, E∞) where w(e) = 1 for every e ∈
E(G) \ E∞, w(e) = 0 for every e ∈ E∞, and w∗ = k. This version of the problem will
be referred to as Unweighted Biconnectivity Deletion and instances of this problem will
henceforth be of the form (G, k,E∞) where a solution is a biconnectivity deletion set of size

23

k contained in E(G) \E∞. We continue to refer to the set E(G) \E∞ as the set of potential
solution edges and assume without loss of generality that at any point, any edge in the set
CriticalG(∅) is already part of E∞. Finally, recall that a linkage from A to B in a digraph
D, where A and B are vertex sets, is a collection of |A| = |B| pairwise vertex-disjoint paths
originating in A and terminating in B.

Our kernelization relies on a result of Kratsch and Wahlström [14]. Before we are able
to state it formally, we need the following definitions. Let us define a potentially overlapping
A-B vertex cut in a digraph D to be a set of vertices C ⊆ V (D) such that D−C contains no
directed path from A\C to B \C. For any digraph D and set X ⊆ V (D), a set Z ⊆ V (D) is
called a cut-covering set for (D,X) if for any A,B,R ⊆ X, there is a minimum-cardinality
potentially overlapping A-B vertex cut C in D −R such that C ⊆ Z. We are now ready to
state the result of Kratsch and Wahlström on which our kernelization is based.

Lemma 4.24 (Corollary 3, [14]). Let D be a directed graph and let X ⊆ V (D). We can
identify a cut-covering set Z for (D,X) of size O(|X|3) in polynomial time with failure
probability O(2−|V (D)|).

Armed with this lemma, we first give a randomized kernelization that outputs an instance
whose size is bounded polynomially in the number of the potential solution edges in the
input instance.

Lemma 4.25. Unweighted Biconnectivity Deletion has a randomized kernel with
number of vertices bounded by O(|E(G) \ E∞|3).

Proof. Let F = E(G) \ E∞ be the set of potential solution edges. Now, the kernelization
task essentially consists of retaining enough information from the input graph G to verify
for any set S ⊆ F , whether S is a biconnectivity deletion set for G. We observe a simple
equivalent statement of this property. [Magnus]

This en-
tire
claim
+ proof
are
newly
added

Claim 4.26. Let G = (V,E) be a biconnected graph and S ⊆ E. Then S is a biconnectivity
deletion set for G if and only if for every edge e = (u, v) ∈ S, the maximum u − v-flow in
G− S is at least 2.

Proof. Indeed, on the one hand, if the condition is not fulfilled for some (u, v) ∈ S, then
G−S is clearly not biconnected. On the other hand, assume that G−S is not biconnected,
and let (U,W) be a separation of order 1, say U ∩W = {v}. Since G is biconnected there
must exist an edge e between U − v and W − v, say e = (u,w). But then clearly e ∈ S and
the u− w-flow in G− S is at most 1.

We show an equivalent formulation of this as a question about the existence of linkages
in an auxiliary digraph, followed by an appropriate invocation of Lemma 4.24.

For the formulation, we create a digraph DG,F from G and F . We refer to this digraph
as D when G and F are clear from the context. In the first step, subdivide every edge
e ∈ F with a new vertex xe. That is, for an edge e = (u, v) ∈ F , we create a new vertex
xe, remove the edge e and add edges (u, xe) and (v, xe). Let G1 be the resulting undirected
graph. In the second step, replace every edge (u, v) in E(G1) by a pair of arcs (u, v), (v, u).
Finally, for every vertex v incident to any edge of F in G, add vertices v+, v− and add
arcs from v+ to all vertices in NG1(v) and from all vertices in NG1(v) to v−. Let D be

24

the resulting digraph. Note that N+
D (v−) = ∅ and N−D (v+) = ∅. Let XE = {xe | e ∈ F},

XV = {v+, v−, v | e ∈ F, e = (u, v)} and X = XE ∪ XV . We now relate solutions for the
given instance and linkages in D.

Claim 4.27. For any S ⊆ F , S is a biconnectivity deletion set for G if and only if for every
edge (u, v) ∈ S there is a linkage from {u+, u} to {v−, v} in D − {xe | e ∈ S}.

