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Abstract

In this thesis, we study the representation theory of the symmetric group.

Chapter 1 contains the necessary background for the subsequent chapters.

Chapter 2 examines questions related to the structure of a Young per-

mutation module over a field of prime characteristic. We provide a self-

contained account of the representation theory of the indecomposable sum-

mands of Young permutation modules. We then use this to prove the

Brauer–Robinson Theorem on the blocks of the symmetric group over fields

of characteristic 2 and 3. We demonstrate how these ideas can give an

elementary proof of the blocks of signed Young modules.

In Chapter 3 we study, via the Brauer correspondence, the vertices of

two families of p-permutation modules. Our main results characterise the

vertices of indecomposable summands of F
xSmn
SµoSn and F

xSpn
CpoSn , where p is a

prime, m < p and µ is a partition of m. The former generalises the main

result of [22].

In Chapter 4, we work with the symmetric and exterior powers of rep-

resentations of the symmetric group, generalising the work of Savitt and

Stanley from [61]. We extend their research by asking analogous questions

for generalised symmetric groups and Brauer characters over a field of prime

characteristic. Moreover, we investigate similar problems where symmetric

powers are replaced by exterior powers. We also consider the scenario where

the natural character is replaced by any Young permutation character la-

belled by a partition with two parts.

Finally, in Chapter 5, we focus on the group-theoretic aspects of the

symmetric group, studying its Sylow p-subgroups and their conjugacy class

structure. We define a new combinatorial object, the conjugacy polynomial,

which encodes the conjugacy class sizes and use it to prove results about

the commuting and conjugacy probability for Sylow subgroups of symmetric

groups.
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Notation and Conventions

Throughout this thesis, we make the following conventions.

The set of natural numbers is denoted by N; we make the convention that

0 ∈ N.

If p is a prime number, we write Zp for the ring of p-adic integers and Qp

for the field of p-adic numbers. The field with p elements will sometimes be

denoted by Fp.

If X is a set, the symmetric group on X is denoted by Sym(X). If

X = {1, . . . , n}, then we write Sn instead of Sym({1, . . . , n}).

Unless otherwise stated, all modules are finitely-generated left modules.

Given a simple module V and a module U , we write [U : V ] for the

multiplicity of V as a composition factor of U . We write U ⊗V for the inner

tensor product of FG-modules U and V . If H is another finite group, U

is an FG-module and V is an FH-module, then we denote the outer tensor

product of U and V by U � V .

The induction and restriction operators on modules are represented by

arrows
x and

y respectively. We shall sometimes omit the group from which

we are inducing or to which we are restricting where this is unambiguous.
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1. Introduction and Background

1.1. Introduction. The axioms for a finite group were first written down in

1854 by Cayley in [13]. Yet group theory did not arise in a vacuum: groups

were being studied prior to Cayley’s paper in at least three distinct areas

of mathematics. Firstly, number theorists were asking questions about the

structure of abelian groups, especially the integers modulo a natural number;

this was important in Gauss’s work on quadratic reciprocity. Group theory

would also come to the fore in unexpected places: ideal class groups of

algebraic number fields and the Mordell–Weil groups of rational points on

an elliptic curve are both important examples of abelian groups.

Groups also played a role in the study of polynomial equations. The

method for solving a quadratic equation had been known since antiquity,

and Renaissance mathematicians had found algebraic solutions for equations

of degrees three and four. The key idea behind Abel’s proof that no such

formula can exist for the quintic equation is that a solution by radicals exists

if and only if the group of field automorphisms permuting the roots of the

equation is a soluble group.

A third source of the interest in group theory was geometry. The language

of group actions and transformation groups provided a suitable framework

to understand classical problems such as the symmetries of platonic solids.

Moreover, the interest in non-Euclidean geometry and higher dimensional

geometry led to a demand for abstraction, which group theory could provide.

In the second half of the nineteenth century, group theory went beyond its

historical origins. Lie groups were introduced and studied as part of an at-

tempt to solve differential equations by studying their symmetries. Poincaré

had the idea of associating a so-called fundamental group to a topologi-

cal surface, with the property that two spaces would be homeomorphic if

and only if their corresponding fundamental groups were isomorphic. Felix

Klein’s Erlangen Program of 1872 aimed to study spaces via their symmetric

groups; in this way, group theory provided a framework to unify different

geometries.
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Therefore, by the middle of the 1890s, group theory was of interest to

mathematicians as a whole. Representation theory arose in the 1890s as a

means of converting questions about groups into problems in linear algebra.

Interestingly, given that modern textbooks define characters as traces of

matrix representations, Frobenius introduced characters of groups in 1896,

before he invented the idea of a representation the following year. We refer

the reader to [14] for a comprehensive account of the history of representation

theory.

The preponderance of this thesis is dedicated to the study of represen-

tations of finite groups. We recall the crucial definition: let G be a finite

group, F be any field and V a F-vector space. A representation of G over

F is a group homomorphism θ : G → GL(V ). The dimension of the rep-

resentation is simply the dimension of V as a vector space. We associate a

character to a representation by specifying that χ(g) = Tr(θ(g)). A char-

acter of a representation, therefore, is a function χ : G → F which sends a

group element to an element of the field F.

There were some early triumphs for representation theory. Representation

theory was essential in proving the important result regarding the structure

of Frobenius groups in 1901 [29]. Burnside’s paqb Theorem, which states

that group of order divisible by at most two primes is soluble, was proved

three years later in [10] and used arguments from representation theory.

Representation theory played a key role in providing an affirmative answer

to the Burnside Problem for GLn(C), which asked whether any finitely gen-

erated subgroup of GLn(C) must be finite: see [11]. Despite the benefit of

over a century’s work in algebra, these representation-theoretic proofs are

still the simplest available.

The representation theory of a group over a field of characteristic dividing

the group order (so-called modular representation theory) was a much later

development. Although Dickson had demonstrated that the group algebra

in this case is not semisimple in 1907, the area received little attention for

a while. Starting in 1935, Brauer introduced a theory of characters in the

modular case and developed a theory of blocks. His goal in doing so was to
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deduce results about the ordinary character table of a group from its modular

representations. This was an important ingredient in the classification of

finite simple groups, arguably the greatest achievement in modern algebra.

In this thesis, we focus on symmetric groups and closely related groups

such as the generalised symmetric group (the wreath product of a cyclic

group with a symmetric group, as explained in 1.6). Yet what makes the

symmetric group a deserving object of study?

The simple answer is that symmetric groups are ubiquitous, and not

merely in the trivial sense that any finite group is a subgroup of a sym-

metric group. Symmetric groups arise in Galois theory; indeed, the fact

that S5 is not a soluble group is crucial to showing that a general quintic

equation cannot be solved by radicals. Moreover, symmetric groups are of

interest to combinatorics: for example in the theory of symmetric polyno-

mials (polynomials in n variables which are invariant under an action of

Sn) and as a source of combinatorial problems. The symmetric group is the

Weyl Group of type An, and the Coxeter group of the general linear group.

Generalisations of the symmetric group algebra, such as KLR algebras and

Hecke algebras, are the focus of an active body of research; for a survey, we

refer the reader to [51].

The representation theory of the symmetric group over a field of charac-

teristic zero is generally well-understood from work of Frobenius and Young.

In this setting, we have an explicit characterisation of the irreducible repre-

sentations via Specht modules, and can calculate the value of any irreducible

character by means of the purely combinatorial Murnaghan–Nakayama rule.

There are still open problems in the ordinary representation theory of the

symmetric group, particularly those with a combinatorial flavour such as

Foulkes’ Conjecture, which we discuss in more detail in the introduction to

Chapter 3.

In the modular case, the representation theory of the symmetric group is

mysterious. Being able to identify the dimension of a general simple module,

or the the decomposition matrix of a symmetric group when the degree

is large compared to the characteristic of the field, would be a significant
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achievement and even partial results are of interest. Yet the theory is not

completely opaque: the blocks of the symmetric group algebra have long

been understood.

Moreover, symmetric groups provide evidence for so-called local-global

conjectures. These are of current interest to representation theorists and

are loosely related by the idea that the modular representations of a group

are determined by its local subgroups (i.e. normalisers of p-subgroups). We

refer the reader to Malle’s survey article for more information [49].

Perhaps the simplest of such conjectures is the McKay Conjecture: this

states that if G is a finite group and p is a prime, then the number of

ordinary irreducible characters of G of degree coprime to p is the same as

the number of such characters for the normaliser of a Sylow p-subgroup of

G. This was proved, in a stronger form (the Alperin–McKay Conjecture) for

the symmetric group in 1984 by Olsson. Another is Donovan’s Conjecture,

which asserts that if D is a p-group, then there are only finitely many Morita

equivalence classes of blocks of groups with defect group D (we refer the

reader ahead to 1.5 for an explanation of the terminology). Again, while the

general problem remains open, Scopes proved Donovan’s Conjecture for the

symmetric group in 1991.

Chapters 2 and 3 are concerned with the modular representation theory

of the symmetric group. In Chapter 2, we consider modules obtained by

inducing the trivial representation of a Young subgroup of a symmetric

group to the full symmetric group.

Over a field of characteristic zero, Young’s Rule (Theorem 1.3) describes

how to decompose a Young permutation module into a direct sum of simple

modules, and gives a combinatorial method for identifying the multiplicity

of any irreducible module. This question has a natural generalisation to

fields of prime characteristic.

We begin Chapter 2 by proving that there is a family of indecomposable

modules for the symmetric group in prime characteristic which comprises all

the summands of Young permutation modules. Although the result is due

to James [45], he used more complicated machinery than the representation
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theory of the symmetric group; our proof is more elementary. We then use

this to give a proof of the Brauer–Robinson Theorem on the blocks of the

symmetric group in characteristic 2 and 3. We also give a new proof on the

blocks of signed Young modules.

In Chapter 3, we use the Brauer correspondence to find the possible ver-

tices of two families of p-permutation modules over fields of characteristic

p. This uses, and strengthens, the methods employed in [22] and [25]. If

m < p and µ is a partition of m, then we show that an indecomposable

summand of a module induced from the trivial module for Sµ oSn up to Smn

is a Sylow p-subgroup of Sµ o Ssp. This generalises the main result of [22],

which corresponds to the case µ = (m).

We next prove that the vertices of indecomposable summands of modules

induced from Cp oSn to the symmetric group Snp must be of the form given

in Theorem 3.24. We apply this result to demonstrate an infinite family of

counterexamples to Foulkes’s Conjecture in characteristic 2.

Chapters 4 and 5 are more combinatorial in nature; although they deal

with two very different problems, they are unified by an idea of converting

questions about the symmetric group into questions about polynomials or

power series. In this way, difficult abstract problems become tractable.

In Chapter 4, we consider the symmetric and exterior powers of repre-

sentations of symmetric groups. The questions considered in this chapter

build on the paper of Savitt and Stanley who proved in [61] that the space

spanned by the symmetric powers of the natural representation of Sn has

dimension asymptotic to n2

2 . In this chapter, we ask analogous questions

for generalised symmetric groups Ck o Sn and Brauer characters over a field

of prime characteristic. Moreover, we investigate similar problems where

symmetric powers are replaced by exterior powers. We also consider the

scenario where the natural character is replaced by any Young permutation

character labelled by a partition with two parts. With the exception of the

generalisation to two-row Young permutation characters, this chapter has

been published as [57].
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Chapter 5 deals with Sylow p-subgroups of the symmetric group, particu-

larly their conjugacy class structure. We define a new combinatorial object,

the conjugacy polynomial, which encodes the conjugacy class sizes and use

it to prove results about the commuting and conjugacy probability for Sy-

low subgroups of symmetric groups. Most importantly, we prove a recursive

formula to calculate the conjugacy polynomial of a Sylow p-subgroup of Spn

from the conjugacy polynomial of Spn−1 . We also conduct similar analysis

for the character degrees of a Sylow p-subgroup of a symmetric group.

1.2. The Symmetric Group. We commence our account of the back-

ground needed for this thesis with the main object of study: the symmetric

group. The symmetric group of degree n is denoted by Sn. We use the

notation and follow the approach of James from [44].

We define a partition of n to be a sequence λ = (λ1, λ2, . . .) of non-

increasing non-negative integers, such that
∑

i λi = n. Such a sequence

where the integers are not required to be non-increasing is called a composi-

tion of n. Thus (3, 2, 1) and (1, 0, 4, 1) are both compositions of 6, but only

the former is a partition of 6. The integers λi are called the parts of the

partition or composition. We write Par(n) for the set of partitions of n, and

Par for the set of all partitions, so that Par =
⋃
n∈N Par(n).

We make the standard convention that we shall suppress any parts of a

partition or composition after the final non-zero part; for example, we shall

write (2, 0, 0, . . .) as the partition (2). We use the familiar exponentiation

notation for repeated parts: for example, we write (13) for the partition

(1, 1, 1) of 3. The number of non-zero parts of a partition λ is denoted by

l(λ), so in our example l((13)) = 3.

There is a close connection between much of the representation theory of

the symmetric group Sn and the combinatorics of partitions. A partition

may be visualised by means of its Young diagram, which is an array con-

sisting of λ1 boxes in the first row, λ2 boxes in the second row, and so on.

We write [λ] for the Young diagram of λ. The boxes in a Young diagram

are labelled by co-ordinates: the box with co-ordinates (i, j) is in row i and

column j of the Young diagram. For example, the Young diagram of the
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partition (5, 2, 1) is

Given a partition λ of n, the conjugate partition to λ, denoted by λ′, is

defined by stipulating that λ′j is the number of parts of λ greater than or

equal to j. For example, the partition conjugate to (5, 2, 1) is (3, 2, 13). In

terms of Young diagrams, [λ′] is obtained by interchanging the rows and

columns of [λ]. Clearly, (λ′)′ = λ: taking the conjugate partition is an

involution.

There are two common orderings on the set of partitions of n. If λ =

(λ1, . . . , λl(λ)) and µ = (µ1, . . . , µl(µ)) are distinct partitions of n, we write

λ > µ if, for the smallest j such that λj 6= µj , we have λj > µj . This gives a

total order on partitions, and is called the lexicographic ordering. However,

in most representation-theoretic settings, the partial order on partitions

known as the dominance order is more appropriate to use. We say that λ

dominates µ (written λ�µ) if, for every k ≥ 1, we have
∑k

j=1 λj ≥
∑k

j=1 µj .

Note that λ� µ implies that λ > µ.

For a composition λ of n, we define a λ-tableau to be a filling of the boxes

of [λ] with the integers 1, . . . , n, with each integer appearing exactly once.

Clearly there are n! different λ-tableaux; the 6 different (2, 1)-tableaux are:

1 2
3

, 1 3
2

, 2 1
3

, 2 3
1

, 3 1
2

, 3 2
1

.

Moreover, Sn acts on the set of λ-tableaux in a natural way by permuting

the entries. We define an equivalence relation on the set of λ-tableaux by

stipulating that λ-tableaux t and s are row equivalent if t can be obtained

from s by permuting the entries within each row of s. The equivalence class

of a λ-tableau t under this relation is called a λ-tabloid, which we denote by

{t}.

The F-vector space of all F-linear combinations of λ-tabloids can be made

into a FSn-module by setting π{t} = {πt}, for π ∈ Sn. This is the Young

permutation module, for which we write Mλ, or Mλ
F if we wish to emphasise

the field over which we are working. We write πλ for the ordinary character

of Mλ.
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There is an important family of subgroups of Sn labelled by compositions.

We define the Young subgroup corresponding to λ to be the subgroup of Sn

which is the direct product of symmetric groups on the sets {1, . . . , λ1}, {λ1+

1, . . . , λ1 +λ2}, . . . , {λ1 + · · ·+λa−1 +1, . . . , n}. For example, if λ = (3, 0, 2),

then

Sλ = Sym{1, 2, 3} × Sym∅× Sym{4, 5} ∼= S3 × S2.

With this notation, we summarise the main facts about Young permutation

modules:

Lemma 1.1. The Young permutation module Mλ is a cyclic FSn-module,

generated by any λ-tabloid; it is isomorphic to the induced module F
xSn
Sλ

and

the dimension of Mλ is

n!∏
j≥1 λj !

.

Young permutation modules play a central role in both the ordinary and

modular representation theory of the symmetric group; we now use them

to construct the simple modules for the symmetric group in characteristic

zero. These simple modules are labelled by partitions of n, so here we must

assume that λ is a partition and not just a composition of n.

If t is a λ-tableau, the column stabiliser Ct of t is the subgroup of Sn

consisting of those permutations which preserve, as sets, the elements of the

columns of t. For example, if λ = (n−1, 1), then Ct is a symmetric group of

degree two on the elements in the first column of t. The signed column sum

is an element of the group algebra of Sn defined by κt =
∑

π∈Ct sgn(π)π,

where sgn denotes the sign of a permutation. The polytabloid associated

with t is et = κt{t}. Note that for σ ∈ Sn and a λ-tableau t, we have

σet = eσt, so the λ-polytabloids span a submodule of Mλ. This is called

the Specht module, which we denote by Sλ. We write χλ for the ordinary

character of the Specht module Sλ.

There is some terminology associated with two particular cases. If λ =

(n), then Sλ is the trivial module for Sn: this is a one-dimensional vector

space on which Sn acts trivially (and the action extended linearly to FSn).

We shall sometimes identify the trivial module with the field F. When



14

λ = (1n), we call Sλ the sign module: this is a one-dimensional vector space

where an σ ∈ Sn acts by scalar multiplication by sgn(σ), again with the

action extended linearly. We now state the main result on Specht modules:

Theorem 1.2. [44, Theorem 4.12] The Specht module Sλ is a cyclic module,

generated by any polytabloid. Moreover, assume that F has characteristic

zero: then Sλ is a simple module; every simple FSn-module is isomorphic to

a Specht module Sµ for some partition µ of n, and Sλ and Sµ are isomorphic

if and only if λ = µ.

Over a field of characteristic zero, a Young permutation module is a direct

sum of Specht modules. Indeed, if the Specht module Sλ is a direct summand

of Mµ, then λ � µ, which is one indication that the dominance order on

partitions is the ‘best’ order to use in the context of the representation

theory of the symmetric group. However, we can say much more. To do

this, we generalise the idea of a tableau by dropping the condition that an

entry may only appear once in the tableau.

With this convention, we say that a λ-tableau t is semi-standard if the

entries of t are strictly increasing down the columns of t and non-decreasing

along the rows of t. A tableau t has type µ if, for each j, the number j appears

µj times as an entry of t. These ideas give us an explicit combinatorial

mechanism, known as Young’s Rule, to calculate the multiplicities of the

direct summands of a Young permutation module:

Theorem 1.3. [44, Theorem 14.1] If F has characteristic zero, then the

multiplicity of SλF as a direct summand of Mµ
F is the number of semi-standard

λ-tableaux of type µ.

As a consequence, Sλ is a direct summand of Mµ if and only if λ� µ.

There is an elegant, and surprising, combinatorial formula for calculating

the dimension of Sλ, which is valid for any field. Given a box (i, j) in [λ],

the hook associated to (i, j) consists of (i, j) itself, and all boxes in [λ] to

the right or directly below (i, j). The hook length of (i, j) is the number of

boxes in the hook associated to x, and is denoted by h(i, j). We say that a

partition in Par(n) is a hook partition if h(1, 1) = n.
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The following result, due to Frame, Robinson and Thrall, is known as the

Hook Formula.

Theorem 1.4. [44, Theorem 20.1] The dimension of the Specht module Sλ

is equal to
n!∏

(i,j)∈[λ] h(i, j)
.

.

Although there are still open problems in the ordinary representation the-

ory of the symmetric group, the results we have seen demonstrate that many

fundamental questions can be answered. We have an explicit construction of

the simple modules for Sn; we know their dimensions and their multiplicities

as composition factors of a Young permutation module.

We can define a bilinear form 〈−,−〉 on the Young permutation module

Mλ by requiring that it is orthonormal on tabloids: that is, 〈{t}, {s}〉 equals

1 if {t} = {s} and 0 otherwise. With this bilinear form, we can state the

following result due to James about submodules of Mλ:

Theorem 1.5. [43] If U is a submodule of Mλ, then either the Specht module

Sλ is a submodule of U , or U is a submodule of (Sλ)⊥.

The Submodule Theorem is the key ingredient in the construction of

Young modules, as we shall see in Chapter 2. It is also used to construct the

simple modules for the symmetric group over a field of positive characteristic,

which we now describe.

We may use the Submodule Theorem to show that, for any partition λ

and no matter the field F, the quotient module Sλ/Sλ∩ (Sλ)⊥ is either zero

or a self-dual simple FSn-module. For the proof, see [44, Theorem 4.9]. This

quotient module is denoted by Dλ.

A partition λ of n is p-singular if some (non-zero) part of λ is repeated at

least p times; otherwise we say that λ is p-regular. For example, (34, 26, 15)

is p-regular if and only if p ≥ 7. If F has characteristic p, the p-regular

partitions of n label the simple FSn-modules:

Theorem 1.6. [44, Theorem 11.5] The modules Dλ, for λ a p-regular par-

tition of n, give a complete set of non-isomorphic simple FSn-modules.
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Identifying the multiplicity of a simple FSn-module Dµ as a composition

factor of a Specht module Sλ is a difficult open problem. The following

result of James gives some information.

Theorem 1.7. [44, Theorem 12.1] The composition factors of a Specht mod-

ule Sλ are of the form Dµ where µ� λ. Moreover, Dλ appears exactly once

as a composition factor.

Example 1.8. [44, Example 5.1] We illustrate the above by considering the

composition factors of S(n−1,1) over a field of characteristic p; this example

will be useful later. Theorem 1.7 shows that D(n−1,1) is a composition factor

with multiplicity one, and the only other possible composition factor is D(n).

Let ei denote the (n−1, 1)-tabloid with entry i in the second row. A basis

for S(n−1,1) consists of the elements e1 − ei for i = 2, . . . , n. If, for suitable

constants αi,
∑n

i=1 αiei ∈ S(n−1,1)⊥ then

0 = 〈e1 − ek,
n∑
i=1

αiei〉 = α1 − αk,

showing that S(n−1,1)⊥ is one-dimensional and spanned by
∑n

i=1 ei. This is

contained in S(n−1,1) if and only if p divides n.

It follows from the Submodule Theorem that if p does not divide n, then

D(n−1,1) = S(n−1,1). On the other hand, if p does divide n, then S(n−1,1)

has two composition factors: D(n) and D(n−1,1).

There is a second way to label the simple FSn-modules in prime charac-

teristic which is sometimes useful. A partition λ is p-restricted if, for each

i ≥ 1, λi−λi+1 < p; that is, the successive parts of λ differ by at most p−1.