Proof. Consider an arbitrary edge e = (u, v) in S. On the one hand, assume that there exists
a u-v flow of value 2 in G− S. Then, by definition there exists a pair {P1, P2} of internally
vertex-disjoint u-v-paths in G−S. Observe that orienting both paths from u to v, replacing
one copy of u by u+ and one copy of v by v−, and subdividing any edge e′ ∈ E(Pi) ∩ F by
the vertex xe′ yields the required linkage.

On the other hand, let {P1, P2} be a linkage from {u+, u} to {v−, v} in D−{xe | e ∈ S}.
For each i ∈ {1, 2}, if Pi originates in u+, then replace u+ by u and if Pi terminates in
v−, then replace v− by v. Call the paths resulting from P1 and P2 in this way, P ′1 and P ′2
respectively. Then P ′1 and P ′2 use only vertices of V (G)∪XE. Furthermore, these two paths
use no edge of S since by definition, P1 and P2 are disjoint from every vertex xe′ such that
e′ ∈ S. Thus the paths P ′1, P

′
2 use only edges and vertices present in G − S, and form an

internally vertex-disjoint pair of u-v-paths.
Hence linkages as described exist if and only if the u − v-flow in G − S is at least 2

for every edge (u, v) ∈ S.G As argued above, this is equivaent to S being a biconnectivity
deletion set in G.

Let Z ⊆ V (D) be the cut-covering set for (D,X), as computed by the algorithm of Lemma 4.24.
Having in hand the set Z, we define the set Y = (Z ∩ V (G)) ∪ V (F). Note that Z could
contain vertices from XV , but we want Y to be a subset of V (G). Therefore, we first add
to Y those vertices in Z which are also vertices in G and then add the vertices of V (F).
Our objective now is to reduce G down to what is commonly known as the torso graph of
G defined by Y (see [14]). We now make this precise in the form of reduction rules. In the
rest of the proof of the lemma, we fix Z to be a set computed using Lemma 4.24 and let Y
be as defined above. We now state three reduction rules which will be applied on the given
instance in the order in which they are presented.

Reduction Rule 4.28. If k = 0, then return an arbitrary yes-instance of constant size.

Reduction Rule 4.29. Suppose that Reduction Rule 4.28 has been applied on the given
instance. If there is an edge (u, v) ∈ F such that G contains a u-v path avoiding all edges
of F and all vertices of Y \ {u, v}, then delete (u, v) from G and reduce the budget k by 1.
That is, return the instance (G− {(u, v)}, k − 1, E∞).

Reduction Rule 4.30. Suppose that Reduction Rule 4.28 and Reduction Rule 4.29 have been
applied exhaustively on the given instance. For every pair u, v ∈ Y such that (u, v) /∈ E(G)
and there is a u-v-path in G that is internally vertex-disjoint from Y , we add the edge (u, v).
Finally, return the instance (G′, k, E ′∞), where G′ = G[Y] and E ′∞ = (E∞ ∩ E(G′)) ∪
(E(G′) \ E(G)).

25

The soundness of Rule 4.28 is trivial and we move on to prove the soundness of the remaining
two rules.

Claim 4.31. Reduction Rules 4.29 and 4.30 are sound.

Proof. Let e = (p, q) ∈ F be an edge which is deleted in an application of Reduction Rule
4.29. Observe that in order to argue the soundness of this reduction rule, it suffices to argue
that e is part of some solution for the given instance (if there exist any). Let S be an arbitrary
subset of F containing e such that S \{e} is a solution. If S itself is a biconnectivity deletion
set then we may correctly conclude that e is part of some solution for the given instance.
Suppose that this is not the case.

Recall that by the previous claim, S is a biconnectivity deletion set for G if and only if
there is a linkage from {u+, u} to {v−, v} in D − {xe | e ∈ S} for every (u, v) ∈ S. Since
we are in the case that S is not a biconnectivity deletion set, there is a (u, v) ∈ S, with
A = {u+, u}, B = {v−, v}, and R = {xe | e ∈ S} such that there is no linkage from A to B
in D−R. Since S\{e} is a biconnectivity deletion set, G−(S\e) is biconnected and it follows
from Claim 4.26 that we may choose u = p and v = q, where furthermore κG−S(p, q) = 1.
In addition, the fact that Z is a cut-covering set for (D,X) implies that Z contains a vertex
w such that C = {w} is a minimum-cardinality potentially overlapping A-B vertex cut in
D − R. It is straightforward to see that w /∈ {p, q, p+, q−} since otherwise, there will be at
least one path from A to B which is disjoint from w. Finally, since κG−S(p, q) = 1, it follows
that every p-q path in G − S intersects w. If w ∈ XE then we know that it corresponds
to an edge in F . Otherwise, it corresponds to a vertex in Y . In either case, we obtain a
contradiction to the applicability of Reduction Rule 4.29 on the edge (p, q), completing the
proof of soundness for this rule.