Observe that a partition is p-restricted if and only if its conjugate partition

if p-regular.

If λ is p-restricted, we write Dλ for the socle of Sλ (recall that the socle of

a module is the sum of all its simple submodules). The alternative labelling

of the simple modules, and the connection between them, is as follows:

Theorem 1.9. [23, Section 2.4] The modules Dλ, for λ a p-restricted parti-

tion of n, give a complete set of non-isomorphic simple FSn-modules. More-

over, we have an isomorphism of FSn-modules Dλ
∼= Dλ′ ⊗ S(1n).
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The concept of a p-restricted partition is needed for following easy com-

binatorial result about partitions, often referred to as the p-adic expansion

of a partition. Despite the result’s simplicity, it will be very important in

Chapter 2.

Lemma 1.10. There is a bijection between the set of all partitions λ of n

and all tuples of the form (α(0), . . . , α(t)), such that α(i) is a p-restricted

partition for each i, given by λ↔ (α(0), . . . , α(t)) where λ =
∑
α(i)pi.

We conclude the background on the symmetric group by introducing some

of the combinatorial ideas which will play a part in Chapter 2. A box (i, j) in

the Young diagram [λ] of λ is said to form part of the rim if (i+1, j+1) /∈ [λ].

Given the Young diagram [λ], we define the abacus for λ by the following

procedure from [46, p.76–78].

Imagine that we walk along the rim of [λ] starting in the bottom-left

corner, going up and to the right. For each step up, put a gap ◦, and for

every step up put a bead •. Call this sequence of beads and gaps obtained

the rim sequence for [λ]. We define an abacus for λ to be any sequence

of beads and gaps obtained by taking the rim sequence for [λ], with any

number of beads added before the rim sequence and any number of gaps

added after the rim sequence. For example, if λ = (4, 2, 1, 1), then the rim

sequence for [λ] is ◦••◦•◦◦•. One possible abacus for λ is •◦••◦•◦◦•◦◦◦.

Conversely, it is routine to construct a partition from an abacus once

we disregard all beads before the first gap and we disregard all gaps after

the final bead. Therefore, the abacus ◦••◦• corresponds to the partition

(2, 1, 1). We number the entries of an abacus by natural numbers, starting

on the left: in the previous example, the gaps are in positions 0 and 3,

whereas the beads are in positions 1,2 and 4.

If d is a positive integer, we may display an abacus on d runners by

arranging the entries of the abacus in d columns, such that the ith column

(for 0 ≤ i ≤ d − 1) contains the entries in positions i + md. The example

below shows an abacus for (4, 2, 1, 1) displayed on an abacus with three

runners.
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• ◦ •

• ◦ •

◦ ◦ •

◦ ◦ ◦

A collection of p edge-connected boxes in the rim of [λ] is a p-hook if

their removal from [λ] leaves the Young diagram of a partition. We define

the p-core of λ, which we denote by cp(λ), to be the partition obtained by

repeatedly removing all p-hooks from λ. The number of p-hooks removed is

called the p-weight of λ.

Lemma 1.11. [46, Theorem 2.7.16] The p-core of a partition λ is well-

defined: it is independent of the manner in which p-hooks are removed from

[λ].

The idea behind the proof is that the p-core of λ is found by taking an

abacus for λ on p runners, and then sliding all the beads on this abacus

as far up their columns as possible. This resulting configuration is clearly

independent of the order in which beads are moved upwards. The example

given above demonstrates, for this reason, that (4, 2, 1, 1) is a 3-core.

The p-residue of a box (i, j) is j− i mod p. The p-content of a partition

is the multiset of p-residues.

Lemma 1.12. [46, Theorem 2.7.41] Two partitions have the same p-core if

and only if they have the same p-content.

We now seek to define an operation on partitions which constructs a p-

regular partition from any partition.

For a positive integer m, we define the mth ladder to be the set of boxes

(m − (p − 1)r, 1 + r) for 0 ≤ r < m
p−1 . The p-regularisation of λ is the

partition G(λ) whose Young diagram is obtained from the Young diagram

of λ by moving each box as far up its ladder as possible.

Note that the p-residue on the mth ladder is

1 + r −m− (p− 1)r ≡ 1−m mod p,
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so the p-residue on each ladder is constant and hence p-regularisation pre-

serves the p-core of a partition by Lemma 1.12. The representation-theoretic

importance of regularisation is given by the following result of James.

Theorem 1.13. [42, Theorem A] Over a field of characteristic p, the simple

module DG(λ) is a composition factor of the Specht module Sλ with multi-

plicity one, and all other compositions factors of Sλ are of the form Dµ

where µ�G(λ).

Example 1.14. Suppose that F has characteristic at least 3. The sign

module S(1n) is a simple FSn-module and therefore must be of the form Dα

for a p-regular partition of n; we would like to identify α. By Theorem 1.13,

DG(1n) is a composition factor of S(1n) and hence α = G(1n).

Consider a box (r, 1) in the Young diagram of (1n), where r = s+(p−1)t

with 0 ≤ s ≤ p − 2 and 0 ≤ t ≤ n−s
p−1 . We may move this box up its ladder

t times, so that we move the box (r, 1) to (r − (p − 1)t, t + 1) = (s, t + 1);

since s < p− 1, we cannot move the box any further up the ladder.

Write n = (p − 1)a + b, where 0 ≤ b ≤ p − 2. It follows from the above

that G((1n)) = ((a+ 1)b, ap−1−b), so this gives the p-regular labelling of the

sign module. For example, if p = 3 and n = 2a is even, then S(1n) = D(a,a).

We shall wish to carry out this regularisation procedure on the abacus.

We present an algorithm for so doing due to Fayers [26].

Let λ be a partition; if λ is already p-regular then we define A(λ) = λ.

Otherwise, take an abacus for λ; since λ is p-singular, in the walk along

the rim of [λ] we take p consecutive steps up at least once. Hence there

is at least one position s ≥ 0 in any abacus for λ such that there is a gap

in position s and beads in the positions s + 1, . . . , s + p. Choose s to be

maximal with this property, and say s lies on runner x.

Let b1 < . . . < bt be the positions of the beads on runner x below position

s, and let s1 < s2 < . . . be the positions of the gaps in the abacus for λ

which are not on runner x. Let c be the least positive integer such that

sc < bc+1; if c = t, then we deem this condition to hold by definition.
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We obtain a new abacus by successively moving a bead from position bk

up to position to bk − p and a bead from position sk − p down to position

sk, for 1 ≤ k ≤ c. Say that this new abacus represents the partition µ;

then we set A(λ) = µ. Fayers’ result is that iterating this process yields the

p-regularisation of a partition.

Proposition 1.15. [26, Proposition 1] Let λ be a partition of n. Then

iteratively applying the operation A, defined above, to λ terminates with a

p-regular partition ν; moreover, G(λ) = ν.

1.3. Modular Representation Theory. In this subsection, we collect

the key results from modular representation theory which will be required

throughout this thesis. For a comprehensive account of this subject, we refer

the reader to [1]. We work over a field F of prime characteristic p. Let G be

a finite group of order divisible by p, so FG is not a semisimple algebra.

We say that an FG-module U is decomposable if there are proper, non-zero

submodules V and W of U such that U = V ⊕W ; otherwise, we say that U is

indecomposable. Just as simple modules are the ‘building blocks’ of ordinary

representation theory, so are indecomposable modules in the characteristic

p setting. The Krull–Schmidt Theorem [1, Theorem 4.3] guarantees us that

an FG-module has a unique decomposition, up to isomorphism, as a direct

sum of indecomposable modules.

Now we introduce a key class of FG-modules: the projective modules.

An FG-module is called a free module if it is isomorphic to a direct sum

FG⊕ . . .⊕ FG for a finite number of factors. It is not too hard to see that

an FG-module U is free if and only if there is a linear subspace V of U

with the property that any linear map from V to another FG-module W

has a unique extension to a FG-module homomorphism from U to W by [1,

Proposition 5.1]. An FG-module is called projective if it is (isomorphic to)

a direct summand of a free module.

We can think of projective modules in three different ways, as the follow-

ing result demonstrates.



21

Theorem 1.16. [1, Theorem 5.2] Let U be an FG-module. The following

are equivalent:

• U is projective;

• If α is a surjective FG-module homomorphism from another FG-

module V to U , then the kernel of α is a direct summand of V ;

• If V and W are FG-modules, α is a surjective FG-module homomor-

phism from V to W and β is an FG-module homomorphism from U

to W then there is an FG-module homomorphism γ from U to V

such that β = αγ.

Since we work throughout only with modules for group algebras, all pro-

jective modules also satisfy a property known as injectivity (which, roughly

speaking, is the dual property to projectivity) by [1, Theorem 6.4], but this

will not yield any new information.

Our next result gives some indication of the importance of the indecom-

posable projective modules.

Theorem 1.17. [1, Theorem 5.3] There is a one-to-one correspondence be-

tween indecomposable projective FG-modules and simple FG-modules, given

by associating an indecomposable projective module U with U/rad(U).

In particular, the number of simple FG-modules is equal to the number

of indecomposable projective FG-modules; we shall make use of this obser-

vation later.

A very powerful result in modular representation theory is Green’s In-

decomposability Theorem, which provides a sufficient condition for an FG-

module to be indecomposable.

Theorem 1.18. [1, Theorem 8.8] Suppose that G has a normal subgroup

N such that G/N is a p-group. If U is an indecomposable FN -module, then

U
xG is an indecomposable FG-module.

We now wish to generalise the notion of a projective module. Let H be a

subgroup of G. We say that an FG-module U is relatively H-free if there is

a FH-submodule W of U such that any FH-module homomorphism from W
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to a FG-module V has a unique extension to a FG-module homomorphism

from U to V . Modules for the trivial group are just F-vector spaces, so this

is an extension of the idea of a free module.

With the notation of the paragraph above, we say that U is relatively

H-projective (sometimes just H-projective) if U is a direct summand of a

relatively H-free module. Again, if H is the trivial group, then we recover

the definition of a projective module, so this is a generalisation as promised.

We also have an analogue of Theorem 1.16:

Theorem 1.19. [1, Proposition 9.1] Let U be an FG-module. The following

are equivalent:

• U is relatively H-projective;

• If α is a surjective FG-module homomorphism from another FG-

module V to U and kerα is a direct summand of V as a FH-module,

then kerα is a direct summand of V as a FG-module;

• If V and W are FG-modules, α is a surjective FG-module homomor-

phism from V to W and β is an FG-module homomorphism from U

to W then there is an FG-module homomorphism γ from U to V such

that β = αγ provided that there is a FH-module homomorphism with

this property;

• U is a direct summand of (U
y
H

)
xG.

A big question in modular representation theory is to quantify for which

subgroups H of G an FG-module is relatively H-projective. The question

is well-posed, inasmuch as every FG-module is relatively projective for any

group containing a Sylow p-subgroup of G by [1, Theorem 9.2]: this is a

generalisation of Maschke’s Theorem, and is proved in a similar way.

Suppose that U is an indecomposable FG-module. We say that a subgroup

Q of G is a vertex of U provided that U is relatively H-projective if and only

if H contains a conjugate of Q. A source of U is an indecomposable FQ-

module such that U is a direct summand of S
xG
Q

. The following result shows

that these objects actually exist and are unique up to suitable conjugates:
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Theorem 1.20. [1, Theorem 9.4] Every indecomposable FG-module U has

a vertex Q and a source S. Moreover, Q is a p-group which is unique up to

conjugacy in G and S is unique up to conjugacy in NG(Q).

In view of this result, we shall sometimes speak of ‘the vertex’ or ‘the

source’ of an indecomposable FG-module U . The size of a vertex quantifies

the extent to which U fails to be projective: it is fairly easy to see that the

projective FG-modules are precisely those with trivial vertex.

The following lemma will be very useful, particularly in Chapter 3.

Lemma 1.21. Let P be a p-group and Q be a subgroup of P . Then the

FP -module F
xP
Q

is indecomposable with vertex Q.

This follows immediately from Theorem 1.18. Alteratively, there is an

elementary proof which is attributed to M. Cabanes in [7, Lemma 0.3], which

goes as follows. To show that F
xP
Q

is indecomposable, it suffices to prove

that the socle of F
xP
Q

is one-dimensional. Since the only simple module for

a p-group in characteristic p is the trivial module, this dimension is equal

to the dimension of HomFP (F,F
xP
Q

). By Frobenius Reciprocity [1, Lemma

8.6(2)], we have

HomFP (F,F
xP
Q

) ∼= HomFQ(F,F) ∼= F,

which is one-dimensional as claimed.

Knowing the vertex of a module imposes some conditions on its linear

dimension, as the following result demonstrates:

Proposition 1.22. [33, Theorem 9] Let U be an indecomposable FG-module

with vertex Q, and let P be a Sylow p-subgroup of G containing Q. Then

the dimension of U is divisible by |P : Q|. In particular, if U has dimension

coprime to p, then the vertices of U are the Sylow p-subgroups of G.

1.4. The Brauer Map. Identifying a vertex of an arbitrary FG-module is

a difficult task; it is tantamount to checking relative projectivity for a con-

siderable number of subgroups of G. In this section, we describe machinery

which will provide a much more concrete way to find a vertex for a common

class of FG-modules.
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Let U be an FG-module; we say that U is a p-permutation module if,

whenever P is a p-subgroup of G, there is a vector space basis of U per-

muted by P . Clearly any permutation module is a p-permutation module,

but the converse is not true. Indeed, indecomposable p-permutation mod-

ules are just indecomposable direct summands of permutation modules, or

equivalently indecomposable FG-modules with trivial source by [7, 0.4].

Let H < K be two subgroups of G. We write UK for the submodule

of U consisting of all the elements of U fixed by K, and similarly for UH .

Observe that UK is an FNG(K)-module on which K acts trivially. Choose a

set of coset representatives for H in K, say g1, . . . , gs. We define the relative

trace map for x ∈ U by

TrKH(x) =
s∑
i=1

gix.

It is straightforward to see that the relative trace map is independent of

our choice of transversal, and that it gives a map from UH to UK . We set

UKH = TrKH(UH). For a subgroup P of G, we define the Brauer quotient of

U with respect to P to be the following quotient module

U(P ) = UP /
∑
Q<P

UPQ ,

where the sum is taken over all proper subgroups Q of P . The Brauer

quotient is only interesting when taken with respect to a p-subgroup of G;

indeed, if P is not a p-group, then U(P ) = 0, because the relative trace map

from H to K is surjective if the characteristic of F does not divide the index

of H in K.

Suppose that U is a p-permutation module and let P be a p-subgroup of

G. Take a p-permutation basis B with respect to P . For each x ∈ B, let Ox
be the orbit of x under the action of P . We define elements

s(x, P ) =
∑
y∈Ox

y;

it is easy to see that UP has a vector space basis given by the distinct

elements s(x, P ), for x ∈ B. Moreover, by the Orbit-Stabiliser Theorem,

s(x, P ) = TrPStabP (x). If StabP (x) is a proper subgroup of P , then s(x, P )
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becomes zero upon taking the quotient; therefore a linear basis for U(P )

consists of the elements of B which are fixed by the action of every p ∈ P .

We summarise the key features of the Brauer quotient in the following

lemma.

Lemma 1.23. [7, 1.3 and 3.1] Let U be a p-permutation FG-module and

P a subgroup of G. Then U(P ) is a p-permutation FNG(P ) module on

which P acts trivially, so is also a p-permutation FNG(P )/P -module. We

may identify U(P ) with the F-linear span of the elements of a p-permutation

basis for U which are fixed by every element of P .

We shall frequently use the following technical result about Brauer quo-

tients in Chapter 3.

Lemma 1.24. [22, Lemma 2.8] Let U be a p-permutation FG-module and

let R and Q be p-subgroups of G. If R is a normal subgroup of Q, then the

Brauer quotients satisfy the following isomorphism of FNNG(R)(Q)-modules

U(Q)
y
NNG(R)(Q)

∼= (U(R))(Q).

The significance of the Brauer quotient is that it enables us to determine

the vertices of p-permutation modules. More precisely, we have:

Theorem 1.25. [7, Theorem 3.2] Let U be an indecomposable p-permutation

FG-module and let R be a p-subgroup of G. Then R is contained in a vertex

of U if and only if U(R) 6= 0. Moreover, the vertices of U are precisely the

maximal p-subgroups P of G such that U(P ) 6= 0.

From this result, we may deduce the following lemma, which gives a

sufficient condition to rule out a group as a potential vertex. Despite its

simplicity, we shall frequently use the result. This result is due to Erdmann

[19, Lemma 1], but we provide an easier proof here which has appeared in

[23, Lemma 4.1].

Lemma 1.26. Let U be a p-permutation FG-module, and let P and Q be

p-subgroups of G with Q < P . Suppose that U(P ) = U(Q) as sets. Then U

has no summand with vertex Q.
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Proof. Write U as a sum of indecomposable modules, say U =
⊕n

i=1 Ui. For

each i, let Bi be a p-permutation basis of Ui with respect to P ; observe

that Bi is also a p-permutation basis with respect to Q. Therefore, a basis

for Ui(Q) is BQ
i , and a basis for Ui(P ) is BP

i . Since Q < P , we have that

BP
i ⊆ B

Q
i and hence Ui(P ) ⊆ Ui(Q).

Suppose that Ui has vertex Q. Then Ui(P ) = 0 and Ui(Q) 6= 0, by

Theorem 1.25. But then U(P ) is strictly contained in U(Q), which is a

contradiction. �

The following result, known as the Broué correspondence, will also be

extremely important.

Theorem 1.27. [7, Theorem 3.3] Let P be a p-subgroup of G. The map

sending an FG-module U to its Brauer quotient U(P ) gives a one-to-one cor-

respondence between isomorphism classes of indecomposable p-permutation

FG-modules with vertex P and isomorphism classes of indecomposable pro-

jective FNG(P )/P -modules.

Example 1.28. We illustrate Theorem 1.25 by finding the vertices of the

Specht module S(n−1,1), defined over a field of characteristic p. Suppose that

n ≥ 3, so that (n − 1, 1) is a partition of n into distinct parts and by [67,

Theorem 3.2], S(n−1,1) is an indecomposable FSn-module. For 1 ≤ i ≤ n, let

ei denote the (n−1, 1)-tabloid with i in the second row, and put vj = ej−e1;

then {v2, . . . , vn} is a basis for S(n−1,1).

Firstly, suppose that n ≡ 1 (mod p). Let P be a Sylow p-subgroup of

the subgroup of Sn consisting of all permutations which fix 1; since p does

not divide n, P is also a Sylow p-subgroup of Sn. Moreover, the basis

{v2, . . . vn} given above is a p-permutation basis for S(n−1,1) with respect to

P . The point stabiliser of vi is the symmetric group on the complement of

{1, i} in {1, . . . , n}: namely, a symmetric group of degree n−2. By Theorem

1.25, a Sylow p-subgroup of Sn−2 is a vertex of S(n−1,1).

On the other hand, if n 6≡ 1 (mod p), then the dimension of S(n−1,1) is

coprime to p. In this case, the vertices of S(n−1,1) are the Sylow p-subgroups

of Sn, by Proposition 1.22.
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1.5. Block Theory. Block theory is one of the most powerful tools avail-

able in the modular representation theory of finite groups. Understanding

the blocks of a group is an important problem in its own right as well; one

instance of its importance is shown by the Cartan matrix. To a group alge-

bra FG, we associate the Cartan matrix, which is a matrix whose rows and

columns are labelled by the simple FG-modules. If S and T are two simple

FG-modules, we define cST to be the number of composition factors in the

projective cover of T which are isomorphic to S. The Cartan matrix of FG

is the square matrix where the entry in the row labelled by S and in the

column labelled by T is cST .

The significance of blocks is that sorting the simple modules of FG into

blocks yields a block diagonal decomposition of the Cartan matrix of G as

described in [66, Corollary 12.1.8], from which the terminology originates.

We again follow the approach of [1] in setting out the basics of block theory.

We may consider the group algebra FG as a module for G×G by defin-

ing an action (g, h)a = gah−1, for g, h ∈ G and a ∈ FG. The group

algebra FG has a unique direct sum decomposition into indecomposable

F[G × G]-submodules, say FG = B1 ⊕ . . . ⊕ Bm. We say that the sub-

modules B1, . . . , Bm are the blocks of FG (or sometimes just the blocks of

G).

If U is an FG-module, U lies in the block Bj if BjU = U and BkU = 0

whenever k 6= j. We remark that the block in which the trivial FG-module

lies is called the principal block of G and is denoted by b0(G). Equivalently,

block theory may be understood in terms of central idempotents: let 1 =

e1 + . . . + em be the components of the identity element of FG. Then U

lies in Bj if and only if ej acts as the identity on U and ek induces the zero

map on U whenever k 6= j. One advantage to this perspective is that it is

immediate that submodules, quotient modules and direct sums of modules

lying in a block must also lie in that block.

We can identify the vertices of blocks. Let δ be the map from G to G×G

which sends g ∈ G to (g, g) ∈ G×G.
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Theorem 1.29. [1, Theorem 13.4] Let B be a block of G. The vertices of

B, considered as a F[G×G]-module, are of the form δ(D) for a p-subgroup

D of G.

The subgroups D such that δ(D) is a vertex of B form a conjugacy class

of p-subgroups of G; the groups D are the defect groups of G. If a defect

group of B has order pd, we say that B has defect d. A block is a simple

algebra if and only if it has defect zero by [1, Corollary 14.6]; in general, the

higher the defect of a block, the more complicated its structure (in a sense

we shall not need to make precise). Defect groups of a block give a bound

on the possible vertices of modules lying in a block.

Theorem 1.30. [1, Theorem 13.5] Let B be a block of G with defect group

D, and let U be an indecomposable FG-module lying in B. Then there is a

vertex of U contained in D.

Defect groups are a fundamental tool in the local-global philosophy men-

tioned in the introduction, and appear in many of the local-global conjec-

tures. They are therefore of great interest in modular representation theory.

Some of the most powerful techniques in block theory relate the blocks of

a subgroup of G to the blocks of G. These results will be indispensable in

proving the Brauer–Robinson Theorem on the blocks of the symetric group

in Chapter 2.

If H is a subgroup of G, and C is a block of H, we say the block B

of G corresponds to C, if C — considered as a module for H × H — is a

direct summand of (B ×B)
y
H×H and B is the unique block of G with this

property. If B corresponds to C, we write CG = B. A block C of H does not

always have a Brauer correspondent, but if CG(D) ⊆ H, where D denotes

a defect group of C, then CG is defined by [1, Lemma 14.1(3)].

We can now state Brauer’s First Main Theorem, which is a fundamental

tool in block theory.

Theorem 1.31. [1, Theorem 14.2] Suppose that D is a p-subgroup of G and

H is a subgroup of G containing NG(D). Then the correspondence defined

above induces a bijective correspondence between the blocks of H with defect
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group D and the blocks of G with defect group D given by letting a block C

of H correspond with the block CG of G.

This result is most frequently useful in the case whereH = NG(D). In this

setting, we refer to CG as the Brauer correspondent of C. Brauer’s Second

Main Theorem, roughly speaking, demonstrates that the Brauer correspon-

dence and the Green correspondence are compatible. For our purposes, we

shall require the following version in the setting of p-permutation modules:

Theorem 1.32. [67, Lemma 7.4] Let U be an indecomposable p-permutation

FG-module with vertex P , such that U lies in the block B of G. Let Q be a

subgroup of P , and suppose that the Brauer quotient U(Q) has a summand

in the block C of NG(Q). Then CG is defined and CG = B.

Our next result gives a useful condition for a group to have only one block;

to present it, we shall require the notion of covering, as defined in [1, p.105].

If G is a group with normal subgroup N , and B and C are blocks of G and

N respectively, we say that B covers C if there is some FG-module M lying

in B such that M
y
N

has a summand lying in C.

Lemma 1.33. Suppose that the group G has a normal p-subgroup L such

that CG(L) ≤ L. Then G has a unique block.

Proof. We recall that b0(L) has defect group L. By [1, Theorem 15.1(5)],

there is a unique block B of G covering b0(L). Since L is a p-group, L

has just one indecomposable projective module, and hence only one block.

Moreover, every block of L is covered by some block of G by [1, Theorem

15.1(4)], and so G must have a unique block. �

1.6. Wreath Products of Finite Groups. In this section, we outline the

construction of a class of groups which will be ubiquitous in this thesis: the

wreath product of two finite groups. For example, the group of symmetries

of an n-dimensional cube is isomorphic to C2 o Sn; the Sylow p-subgroups

of a symmetric group may be constructed by means of an iterated wreath

product (which we outline in this section).
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The path we take is similar to that traced out in [46, Chapter 4], where

greater detail can be found.

Let H be a subgroup of Sn. We define Gn to be the set of all functions

from {1, . . . , n} to G. We define a pointwise multiplication of functions in

Gn: if f, g ∈ Gn, then (fg)(i) = f(i)g(i) for each i ∈ {1, . . . , n}. Given

π ∈ H, we define a right action of π on Gn by stipulating that for f ∈ Gn,

fπ = f ◦π−1; that is, π acts on f by post-composition with π−1. The wreath

product of G with H is denoted by G oH, and it is the group with underlying

set Gn ×H = {(f ;π) : f ∈ Gn, π ∈ H, and multiplication given by

(f ;π)(g;σ) = (fgπ;πσ).

The subgroup of G o H consisting of elements of the form (f ; 1H) is a

normal subgroup, which is isomorphic to the direct product of n copies

of G; this is called the base group of the wreath product. Observe that

|G o H| = |G|n|H|, and this wreath product construction is associative, in

the sense that for suitable subgroups G,H and K of symmetric groups, we

have G o (K oH) ∼= (G oK) oH.

With this in mind, set P1 = Cp, and for a > 1, define Pa = Pa−1 o Cp;

hence Pa is the a-fold iterated wreath product Cp o . . . o Cp. These groups

arise in a natural and important way: as Sylow p-subgroups of symmetric

groups. This was known as early as 1844 when Cauchy mentioned it in

[12], meaning that the construction pre-dates Sylow’s Theorem by at least

28 years. Since an arbitrary finite group may be embedded in a symmetric

group, the existence of Sylow p-subgroups for symmetric groups can be used

to prove part of Sylow’s Theorem, as described in [63, Proposition 2.2].

Theorem 1.34. [46, 4.1.22] Let the p-adic expansion of n be n =
∑t

i=0 aip
i.

Then a Sylow p-subgroup of Sn is conjugate to the direct product

P a00 × P
a1
1 × · · · × P

at
t .

In the case where H = Sn, we have a complete description of the conju-

gacy classes of G oH. Indeed, let (f ;π) ∈ G o Sn, and let C1, . . . , Cs be the

G-conjugacy classes. Express π as a product of disjoint cycles; let ν be such
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a cycle of length lν , let jν be the least element of supp(ν), and define the

cycle product corresponding to ν by

lν−1∏
i=0

f(π−i(jν)).

Let ai,k be the number of cycle products of (f ;π) which correspond to a

k-cycle of π and belong to the conjugacy class Ci of G. We put the non-

negative integers ai,k into a matrix with n columns and k(G) rows, and call

it the type of (f ;π).

Theorem 1.35. [46, Theorem 4.2.8] Two elements (f ;π) and (g;σ) of GoSn
are conjugate if and only if they have the same type.

In Chapter 5, we shall generalise the notion of type to find the conjugacy

classes of the groups G o Cp, where G is any finite group and p is a prime

number.

We conclude our summary of the wreath product by describing the irre-

ducible modules for G oH over an algebraically closed field F, where H is a

subgroup of Sn and G is any finite group. Let V1, . . . , Vs be the irreducible

FG-modules, and let W1, . . . ,Wm be the irreducible FH-modules. The n-

fold outer tensor product U = U1 � · · · � Un (where each Ui is a simple

FG-module) is a simple module for the base group Gn.

For each j, let mj be the number of tensor factors Ui which are isomorphic

to Vj . Define Smj to be the symmetric group on the numbers k such that

Uk ∼= Vj , or the trivial group if no such k exist. Denote by S(m) the direct

product of the groups Smj . The inertia group of U is the subgroup of

G oH consisting of all those elements (f ;π) such that (f ;π)U ∼= U . By [46,

Lemma 4.3.27], the inertia group of U is isomorphic to the wreath product

G o (H ∩ S(n)).

For example, if there are three simple FG-modules V1, V2 and V3, and

U = V1 � V2 � V1 � V2, then n1 = 2, n2 = 2 and n3 = 0. Moreover,

Sm1 = Sym{1, 3}, Sm2 = Sym{2, 4} and Sm3 is the trivial group.
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We can make U into a F[G o (H ∩ S(n))]-module, which we denote Ũ , by

defining the following action of an element (f ;π) of the inertia group on U :

(f ;π)u1 ⊗ · · · ⊗ un = f(1)uπ−1(1) ⊗ f(n)uπ−1(n).

With this construction, we are now ready to describe the simple modules

for G oH.

Theorem 1.36. [46, Theorem 4.3.34] The modules Ũ �X
xGoH
GoH∩S(n)

give a

complete system of distinct irreducible F[G oH]-modules as Ũ runs through

all irreducible, pairwise not conjugate, FGn-modules, and with Ũ fixed, X

runs through all irreducible F[H ∩ S(n)]-modules.
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2. Young Modules for Symmetric Groups

Over a field of characteristic zero, we have already seen how to decom-

pose a Young permutation module into a direct sum of Specht modules

using Young’s Rule (Theorem 1.3). One can ask the analogous question in

the modular setting: is there a family of modules which give all the inde-

composable summands of the Young permutation modules, defined over a

field of characteristic p?

The answer is given by the Young modules. These were first found by

James in [45] using the Schur algebra; Erdmann notes in [19] that James was

not aware of a proof of the essential properties of Young modules which used

only the representation theory of the symmetric group. While [19] attempted

to give such a proof, the paper contained errors as was recognised in [20],

which proved results about the indecomposable summands of permutation

modules of flags which are acted on by the general linear group.

In this section, we begin by providing an account of the properties of

Young modules and their representation theory, using only techniques from

symmetric groups. While it is true that the methods of [20] – which proved

analogous results in the setting of the general linear group – work for the

symmetric group, simplifications are possible when applying these ideas to

the symmetric group.

We then use the machinery of Young modules to provide a proof of the

Brauer–Robinson Theorem in characteristic 2 and 3, which gives an ele-

gant and tractable combinatorial description of the blocks of the symmetric

group. While the proof we present is new, the result is not. The Brauer–

Robinson Theorem first appeared as a conjecture by Nakayama in 1940

[56], who proved the result for n < 2p. The result is often referred to as

Nakayama’s Conjecture, despite ceasing to be a conjecture over 70 years

ago: Brauer and Robinson proved their eponymous Theorem in 1947; see

[6] and [60].

Since then, many proofs have been found. A proof using Brauer pairs can

be found in [8]. Murphy gave a proof by explicitly constructing a complete
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set of primitive idempotents for the symmetric group algebra in prime char-

acteristic using Murphy operators in [55]. Perhaps the shortest proof is [53],

which uses generalised decomposition numbers; this argument can also be

found in English in [46, p.270–275].

We obtain other applications from the theory of Brauer quotients of Young

modules: in characteristic 2, we give an alternative proof of Henke’s result

[39, Theorem 3.3] concerning the multiplicity of a Young module as a direct

summand of a Young permutation module labelled by a partition with two

parts. We also find the multiplicity of a Young module labelled by a hook

partition as a direct summand of a Young permutation module labelled

by some other hook partition in characteristic 2. This chapter concludes

by giving a proof of a result of Hemmer, Kujawa and Nakano from [38]

regarding the blocks of signed Young modules. The proof we present, unlike

that in [38], does not involve the Schur algebra.

2.1. The Young Modules. Write the permutation module Mλ as a di-

rect sum of indecomposable FSn-modules, say Mλ =
⊕

i Yi. Let t be a

λ-tableau with corresponding signed column sum κt. Since κtM
λ = Fet by

[44, Corollary 4.7], there is a unique summand Yj such that Sλ∩Yj 6= 0. By

the Submodule Theorem (Theorem 1.5), Yj is the unique summand of Mλ

containing Sλ as a submodule; this is called the Young module for λ and is

denoted by Y λ.

Write λ =
∑t

i=0 λ(i)pi, with each λ(i) a p-restricted partition, as ex-

plained in Lemma 1.10. Let ri be the degree of λ(i), and let ρ be the parti-

tion of n which has ri parts equal to pi. Let P denote a Sylow p-subgroup

of the Young subgroup Sρ. Our goal is to understand the Young modules,

which we shall achieve by proving the following result.

Theorem 2.1. The Young modules satisfy the following properties:

• Two Young modules Y λ and Y µ are isomorphic if and only if λ = µ.

• Every summand of Mλ has the form Y µ where µ� λ; moreover Y λ

has multiplicity one as a direct summand of Mλ.

• P is a vertex of Y λ.
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• In the sense as explained before the statement of Lemma 2.3, there

is an isomorphism of FNSn(P )/P -modules :

Y λ(P ) ∼= �t
i=0Y

λ(i).

Suppose that Y λ is a direct summand of Mµ. Then by the above argu-

ment, κtY
λ 6= 0, and hence κtM

µ 6= 0. By [44, Lemma 4.6], it follows that

λ � µ. Furthermore, if Y λ ∼= Y µ, then Y λ is a direct summand of Mµ and

Y µ is a summand of Mλ, whence λ� µ and µ� λ, and so λ = µ.

Remark 2.2. It is tempting to argue in the above that, if t is a λ-tableau,

then κtS
λ 6= 0. Unfortunately, this is false: for example, if p = n = 2,

λ = (12) and t is the unique column-standard λ-tableau, then it is easy to

see that κtS
λ = 0. This justifies our taking a slightly longer path than might

appear necessary.

We have proved that the Young modules are pairwise non-isomorphic

and established our claim that only Young modules labelled by partitions

dominating λ can appear as summands of Mλ. To prove the rest of our main

result, we shall need to study Brauer quotients of permutation modules.

Let λ be a partition of n, and let Q be a p-subgroup of Sn; we consider

the structure of Mλ(Q). Observe that if {t} is a λ-tabloid which is fixed

by Q and O is an orbit of Q on {1, . . . , n}, then all elements of O must

lie in the same row of {t}. Moreover, if P is a p-subgroup of Sn with the

same orbits as Q, then there is an equality of sets Mλ(P ) = Mλ(Q). In

particular, if Q has ri orbits of length pi, and if ρ is the partition of n with

ri parts equal to pi, then a Sylow p-subgroup of the Young subgroup Sρ, say

P , satisfies Mλ(P ) = Mλ(Q) as sets by Lemma 1.23. It follows from Lemma

1.26 that the possible vertices of summands of Mλ are Sylow p-subgroups

of such Young subgroups Sρ.

Fix a partition ρ with all its parts powers of p and let Qρ be a Sylow

p-subgroup of Sρ; in order to exploit the Broué correspondence, we must

understand the group NSn(Qρ). Observe that, since NSn(Sρ) permutes or-

bits of Sρ of length pi as blocks for its action, NSn(Sρ) is conjugate to the

direct product (S1 oSr0)×(Sp oSr1) · · ·×(Spt oSrt). Consequently, NSn(Sρ)/Sρ
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is isomorphic to Sr0 × · · · × Srt . On the other hand, applying the Frattini

argument to NSn(Sρ), we have that

NSn(Sρ) = NNSn (Sρ)(Qρ)Sρ ⊂ NSn(Qρ)Sρ.

Since the right-hand side is contained in NSn(Sρ), we have that NSn(Sρ) ∼=

NSn(Qρ)Sρ. It follows from this and the Second Isomorphism Theorem that

NSn(Sρ)/Sρ = NSn(Qρ)/NSρ(Qρ).

But the action of Sρ on Mλ(Qρ) is trivial, so the structure of Mλ(Qρ)

as a module for NSn(Qρ)/Qρ is the same as its structure considered as

a module for NSn(Qρ)/NSρ(Qρ), which have already seen is isomorphic to

Sr0×· · ·×Srt . This justifies our considering Mλ(Qρ) and Y λ(Qρ) as modules

for this product of symmetric groups: it is simply more convenient to treat

these Brauer quotients this way. We shall use this frequently without further

comment.

Lemma 2.3. [19, Proposition 1] Let ρ be a partition of n with ri parts equal

to pi, where
∑t

i=0 rip
i = n. There is an isomorphism of FNSn(Qρ)/Qρ-

modules:

Mλ(Qρ) ∼=
⊕
α∈T

Mα(0) � · · ·�Mα(t),

where T is the set of all t + 1-tuples (α(0), . . . , α(t)) such that α(i) is a

composition of ri and
∑t

i=0 α(i)pi = λ.

Proof. Consider a λ-tabloid {t} which is fixed by the action of Qρ, so the ele-

ments of each Qρ-orbit lie in the same row of {t}. For each i, let Oi1, . . . ,Oiri
denote the Qρ-orbits of length pi. We define a composition α(i) of ri by

setting the jth entry of α(i) equal to k ∈ N if the jth row of {t} contains

exactly k of the orbits from {Oi1, . . . ,Oiri}.

We now define a linear map φ : Mλ(P )→Mα(0) � · · ·�Mα(t) by setting

φ({t}) = {v0} ⊗ · · · ⊗ {vt}, where {vi} is the α(i)-tabloid which has entry

j in row k if and only if the elements of Oij lie in row k of {t}. This map

induces a linear isomorphism between the two modules, as claimed, so all

that remains is to show that φ is a FNSn(Qρ)/Qρ-module isomorphism.
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Let g ∈ FNSn(Qρ)/Qρ ∼= Sr0 × · · · × Srt , so g permutes the P -orbits of

length pi. Say that φ(g{t}) = {w0}⊗ · · · ⊗ {wt}. Suppose that the orbit Oij
lies in row k of {t}; then the orbit Oig(j) lies in row k of g{t} and hence the

entry g(j) is in row k of {wi}. But, by construction, the tabloid {vi} has

entry j in row k, whence g{vi} has g(j) in row k. Therefore, g{vi} = {wi}

for every i, and so φ is indeed a homomorphism, as required. �

We are now ready to complete the proof of Theorem 2.1. To do this, we

must prove the following three assertions; this tripartite division is in the

same spirit as the proof of the main theorem in [19].

(1) Every summand of Mλ is a Young module.

(2) A vertex of Y λ is Qρ (recall that this is a Sylow p-subgroup of the

Young subgroup Sρ).

(3) Y λ(Qρ) ∼= �t
i=0Y

λ(i) as FNSn(Qρ)/Qρ-modules, where ρ has exactly

|λ(i)| parts equal to pi.

Proof. We proceed by induction on n. If n < p, then FpSn is a semisimple

algebra, so all its modules are projective. The number of indecomposable

projective modules equals the number of simple FpSn-modules, which is the

number of partitions of n; this is the same as the number of p-restricted

partitions of n. Therefore, all summands of permutation modules Mµ are

Young modules, giving (1). Furthermore, Y λ is projective, so has trivial

vertex, whereas the Young subgroup Sρ has order coprime to p, so (2) holds.

Since the vertex of Y λ is the trivial group, Y λ is its own Brauer quotient,

so (3) is trivially true.

Now suppose that n ≥ p and the result is true for all smaller degrees. The

number of indecomposable projective FpSn-modules equals the number of

p-restricted partitions of n. We want to count the number of non-projective

summands of Mµ as µ ranges over all partitions of n. By Theorem 1.27, this

is the same as the number of projective summands of all Mµ(Qρ), where ρ

ranges over all partitions of n whose parts are all p-powers, excluding the

partition (1n) (because we are excluding the trivial group as a vertex).

The Brauer quotient Mµ(Qρ) is a direct sum of modules of the form

Mα0 � · · ·�Mαt , by Lemma 2.3. The indecomposable projective summands
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are therefore of the form Pα(0) � · · · � Pα(t), where Pα(i) is an indecom-

posable projective module for Sri . The number of possible Pα(i) is equal to

the number of p-restricted partitions of ri. Therefore, the total number of

such summands is equal to the number of tuples of p-restricted partitions

(α(0), . . . , α(t)) such that
∑
α(i)pi is a partition of n, excluding the tuples

just equal to (α(0)).

By Lemma 1.10, the number of such summands is equal to the number of

partitions of n, less the number of p-restricted partitions. Hence the total

number of summands (projective and non-projective) equals the number of

partitions of n. However, for each partition λ of n, we already have the

Young module Y λ as a summand of Mλ. Consequently, there can be no

other summands, and (1) is established.

We prove (2) and (3) by a further induction on the dominance order

of partitions. Write n =
∑
aip

i, the p-adic expansion of n. The module

Y (n) is the trivial module, so it has vertex a Sylow p-subgroup of Sn. By

the construction of Sylow p-subgroups of Sn as iterated wreath products, it

follows that Y (n) has vertex a Sylow p-subgroup of Sρ, where ρ has ai parts

equal to pi. Moreover, the Brauer quotient is the trivial module, which is

isomorphic to Y (a0) � · · · � Y (at). Now suppose that λ < (n) and λ is not

p-restricted. Write λ =
∑t

i=0 λ(i)pi, with each λ(i) a p-restricted partition.

Let ρ and Qρ be as in the statement of Theorem 2.1.

By Lemma 2.3, Mλ(0) � · · · � Mλ(t) is a summand of Mλ(Qρ). Since

the degree of each λ(i) is strictly smaller than that of λ, we may apply

the inductive hypothesis to each tensor factor. Therefore, Mλ(Qρ) has the

indecomposable projective module X = �t
i=0Y

λ(i) as a direct summand.

This corresponds to an indecomposable summand of Mλ with vertex Qρ.

We have already seen that Mλ is a direct sum of Y λ and other modules Y µ,

where µ > λ (and, by (1), these are the only summands). By the inductive

hypothesis, the Brauer quotient of Y µ for µ > λ is not X, so Y λ has vertex

P and Brauer quotient X, as required. So (2) and (3) hold, except for the

case when λ is p-restricted.
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Finally, we have seen that if λ is not p-restricted, then Y λ has non-trivial

vertex, so cannot be projective. It follows that all the remaining Young

modules must be projective; in other words, if λ is p-restricted, then Y λ is

projective. �

2.2. Blocks of the symmetric group. We now give a proof of the Brauer–

Robinson Theorem in characteristic 2 and 3, which we break up into a

number of steps. Until the very last step, our arguments work for any

positive characteristic. If γ is a p-core such that n − |γ| is a multiple of p,

we denote by bγ the block of Sn which is labelled by γ. The proof is by

induction on n.

Before starting the proof, we note a couple of important block-theoretic

lemmas. During our proof, we shall wish to pass between different types of

module labelled by a partition of n. Our first lemma justifies this.

Lemma 2.4. Let λ be a p-regular partition of n and B be a block of Sn.

The following are equivalent:

(1) Y λ lies in B;

(2) Every summand of Sλ lies in B;

(3) Dλ lies in B.

Proof. Assuming (1), let e be the block idempotent corresponding to B; Y λ

lies in B, so e acts as the identity on Y λ. Since Sλ is a submodule of Y λ,

e also acts as the identity on Sλ, whence every summand of Sλ must lie in

B. Similarly, Dλ is a quotient module of Sλ, so if e acts as the identity on

Sλ, then e acts as the identity on Dλ as well.

Conversely, extending a composition series for Sλ to one for Y λ shows

that Dλ is a composition factor of Y λ. Young modules are indecomposable,

so Y λ lies in the block B if and only if Y λ has a composition factor in B.

Therefore, if Dλ lies in B, then Y λ also lies in B. �

We shall also need to understand how taking duals affects the block in

which a FSn-module lies; the answer is provided by the following elementary

lemma.
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Lemma 2.5. Let M be a FSn-module lying in the block B of Sn. Then the

dual module M? also lies in B.

Proof. By considering each indecomposable summand of M separately if

necessary, we may assume that M is indecomposable. Let Dλ be a compo-

sition factor of M , so Dλ lies in B. However, since Dλ is self-dual, Dλ is

also a composition factor of M?: M? is an indecomposable module with a

composition factor in B, so M? lies in B. �

We now start the proof of the Brauer–Robinson Theorem.

Step 1: Base Case. If n < p, then every partition of n is p-restricted, and

so every Young module is projective by Theorem 2.1. Moreover, the algebra

FSn is semisimple, so each Young module is simple. It follows by [1, Propo-

sition 13.3(2)] that any two Young modules lie in different blocks. On the

other hand, all the partitions of n are p-cores, so the result holds. Now sup-

pose that n ≥ p and the Brauer–Robinson Theorem holds for all symmetric

groups of lower degree.

Step 2: Common Vertices. Let λ be a partition of n with p-adic expansion

λ =
∑t

i=0 λ(i)pi, and put ri = |λ(i)|. Recall that by Theorem 2.1 the tuple

(r0, r1, . . . , rt) determines the vertex of the module Y λ. We call the tuple

(r0, r1, . . . , rt) the p-type of λ.