We now argue the soundness of Reduction Rule 4.30. To do so, we prove that S ⊆ F is
a solution for (G, k,E∞) if and only if it is a solution for (G′, k, E ′∞). Let D1 = DG,F and
let D2 = DG′,F .

In the forward direction, suppose that S is a solution for (G, k,E∞). By Claim 4.27,
it follows that for every edge (u, v) ∈ S, there is a linkage from {u+, u} to {v−, v} in
D1 − {xe | e ∈ S}. Fix such an edge (u, v) and let the paths in the linkage be P1, P2. If
we demonstrate such a linkage in D2, then we are done. This can be achieved as follows.
Let i ∈ {1, 2} and consider a pair of vertices xi, yi ∈ V (Pi) ∩ Y such that the subpath of
Pi from xi to yi has all its internal vertices disjoint from Y . Then, we know that the graph
G′ contains the edge (xi, yi) and hence the digraph D2 contains the arc (xi, yi). We replace
the subpath from xi to yi with the arc (xi, yi) and we do this for every such subpath of Pi.
It is straightforward to see that what results is indeed a linkage from {u+, u} to {v−, v} in
D2 − {xe | e ∈ S}. Hence, we conclude that S is a solution for (G′, k, E ′∞).

The same argument can be reversed for the converse direction in order to convert, for
any (u, v) ∈ S, a linkage from {u+, u} to {v−, v} in D2 − {xe | e ∈ S} to a a linkage from
{u+, u} to {v−, v} in D1−{xe | e ∈ S}. This completes the proof of soundness of Reduction
Rule 4.30.

The above claim implies that if (G′, k′, E(G′) \ F ′) is the instance obtained by exhaustively
applying the three reduction rules above, then (G′, k′, E(G′) \ F ′) is indeed equivalent to

26

(G, k,E∞). Furthermore, the size |V (G′)| = O(|F |3) and the randomized polynomial running
time follow from Lemma 4.24. This completes the proof of the lemma.

Theorem 1.2. Unweighted Biconnectivity Deletion has a randomized kernel with
O(k9) vertices.

Proof. Let (G, k,E∞) be the given instance and let F = E(G) \ E∞ be the set of potential
solution edges in this instance. We present reduction rules which reduce F (while maintaining
equivalence) to size O(k3); the result then follows from Lemma 4.25.

If |F | = O(k3), we are done. Otherwise, following the approach described in Section
4.2.1, we greedily construct a biconnectivity deletion set in G, at each step keeping track
of the edges that become critical. That is, we let Ŝ = {f1, . . . , fr} ⊆ F be a set greedily
constructed as follows. The edge f1 is an arbitrary edge in F and for each 2 6 i 6 r, fi is
an arbitrary edge which is not critical in G − {f1, . . . , fi−1}. As earlier, we terminate this
procedure after k steps if we manage to find edges {f1, . . . , fk} or earlier if for some r < k,
every remaining edge of F is critical in G− {f1, . . . , fr}.

If r = k, then we identify the instance as a yes-instance and return an arbitrary yes-
instance of constant size. Otherwise, if there is an i ∈ [r] such that G − {f1, . . . , fi} is
biconnected and |CriticalG−{f1,...,fi−1}(fi)| > 20k2 + 46k, then we execute the case analysis in
Section 4.2.2 and in polynomial time, either find 3k+ 1 distinct partner sets or an irrelevant
edge. In the latter case, we simply remove this irrelevant edge from F (add it to the set
E∞). Finally, if we reach a case with at least 3k + 1 distinct partner sets, then according
to the proof of Lemma 4.13 we can find a biconnectivity deletion set S ⊆ F with |S| > k in
polynomial time, and since we are dealing with the unweighted case, we can simply identify
the instance as a yes-instance and return an arbitrary yes-instance of constant size.

The only remaining case is that this greedy algorithm fails to produce a large enough
solution yet never marks too many edges as critical at once. That is, it terminates in r < k
steps and never marks more than 20k2 + 46k edges as critical in step i for any i ∈ [r]. This
implies that |F | 6 20k3 + 46k2 + k = O(k3), completing the proof of the theorem.