Proposition 2.6. Let λ and µ be partitions of n of the same p-type which

are not p-restricted. Then Y λ and Y µ lie in the same block of Sn if and only

if cp(λ) = cp(µ).

Proof. Write the p-adic expansions as λ =
∑t

i=0 λ(i)pi, µ =
∑s

i=0 µ(i)pi.

Then Y λ and Y µ have common vertex Q as defined in Theorem 2.1, and

their Brauer quotients satisfy

Y λ(Q) ∼= �t
i=0Y

λ(i)

and ,

Y µ(Q) ∼= �t
i=0Y

µ(i)
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as NSn(Q) ∼= Sr0 × NSn−r0
(Q)-modules. Since a p-core is necessarily p-

restricted, λ(0) has the same p-core as λ and µ(0) has the same p-core as µ.

We may apply the inductive hypothesis to the first tensor factor, because

r0 < n. Moreover, the group NSn−r0
(Q) has a unique block, by applying

Lemma 1.33 with L = Q. Indeed, if R is an elementary abelian subgroup of

Q generated by p-cycles, and R has maximal rank among all subgroups of

Q with these properties, then CNSn−r0 (Q)(Q) ≤ CNSn−r0 (Q)(R) = R ≤ Q.

Therefore, Y λ(Q) and Y µ(Q) lie in the blocks bcp(λ)⊗ b0(NSn−r0
(Q)) and

bcp(µ) ⊗ b0(NSn−r0
(Q)) of NSn(Q), respectively. If λ and µ have the same

p-core, then these blocks are the same, and by Lemma 1.32, Y λ and Y µ lie

in the same block. Conversely, suppose that λ and µ have different p-core,

but Y λ and Y µ lie in the same block B of Sn. Then, again by Lemma 1.32,

we have (bcp(λ)⊗b0(NSn−r0
(Q)))Sn = B and (bcp(λ)⊗b0(NSn−r0

(Q)))Sn = B.

However, B has a unique Brauer correspondent with respect to NSn(Q) by

Brauer’s First Main Theorem (Theorem 1.31), so this is a contradiction. �

Step 3: Different p-type. We now aim to find a way to compare two Young

modules which do not have the same vertex. This step is also valid for every

prime p.

Proposition 2.7. Let λ and µ be partitions of n, neither of which are p-

restricted. Then Y λ and Y µ lie in the same block if and only if cp(λ) = cp(µ).

Proof. We say that a 2-type is exceptional if for every i > 0, ri is either 0

or 2. For now, suppose that our type is not exceptional.

Given any non-exceptional p-type (r0, . . . , rt) with t 6= 0, we claim that

there is a partition ν = (ν1, ν2, . . .) of this p-type such that ν1 − ν2 ≥ p.

Indeed, since t 6= 0, there is some i > 0 such that ri ≥ 1. If ri = 1, set

ν(i) = (1), otherwise, we set ν(i) = (2, 1ri−2); note that the partition ν(i)

is p-restricted unless p = 2 and ri = 2. Since the p-type (r0, . . . , rt) is not

exceptional, at least one of these partitions must be p-restricted, say ν(i)

(where i > 0). Moreover, if ν is any partition of p-type (r0, . . . , rt) having

ν(i) in its p-adic expansion, then ν1−ν2 ≥ pi(ν(i)1−ν(i)2) ≥ p, as required.
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Let ν be such a partition and consider the Brauer quotient of Mν with

respect to the cyclic group R = 〈(1, . . . , p)〉. Then, by Lemma 2.3, Mν(R)

is isomorphic, as a FNSn(R)/R-module, to a direct sum of modules of the

form Mη � F, where η is a composition of n − p obtained by subtracting p

from a part of ν. Define ξ = (ν1 − p, ν2, . . .); by the previous paragraph, ξ

is a partition of n− p and cp(ξ) = cp(ν).

Observe that if λ � ν, then the factor M ξ � F does not appear in the

decomposition of Mλ(R); if it did, then λ could be obtained by adding p to

a part of ξ, but all such partitions are less than or equal to ν in the dominance

order. Consequently, Y ξ�F does not appear in the decomposition of Y λ(R).

We have, by Lemma 2.3, that Mν(R) ⊃ M ξ � F. The module Mν is a

direct sum of Y ν and modules Y λ for λ � ν. Since Y ξ � F appears in this

decomposition, but not as a summand of any Y λ(R), it follows that Y ξ � F

is a direct summand of Y ν(R).

By the inductive hypothesis, Y ξ lies in the block of Sn−p labelled by

(cp(ξ), w − 1) = (cp(ν), w − 1), where w is the p-weight of λ. The group

NSp(R) ∼= Cp o Cp−1 has a unique block, by applying Lemma 1.33 with

L = R. Hence, by induction, Y ν(R) has a summand in the block bcp(ν) ⊗

b0(NSp(R)) of NSn(R).

Consequently, suppose that λ and µ are partitions of n which are not p-

restricted, and if p = 2, suppose further that neither λ nor µ has exceptional

2-type. Then, by following the above procedure, we can find partitions νλ

and νµ of n which are also not p-restricted such that:

(1) νλ has the same p-type as λ, and νµ has the same p-type as µ;

(2) cp(νλ) = cp(λ) and cp(νµ) = cp(µ);

(3) Y νλ(R) has a summand in the block bcp(λ) ⊗ b0(NSp(R)) of NSn(R)

and Y νµ(R) has a summand in the block bcp(µ) ⊗ b0(NSp(R)) of

NSn(R).

By (1), (2) and Proposition 2.6, Y λ lies in the same block as Y νλ , and

Y µ lies in the same block as Y νµ . It then follows from (3) and Lemma 1.32

that Y λ and Y µ lie in the same block of Sn if cp(λ) = cp(µ). On the other

hand, if cp(λ) 6= cp(µ), then Y νλ(R) and Y νµ(R) have summands in different
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blocks, by the inductive hypothesis applied to Sn−p. By Lemma 1.32 and

Brauer’s First Main Theorem, Y νλ and Y νµ lie in different blocks of Sn. It

follows that Y λ and Y µ also lie in different blocks of Sn.

We now come to the case of exceptional type: let p = 2, λ be a partition

of exceptional 2-type, and let Q be a vertex of Y λ. Note that the support

of Q has size n − r0. We define the partition λ̂ = λ(0) + (n − r0). By a

similar argument to that given above for Y ν(R), Y λ̂(Q) has a summand in

the block bc2(λ)⊗ b0(NSn−r0
(Q)) of NSn(Q). Hence, by Lemma 1.32, Y λ and

Y λ̂ lie in the same block. Let
∑

j βj2
j be the 2-adic expansion of n − r0,

where each βj ∈ {0, 1}, and note that some βj equals 1, because n− r0 6= 0.

Then the 2-type of λ̂ is (r0, β1, β2, . . .), which is not an exceptional 2-type

and therefore the above argument can be applied to Y λ̂.

Indeed, if µ is another partition of n which is not 2-restricted and not

of exceptional 2-type, the argument above shows that Y λ̂ and Y µ lie in the

same block if and only if c2(λ̂) = c2(µ). But Y λ̂ and Y λ lie in the same

block, and cp(λ) = c2(λ̂), so we deduce that Y λ and Y µ lie in the same

block if and only if c2(λ) = c2(µ).

Finally, if λ and µ are both of exceptional 2-type, then the above argument

shows that Y λ and Y µ lie in the same block if and only if c2(λ̂) = c2(µ̂). This,

in turn, is true if and only if λ and µ have the same 2-core, as required. �

Step 4: Projective Case. Now suppose that λ is p-restricted. The module

Y λ is projective and is its own Brauer quotient, so we require a different

approach. It is at this stage where our approach will vary depending on the

characteristic of the field: in characteristic 2 this step is straightforward; in

characteristic 3 some preliminaries about regularisation are required and in

characteristic at least 5, the Mullineux Conjecture seems to be needed to

complete the argument.

We first state a result about Specht modules labelled by p-core partitions;

this is valid for all primes.

Proposition 2.8. Let γ be a p-core. Then the FSn-Specht module Sγ is

simple and projective.
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Proof. This is a direct consequence of [66, Theorem 9.6.1]. �

A block containing a simple projective module is necessarily a block of

defect zero by [3, Corollary 6.3.4], and hence that simple projective module

is in fact the only indecomposable module in the block up to isomorphism.

So if γ is a p-core and λ is any other partition, then Y λ lies in the same

block as Y γ if and only if λ = γ.

We recall the following result on the dual of a Specht module.

Theorem 2.9. [44, Theorem 8.15] The dual of the Specht module Sλ is

isomorphic to Sλ
′ ⊗ S(1n).

If λ is 2-restricted, then the conjugate partition λ′ is 2-regular and hence

the Specht module Sλ
′

is indecomposable by [67, Theorem 3.2]. In charac-

teristic 2, the sign representation and the trivial representation coincide, so

Theorem 2.9 and Lemma 2.5 imply that Sλ and Sλ
′

lie in the same block.

If both λ and λ′ are 2-restricted, then λ is a 2-core; otherwise we may apply

our earlier arguments to the module Y λ′ . Therefore, in characteristic 2, we

have already established the result.

Now suppose that p = 3. We require an understanding of partitions which

are 3-restricted and 3-regular but not 3-cores. Our aim is to show that such

a partition must be the 3-regularisation of some other partition. To achieve

this, first we seek to understand the abacus of such a partition. Let A be

the sequence ◦•• and let B be the sequence ◦◦•. For a positive integer k,

write Ak for the k-fold concatenation of the sequence A, and similarly for

Bl.

Lemma 2.10. Suppose that λ is a partition of n which is both 3-regular and

3-restricted, but not a 3-core. Take an abacus for λ with no initial beads.

Then there is a natural number k and a positive integer l such that this

abacus begins in one of the following four ways:

(1) AkBl ◦ •;

(2) AkBl•;

(3) Ak ◦ •Bl•;

(4) Ak ◦ •Bl−1 ◦ •.
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Proof. Since λ is both 3-regular and 3-restricted, an abacus for λ with no

initial beads or terminal gaps does not have three consecutive beads or gaps.

Take the largest k ∈ N such that an abacus for λ begins with the string Ak;

note that we allow the possibility that k = 0. Since Ak is the abacus of a

3-core, there must be further entries.

Since k is maximal and there cannot be three consecutive beads or gaps,

there are four possibilities for the next four entries of the abacus. These are:

(1) ◦◦••;

(2) ◦◦•◦;

(3) ◦•◦◦;

(4) ◦•◦•.

The first case corresponds to (2) in the statement of the lemma with l = 1

and the last case is (4) in the statement of the lemma with l = 1. In the

second case, we have B immediately following Ak; let l be maximal such that

the abacus for λ begins AkBl. If the next entry in the abacus is a bead, we

have case (2). Otherwise, the next entry is a gap. If AkBl is followed by two

gaps then either there are three consecutive gaps or two gaps and a bead.

The former is impossible because λ is 3-restricted and the latter contravenes

the maximality of l. Therefore the abacus begins AkBl ◦•, which is case (1).

Finally, in the third case, the abacus begins Ak ◦ • ◦ ◦. This is the abacus

of a 3-core, so there must be a subsequent entry which in turn must be a

bead. Therefore the abacus for λ starts Ak ◦ •B; let l ≥ 1 be maximal such

that the abacus starts Ak ◦ •Bl. An analogous argument to that given for

the second case shows that the start of the abacus is either (3) or (4), as

required. �

Our next lemma demonstrates how, in the situation when k = 0, these

abaci correspond to partitions which we can fairly easily see to be regulari-

sations of partitions which are not 3-regular.

Lemma 2.11. Let l be a positive integer. We have

• (2l + 1, 2l, 2l − 2, . . . , 2) = G(2l − 1, 2l − 3, . . . , 3, 13l+2))

• (2l, 2l, 2l − 2, . . . , 2) = G(2l − 1, 2l − 3, . . . , 3, 13l+1))



46

• (2l + 1, 2l + 1, 2l − 1, . . . , 3, 1) = G(2l − 1, 2l − 3, . . . , 3, 13l+2))

• (2l, 2l − 1, 2l − 3, . . . , 3, 1) = G(2l − 2, 2l − 4, . . . , 3, 13l))

In all of these cases, the 3-regularisation is performed by removing a 3l-

hook and then adding a vertical 3l-hook on the first column of the resulting

diagram.

Proof. We prove the first statement; the other three are very similar. Let

λ = (2l − 1, 2l − 3, . . . 3, 13l+2) and µ = (2l + 1, 2l, 2l − 2, . . . , 2). An abacus

for µ on 3 runners is displayed on the left below, with 3l − 3 initial beads.

On the right is an abacus for λ with three terminal gaps.

• • •
...

...
...

• • •

◦ ◦ •

◦ ◦ •
...

...
...

◦ ◦ •

◦ • ◦

◦ • •
...

...
...

• • •

• • •

◦ ◦ •
...

...
...

◦ ◦ •

◦ ◦ ◦

Number positions so that the first gap on the left hand abacus above is

in position 0. In the abacus for µ, push the bead in position 3l + 1 up

to position 1; doing so corresponds to removing a 3l-hook H. Next, slide

the bead in position −3l down to position 0; this corresponds to adding a

vertical 3l-hook to [µ]\H. Note that performing these two operations yields

the abacus on the right. We claim that these operations coincide with the

regularisation algorithm as described in Proposition 1.15.

In the notation of that algorithm, s = −3l. The beads below s are in

positions b1 = −3l + 3, . . . , bl = 0 and the gaps not on the same runner as

position s are in positions c1 = 4, c2 = 7, . . .. Therefore c = l and the first

stage applied to the abacus on the left above gives the abacus on the right,

which is the abacus of a 3-regular partition. Proposition 1.15 now implies

that G(λ) = µ, as required. �
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Having established these two lemmas, we are now able to prove the key

ingredient for the proof of the Brauer–Robinson Theorem in characteristic

3,

Lemma 2.12. Suppose that λ is a partition of n which is both 3-restricted

and 3-regular but not a 3-core. Then there is a partition ν which is not

3-regular such that G(ν) = λ.

Proof. An abacus for λ has one of the four forms as described in Lemma

2.10. If k = 0, then Lemma 2.11 gives the required partition ν. Otherwise,

the final bead in Ak is in position 3k−1, which corresponds to taking a step

up around a box in column k in a walk around the rim of [λ]. Since there is

a gap in position 3k in the abacus for λ, column k + 1 of [λ] is non-empty.

Let H be the 3l-hook as described in Lemma 2.11 and consider the shape

[α] obtained by adding a vertical 3l-hook to column k + 1 of [λ] \H. Each

column in [α] to the left of column k has two fewer boxes than in the adjacent

column to the left.

We may therefore slide some boxes from this additional vertical 3l-hook

down their ladders into column 1. According to the four cases listed in

Lemma 2.10, we move 3l, 3l − 1, 3l or 3l + 1 boxes respectively, and this

leaves the diagram of a partition. Since the resultant partition is not 3-

regular, we may take it as the required ν. �

In characteristic 3, the following proposition is sufficient to complete the

proof of the Brauer–Robinson Theorem.

Proposition 2.13. Suppose that λ is a 3-restricted partition of n, and µ is

a partition of n which is not 3-restricted. Then, over a field of characteristic

3, Y λ and Y µ lie in the same block of Sn if and only if c3(λ) = c3(µ).

Proof. By Lemma 2.4, this is equivalent to showing that the Specht modules

Sλ and Sµ lie the same block if and only if c3(λ) = c3(µ). Since taking the

tensor product with the sign module is an involution on blocks, Sλ and Sµ

belong to the same block if and only if Sλ ⊗ S(1n) and Sµ ⊗ S(1n) also lie

in the same block of Sn. It follows from Theorem 2.9 and Lemma 2.5 that

we need to show that Sλ
′

and Sµ
′

belong to the same block if and only if
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c3(λ) = c3(µ). A further application of Lemma 2.4 demonstrates that it

suffices to prove that Y λ′ and Y µ′ belong to the same block if and only if

c3(λ) = c3(µ). This is what we shall now prove. Note that λ′ is 3-regular

because λ is 3-restricted. If λ′ is a 3-core, then we may apply Proposition

2.8 to Y λ′ .

If λ′ is not 3-restricted, then Y λ′ has non-trivial vertex and therefore

is in the block of Sn which is in Brauer correspondence with the block

bcp(λ′) ⊗ b0(NSp(R)) of Sn−p ×NSp(R). By the inductive hypothesis, bcp(λ′)

is the block of Sn−p containing all Young modules labelled by partitions with

the same p-core as λ′. Tensoring with the sign module and using Theorem

2.9 shows that Y λ lies in the block bcp(λ′)′ ⊗ b0(NSp(R)) of Sn−p ×NSp(R).

Similarly, µ is not 3-restricted, so Y µ lies in the block bcp(µ)⊗ b0(NSp(R))

of Sn−p × NSp(R). By the inductive hypothesis and Brauer’s First Main

Theorem, Y λ and Y µ lie in the same block if and only if cp(λ
′)′ = cp(µ).

But cp(λ
′) = cp(λ)′, so this condition is equivalent to cp(λ) = cp(µ), as

claimed.

Finally, suppose that λ′ is 3-regular and 3-restricted, but is not a 3-

core. Therefore, there exists a partition ν which is not 3-regular such that

λ′ = G(ν). By Theorem 1.13, Dλ′ is a composition factor of Sν and therefore

by Lemma 2.4, Y λ′ and Y ν lie in the same block. Since µ is not 3-restricted,

µ′ is not 3-regular. Consequently the Young modules Y λ′ and Y µ′ lie in

the same block if and only if ν and µ′ have the same 3-core. Regularisation

preserves the core of a partition, so this is equivalent to λ′ and µ′ having

the same 3-core. This in turn is equivalent to c3(λ) = c3(µ), which is the

required condition. �

We remark that this argument fails to work in characteristic p ≥ 5. The

only p-singular partition of p is (1p) and its regularisation is (2, 1p−2). On

the other hand, the partition (p+1
2 , 1

p−1
2 ) is p-regular, p-restricted and not a

p-core. When p ≥ 5, this is not the image under the regularisation map of

the unique p-singular partition of p. This presents a counter-example to a

result analogous to Lemma 2.12 for p ≥ 5.
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Higher characteristic. This section is a revision of the submitted paper [58],

which purported to be a proof of the Brauer–Robinson Theorem which

worked in characteristic p, for every prime number p. Unfortunately, this

relied upon an additional assumption, pointed out by an anonymous referee.

Definition 2.14. The Mullineux map m is a bijective involution on the set

of p-regular partitions of n, defined by m(η) = µ if and only if Dη ⊗S(1n) ∼=

Dµ.

The implicit assumption in [58] was that the p-core of a partition behaves

well under applying the Mullineux map:

Lemma 2.15. Let λ be a partition of n. Then the p-cores of λ and m(λ)

are conjugate.

There is a combinatorial definition of the Mullineux map and in [54, Corol-

lary 3.3] it is proved that the p-core of a partition and its image under the

combinatorial Mullineux map are conjugate. This is a fairly short paper,

and does not assume the Brauer–Robinson Theorem. However, more signif-

icantly, we would also need to know that the representation-theoretic and

combinatorial definitions of the Mullineux map are equivalent.

This claim, known as the Mullineux Conjecture, is true and was first

proved by Kleshchev and Ford in [27]. Yet the issue is not ameliorated: the

author has been unable to decide whether their proof, which is long and

involved, is independent of the Brauer–Robinson Theorem. The Mullineux

Conjecture is also a more difficult result, though it is of some interest that

it gives a proof of the Brauer–Robinson Theorem.

Thus, we shall suppose that p ≥ 5 and demonstrate how, with Lemma

2.15 available, we can finish the argument.

By Lemma 2.5, Sλ and (Sλ)? ∼= Sλ
′⊗S(1n) lie in the same block of Sn, say

B. Now, Sλ/rad(Sλ)⊗S(1n) ∼= Dλ′ ⊗S(1n) = Dm(λ′) is a composition factor

of (Sλ)?, and hence lies in B. Therefore, by Lemma 2.4, Y λ and Y m(λ′) lie

in the same block. The key result is the following.

Proposition 2.16. Let λ be a p-restricted partition of n. Then λ�m(λ′),

with equality only if λ is a p-core.
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Proof. Since λ is p-restricted, λ′ is p-regular and Dλ′ is a composition factor

of Sλ
′
. This means that we have the following short exact sequence of FSn-

modules:

Sλ
′ → Dλ′ → 0.

Taking the dual of this sequence gives us another short exact sequence (recall

that Dλ′ is self-dual by [44, Theorem 4.9]):

Sλ ⊗ S(1n) ← Dλ′ ← 0.

Tensoring this short exact sequence with S(1n) yields the following:

Sλ ← Dm(λ′) ← 0.

Therefore, Dm(λ′ is a composition factor of Sλ, so λ �m(λ′) by Theorem

1.7.

Finally, suppose that λ = m(λ′) (which makes sense because λ is neces-

sarily p-regular and p-restricted), so Dλ = Dλ. But Dλ is the unique simple

submodule of Sλ and Dλ is the quotient of Sλ by its radical. Therefore, Sλ

is simple, because otherwise Sλ would have two composition factors isomor-

phic to Dλ, but [Sλ : Dλ] = 1. Since both λ and λ′ are p-regular, it follows

from [44, 23.6(ii)] that p does not divide the product of the hook lengths in

the Young diagram of λ. But then there are no rim hooks of length divisible

by p in the Young diagram of λ; by [46, 2.7.40], λ is a partition of p-weight

zero, namely a p-core, as required. �

Define a map on p-restricted partitions by f(λ) = m(λ′). If λ is p-

restricted, but not a p-core, then repeatedly applying the above yields a

chain of partitions λ� f(λ)� f2(λ)� . . . which are strictly increasing in the

dominance order, and stops the first time we reach a partition which is not

p-restricted. Say the chain terminates at µ, so µ is not p-restricted; that is,

Y µ is non-projective. By a repeated application of the argument given in

the paragraph preceding Proposition 2.16, the modules Y λ, Y f(λ), . . . , Y µ all

lie in the same block. Since µ is not p-restricted, we can apply Proposition

2.7 to Y µ, which establishes the result.
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2.3. p-Kostka numbers. One of the main problems in the modular repre-

sentation theory of the symmetric group is the determination of the p-Kostka

numbers; that is, the multiplicity of a Young module Y λ as a direct sum-

mand of a Young permutation module Mµ – see, for example, [31] and [39].

We shall denote these numbers by kp(µ, λ); we observe that kp(µ, λ) = 0

unless λ � µ. In contrast to the ordinary Kostka numbers, very little is

known about these p-Kostka numbers.

Indeed, the only clean result covers the case where the labelling partitions

have at most two parts; for this, we need to introduce the notion of p-

containment. If a, b ∈ N have p-adic expansions a =
∑r

i=0 aip
i and b =∑r

i=0 bip
i, we say that a is p-contained in b if ai ≤ bi for every i.

Theorem 2.17. [39, Theorem 3.3] Let j, k, n ∈ N with 2j ≤ 2k ≤ n. Then

kp((n − k, k), (n − j, j)) = 1 if and only if k − j is p-contained in n − 2j;

otherwise the multiplicity is zero.

Note that decomposition numbers are known for two-part partitions: the

multiplicity of D(n−j,j) as a composition factor of S(n−k,k) over a field of

characteristic p is one when
(
n−2j+1
k−j

)
is congruent to 1 modulo p and zero

otherwise. For a proof, we refer the reader to [44, Theorem 24.15]. Henke’s

result on p-Kostka numbers labelled by partitions with at most two parts

can be considered as the “inverse” result to this.

Henke’s proof of this result uses Klyachko’s multiplicity formula from [47],

which gives a p-Kostka number in terms of p-Kostka numbers for smaller

partitions. We give an alternative proof in characteristic 2 using the theory

of Young modules and their Brauer quotients outlined above.

Proof. We begin by proving the “if” direction. It is well-known (see, for

example, [39, Lemma 3.2]) that π(n−k,k) =
∑k

i=0 χ
(n−i,i); therefore the

multiplicity of Y (n−j,j) as a direct summand of M (n−k,k) is at most one.

Firstly, suppose that k − j is 2-contained in n − 2j; we shall prove that

k2((n − k, k), (n − j, j)) > 0. In view of the previous observation, this is

equivalent to showing that k2((n− k, k), (n− j, j)) = 1.
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We proceed by induction on n. When n ≤ 3, the result is easily verified

by noting that M (1,1) = Y (1,1) and M (2,1) = Y (2,1) ⊕ Y (3). Suppose that

n > 3, and the result holds for symmetric groups of degree strictly less than

n.

Write n − 2j =
∑

i ai2
i, k − j =

∑
i bi2

i and j =
∑

i ci2
i for the 2-

adic expansions of n − 2j, k − j and j respectively. Note that (n − j, j) =

(j, j) + (n − 2j), so by Theorem 2.1, the Brauer correspondent of Y (n−j,j)

with respect to its vertex Q is

Z = �i≥0Y
(ai+ci,ci),

as a FNSn(Q)/Q-module.

The assumption that k − j is 2-contained in n − 2j means that bi ≤ ai

for every i. For each i, define α(i) = (ci + ai − bi, bi + ci), which is a

composition of ai + 2ci because ai − bi ≥ 0 by the previous observation. It

follows from Lemma 2.3 that �Mα(i) is a direct summand of M (n−k,k)(Q).

Moreover, if we set n′ = ai+2ci, j
′ = ci and k′ = bi+ci, then k′−j′ = bi and

n′−2j′ = ai; thus the inductive hypothesis applies to show that Y (ai+ci,ci) is

a direct summand of Mα(i) for each i. Consequently, Z is a direct summand

of M (n−k,k)(Q).

Since the Brauer correspondence is a bijection and Z is the Brauer corre-

spondent of Y (n−j,j), it follows that Y (n−j,j) is a direct summand ofM (n−k,k),

which establishes one direction of Henke’s result.

On the other hand, suppose that Y (n−j,j) is a direct summand of M (n−k,k).

We shall show both that the multiplicity is one, and that k−j is 2-contained

in n− 2j.

With the same notation as above, let (n− k, k) =
∑

i 2iβ(i) be a decom-

position, where each β(i) is a composition of ai + 2ci, where we choose the

compositions β(i) such that Y (n−j,j)(Q) is a direct summand of �iM
β(i).

This happens if and only if Y (ai+ci,ci) is a direct summand of Mβ(i) for ev-

ery i. The compositions β(i) necessarily have at most two non-zero parts;

say that β(i) = (xi, yi) and observe that k − j =
∑

i(yi − ci)2i. We claim

that yi − ci ∈ {0, 1}.



53

There are four possible cases depending upon the values of ai and ci. If

ai = ci = 0, then β(i) = ∅ and yi−ci = 0−0 = 0. If ai = 1 and ci = 0, then

|β(i)| = 1. Hence yi is at either 0 or 1, showing that yi − ci = yi ∈ {0, 1}.

The next case is that ai = 0 and ci = 1, so β(i) is a composition of 2.

We require Y (ai+ci,ci) to be a direct summand of Mβ(i) and clearly Y (1,1)

is not a summand of M (0,2) = M (2). Therefore, the only possibility is that

β(i) = (1, 1) and so yi = ci = 1, whence yi − ci = 0.

Finally, we have the case when ai = ci = 1, so β(i) is a composition

of 3. We need Y (2,1) to be a summand of Mβ(i); this is only possible if

β(i) = (1, 2) or β(i) = (2, 1). Therefore, yi is either 1 or 2, demonstrating

that yi − ci = yi − 1 ∈ {0, 1}.

In all four cases, yi − ci ∈ {0, 1}. By uniqueness of the 2-adic expansion,

we deduce that bi = yi − ci. This in turn uniquely specifies yi, and hence

the composition β(i).

Checking the four cases above shows that we always have bi ≤ ai, so that

k − j is 2-contained in n − 2j. Moreover, since there is a unique choice of

β(i) for every i, the multiplicity of Y (n−j,j) as a direct summand of M (n−k,k)

is at most one. This completes the proof. �

The obstacle this proof faces in odd characteristic is dealing with the

projective modules, about which the Brauer correspondence yields no infor-

mation. To that end, the base case of an induction would need to verify

the p-Kostka numbers corresponding to projective Young modules. Since a

p-restricted partition having at most two parts can have degree no greater

than 3p − 3, these only occur in comparatively small degree. Indeed, it is

possible to verify Henke’s result explicitly in characteristic 3 for symmet-

ric groups of degree at most 6, which would give the necessary base case.

Unfortunately, the methods used to do this are not indicative of a general

strategy. The inductive step does not, however, use the assumption that

p = 2.

We now consider the second promised application to the p-Kostka num-

bers, namely identifying the 2-Kostka numbers corresponding to hook par-

titions.
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Suppose that F is a field of characteristic two, and let j, k ∈ N. We would

like to know the 2-Kostka numbers k2((n− k, 1k), (n− j, 1j)). If j > k, then

(n− j, 1j)� (n− k, 1k) and so the multiplicity is zero; thus we may suppose

that j ≤ k.

Firstly, suppose that j = 0, so we are just considering the trivial FSn-

module. When k = 0, Y (n) and M (n) coincide, so the multiplicity is one,

and the trivial module is a direct summand of M (n−1,1) with multiplicity

one if and only if n is odd. The dimension of M (n−k,1k) is even whenever

k ≥ 2, so the trivial module is not a direct summand of M (n−k,1k) in these

cases. Having settled the question for j = 0, we now turn to the situation

where j ≥ 1.

Write n − j = a + 2b, where a ∈ {1, 2}. By Theorem 2.1, a vertex Q of

Y (n−j,1j) is a Sylow 2-subgroup of Sn−a−j and there is an isomorphism of

FNSn(Q)/Q ∼= F[Sa+j ×NSn−a−j (Q)/Q]-modules

Y (n−j,1j)(Q) ∼= Y (a,1j) � F.

By Lemma 2.3, we also have the isomorphism

M (n−k,1k)(Q) ∼= M (a+j−k,1k) � F.

If a+ j − k < 0, then M (n−k,1k)(Q) = 0 and then Y (n−j,1j) is certainly not

a direct summand. Moreover, we note that a+ j− k ≤ 2 because a ≤ 2 and

j ≤ k. It follows that a+ j − k ∈ {0, 1, 2}, giving us three cases to consider:

• The first case is that a+ j− k = 0. We want to understand whether

Y (a,1j) is a direct summand of M (1k) ∼= FSk; this is equivalent to

Y (a,1j) being a projective FSn-module. When a = 1, this is true

and the multiplicity is one by construction of the Young modules; if

a = 2, Y (a,1j) is a projective module so it follows from Theorem 1.17

that the multiplicity is equal to the dimension of the corresponding

simple module.

If λ is a 2-restricted partition, then Y λ is the projective cover of

Dλ = Dm(λ′) = Dλ′ . Therefore, the simple module corresponding to

Y (2,1j) is labelled by (2, 1j)′ = (j + 1, 1) and so the multiplicity is

the dimension of D(j+1,1).
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Recall from Example 1.8 that D(j+1,1) equals the Specht module

S(j+1,1) whenever j + 2 is odd; when j + 2 is even, S(j+1,1) has

both D(j+2) and D(j+1,1) as composition factors. Consequently, the

dimension of D(j+1,1) is j + 1 when j is odd and j when j is even.

In terms of just n,j and k, when a = 1, n− j is odd and k− j = 1;

in this case, the multiplicity is one. When a = 2, k − j = 2 and

n − j is even; therefore n and j have the same parity. Hence the

multiplicity is j when k− j = 2 and n and j are both even, whereas

the multiplicity is j + 1 when k − j = 2 and n and j are both odd.

• The second case is a+j−k = 1. As in the first case, we want to find

the multiplicity of Y (a,1j) as a direct summand of the regular module.

The same argument as given previously shows that the multiplicity

is one when a = 1 and dimD(j+1,1) when a = 2.

When a = 1, we have j = k. When a = 2, k − j = 1 and n − j

is even, showing that n and j have the same parity. So the the

multiplicity is j when k− j = 1 and n and j are both even, whereas

the multiplicity is j + 1 when k − j = 1 and n and j are both odd.

• Finally, we have the case when a+ j − k = 2; recall that j ≤ k and

a ≤ 2. This forces j = k and a = 2; in this case, the multiplicity

of Y (2,1j) as a direct summand of M (2,1j) is one. We saw from the

second case that the multiplicity is one when a = 1 and j = k; put

simply, when j = k, the multiplicity is one.

We now state our conclusion.

Proposition 2.18. The 2-Kostka numbers corresponding to hook partitions

satisfy:

K2(k, j) =



j k − j = 1, 2, and n is even and j is even;

j + 1 k − j = 1, 2, and n is odd and j is odd;

1 k − j = 1 and n− j is odd;

1 j = k;

0 otherwise.
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There are two difficulties to obtaining such a result in odd characteristic.

The first is that the situation in odd characteristic is more complicated:

the correspondence between indecomposable projective modules and simple

modules is more complicated, as the Mullineux map is non-trivial in this

case. Moreover, the dimensions of the appropriate simple modules will be

more complicated to calculate.

But the second, more significant, difficulty is that the projective Young

modules become an obstruction in odd characteristic. For example, to un-

derstand the 3-Kostka numbers corresponding to hook partitions using the

same method as above will require knowing the multiplicity of Y (3,1k−1) as

a direct summand of M (2,1k).

2.4. Signed Young Modules. In this section, we assume that p is odd.

So far in this chapter, we have been considering the representation theory

of modules for Sn which are induced from the trivial module for a Young

subgroup of Sn. We now turn to a natural generalisation: investigating

modules induced from a one-dimensional module for a Young subgroup.

One reason for doing so is to demonstrate the wider applicability of the

methods used previously.

If H is a subgroup of Sn, we write F(H) for the trivial module of H and

sgn(H) for S(1n)
y
H

. Let C2(n) be the set of pairs of compositions (α|β) such

that |α| + |β| = n. For a pair (α|β) ∈ C2(n), we define the signed Young

permutation module

M(α|β) = FSα � sgn(Sβ)
xSn
Sα×Sβ

.

These induced modules can be understood in a more tangible way, which

we now describe. Let (α|β) ∈ C2(n). We define an (α|β)-tableau to be

a bijection T : ([α], [β]) → {1, . . . , n}. It is convenient to write an (α|β)-

tableau as a pair (t1, t2) where t1 is an α-tableau and t2 is a β-tableau. For

example, if α = (2, 3) and β = (1, 1) then two different (α|β)-tableaux are

( 1 6
2 7 3

,
4
5

) and ( 5 2
3 4 6

,
7
1

).
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Denote by T (α|β) for the set of all (α|β)-tableaux. The symmetric group

Sn acts on T (α|β) in a natural way: if σ ∈ Sn and T ∈ T (α|β), then σT is

obtained by applying σ to each entry of T .

Suppose that T = (T1, T2) ∈ T (α|β). We define the row stabiliser of T in

Sn to be the subgroup of Sn consisting of all elements σ such that the rows

of T and σT are equal, as sets. It is clear that R(T ) = R(T1)×R(T2). Let

U(α|β) be the submodule of the permutation module FT (α|β) spanned by

elements

{T − sgn(σ2)σ1σ2T : T ∈ T (α|β), (σ1, σ2) ∈ R(T1)×R(T2)}.

Given T ∈ T (α|β), we write {T} for the equivalence class of T in the

quotient module FT (α|β)/U(α|β); we call {T} an (α|β)-tabloid. The (α|β)-

tabloids give a concrete realisation of signed Young permutation modules.

Let Ω(α|β) denote the set of all (α|β)-tabloids {T} with the property that

T is a row-standard (α|β)-tabloid.

Lemma 2.19. [23, Lemma 3.3] The FSn-modules FΩ(α|β) and M(α|β) are

isomorphic.

We can introduce a dominance order on C2(n); let (α|β) and (γ|δ) ∈ C2(n).

We say that (α|β) dominates (γ|δ) and write (α|β) � (γ|δ) if for every j,∑j
i=1 αi ≥

∑j
i=1 γi and |α|+

∑j
i=1 βi ≥ |γ|+

∑j
i=1 δi. Observe that if β and

δ are empty, we recover the familiar dominance order on compositions.

The indecomposable summands of signed permutation Young modules

satisfy similar properties to those of Young modules. We categorise some of

these below; compare with Theorem 2.1.

Theorem 2.20. [16] There is a family Y (λ|pµ) of indecomposable FSn-

modules labelled by pairs (λ, pµ) ∈ Par2(n), which are called signed Young

modules. The signed Young modules satisfy the following properties:

• Every indecomposable summand of a signed Young permutation mod-

ule M(α|β) is isomorphic to a signed Young module Y (λ|pµ) such

that (λ, pµ) � (α, β).

• The multiplicity of Y (λ|pµ) as a summand of M(λ|pµ) is one.
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• Suppose that λ and µ have p-adic expansions λ =
∑r

i=0 p
iλ(i) and

µ =
∑r−1

i=0 p
iµ(i). Let ρ be the partition of n having exactly |λ(i)|+

|µ(i−1)| parts of size pi for each i ≥ 0 (where we make the convention

that |µ(−1)| = 0). Then a vertex of Y (λ|pµ) is a Sylow p-subgroup

of the Young subgroup Sρ.

These signed Young modules have been the focus of recent research since

they were introduced by Donkin in [16]. Recall that over a field of odd

characteristic, a Specht module is indecomposable; it is natural to ask when

a Specht module is irreducible. Hemmer proved in [37] that any simple

Specht module in odd characteristic is a signed Young module. It is possible

to compute the label explicitly due to a result of Danz and Lim:

Theorem 2.21. [15, Theorem 5.1] Suppose that Sλ is a simple FSn-module

and λ has p-adic expansion
∑

i≥0 λ(i)pi. Then Sλ is isomorphic to the signed

Young module Y (α|pβ), where α = (λ′(0))′ and pβ = λ′ − λ′(0).

Since signed Young modules are indecomposable FSn-modules, they lie in

a block of the symmetric group; it is natural to ask if we can identify that

block. Our goal in this subsection is to answer this question by proving the

following result, originally due to Hemmer, Kujawa and Nakano:

Theorem 2.22. [38, Corollary 5.2.9] The signed Young module Y (λ|pµ) lies

in the block of Sn labelled by cp(λ).

The proof given in [38] uses the Schur superalgebra; the proof we present

is simpler, using only the Brauer–Robinson Theorem (which is needed for

the statement about blocks to make sense) and facts about the Brauer cor-

respondents of signed Young modules.

Let (λ, pµ) ∈ Par2(n), and write λ =
∑r

i=0 λ(i)pi, µ =
∑r

i=0 µ(i)pi for

the p-adic expansions of λ and µ. Define n0 = |λ(0)| and for i ≥ 1, define

ni = |λ(i)|+ |µ(i− 1)|. Let ρ be the partition of n with ni parts equal to pi.

Let α be a p-restricted partition of m1 and β be a p-restricted partition

of m2, and set m = m1 + m2. Write Y α
k for Inf

SkoSm1
Sm1

Y α and similarly Y β
k
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for Inf
SkoSm1
Sm1

Y β. We define

Rk(α|β) = Y α
k � (Y β

k ⊗ sgn(Sk))
xSkoSm
SkoSm1×SkoSm2

.

Fix a Sylow p-subgroup Sk of Pk, and write Nk for NSk(Pk). We define

Qk(α|β) = Rk(α|β)
ySkoSm
NkoSm

.

The modules Qk are the building blocks of the Brauer correspondents of

signed Young modules.

Theorem 2.23. [16], [23, Theorem 1.1] The Brauer correspondent of Y (λ|pµ)

with respect to this vertex is

�r
i=0Qpi(λ(i)|µ(i− 1)),

where we make the convention that µ(−1) = ∅.

We proceed by induction on n. If n < p, then µ = ∅ and so Y (λ|pµ) = Y λ

which we already know lies in the block labelled by cp(λ). Now suppose that

n ≥ p and that Y (α|pβ) and Y (λ|pµ) have the same vertex say Qρ. Then

NSn(Qρ) ∼= Sn0 ×NSn−n0
(Qρ); as in the proof of Proposition 2.6, note that

the second factor is a group with only one block.

We have

Y (α|pβ)(Qρ) ∼= Y α(0) ��r
i=1Qpi(α(i)|β(i− 1)),

and

Y (λ|pµ)(Qρ) ∼= Y λ(0) ��r
i=1Qpi(λ(i)|µ(i− 1)).

Therefore, by the Brauer–Robinson Theorem, Y (α|pβ)(Qρ) lies in the block

bcp(α(0)) ⊗ b0(NSn−n0
(Qρ)) and Y (λ|pµ)(Qρ) lies in the block bcp(µ(0)) ⊗

b0(NSn−n0
(Qρ)). This is the same block precisely when α and λ have the

same p-core. It follows from Theorem 1.32 that Y (α|pβ) and Y (λ|pµ) lie

in the same block of Sn if and only if α and λ have the same p-core, as

required.

Now suppose, more generally, that Y (α|pβ) and Y (λ|pµ) have arbitrary

vertices. Define α̃ = α + (p|β|) and λ̃ = λ + (p|λ|), which are partitions of

n such that cp(α̃) = cp(α) and cp(λ̃) = cp(λ). By Theorem 2.23, Y (α|pβ)
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has the same vertex as Y α̃ and Y (λ|pµ) has the same vertex as Y λ̃. It

follows from the Brauer–Robinson Theorem and the previous paragraph

that Y (α|pβ) and Y (λ|pµ) lie in the same block of Sn if and only if α and

λ have the same p-core. This completes the proof of Theorem 2.22.
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3. Vertices of p-permutation Modules

Let F be any field and a, b ∈ N. The Foulkes module H(ab) is the FSab
permutation module with linear basis given by all partitions of {1, . . . , ab}

into exactly b sets of size a, where the symmetric group Sab acts via the nat-

ural permutation action. As the Foulkes module is a transitive permutation

module, we have the isomorphism of FSab-modules H(ab) ∼= F
xSab
SaoSb

.

Foulkes modules are involved in one of the major open problems in the

ordinary representation theory of the symmetric group: Foulkes’ Conjecture.

Conjecture 3.1. [28] Suppose that F = C and a < b. Then the Foulkes

module H(ba) is a direct summand of H(ab).

This conjecture has resisted the most obvious forms of attack. When H.

O. Foulkes made this conjecture in 1950, the only non-trivial case which was

known was when a = 2; the paper [65] of Thrall from 1942 gave an explicit

decomposition of the modules involved. Yet it was not until the final decade

of the 20th Century that any further progress was made, when Brion showed

that Foulkes’ Conjecture held in the case that b was very large compared to

a. Brion’s proof, however, was non-constructive in that it did not provide a

lower bound on b.

In recent years, more progress has been made on the conjecture. Dent and

Siemons established Foulkes’ Conjecture for a = 3 in [17] by using the struc-

ture of the module H(b3) and finding bounds on the multiplicity of Specht

modules in the decomposition of H(3b) by means of explicit homomorphisms.

Manivel has proved Foulkes’ Conjecture for stable plethysm coefficients in

[50]. With increasingly powerful computers, Foulkes’ Conjecture has been

verified for a+ b ≤ 20, using methods from [18].

The ad hoc methods used so far suggest that Foulkes modules remain

mysterious objects. Indeed, finding a combinatorial formula for the complex

character of H(3b) would be a significant achievement. This desire to better

understand the structure of Foulkes modules has, in part, motivated their

study over other fields.
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One can obtain analogous conjectures by replacing C with any other field.

In [22], Giannelli proved that the modular analogue of Foulkes’ conjecture

is false. By identifying the possible vertices of summands of H(an), it was

shown in [22] that H(an) cannot have a non-projective Young module as a

summand, whereas H(na) does have such a summand in its decomposition

into indecomposable modules. This provided a counter-example over fields

of odd characteristic p. In this chapter we will, among other things, close

the gap by demonstrating that the analogue of Foulkes’ Conjecture fails in

characteristic 2 also.

Finding the vertices of modules over fields of prime characteristic is an

important, and difficult, problem in modular representation theory. For ex-

ample, recent work in this area has seen an analysis of vertices of Foulkes

modules in [22], of twisted Foulkes modules [25] and of certain Specht mod-

ules [24]. In this chapter, we study the vertices of another family of modules,

which we denote by V (p,n), namely the FSpn permutation modules induced

from the trivial module for Cp o Sn. We observe that the results obtained

here do not require any restrictions on n or p, in contrast to [22].

Observe that when p = 2, this is the Foulkes module H(2n). In odd char-

acteristic, however, we obtain a different module, which has larger dimension

and a more complicated structure than its Foulkes counterpart H(pn). While

identifying vertices is a significant problem in its own right, it can also have

applications to the modular representation theory of symmetric groups.