5. Edge deletion to highly connected graphs parameterized by connectivity and
the size of the deletion set

In this section, we consider the most general parameterization of the unweighted version
of the problem and give a non-uniform FPT algorithm. In this parameterization, we consider
both k and the value of the vertex-connectivity we want to preserve in the input graph, as
parameters. We formally define the problem below.

Vertex-connectivity Deletion Parameter: k + ρ
Input: A undirected graph G, integers ρ, k such that G is ρ-vertex connected.
Question: Is there a set S ⊆ E(D) of size k such that G−S is also ρ-vertex connected?

Theorem 1.3. For every fixed k and ρ, the Vertex-connectivity Deletion problem
can be solved in time O(n6).

We will prove this theorem using Proposition 2.6. Recall that in order to invoke Propo-
sition 2.6, we need to first argue that this problem can be expressed in CMSOL.

27

Lemma 5.1. Vertex-connectivity Deletion can be expressed in CMSOL.

Proof. Let G = (V,E) be a graph. The following sentence is not hard to express in CMSOL.
For every set U ⊂ V of size ρ − 1, there is a set S ⊆ E of size k such that the following
holds: for every non-empty Y ⊂ V \U there is an edge e ∈ E \S such that one end-vertex of
e belongs to Y and the other to the complement of Y in V \U . Indeed, it suffices to require
that card0,k(S) = true and card0,ρ−1(U) = true since if the sentence holds for larger sets
S and U , it holds for those of cardinality k and ρ− 1, too. This completes the proof of the
lemma.

In the rest of this section, whenever we say that k and ρ are fixed, we denote by c the
value 2k + ρ and denote by s the constant given by Proposition 2.6 corresponding to this
c. Lemma 5.1 and Proposition 2.6 together imply that in order to prove Theorem 1.3, it is
sufficient to prove the following lemma.

Lemma 5.2. For every fixed k and ρ, Vertex-connectivity Deletion can be solved in
time O(n5) on graphs which are (s, c)-unbreakable.

The rest of this section is devoted to the proof of this lemma.

5.1. An algorithm for Vertex-connectivity Deletion on (s, c)-unbreakable graphs

We are now ready to prove our main structural lemma providing a bound on the number
of ‘non-critical’ edges in any no-instance of Vertex-connectivity Deletion where the
input graph is unbreakable.

Lemma 5.3. For fixed k and ρ, let G be an (s, c)-unbreakable graph. Then, (G, ρ, k) is a yes-
instance of Vertex-connectivity Deletion or |E(G)\CriticalρG(∅)| < (2s+4k+9)ρ ·k.

Proof. Suppose that |E(G) \ CriticalρG(∅)| > (2s + 4k + 9)ρ · k. We first greedily select a
maximal ordered set S of edges {e1, . . . , e`} such that for every i ∈ [`], the graph G − Si is
ρ-connected, where Si = {e1, . . . , ei} and S0 = ∅. Observe that by our assumption, the set
E(G) \CriticalρG(∅) is non-empty and hence there is at least one edge e ∈ E(G) \CriticalρG(∅)
such that G−e is ρ-vertex connected. As a result, the set S` is non-empty. Furthermore, since
S is maximal, it must be the case that CriticalρG−S`

(∅) = ∅. That is, G − S` is ρ-connected
and every edge in G− S` is ρ-critical.

If ` > k, then it follows that (G, ρ, k) is a yes-instance of Vertex-connectivity
Deletion. Suppose that this is not the case. Then, it follows that for some i ∈ [`], the size
of the set CriticalG−Si−1

(ei) is at least (2s + 4k + 9)ρ. We now argue the following for such
an i.

Claim 5.4. There is an edge e′ ∈ CriticalG−Si−1
(ei) such that G− Si−1 has a (s+ 2k, ρ+ 3)-

separation (A,B) where V (ei) ∪ V (e′) ⊆ (A ∩B).