3.1. Tensor Products of Specht Modules. Let m,n ∈ N with m <

p, and let µ be a partition of m. We denote by Mµ⊗n the n-fold outer

tensor product of Mµ with itself; this is a module for the direct product

of symmetric groups Snm. We can make Mµ⊗n into a F[Sm o Sn]-module

by defining the action of Sm o Sn as follows, where (f ;π) ∈ Sm o Sn and

u1 ⊗ · · · ⊗ un is a generating element of Mµ⊗n :

(f ;π)u1 ⊗ · · · ⊗ un = f(1)uπ−1(1) ⊗ · · · ⊗ f(n)uπ−1(n).
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To ease notation, we denote this module by X(n, µ); since Mµ is a per-

mutation module, so is X(n, µ). We shall be interested in the induction of

X(n, µ) to the symmetric group of degree mn, which we call V (n, µ).

The objective of this section is to prove the following Theorem about the

vertices of indecomposable summands of V (n, µ).

Theorem 3.2. Let U be an indecomposable summand of the FSmn-module

V (n, µ) and let Q be a vertex of U . Then there exists 0 ≤ s ≤ bnp c such that

Q is conjugate to a Sylow p-subgroup of Sµ o Ssp.

We remark that this result on vertices applies to other modules. For

example, if p = 5, then S(3,1) is a direct summand of M (3,1) and therefore for

any natural number n, S(3,1)⊗n is a direct summand of M (3,1)⊗n. Induction

is an exact functor, so S(3,1)⊗nxS4n

S4oSn is a direct summand of V (n, (3, 1)). In

the notation of [59], S(3,1)⊗nxS4n

S4oSn is a generalised Foulkes module (in fact,

it is H
(n)
(3,1)), and Theorem 3.2 gives information about the possible vertices

of its direct summands.

Our first task is to find a more concrete way to think of the induced

module V (n, µ).

We define a (n, µ)-tabloid family to be a set v = {{t1}, . . . , {tn}} consist-

ing of n µ-tabloids, such that for every natural number 1 ≤ i ≤ mn, there is

a unique natural number 1 ≤ j ≤ n such that i is an entry of the µ-tabloid

{tj}. The set of all (n, µ)-tabloid families is denoted by B(n, µ). We refer

to {t1}, . . . , {tn} as the tabloids of v.

The symmetric group Smn acts transitively on the set B(n, µ) with its

natural permutation action, so the vector space with linear basis B(n, µ) is

a transitive permutation module. The stabiliser of a (n, µ)-tabloid family

is conjugate to the wreath product Sµ o Sn, showing that the permutation

module spanned by (n, µ)-tabloid families is isomorphic to F
xSmn
SµoSn which in

turn is isomorphic to V (n, µ). Therefore, B(n, µ) is a linear basis of V (n, µ).

Let zj be the p-cycle ((j−1)p+1, · · · , jp) in Smn, and put Oj = supp(zj).

For a natural number l such that lp ≤ mn, define Rl = 〈z1 . . . zl〉, which is a

cyclic subgroup of Smn of order p. Note that O1, . . . ,Ol are the non-trivial

orbits of Rl on {1, . . . ,mn}.
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Lemma 3.3. Let l be a natural number such that lp ≤ mn. If l is not

divisible by m, then V (n, µ)(Rl) = 0, whereas if l = ms, then there is an

isomorphism of FNSmn(Rms)-modules:

V (n, µ)(Rms) ∼= V (sp, µ)(Rms) � V (n− sp, µ).

Proof. Suppose that V (n, µ)(Rl) 6= 0. Then Rl is contained in a vertex of

a summand of V (n, µ) and hence a conjugate of Rl is contained in Sµ o Sn.

If P is a p-subgroup of Sµ o Sn, then because Sµ is a p′-group, there is a p-

subgroup Q of Sn such that P is conjugate to a Sylow p-subgroup of Sµ oQ.

Let O be an orbit of Q on {1, . . . , n}, then O + an is an orbit of Sµ oQ on

{1, . . . ,mn} for 0 ≤ a ≤ m− 1. Therefore, the number of orbits of size p on

{1, . . . ,mn} of any subgroup of Sµ o Sn must be a multiple of m. Since Rl

has exactly l such orbits on {1, . . . ,mn}, we deduce that l is divisible by m.

Write l = ms for some s ∈ N.

Let v = {{t1}, . . . , {tn}} be a (n, µ)-tabloid family which is fixed by

Rms. If {ti} contains an entry x ∈ supp(Rms), then all entries of {ti}

are elements of supp(Rms) because v is fixed by Rms. Hence there are

tabloids {ti1}, . . . , {tisp} whose entries are precisely supp(Rms). Write v′ =

{{ti1}, . . . , {tisp}}; then we can write v = v′ t v+, where v+ is an element

of V+(n − sp, µ), that is the set of (n − sp, µ)-tabloid families with entries

from {msp+ 1, . . . ,mn}.

There is a well-defined bijection

f : B(n, µ)Rms → B(sp, µ)Rms ×B+(n− sp, µ),

which sends v ∈ B(n, µ)(Rms) to (v′, v+), The map f induces a linear iso-

morphism between V (n, µ)(Rms) and V (sp, µ)(Rms) � V+(n− sp, µ). Since

we have the factorisation NSmn(Rms) ∼= NSmsp(Rms)×Sm(n−sp), this is also

an isomorphism of FNSmn(Rms)-modules. The result now follows by making

the natural identification of V+(n− sp, µ) with V (n− sp, µ). �

Let v = {{t1}, . . . , {tps}} ∈ B(sp, µ) be a (sp, µ)-tabloid family; we would

like to understand when v is fixed by Rms = 〈σ〉.
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Definition 3.4. Let w = {{a1}, . . . , {as}} ∈ B(s, µ). We say that v

has type w if the following two conditions hold: firstly, there are tabloids

{t′1}, . . . , {t′s} such that

v = {{t′1}, σ{t′1}, . . . , σp−1{t′1}, . . . , {t′s}, σ{t′s} . . . , σp−1{t′s}}.

Secondly, if k is in row j of {ai}, then an element of Ok is in row j of {t′i}

and moreover, this is the unique element of Ok to appear in {t′i}.

We call the tabloids {t′1}, . . . , {t′s} representatives of v. If {t′1}, . . . , {t′s}

are representatives of v, then so are σj1{t′1}, . . . , σjs{t′s} for any choice of

exponents 0 ≤ j1, . . . , js < p. Therefore, there are ps different sets of repre-

sentatives for a given (sp, µ)-tabloid family.

Moreover, given a µ-tabloid {ai}, there are pm different µ-tabloids {ti}

such that row j of {ti} contains an element from Ok if and only if k is an

entry of row j of {ai}. It follows that, given w, there are pms different sets

{{t′1}, . . . , {t′s}} such that the second condition of Definition 3.4 holds. Since

there are pms possible representatives, and each (sp, µ)-tabloid family may

be represented in ps different ways, we deduce that:

Lemma 3.5. Let w = {{a1}, . . . , {as}} ∈ B(s, µ). Then there are exactly

pms

ps = p(m−1)s different (sp, µ)-tabloid families of type w.

We now show that having a well-defined type is precisely the condition

needed for a (sp, µ)-tabloid family to be preserved by the action of the cyclic

group Rms.

Lemma 3.6. The (sp, µ)-tabloid family v ∈ B(sp, µ) is fixed by Rms if and

only if there exists w ∈ B(s, µ) such that v has type w.

Proof. Certainly any (sp, µ)-tabloid family having some type w is fixed by

the action of σ and hence Rms.

Conversely, suppose that v is fixed by Rms. Then for any tabloid {t} of v,

{t}σk is a tabloid of v for 0 ≤ k ≤ p−1. The orbit of {t} under the action of

σ is either of size 1 or of size p, but the former is impossible because m < p

and so σ cannot fix {t}. Suppose that a tabloid {t} of v contains two entries

from the same orbit Ok, say x and y. Then there is some j ∈ {1, . . . , p− 1}
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such that xσj = y; moreover {t} and σj{t} are distinct tabloids of v. But

both these tabloids contain the entry y, contradicting the definition of a

(sp, µ)-tabloid family. Therefore each tabloid of v has at most one entry

from each p-orbit of Rms.

Choose a tabloid {t1} of v, and define a µ-tabloid {a1} by stipulating

that k ∈ N is in row j of {a1} if and only if row j of {t1} contains an

element of Ok. Next choose a tabloid {t2} of v such that {t2} 6= σk{t1} for

any k ∈ {0, . . . , p− 1}, and define {a2} in an analogous way. Iterating this

construction, and putting w = {{a1}, . . . , {as}} ∈ B(s, µ), we conclude that

v has type w, as required. �

We now introduce some important subgroups of Smsp. Given an element

ρ ∈ Ssp, we define an element ρ̃ ∈ Smsp by setting ρ̃(c + dsp) = ρ(c) + dsp,

where 1 ≤ c ≤ sp and 0 ≤ d ≤ m − 1. Let Ps be a Sylow p-subgroup of

Sym{1, . . . , sp} with base group 〈z1, . . . , zs〉 and having z1 . . . zs in its centre.

Let Qs = {ρ̃ : ρ ∈ Ps}, which is a subgroup of Smsp.

Let C be the elementary abelian group of order pms generated by the

p-cycles z1, . . . , zms. For 1 ≤ j ≤ s, define πj = z̃j , and define a subgroup of

C by Es = 〈π1〉 × . . .× 〈πs〉.

Proposition 3.7. Each indecomposable summand of V (sp, µ) has a vertex

containing Es.

Proof. The elements of V (sp, µ)(Rms) are, by Lemma 3.6, linear combi-

nations of elements of B(sp, µ) with a well-defined type w. Moreover, C

preserves the type of a tabloid family because the type is defined only in

terms of the orbits Oi. Given w ∈ B(s, µ), let Vw(sp, µ) be the vector space

spanned by all elements of B(sp, µ) of type w; this is a FC-module, and we

have the following isomorphism of FC-modules:

V (sp, µ)(Rms)
y
C
∼=

⊕
w∈B(s,µ)

Vw(sp, µ).

Let xi be the µ-tableau filled, in increasing order starting from the top

left, with entries i, i + s, . . . , i + (m − 1)s, and put x = {{x1}, . . . , {xs}}.

Let v ∈ B(sp, µ) have type w = {{a1}, . . . , {as}}. Then there are tabloids
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{{t1}, . . . , {ts}} of v such that

v = {{t1}, σ{t1}, . . . , σp−1{t1}, . . . , {{ts}, σ{ts}, . . . , σp−1{ts}},

and k is in row j of {ai} if and only if there is an element of Ok in row j of

{ti}.

Note that NSmsp(Rms) acts on the set of orbits {O1, . . . ,Oms}. On the

other hand, define ρ = (1, p+ 1, 2p+ 1, . . . (ms− 1)p+ 1) . . . (p, 2p, . . . ,msp)

and τ = (1, p+1)(2, p+2) . . . (p, 2p). Note that ρσρ−1 = τστ−1 = σ, whence

ρ, τ ∈ NSmsp(Rms). The permutations induced by ρ and τ on {O1, . . . ,Oms}

generate the full symmetric group on the set of orbits.

Given an element h ∈ NSmsp(Rms), h induces a permutation h ∈ Sms by

setting h(i) = j if and only if hOi = Oj . By the previous paragraph, there

is some g ∈ NSmsp(Rms) such that gw = x. Therefore, we may rewrite v as:

v = {{t1}, π1
g{t1}, . . . , (πg1)

p−1{t1}, . . . , {{ts}, πgs{ts}, . . . , (πgs )p−1{ts}}.

This shows that v is fixed by Egs . Let S = StabC(v). Since the action

of C on (sp, µ)-tabloid families of a given type is transitive, we have an

isomorphism of FC-modules

Vw(sp, µ) ∼= F
xC
S
.

By Lemma 3.5, dim(Vw(sp, µ)) = p(m−1)s, whence

p(m−1)s = dim(Vw(sp, µ)) = |C : S| ≤ |C : Egs | = |C : Es| = p(m−1)s.

We deduce that for each w ∈ B(s, µ), there is an element gw ∈ NSmsp(Rms)

such that Vw(sp, µ) ∼= F
xC
Egws

. Let T = {gw : w ∈ B(s, µ)}.

V (sp, µ)(Rms)
y
C
∼=
⊕
gw∈T

F
xC
Egws

.

Furthermore, F
xC
Egws

is an indecomposable FC-module with vertex Egws . Let

U be an indecomposable summand of V (sp, µ). Then there is a subset

T ′ ⊂ T such that

U
y
C
∼=
⊕
g∈T ′

F
xC
Egs
.
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Then there is some g ∈ T ′ such that

(U
y
C

)(Egs ) ∼=
⊕
g∈T ′

F
xC
Egs

(Egs ) 6= 0.

It follows that Egs is contained in a vertex of U , which gives the required

result. �

Proposition 3.8. The FNSmsp(Rms)-module V (sp, µ)(Rms) is indecompos-

able with vertex Qs.

Proof. Let x be as in the proof of Proposition 3.7; v ∈ B(sp, µ)Rms is fixed by

Es if and only if v has type x. Therefore there is the equality of FC-modules

(V (sp, µ)(Rms)
y
C

)(Es) = Vx(sp, µ)(Es).

Since all elements of Vx(sp, µ) are fixed by Es, we have that Vx(sp, µ)(Es) =

Vx(sp, µ) ∼= F
xC
Es

, which is indecomposable by Lemma 1.21. Furthermore,

Es / C, so

V (sp, µ)(Rms)(Es)
y
C

= (V (sp, µ)(Rms)
y
C

)(Es),

as FC-modules, and hence V (sp, µ)(Rms)(Es)
y
C

is indecomposable. Con-

sequently, V (sp, µ)(Rms)(Es) is indecomposable. If we had a decomposi-

tion V (sp, µ) = U1 ⊕ U2, where each summand has a vertex containing Es,

then would also have the direct sum decomposition V (sp, µ)(Rms)(Es) =

U1(Es) ⊕ U2(Es). By Theorem 1.25, each of these summands is non-zero,

which is impossible. So there is a unique indecomposable summand of

V (sp, µ)(Rms) with vertex containing Es, but by Proposition 3.7, all in-

decomposable summands have vertex containing Es. Hence there is just

one such summand; in other words, V (sp, µ)(Rms) is indecomposable.

Let Q be a vertex of V (sp, µ)(Rms). The stabiliser in Smsp of a (sp, µ)-

tabloid family is Sµ o Ssp, so Q is isomorphic to a subgroup of a Sylow

p-subgroup of Sµ o Ssp. It follows that |Q| ≤ |Qs|, because Qs is isomorphic

to a Sylow p-subgroup of Sµ o Ssp. As before, let xi be the µ-tabloid filled

with the entries i, i+s, . . . , i+(m−1)s in increasing order; then the element

{{x1}, σ{x′1}, . . . , σp−1{x1}, . . . , {xs}, σ{xs} . . . , σp−1{xs}}
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is fixed by Qs, by construction. Consequently, a conjugate of Qs is a sub-

group of Q and so |Qs| ≤ |Q|. It follows that |Q| = |Qs| and we conclude

that Qs is a vertex of V (sp, µ)(Rms). �

For the main result, we shall require the following technical lemma, as we

are following the general approach of [22] in this section.

Lemma 3.9. [22, Lemma 3.9] Write Ds = C ∩ NSmsp(Qs). The unique

Sylow p-subgroup of NSmsp(Qs) is 〈Ds, Qs〉.

Since Ds is a subgroup of C, Ds is also a subgroup of NSmsp(Rms), so

〈Ds, Qs〉 is a subgroup of NSmsp(Rms). It follows that 〈Ds, Qs〉 is also the

unique Sylow p-subgroup of NNSmsp (Rms)(Qs).

We also take the opportunity to record an important fact about p-groups.

Although the result is well-known, we provide a short proof.

Lemma 3.10. Let P be a p-group and let Q be a proper subgroup of P .

Then Q is strictly contained in NP (Q).

Proof. Certainly Q is contained in NP (Q); we prove that the containment

is proper. Let Q act on the coset space P/Q. Note that the coset Q is fixed

under this action, so by the Orbit-Stabiliser Theorem, there is another orbit

of length 1. Hence there exists g ∈ P \ Q such that q(gQ) = gQ for all

q ∈ Q. Therefore, g ∈ NP (Q), and the claim is proved. �

We are now ready to prove Theorem 3.2; recall that this states that an

indecomposable summand of V (n, µ) has vertex conjugate to a Sylow p-

subgroup of Sµ o Ssp for some 0 ≤ s ≤ bnp c.

Proof. If U is a projective summand of V (n, µ), we may take s = 0; otherwise

let U be a non-projective summand of V (n, µ) with non-trivial vertex Q.

Then Q contains an element of order p, that is, a product of p-cycles in Smn.

Hence there is some 1 ≤ l ≤ bmnp c such that Rl is a subgroup of a conjugate

of Q, and we may take l to be maximal with this property. By the Brauer

correspondence, U(Rl) is a non-zero direct summand of V (n, µ)(Rl). For

brevity, denote NSmn(Rms) by Ks. By Lemma 3.3, there exists 1 ≤ s ≤ bnp c
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such that l = ms and an isomorphism of FKs-modules

V (n, µ)(Rms) ∼= V (sp, µ)(Rms) � V (n− sp, µ).

Since V (sp, µ)(Rms) is indecomposable, there is a non-zero direct summand

Z of V (n− sp, µ) such that, as F(Ks × Sm(n−sp))-modules, we have:

U(Rms) ∼= V (sp, µ)(Rms) � Z.

Since Rms/Qs, by Lemma 1.24 we have a FNKs(Qs)-module isomorphism

U(Qs)
y
NKs (Qs)

∼= (U(Rms)(Qs).

This implies that

U(Qs)
y
NKs (Qs)

∼= (V (sp, µ))(Rms) � Z)(Qs) ∼= (V (sp, µ))(Rms))(Qs) � Z.

Therefore, we deduce that U(Qs)
y
NKs (Qs)

6= 0 and hence that U(Qs) 6= 0,

demonstrating that Qs is a subgroup of Q. Suppose that Qs is a proper

subgroup of Q. Then, by Lemma 3.10, there is a p-element g ∈ NQ(Qs)\Qs.

We can factorise g = ab, where a ∈ NSmsp(Qs) and b ∈ Sm(n−sp).

Take a p-permutation basis B of V (sp, µ)(Rms) with respect to a Sylow

p-subgroup of Ks containing Qs. Then BQs is a p-permutation basis of

V (sp, µ)(Rms)(Qs) with respect to the unique Sylow p-subgroup 〈Ds, Qs〉

of NKs(Qs). Let B′ be a p-permutation basis of Z with respect to a Sylow

p-subgroup P ′ of Sm(n−sp). Then C = BQs � B′ is a p-permutation basis for

with respect to 〈Ds, Qs〉 × P ′.

Now, a is a p-element in NSmsp(Qs), so must be contained in a Sylow

p-subgroup of NSmsp(Qs); by Lemma 3.9, a is contained in 〈Ds, Qs〉 which

itself is a subgroup of Ks. Therefore, 〈Qs, a〉 is a p-subgroup of NKs(Qs). By

Theorem 1.25, C〈Qs,a〉 6= ∅, so there exists some element u⊗u′ ∈ C = BQs�B′

such that a(u⊗ u′) = u⊗ u′.

This means that u ∈ B〈Qs,a〉, but by Proposition 3.8, a ∈ Qs. If b is the

identity of Sm(n−sp), then g ∈ Qs which is a contradiction, so b is a non-

trivial p-element. By raising b to an appropriate power, we find at least one

p-cycle in Q with support in the set {msp+ 1, . . . ,mn}, and so Q contains

an element of order p which is a product of strictly more than l p-cycles.
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This contradicts the maximality of our choice of l and shows that Qs = Q,

as required. �

3.2. Conjugation Modules. In this section, we investigate another family

of p-permutation modules for the symmetric group. We define the induced

FSpn-module V (p,n) = F
xSpn
CpoSn and call V (p,n) a conjugation module; recall

that p is the characteristic of our field F. This terminology arises from

the fact that we can think of V (p,n) as the F-vector space with basis given

by the elements of Spn of cycle type (pn), where Spn acts on this basis by

conjugation, and the action is extended linearly. We call this basis of V (p,n)

the natural basis, and denote it by B(p,n). Note that if p = 2, then V (p,n) is

isomorphic to the Foulkes module H(2n).

Our goal is to identify the vertices of the indecomposable summands of

V (p,n). Since the groups arising as vertices require a lot of preliminaries

to describe meaningfully, we defer the statement of the main result of this

section.

We recall the notation used in the previous section. For 1 ≤ j ≤ n, we

define a p-cycle in Spn by zj = (p(j − 1) + 1, . . . , pj). Let Oj denote the

support of zj and, for t ≤ n, set Rt = 〈z1 . . . zt〉, a cyclic subgroup of Spn of

order p.

Suppose that V (p,n) has a non-projective summand. Then the vertex

of this summand is non-trivial and hence contains an element of order p,

which is a product of p-cycles in Spn. Therefore, there exists t ≤ n such

that this vertex contains a conjugate of Rt; this suggests that the study of

the structure of V (p,n)(Rt) is likely to be profitable.

Lemma 3.11. We have the following isomorphism of FNSpn(Rt)-modules:

V (p,n)(Rt) ∼= V (p,t)(Rt) � V (p,n−t),

where NSpn(Rt) is identified with NSpt(Rt)× Sp(n−t).

Proof. Suppose that σ ∈ B(p,n) is fixed by the action of Rt. If a cycle of

σ has an entry from {1, . . . , tp}, then all the other entries from that cycle

are from {1, . . . , tp}, or else that cycle (and hence σ) is not fixed by Rt.

Therefore, we may divide σ into t p-cycles, the union of whose supports
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is {1, . . . , tp} and n − t p-cycles, each of which has support contained in

{tp+ 1, . . . , np}. Each of the t p-cycles is also fixed by Rt. Upon relabelling

the n− t p-cycles with support contained in {tp+ 1, . . . , np} by subtracting

tp from each entry, we have a linear isomorphism:

V (p,n)(Rt) ∼= V (p,t)(Rt) � V (p,n−t).

Moreover, it is easy to see that NSpn(Rt) ∼= NSpt(Rt)×Sp(n−t), so the above

linear isomorphism is compatible with the group action and we have the

desired isomorphism of FNSpn(Rt)-modules. �

The lemma suggests that it is desirable to understand the structure of

V (p,t)(Rt). Let ρ = z1 . . . zt, so ρ generates Rt. Suppose that σ ∈ B(p,t) is

fixed by the action of ρ. Let i be an entry of a p-cycle of σ from Oj . There

are two cases: either all the entries of the cycle are from Oj , or i is the

only entry of the cycle from Oj . In the latter case, each of the p entries of

the cycle comes from a different p-orbit Ok; write this cycle as (a1, . . . , ap).

Then, since σ is fixed by ρ, σ contains the following product of p-cycles:

(a1, . . . , ap) = (a1, . . . , ap)(a1ρ, . . . , apρ) . . . (a1ρ
p−1, . . . , apρ

p−1).

We call such a product (a1, . . . , ap) a long cycle of σ. A cycle of σ of the form

(b1, . . . , bp) where there is a positive integer j ≤ n such that {b1, . . . , bp} =

Oj is called a stable cycle of σ. It follows from the above discussion that

we may factorise σ = σ1 . . . σaτ1 . . . τb, where the elements σi are the stable

cycles of σ and the elements τi are the long cycles of σ.

We now want to define a map from the elements of the natural basis fixed

by Rt to the symmetric group Sym{O1, . . . ,Ot}. If σi is a stable cycle of σ

with all the entries of σi coming from Oj , we define T ′(σi) = (Oj). On the

other hand, if τi = (a1, . . . , ap) is a long cycle of σ, where ak ∈ Oik , then we

set T ′((a1, . . . , ap)) = (Oi1 . . .Oip).

Given σ ∈ B(p,t) which is fixed by the action of Rt, we express σ =

σ1 . . . σaτ1 . . . τb as a product of stable and long cycles (where a + bp = t).

We define

T (σ) =
a∏
k=1

T ′(σk)
b∏

k=1

T ′(τk).
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Observe that a natural basis vector σ has a stable cycles and b long cycles

if and only if T (σ) has a fixed points and b p-cycles when considered as a per-

mutation on {O1, . . . ,Ot}. For example, if p = 2 and σ = (12)(35)(46)(78),

then T (σ) = (O1)(O2O3)(O4) and σ has two stable cycles and one long

cycle. This enables us to decompose V (p,t)(Rt). Let Vi denote the F-vector

space spanned by all natural basis vectors which are fixed by the action of

Rt and have exactly i long cycles.

Lemma 3.12. There is a direct sum decomposition of FNStp(Rt)-modules

given by V (p,t)(Rt) =
⊕b t

p
c

i=0 Vi.

Proof. Observe that for every σ ∈ B(p,t) fixed by Rt, T (σ) is defined, so every

element of the natural basis of V (p,t)(Rt) has a well-defined number of long

cycles. Therefore, considered as vector spaces, the claimed decomposition

holds. Since NStp(Rt) permutes the sets O1, . . . ,Ot as blocks for its action,

NStp(Rt) acts on T (σ) as a subgroup of Sym{O1, . . . ,Ot}. Consequently,

NStp(Rt) preserves the conjugacy class of elements of Sym{O1, . . . ,Ot} with

cycle type (pi, 1(t−ip)); that is, the number of fixed points of T (σ) is invariant

under the action of NStp(Rt). It follows that we indeed have a decomposition

of FNStp(Rt)-modules, as required. �

Our next goal is to study Vi. For now, suppose that i > 0; different

arguments will be required to analyse the structure of V0. Let Et denote

the elementary abelian p-group 〈z1〉 × . . . × 〈zt〉. We shall investigate the

structure of Vi by considering its restriction to Et; before doing this, we need

one more definition.

Let β ∈ Sym{O1, . . . ,Ot} have cycle type (pi, 1(t−ip)). For each j such

that Oj is a fixed point of β, we choose a p-cycle in Stp with support Oj .

Denote by S this set of t−ip p-cycles. A natural basis vector σ which is fixed

by Rt has type (β, S) if T (σ) = β and the stable cycles of σ are precisely

the elements of S. The set of all possible types is denoted by X.

For example, if p = 3 and σ = (1, 4, 7)(2, 5, 8)(3, 6, 9)(10, 11, 12), then σ

has type (β, S) where β = (O1,O2,O3) and S = {(10, 11, 12)}.
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Given a type x ∈ X, let Kx be the F-vector space spanned by all Rt-fixed

natural basis vectors of type x. If σ is a natural basis vector of type x, then

Et acts trivially on the stable cycles of σ and preserves the relative order of

the long cycles of σ. In other words, the type is of σ is invariant under Et,

so Kx is an FEt-module and we have proved:

Lemma 3.13. We have a decomposition of FEt-modules:

Vi
y
Et
∼=
⊕
x∈X

Kx.

Lemma 3.14. Fix a type x ∈ X. There are pi(p−1) natural basis vectors

fixed by Rt of type x and Et acts transitively on these.

Proof. Let σ have type x. The t − ip stable cycles of σ are completely

determined by the type x. Since T (σ) is also determined by the type x, for

each of the i long cycles of σ, the orbits which make up the entries of that

long cycle and the relative order of these entries is specified. Since σ is fixed

by Rt, if (a1, . . . , ap) is a cycle of σ where each al is from a different p-orbit

Ojl , then σ must contain (a1, . . . , ap).

Therefore, a long cycle of σ is uniquely and completely specified by the

choices of a2, . . . , ap, which we may choose freely from the appropriate p-

orbit Oj . There are pp−1 choices for each long cycle, and since there are i

long cycles of σ, we have a total of pi(p−1) natural basis vectors fixed by Rt

of type x, as claimed.

Since all natural basis vectors of a given type have the same stable

cycles, it suffices to prove that Et acts transitively on long cycles. Let

a = (a1, . . . , ap) and b = (b1, . . . , bp) be two p-cycles, with al and bl ∈ Okl
for 1 ≤ l ≤ p. For each l, let tl be an integer such that ztlkl(al) = bl, and put

δ =
∏p
l=1 z

tl
kl
∈ Et, so aδ = b. Since long cycles of a natural basis vector σ

have disjoint support, we can apply this argument to each long cycle of σ in

turn to conclude that σ may be mapped to any other natural basis vector

of the same type by an element of Et. �

Suppose that σ has type x ∈ X and choose α ∈ St such that the i long

cycles of σ have support the union of the orbits that are the elements of the
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sets {Oα(1), . . . ,Oα(p)}, . . . , {Oα((i−1)p+1), . . . ,Oα(ip)} respectively, and the

t − ip stable cycles have support Oα(ip+1), . . . ,Oα(t). Define an elementary

abelian p-group of order pi+t−ip by

Ax = 〈zα(1) . . . zα(p)〉× . . .×〈zα(i(p−1)+1) . . . zα(ip)〉×〈zα(ip+1)〉× . . .×〈zα(t)〉.

We define A = 〈z1 . . . zp〉 × . . . × 〈zi(p−1)+1 . . . zip〉 × 〈zip+1〉 × . . . × 〈zt〉;

note that A is also an elementary abelian p-group of order pi+t−ip, and each

group Ax is conjugate in NStp(Rt) to A. Indeed, any element β of Stp which

sends zk to zα(k), for every k, centralises Rt (so certainly normalises Rt) and

satisfies Aβ = Ax.

Proposition 3.15. Each indecomposable summand of Vi has a vertex con-

taining A.

Proof. By Lemma 3.13, we have Vi
y
Et
∼=
⊕

x∈XKx. Moreover, Kx is a

transitive FEt-permutation module, so Kx
∼= F

xEt
D

, where D is the stabiliser

in Et of a point. Observe that the group Ax defined above fixes all natural

basis vectors of type x. Moreover, by Lemma 3.14, we have

pi(p−1) = dim(Kx) = |Et : D| ≤ |Et : Ax| = pi(p−1),

from which it follows that D = Ax. Hence Kx
∼= F

xEt
Ax

is indecomposable

with vertex Ax. If U is an indecomposable summand of Vi, then there is a

subset Y of X such that

U
y
Et
∼=
⊕
x∈Y

F
xEt
Ax
.

Consequently, the restriction of U to Et is isomorphic to a direct sum of

p-permutation modules, each of which has vertex NStp(Rt)-conjugate to A.

Hence U
y
Et

(A) 6= 0. �

We are now ready to establish that each of the modules Vi is indecom-

posable and identify its vertex. Let 1 ≤ r ≤ p, and define the p-cycle yr

by

yr = (r, r + p, . . . , r + (p− 1)p).
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We set Y1 =
∏p
j=1 yj and Z1 =

∏p
j=1 zj . For k > 1, we define Yk and Zk

by adding (k− 1)p2 to every entry of Y1 and Z1 respectively. Given ρ ∈ Sk,

define ρ ∈ Skp2 by

ρ((j − 1)p2 + l) = p2(ρ(j)− 1) + l, for 1 ≤ j ≤ k and 0 < l ≤ p2.

Let Pk be a Sylow p-subgroup of Sk, and put Pk = {ρ : ρ ∈ Sk}. We define

Qk = 〈Y1, Z1, . . . , Yk, Zk〉oPk; observe that Qk ∼= 〈Y1, Z1〉oPk. For example,

if p = 2 and k = 2 then Q2 = 〈(13)(24), (12)(34), (15)(26)(37)(48)〉.

Let Bi denote the centraliser in Sym{ip2 + 1, . . . , tp} of the element∏t
j=ip+1 zj , so as an abstract group Bi is isomorphic to the wreath product

Cp o St−ip. The group Qi comprises part of the vertex of Vi; more precisely,

we have:

Proposition 3.16. The FNStp(Rt)-module Vi is indecomposable with vertex

a Sylow p-subgroup of Qi ×Bi.

Proof. Let σ be a natural basis vector which is fixed by Rt; observe that σ is

fixed by the action of Ax (for x ∈ X) if and only if σ has type x. Therefore

we have the equality of FEt-modules

(Vi
y
Et

)(Ax) = Kx(Ax).

Since all elements ofKx are fixed by Ax, we have thatKx(Ax) = Kx
∼= F

xEt
Ax

,

which is indecomposable. Furthermore, Ax � Et because Et is abelian, so

Vi(Ax)
y
Et

= Vi
y
Et

(Ax) ∼= F
xEt
Ax
,

as FEt-modules, and hence Vi(Ax)
y
Et

is indecomposable, whence Vi(Ax) is

indecomposable as a FNNStp (Rt)(Ax)-module. If we had a decomposition

Vi = U1 ⊕ U2, where each summand had a vertex containing Ax, then we

would have the direct decomposition Vi(Ax) = U1(Ax) ⊕ U2(Ax). By The-

orem 1.25, each of these summands is non-zero, which contradicts the in-

decomposability of Vi(Ax). So there is a unique indecomposable summand

of Vi with vertex containing Ax, and hence a unique summand with ver-

tex containing A because A and Ax are conjugate in NSpt(Rt). However, by

Proposition 3.15, all indecomposable summands of Vi have vertex containing

A. Hence there is just one summand; in other words, Vi is indecomposable.
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Let Q be a vertex of Vi. Then Vi(Q) 6= 0, so there exists some natural

basis vector σ which is fixed by Q. Observe that the element

Y1 . . . Yizip+1 . . . zpt

is fixed by Qi×Bi, by construction. Consequently, a conjugate of a Sylow p-

subgroup of Qi×Bi is contained in Q. Conversely, the stabiliser in NStp(Rt)

of a natural basis vector of Vi is conjugate to Qi ×Bi, so Q is conjugate to

a Sylow p-subgroup of Qi ×Bi, as claimed. �

From now on, we shall denote a Sylow p-subgroup of Qi ×Bi by Qi,t.

We now turn to the study of the structure of V0. Recall that V0 is spanned

by all natural basis vectors σ satisfying T (σ) = Id. Therefore, the natural

basis of V0 is given by all vectors of the form
∏t
i=1 z

mi
i , where each mi ∈

{1, . . . , p − 1}. We remark that when p = 2, V0 is isomorphic to the trivial

module; in odd characteristic its structure is more complicated. It is clear

that Et acts trivially on V0, and hence every summand of V0 as a FNSpt(Rt)-

module has vertex containing Et. For technical reasons, we wish to study

V0 as a FNSpt(Et)-module; we must first justify this.

Lemma 3.17. We have the following isomorphism of FNSpn(Et)-modules:

V (p,n)(Et) ∼= V (p,t)(Et) � V (p,n−t).

The proof is analogous to the proof of Lemma 3.11 and is therefore omit-

ted. Just considered as vector spaces, we have

V (p,t)(Et) = V (p,t)(Rt)(Et) =

b t
p
c⊕

i=0

Vi(Et),

where the second equality follows from Lemma 3.12. Note that if σ ∈ B(p,t)

contains a cycle (b1, . . . , bp) with b1 ∈ Ok, then (b1, . . . , bp) is fixed by the

action of zk only if z2, . . . , zp ∈ Ok. Therefore the only natural basis vectors

σ ∈ B(p,t) which can be fixed by the action of Et are those satisfying T (σ) =

Id. On the other hand, we saw above that any such σ is fixed by Et, and

hence the vector space V (p,t)(Et) is precisely V0.

It will be convenient to consider V (p,t)(Et) = V0 as a module for the

quotient NSpt(Et)/Et
∼= Cp−1 o St. Let ω be a primitive root of unity in Fp
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(so ω generates the cyclic group F×p ), and let a1 be the (p− 1)-cycle

(ωp−2, ωp−3, . . . , ω, 1),

where we identify F×p with {1, . . . , p − 1} (and abuse notation slightly by

treating these as integers for the purpose of defining a1). For example, if

p = 7 and ω = 3, then a1 = (546231) ∈ S6. For j > 1, define aj by adding

(j − 1)p to every entry of a1, so that a1, . . . , at generate the base group of

NSpt(Et)/Et and z
aj
j = zωj .

Let (α1, . . . , αt) ∈ (F×p )t; we define an element of V0 corresponding to α

by

zα =
∑

0≤m1,...,mt≤p−2

t∏
j=1

α
mj
j zω

mj

j .

Given α ∈ (F×p )t, we associate to α an element L(α) = (λ1, . . . , λp−1) ∈

Np−1 by setting λk to be number of entries of α which are equal to k (more

accurately, equal to the residue class of k in Fp, but we shall abuse notation

and ignore this distinction). Let L denote the set of elements λ ∈ Np−1 with∑
j λj = t; for λ ∈ L, we define W λ to be the F-vector space spanned by all

zα satisfying L(α) = λ. We illustrate this with an example.

Example 3.18. Let t = p = 3. In this case, L = {(3, 0), (2, 1), (1, 2), (0, 3)}.

Then W (0,3) is a one-dimensional vector space, spanned by the element

z(2,2,2) = z1z2z3−z2
1z2z3−z1z

2
2z3−z1z2z

2
3 +z2

1z
2
2z3+z2

1z2z
2
3 +z1z

2
2z

2
3−z2

1z
2
2z

2
3 .

In the above notation, the generators of the base group of NS9(E3)/E3
∼=

C2 o S3 are a1 = (12), a2 = (45) and a3 = (78). The action of this wreath

product satisfies

(ar11 , a
r2
2 , a

r3
3 ;σ)z(2,2,2) = (−1)r1+r2+r3z(2,2,2),

and so W (0,3) is a module for F[C2 o S3].

To give another example, W (1,2) is spanned by the three elements:

z(2,1,1) = z1z2z3−z2
1z2z3+z1z

2
2z3+z1z2z

2
3−z2

1z
2
2z3−z2

1z2z
2
3 +z1z

2
2z

2
3−z2

1z
2
2z

2
3 ,

z(1,2,1) = z1z2z3+z2
1z2z3−z1z

2
2z3+z1z2z

2
3−z2

1z
2
2z3+z2

1z2z
2
3−z1z

2
2z

2
3−z2

1z
2
2z

2
3 ,
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z(1,1,2) = z1z2z3+z2
1z2z3+z1z

2
2z3−z1z2z

2
3 +z2

1z
2
2z3−z2

1z2z
2
3−z1z

2
2z

2
3−z2

1z
2
2z

2
3 .

Proposition 3.19. With the above notation, there is a direct sum decom-

position of F[Cp−1 o St]-modules given by V0 =
⊕

λ∈LW
λ.

Proof. We first show that {zα : α ∈ (F×p )t} is linearly independent over F.

By construction of the elements zα, we have z
aj
α = α−1

j zα. Suppose that for

some scalars βα, we have ∑
α

βαzα = 0;

acting on this by ak1 (where 0 ≤ k ≤ p− 2) gives the relation∑
α

βαα
−k
1 zα = 0.

For each 1 ≤ l ≤ p − 1, let Xl =
∑

α βαzα, where the sum is taken over

those α ∈ (F×p )t with α1 = l. Then the relations above yield the system of

equations
p−1∑
l=1

l−kXl = 0,

for 0 ≤ k ≤ p − 2. The determinant of this system of equations in the

variables X1, . . . , Xp−1 is a Vandermonde determinant which is non-zero,

and hence X1 = . . . = Xp−1 = 0. Repeating this argument t − 1 times

(by considering the action of aj and the jth entry of α) shows that all

the coefficients βα must be zero, giving the required linear independence.

Moreover, dim(V0) = (p− 1)t, so {zα : α ∈ (F×p )t} is a linear basis for V0.

Finally, we claim that this vector space decomposition is indeed a decom-

position of F[Cp−1 o St]-modules; to show this, we compute the action of a

typical element (am1
1 , . . . , amtt ; τ) ∈ Cp−1 o St on zα:

z
(a
m1
1 ,...,a

mt
t ;τ)

(α1,...,αt)
= z

(a
m1
1 ,...,a

mt
t ;1)

(ατ(1),...,ατ(t))
=

t∏
j=1

α
−mj
τ−1(j)

z(ατ(1),...,ατ(t)).

Since τ is a bijection, L((ατ(1), . . . , ατ(t))) = L(α) = λ, and hence Cp−1 o St
acts on a basis vector zα of W λ by mapping it to a multiple of some other

basis vector zα′ . Hence each W λ is a module for Cp−1 o St, as required. �

We now show that each W λ is indecomposable, which will make finding its

vertex a simple matter. This is accomplished by the following proposition:
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Proposition 3.20. The endomorphism algebra of the F[Cp−1 o St]-module

W λ is isomorphic to F.

Proof. The module W λ is a cyclic module, because any zα generates W λ via

the action of a top group of Cp−1 o St. Let γ ∈ (F×p )t be such that zγ ∈W λ;

any endomorphism θ of W λ is completely determined by the image of zγ .

Say θ(zγ) =
∑

α βαzα for some constants βα. Then, since θ is a F[Cp−1 oSt]-

module homomorphism, for every j we have

γ−1
j θ(zγ) = θ(z

aj
γ ) =

∑
α

βαz
aj
α =

∑
α

βαα
−1
j zα.

As the elements zα are linearly independent, it follows that γ−1
j = α−1

j for

every j; in other words, that α = γ and hence θ is just multiplication by a

constant βγ . �

Consequently, W λ has a local endomorphism algebra, which implies that

every W λ is an indecomposable F[Cp−1 o St]-module. We can now identify

a vertex of W λ; let Xλ be a Sylow p-subgroup of the Young subgroup Sλ.

For τ ∈ Sk, define τ̃ ∈ Skp by

τ̃((j − 1)p+ l) = p(τ(j)− 1) + l, for 1 ≤ j ≤ k and 0 < l ≤ p.

Denote by X̃λ = {τ̃ : τ ∈ Xλ} and define Pt,λ to be the group 〈Et, X̃λ〉.

Our next result gives a characterisation of the modules W λ as an induced

module. We demonstrate the ideas with an example.

Example 3.21. As before, take p = t = 3 and consider the F[C2 o S3]-

module W (1,2). Note that upon restricting the action of C2 o S3 to the

subgroup C2 o S2 × C2 o S1, the linear span of the element

z(1,1,2) = z1z2z3 +z2
1z2z3 +z1z

2
2z3−z1z2z

2
3 +z2

1z
2
2z3−z2

1z2z
2
3−z1z

2
2z

2
3−z2

1z
2
2z

2
3

is a one-dimensional module. Observe that for (ar11 , a
r2
2 ; τ) ∈ C2 oS2, we have

(a1, a2; τ)z(1,1,2) = z(1,1,2), and a3z(1,1,2) = 2z(1,1,2). Therefore, denoting the

trivial FC2-module by M1 and the non-trivial simple FC2-module by M2,

we have an isomorphism of F[C2 o S2 × C2 o S1]-modules:

〈z(1,1,2)〉 ∼= M⊗2
1 �M⊗1

2 .
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In the proof of the subsequent proposition, we shall use a more general

version of this idea.

Proposition 3.22. Let U be an indecomposable summand of V (p,t)(Et);

then there exists a composition λ of t with at most p− 1 parts, such that U

has vertex Pt,λ.

Proof. Since Et acts trivially on V0, it suffices to show that, as a F[Cp−1 o

St]-module, W λ has vertex Xλ. Let M1, . . . ,Mp−1 be the one-dimensional

representations of Cp−1 over Fp, labelled such that a generator of Cp−1 acts

on Mj by multiplication by (the residue class in F×p of) j. Given k ∈ N,

we make the k-fold tensor product M⊗kj into a module for Cp−1 o Sk as

described in [46, Section 4.2]. We now claim that this affords the following

characterisation of W λ as an induced module:

W λ ∼= M⊗λ11 � . . .�M
⊗λp−1

p−1

xCp−1oSt
Cp−1×Sλ1 o...×Cp−1oSλp−1

.

Indeed, let α be the p-tuple with the first λ1 parts equal to 1, the next

λ2 parts equal to 2 and so on. Then zα generates W λ because any element

zβ with L(β) = λ generates W λ. Moreover, zα generates a one-dimensional

F[Cp−1 × Sλ1 o . . .× Cp−1 o Sλp−1 ]-module, which is isomorphic to

M⊗λ11 � . . .�M
⊗λp−1

p−1 ,

because the first λ1 factors in the base group act on zα by multiplication

by 1, the next λ2 factors act by multiplication by 2, and so on. Moreover,

dim(W λ) = t!∏
j λj !

= |Cp o St : Cp−1 × Sλ1 o . . . × Cp−1 o Sλp−1 |, so by the

construction of induced modules given in [1, p. 56], we have the desired iso-

morphism. The claimed result about the vertex now follows from Theorem

1.25. �

We are now almost ready to prove the main result, but before doing so,

we require a group-theoretic lemma about the normalisers of the groups Qi,t.

This result will play an analogous role in the proof of our main result to [22,

Lemma 3.9]. Recall the definition of Qi,t from Proposition 3.16.



82

Lemma 3.23. The group Qi,t has index p in a Sylow p-subgroup of NSpt(Qi,t),

and NSpt(Qi,t) has a Sylow p-subgroup T such that NSpn(T ) ≤ NSpn(Rt).