Proof. Let ei = (x, y). We begin by selecting an arbitrary x-y flow P of value ρ in G′ =
G − Si−1. The definition of S implies that G′ is ρ-connected. Hence, such a flow exists.
By the equivalence of statements (1) and (3) of Lemma 4.2, it follows that every edge in
CriticalG−Si−1

(ei) lies on a path in P (see Figure 6). Let P1, . . . , Pρ be the paths in P . Since

28

yx

e

e0

u v

A B

Qyx

e0

Q

Pj

Figure 6: An illustration of the edge e′ on the x-y path Pj in the graph G− Si and the separation (A,B) in
G− Si−1 defined based on e′ and Q.

|CriticalG−Si−1
(ei)| > (2s + 4k + 9)ρ, it must be the case that there is a j ∈ [ρ] such that Pj

contains at least (2s+ 4k + 9) edges of CriticalG−Si−1
(ei).

Let r = 2s + 4k + 9 and let {p1, . . . , pr} denote an arbitrary subset of CriticalG−Si−1
(ei)

contained in Pj. Furthermore, assume without loss of generality that for every 1 6 z < z′ 6
r, pz is encountered before pz′ when traversing Pj from x to y. Let e′ = (u, v) = ps+2k+5,
where u is encountered before v when traversing Pj from x to y.

Since e′ lies on every x-y flow of value ρ in G′, there is an x-y separator Q of size ρ− 1
in G′ − e′. Furthermore, Q must be disjoint from precisely one of the paths in P . If it is
disjoint from any path other than Pj, then it would imply the presence of an x-y path in
G′ − e′ −Q, a contradiction. Hence, it must be the case that Q is disjoint from Pj.

Let A = RG′−e′(x,Q)∪Q∪{x, y, u, v} and let B = (V (G)\A)∪Q∪{x, y, u, v}. Observe
that (A,B) is a separation of G′ with separator Q∪ {x, y, u, v}. Therefore, the order of this
separation is |Q| + 4 = ρ + 3. Furthermore, since Q is disjoint from Pj, it follows that the
vertices in the subpath of Pj from x to u are contained in A and the vertices in the subpath
of Pj from v to y are all contained in B. Hence, |A \ B|, |B \ A| > s + 2k. This completes
the proof of the claim.

We will now transform the separation (A,B) in G− Si−1 to a separation in G violating
the premise of the lemma. Henceforth, we will let Z denote the set A∩B which we already
know contains V (ei)∪V (e′). Let Q′ = Z∪V (Si−1), A

′ = A∪(B∩Q′) and B′ = B∪(A∩Q′).
Observe that A′ ∩ B′ = Q′. In other words, we construct another separation (A′, B′) where
A′ ∩ B′ = Q′ by taking the separation (A,B) and moving the endpoints of all the edges
in Si−1 to the ‘middle’ of the separation. Since ` < k, it follows that i < k and hence
|V (Si−1)| 6 2(k − 2). Therefore, we conclude that (A′, B′) is a separation in G of order at
most 2k+ρ and furthermore, |A′|, |B′| > s, implying thatG has a (s, ρ+2k)-separation, which
is in fact a (s, c)-separation, a contradiction. This completes the proof of the lemma.

Since any solution for the instance (G, k, ρ) must be a subset of E(G) \ CriticalρG(∅),
Lemma 5.3 implies that if, for a fixed k and ρ and instance (G, k, ρ), the set E(G)\CriticalG(∅)
has size at least (2s + 4k + 9)ρk, then the instance is a yes-instance and otherwise one can
simply examine all subsets of E(G) \ CriticalG(∅) of size at most k and decide whether the

29

given instance is a yes-instance. Therefore, Lemma 5.2 follows from Lemma 5.3 and the
existence of the O(ρn3)-time ρ-vertex-connectivity algorithm of Even [22].

6. Conclusions

Our results on Path-contraction Preserving Strong Connectivity, Weighted
Biconnectivity Deletion, and Vertex-connectivity Deletion provide significant
data points for the algorithmic landscape of graph editing problems under connectivity con-
straints and its application in network design.

Since we established that Path-contraction Preserving Strong Connectivity
is W[1]-hard for general digraphs, we ask whether the problem becomes FPT when restricted
to planar digraphs or other structurally sparse classes.

Concerning the parameterized algorithm for Weighted Biconnectivity Deletion,
we ask whether the dependence of 2O(k log k) can be improved to single-exponential or proven
to be optimal. Similarly, it remains open whether even a dependence of 2O(k log k) can be
achieved for the Vertex-connectivity Deletion problem for a fixed value of ρ greater
than 2.

Finally, regarding our polynomial kernel for Unweighted Biconnectivity Deletion, we ask
whether it is possible to obtain a deterministic kernel. It is also left open whether the
weighted case admits a polynomial kernel.

The results presented in this paper raise more questions than they answer, a clear indi-
cation that connectivity constraints are far from properly explored under the paradigm of
parameterized complexity. As such, the topic offers exciting but challenging opportunities
for further research.

References

[1] J. Bang-Jensen, M. Basavaraju, K. V. Klinkby, P. Misra, M. S. Ramanujan, S. Saurabh,
M. Zehavi, Parameterized algorithms for survivable network design with uniform de-
mands, in: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, 2018, pp.
2838–2850.

[2] J. Bang-Jensen, G. Z. Gutin, Digraphs: theory, algorithms and applications, Springer
Science & Business Media, 2008.

[3] A. Frank, Connections in Combinatorial Optimization, Oxford Univ. Press, 2011.

[4] H. Nagamochi, An approximation for finding a smallest 2-edge-connected subgraph
containing a specified spanning tree, Discrete Applied Mathematics 126 (1) (2003) 83 –
113, 5th Annual International Computing and combinatorics Conference.

[5] J. Guo, J. Uhlmann, Kernelization and complexity results for connectivity augmentation
problems, Networks 56 (2) (2010) 131–142.

30

[6] D. Marx, L. A. Végh, Fixed-parameter algorithms for minimum-cost edge-connectivity
augmentation, ACM Transactions on Algorithms (TALG) 11 (4) (2015) 27.

[7] M. Basavaraju, F. V. Fomin, P. Golovach, P. Misra, M. Ramanujan, S. Saurabh, Param-
eterized algorithms to preserve connectivity, in: Proceedings of the 41st International
Colloquium on Automata, Languages, and Programming (ICALP), Springer, 2014, pp.
800–811.

[8] J. Bang-Jensen, A. Yeo, The minimum spanning strong subdigraph problem is fixed
parameter tractable, Discrete Applied Mathematics 156 (15) (2008) 2924–2929.

[9] T. Watanabe, A. Nakamura, Edge-connectivity augmentation problems, J. Comput.
System Sci. 35 (1987) 96 – 144.

[10] A. Frank, Augmenting graphs to meet edge-connectivity requirements, SIAM J. Discrete
Math. 5 (1) (1992) 25–53.

[11] A. Frank, T. Jordán, Minimal edge-coverings of pairs of sets, J. Comb. Theory, Ser. B
65 (1) (1995) 73–110.

[12] L. A. Végh, Augmenting undirected node-connectivity by one, SIAM J. Discrete Math.
25 (2) (2011) 695–718.

[13] D. Lokshtanov, M. S. Ramanujan, S. Saurabh, M. Zehavi, Reducing CMSO model
checking to highly connected graphs, CoRR abs/1802.01453.

[14] S. Kratsch, M. Wahlström, Representative sets and irrelevant vertices: New tools for
kernelization, in: 53rd Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, IEEE Computer Society,
2012, pp. 450–459.

[15] S. Kratsch, Recent developments in kernelization: A survey, Bulletin of the EATCS
113.

[16] D. M. Moyles, G. L. Thompson, An algorithm for finding a minimum equivalent graph
of a digraph, Journal of the ACM (JACM) 16 (3) (1969) 455–460.

[17] F. V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh, Efficient computation of repre-
sentative families with applications in parameterized and exact algorithms, Journal of
the ACM (JACM) 63 (4) (2016) 29:1–29:60.

[18] R. G. Downey, M. R. Fellows, Fixed-parameter tractability and completeness II: on
completeness for W[1], Theor. Comput. Sci. 141 (1&2) (1995) 109–131.

[19] S. Arnborg, J. Lagergren, D. Seese, Easy problems for tree-decomposable graphs, J.
Algorithms 12 (2) (1991) 308–340.

[20] B. Courcelle, The monadic second-order logic of graphs. i. recognizable sets of finite
graphs, Inf. Comput. 85 (1) (1990) 12–75.

31

[21] B. Courcelle, The expression of graph properties and graph transformations in monadic
second-order logic, in: G. Rozenberg (Ed.), Handbook of Graph Grammars and Com-
puting by Graph Transformations, Volume 1: Foundations, World Scientific, 1997, pp.
313–400.

[22] S. Even, R. E. Tarjan, Network flow and testing graph connectivity, SIAM journal on
computing 4 (4) (1975) 507–518.

32