Proof. We begin by observing that the group Qi contains no p-cycles: an

element of order p in Qi is a product of at least p p-cycles; this follows from

the construction of the group Qi. Suppose that g normalises Qi,t; we claim

that g must preserve the sets {1, . . . , ip2} and {ip2 + 1, . . . , tp}. If not, then

there is some x ∈ {ip2 + 1, . . . , tp} such that g(x) ∈ {1, . . . , ip2}. Since x

is in the support of Bi, there is a p-cycle z containing x, which must be

mapped to another p-cycle under g. However, by our initial observation,

this is impossible. Therefore, we have a factorisation

NSpt(Qi ×Bi) ∼= NSip2
(Qi)×NStp−ip2

(Bi),

and hence (recalling that in the notation of the previous section, Pt−ip,(t−ip)

denotes a Sylow p-subgroup of Bi),

|NSpt(Qi,t) : Qi,t| = |NSip2
(Qi) : Qi||NSpt−ip2

(Pt−ip,(t−ip)) : Pt−ip,(t−ip)|.

The second index is coprime to p because Pt−ip,(t−ip) is a Sylow p-subgroup

of Spt−ip2 ; hence it suffices to prove that Qi has index p in NSip2
(Qi). Since

ZSip2 (Qi) is a characteristic subgroup of Qi, NSip2
(Qi) acts on ZSip2 (Qi).

Moreover, the centre is an elementary abelian group of order p2 generated

by the elements Y =
∏i
j=1 Yj and Z =

∏i
j=1 Zj , so we may identify it with

a 2-dimensional Fp-vector space on which NSip2
(Qi) acts by an invertible

linear map. We therefore obtain a group homomorphism ζ from NSip2
(Qi)

to GL(2,Fp) whose kernel contains Qi. We claim that there are no more

p-elements in the kernel.

Suppose that g ∈ ker ζ is a p-element. Since g normalises Qi, g must

normalise 〈Y1, Z1, . . . , Yi, Zi〉 because the base group of a wreath product is

a normal subgroup. Moreover, g preserves ZSip2 (Qi), so Y g = Y,Zg = Z;

therefore there exist τ, τ ′ ∈ Si such that Y g
j = Yτ(j) and Zgj = Zτ ′(j) for

1 ≤ j ≤ i. But Yj and Zj have the same support for each j, forcing τ = τ ′.

By replacing Qi with a conjugate if necessary, we may choose an element

h in a top group of Qi which induces the permutation τ−1 in its action on

Y1, . . . , Yi. It follows that we may, without loss of generality, suppose that τ
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is the identity permutation (by composing g with h) and hence g preserves

the sets {1, . . . , p2}, . . . , {(i− 1)p2 + 1, . . . , ip2}. We may therefore factorise

g =
∏i
j=1 gj , where each gj is a permutation of {(j − 1)p2 + 1, . . . , jp2} of

p-power order such that Y
gj
j = Yj , Z

gj
j = Zj . But then each gj ∈ 〈Yj , Zj〉,

whence g ∈ 〈Y1, Z1, . . . , Yi, Zi〉. Composing with h−1 ∈ Qi if necessary, we

see that g ∈ Qi, establishing our claim.

Since ζ is a homomorphism, ζ(Qi) is contained in a Sylow p-subgroup of

GL(2,Fp), which has order p because |GL(2,Fp)| = (p2−1)(p2−p). The first

part of the result is now immediate. The matrix
(

1 0
1 1

)
generates a Sylow p-

subgroup of GL(2,Fp); in terms of the action on ZSip2 (Qi), this corresponds

to mapping Y to itself and mapping Z to Y Z. Define the element

γ =
t∏

j=1

p−1∏
k=1

zk(j−1)p+k,

and note that Y γ = Y , Zγ = Y Z, so T = 〈Qi, γ〉 is a Sylow p-subgroup of

NSpt(Qi,t). Since γ ∈ Et, we have that T ≤ NSpt(Rt), as stated. �

We are now able to prove our main result, which is restated below for the

convenience of the reader.

Theorem 3.24. Let U be an indecomposable summand of the FSpn-module

V (p,n) and let Q be a vertex of U . Then there exists an integer 0 ≤ t ≤ n

such that either

• For some 1 ≤ i ≤ n
p , Q is conjugate to Qi,t, or;

• For some composition λ of t into at most p−1 parts, Q is conjugate

to Pt,λ.

Proof. If U is a projective summand of V (p,n), we may take t = 0; else let U

be a non-projective summand of V (p,n) with vertex Q. Then Q contains an

element of order p, so there is some t ≤ n such that Rt is a subgroup of a

conjugate of Q, and we may take t to be maximal with this property. By the

Broué correspondence, U(Rt) is a non-zero direct summand of V (p,n)(Rt).

By Lemma 3.11, we have an isomorphism of F[NSpt(Rt)× Sp(n−t)]-modules

V (p,n)(Rt) ∼= V (p,t)(Rt) � V (p,n−t).
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Therefore, U(Rt) ∼=
⊕m

j=1Xj � Yj , where Xj and Yj are non-zero direct

summands of V (p,t)(Rt) and V (p,n−t) respectively. Say that, considered as a

FNSpt(Rt)-module, Xj has vertex Lj . Then we have, using Lemma 1.24,

U(Lj)
y
NNSpt (Rt)

(Lj)
∼= (U(Rt)(Lj)) ⊇ (Xj � Yj)(Lj) = Xj(Lj) � Yj 6= 0,

and hence U(Lj) 6= 0. We have two cases to consider. First, suppose that

every Lj is of the form Qi,t; then since Ql,t ≤ Ql+1,t, there is some k such

that Lj ≤ Lk for every j. Set L = Lk, and assume for a contradiction that

L is a proper subgroup of Q.

Then, since Q is a p-group, it follows from Lemma 3.10 that there is a

p-element g ∈ NQ(L) \ L. Note that L has orbits of length at least p on

{1, . . . , tp} and fixes {tp + 1, . . . , pn}. Since g normalises L, it permutes

these orbits as blocks for its action, and so we can factorise g = ab, where

a ∈ NSpt(L) and b ∈ Sp(n−t). Note that 〈L, a〉 is a p-subgroup of Q.

Let P be a Sylow p-subgroup of NSpt(L) containing 〈L, a〉, and for each

j, let Bj be a p-permutation basis for Xj(L) with respect to P . Also, for

each j, let B′j be a p-permutation basis for Yj(L) with respect to some Sylow

p-subgroup P ′ of Sp(n−t). Set Cj = {v� v′ : v ∈ Bj , v′ ∈ B′j}; then C = ∪Cj
is a p-permutation basis of U(L) with respect to P × P ′.

Now, a is contained in a Sylow p-subgroup of NStp(L); by Lemma 3.23,

〈L, a〉 is a Sylow p-subgroup of NSpt(L). All the Sylow p-subgroups of

NSpt(L) contain L, and hence Rt, so by replacing Q with a conjugate if

necessary, we may suppose that 〈L, a〉 = T , again by Lemma 3.23 (where T

is as in the statement of Lemma 3.23). Consequently, 〈L, a〉 ≤ NNSpt (Rt)
(Q).

It follows from Theorem 1.25 that C〈L,g〉 6= ∅, so there is some v � v′ ∈ C

such that g(v � v′) = v � v′. Hence v is fixed by 〈L, a〉; however, every

summand of U(Rt) has vertex contained in L, whence a ∈ L. If b = 1, then

g ∈ L, which is a contradiction, so b is a non-identity element of Sp(n−t).

Taking a suitable power of b yields an element of Q which is a product of p-

cycles, having support outside the set {1, . . . , tp}. However, this contradicts

the assumption that t was maximal such that Q contains Rt. We conclude

that U must have vertex L, as required.
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We now consider the other case: suppose that at least one Lj is not of the

form Qi,t; then Lj contains Et, so U(Et) 6= 0. By repeating the argument

above with Lemma 3.17 in place of Lemma 3.11, we obtain a decomposition

U(Et) ∼=
s⊕
j=1

Mj �Nj ,

where Mj is a non-zero direct summand of V (p,t)(Et) and Nj is a non-zero

direct summand of V (p,n−t). By Proposition 3.22, for each j, there is a

composition λ(j) of t into at most p − 1 parts, such that Mj has vertex

Pt,λ(j). Since Et � Pt,λ(j), Lemma 1.24 shows that as FNNSpt (Et)
(Pt,λ(j))-

modules

U(Pt,λ(j)) ∼= (U(Et)(Pt,λ(j))) ⊇ (Mj �Nj)(Pt,λ(j)) = Mj(Pt,λ(j)) �Nj 6= 0,

whence U(Pt,λ(j)) 6= 0. Therefore, for 1 ≤ j ≤ s, Q contains a conjugate of

Pt,λ(j).

Say that Q contains Pt,λ(1) and P gt,λ(j) for some g ∈ Spt. Assume that

g /∈ NSpt(Et), so there exists 1 ≤ k ≤ t such that zgk /∈ Et, and choose

1 ≤ l ≤ t such that supp(zl) ∩ supp(zgk) 6= ∅. Then 〈zl, zgk〉 is a subgroup

of Q and thus is a p-group, but is also a p-subgroup of a symmetric group

of degree smaller than 2p. Therefore, 〈zl, zgk〉 is cyclic of order p, whence

zgk ∈ 〈zl〉, which is a contradiction.

Therefore, there exist g2, . . . , gs ∈ NSpt(Et) such that Q contains 〈Et, D〉

where D = 〈X̃λ(1), X̃λ(2)

g2
, . . . , X̃λ(s)

gs〉 (recall that the tilde construction

was defined just before Proposition 3.22). By the above, Et � 〈Et, D〉; sup-

pose for a contradiction that 〈Et, D〉 is not equal to any Pt,λ(j). We observe

that U(〈Et, D〉) is non-zero because 〈Et, D〉 is a subgroup of a vertex of U .

On the other hand, since Et � 〈Et, D〉, Lemma 1.24 yields an isomorphism

of NNSpt(Et)
(〈Et, D〉)-modules:

U(〈Et, D〉) ∼= U(Et)(〈Et, D〉) =

s⊕
j=1

Mj(〈Et, D〉) �Nj .

For each j, 〈Et, D〉 is strictly larger than a vertex ofMj and soMj(〈Et, D〉) =

0. Therefore the direct sum given above is zero, which is impossible. Con-

sequently the assumption was wrong and we may suppose that 〈Et, D〉 =
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Pt,λ(j); in other words, that all the vertices of summands of U(Et) are con-

tained in Pt,λ(j).

As before, put L = Pt,λ(j), and assume that L is a proper subgroup of Q.

Again arguing via Lemma 3.10, there is an element g ∈ NQ(L) \ L which

factorises as g = ab, where a ∈ NSpt(L) and b ∈ Sp(n−t).

Let P be a Sylow p-subgroup of NSpt(L) containing 〈L, a〉, and for each

j, let Bj be a p-permutation basis for Mj(L) with respect to P . Also, for

each j, let B′j be a p-permutation basis for Nj with respect to some Sylow

p-subgroup P ′ of Sp(n−t). Set Cj = {v� v′ : v ∈ Bj , v′ ∈ B′j}; then C = ∪Cj
is a p-permutation basis of U(L) with respect to P × P ′.

We claim that 〈L, a〉 ∈ NNSpt (Et)
(Q). Certainly 〈L, a〉 normalises Q, and

L normalises Et, so all we need to show is that a normalises Et. But the

conjugation action of a fixes the set of p-cycles in L because conjugation in

Spt preserves cycle type. However, the set of p-cycles in L is precisely Et, so

Eat = Et, as required.

As in the previous case, Theorem 1.25 implies that C〈L,g〉 6= ∅, so there

is some v � v′ ∈ C such that g(v � v′) = v � v′. Hence v is fixed by 〈L, a〉;

however, every summand of U(Et) has vertex contained in L, whence a ∈ L.

If b = 1, then g ∈ L, which is impossible, whereas if b 6= 1, then we obtain

a contradiction as before. �

We remark that this is a ‘negative’ result: it shows that every vertex

of a summand of V (p,n) must have the form Qi,t or Pt,λ, but it does not

guarantee that every group of this form arises as a vertex. Nonetheless,

the result still has applications; we demonstrate its utility by using it to

disprove Foulkes’ Conjecture in characteristic 2, which was the ‘gap’ left in

[22]. Indeed, we shall obtain infinitely many counter-examples, illustrating

the extent to which the conjecture fails in the modular setting.

Recall that with our interpretation of Foulkes’ Conjecture in the modular

case, it states that H(n2) is a direct summand of H(2n) for n ≥ 2. Let n be

even but not a power of 2; we shall show that this cannot be the case. On the

one hand, H(n2) has a summand with vertex a Sylow 2-subgroup of Sn o S2

call this vertex A (this follows from Theorem 1.25 since H(n2)(A) 6= 0). We
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claim that A is not a permissible vertex of H(2n) as described by Theorem

3.24.

Since n is even, A contains (a conjugate of) the elementary abelian group

〈z1, . . . , zn〉, and hence A has support of size 2n, whereas the groups Pt,λ

have support of size 2t. Therefore, if t < n, then A is not conjugate to

any of the groups Qi,t or Pt,λ. Furthermore, the largest possible rank of an

elementary abelian 2-group generated by 2-cycles in Qi,n is n− 2i, which is

strictly less than the rank of 〈z1, . . . , zn〉. Consequently, A is not conjugate

to a group of the form Qi,n.

The only remaining possibility, by Theorem 3.24, is that A is conjugate

to Pn,(n), which is just a Sylow 2-subgroup of S2n. However, the order of

A is strictly smaller than the order of a Sylow 2-subgroup of S2n, because

of the hypothesis that n is not a power of 2. We have exhausted all the

possibilities given by Theorem 3.24, so H(2n) has no summand with vertex

A and hence we have obtained an infinite family of counter-examples to

Foulkes’ Conjecture in characteristic 2, as required.
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4. Symmetric and Exterior Powers of Characters of

Symmetric Groups

In [61], Savitt and Stanley proved that the space spanned by the sym-

metric powers of the standard n-dimensional complex representation of Sn

(i.e. the Young permutation module M (n−1,1)) has dimension asymptotic

to n2

2 . In this chapter, we look at some extensions of this; in so doing, we

demonstrate the general utility of the methods employed in [61] for upper

bounds. The methods used in [61] to obtain lower bounds are not so readily

applicable, but some partial results can be found. The study of the symmet-

ric powers of the natural representation of Sn is motivated in part by the

fact that if λ is a partition and r ≥
∑λ1

l=1

(λ′l
2

)
, then SymrM (n−1,1) contains

the Specht module Sλ.

First of all, we consider the action of the generalised symmetric groups Ck o

Sn, on the symmetric and exterior powers of their natural representations as

n×n complex matrices. We prove that, to leading order, the space spanned

by the characters of the symmetric powers of the natural representation of

Ck o Sn has dimension between kn log n and kn2

2 . If λ = (λ1, . . . , λs) is a

partition, then we define fλ(x) =
∏s
j=1(1 − xλj )−1. The identity (where

σ ∈ Sn has cycle type λ and pλ denotes the power sum symmetric function

of shape λ) ∑
r

(Symr π)(σ)qr = pλ(1, q, q2, . . .) = fλ(q),

plays an important part of the analysis in [61]; as part of our analysis, we

obtain a generalisation of this for wreath products. Furthermore, we show

that if k ≥ 2, then the space spanned by the characters of the exterior powers

of this representation has maximum possible dimension, namely n + 1. In

contrast, the space spanned by the exterior powers of the natural character

of Sn (the case when k = 1) has dimension n.

Another generalisation which we investigate is the modular case: we ex-

amine the same issue explored in [61], but this time in positive characteristic

using the theory of Brauer characters. We prove that the space spanned by

the symmetric powers of the natural representation of Sn in characteristic p

is bounded (to leading order) by p
2p+2n

2. Although the argument for lower
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bounds given in [61] cannot be modified for this case, we use a different

method to establish a lower bound of (again to leading order) p−1
p n log n.

Numerical data obtained from [5] for p = 2 suggests that this lower bound

can be improved upon and that the upper bound is closer to the truth.

We also consider the symmetric powers of Ck o Sn in characteristic p and

prove that the dimension of the space spanned by the symmetric powers is

bounded above, to leading order, by rp(k) p
2p+2n

2, where rp(k) is the p′-part

of k, as defined in Definition 4.9.

Our third extension of the work in [61] is by replacing the natural rep-

resentation (i.e. the Young permutation module M (n−1,1)) with other rep-

resentations. We demonstrate this for Young permutation modules labelled

by two part partitions, showing how to improve upon an elementary upper

bound for the dimension of the space spanned by the symmetric powers of

the characters π(n−r,r).

4.1. Symmetric Powers. We consider an extension of [61], namely to the

generalised symmetric group Ck o Sn for k ∈ N. For the purposes of this

chapter, we think of this wreath product concretely, as the subgroup of

GLn(C) consisting of matrices whose entries are kth roots of unity, and

which have exactly one non-zero entry in each row and column.

Definition 4.1. Given σ ∈ Ck o Sn, we define |σ| to be the element of Sn

corresponding to the permutation matrix we obtain by setting all of the non-

zero entries of σ equal to one. We also define a map λ : Ck o Sn → Par(n)

by sending σ ∈ Ck o Sn to the cycle type of |σ|. If λ(σ) = (λ1, . . . , λs), let

tl ∈ C denote the product of the entries in σ which correspond to the cycle

of |σ| of length λl.

Suppose that λ(σ) has a repeated part, say λl = λl+1 = . . . = λl+a, with

τl, . . . , τl+a the cycles of |σ| of length λl. For l ≤ j ≤ l+ a, we let mj be the

least element of the support of τj , and order the mj according to the usual

order on N. If mj is in position d, where 1 ≤ d ≤ a+ 1, we set tl−d+1 to be

the cycle product corresponding to the cycle τj .
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For example, if k = 2 and

σ =



0 −1 0 0 0

−1 0 0 0 0

0 0 1 0 0

0 0 0 0 −1

0 0 0 1 0


then |σ| = (12)(3)(45) ∈ S5, λ(σ) = (2, 2, 1). Since the least element of

supp(12) is less than the least element of supp(45), we have t1 = 1, t2 = −1

and t3 = 1.

With this notation, Theorem 1.35 shows that the conjugacy class of an

element σ ∈ Ck oSn is determined by λ(σ) = (λ1, . . . , λs) and a representative

of the equivalence class of t = (t1, . . . , ts) under the equivalence relation

described above. Indeed, such pairs (λ, t) where λ = (λ1, . . . , λs) ∈ Par(n)

and t = (t1, . . . , ts), where each tl is a kth root of unity, parametrise the

conjugacy classes.

Let V be the natural representation of Ck o Sn with basis e1, . . . , en and

let Symr V be its rth symmetric power. We let χr denote the character of

Symr V . Let σ ∈ Ck o Sn and consider the action of σ on Symr V . Now,

Symr V has a basis {ec11 . . . ecnn :
∑

l cl = r}, and we want to know when a

basis vector contributes to the trace of the matrix of σ acting on Symr V .

Observe that, with this basis, σ always maps a basis vector to a multiple of

another basis vector; consequently, the only contribution to the trace comes

from those basis vectors which are eigenvectors for the action of σ.

Suppose, without loss of generality, that |σ| = (1, 2, . . . , λ1) . . . (λ1 + · · ·+

λs−1 + 1, . . . , n), so λ(σ) = (λ1, . . . , λs). Then the vector v = ec11 . . . ecnn is

an eigenvector for σ if and only if c1 = . . . = cλ1 , cλ1+1 = . . . = cλ1+λ2 and

so on. Hence the eigenvectors for σ are in a one-to-one correspondence with

the set of non-negative integral solutions (c1, . . . , cs) to λ1c1 + · · ·+λscs = r.

Suppose that v is a basis vector which is an eigenvector for the action of

σ. Then we have σ.v =
∏s
l=1 t

cl
l v, and so χr(σ) =

∑∏s
l=1 t

cl
l , where the

sum runs over all the basis vectors of Symr V which are eigenvectors for the
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action of σ. It follows that

χr(σ) =
∑

(c1,...,cs)

s∏
l=1

tcll ,

where the sum is over all non-negative integral solutions to the equation

λ1c1 + · · ·+ λscs = r. Define the power series

fσ(x) =
1

(1− t1xλ1) . . . (1− tsxλs)
;

note that if k = 1, we recover the power series fλ(x) from [61]. The coefficient

of xm in the power series fσ(x) is∑
(c1,...,cs)

s∏
l=1

tcll = χm(σ),

where the sum is over all solutions to the equation λ1c1 + · · · + λscs = m.

Consequently, this power series is the generating function for the values of

χr(σ).

Let D(n, k) be the dimension of the space spanned by the characters of

the symmetric powers of the natural representation for Ck oSn, i.e. D(n, k) =

dim(SpanC{χr : r ∈ N}). Consider the matrix of the characters χr for r ∈ N;

D(n, k) is equal to the row-rank of this matrix. Since row-rank and column-

rank are the same, D(n, k) equals the dimension of the space spanned by the

columns of the table. By the above argument, the generating function for

the entries of the column corresponding to the conjugacy class of σ ∈ Ck oSn
is fσ(x). We have therefore proved:

Proposition 4.2. D(n, k) = dim(SpanC{fσ(x) : σ ∈ Ck o Sn}).

Proposition 4.3. We have D(n, k) ≤ kn2

2 + (k2 − 1)n+ 1.

Proof. Let ζ = exp(2πi
k ) and consider {fσ(x) : σ ∈ Ck o Sn}; we claim that a

common denominator for these power series is

D(x) =
∏

0≤l<k
1≤j≤n

(1− ζ lxj).

Suppose that θ ∈ C and x− θ divides 1
fσ(x) in C[x], for some σ ∈ Ck o Sn.

Let r be the minimal natural number such that, in C[x], x−θ divides 1−ζ lxr

for some 0 ≤ l < k. Then, in a factorisation over C into linear factors of
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a common denominator for the fσ(x), the factor x− θ appears exactly bnr c

times because r is chosen to be minimal. Since ζ lθr = 1, it follows that for

any m ∈ N, we have ζimθrm = 1, whence x− θ divides 1− ζimxrm in C[x].

This is a factor of D(x) for m = 1, . . . , bnr c, so (x − θ)b
n
r
c divides D(x) in

C[x], and this establishes the claim.

The elements 1
D(x) ,

x
D(x) , . . . ,

xdegD−n

D(x) form a spanning set for the vector

space SpanC{fσ(x) : σ ∈ Ck o Sn}, giving D(n, k) ≤ deg D + 1 − n. Note

that D(x) has degree k
∑n

j=1 j = kn
2 (n+ 1), and the result follows. �

We observe that the arguments given to prove the above two propositions

are generalisations of those used in [61, Section 1] and [61, Proposition 2.1]

respectively.

Although the method used in [61, Section 3] to obtain a lower bound is

not adaptable to this case (see also Remark 4.13), we can establish a lower

bound by other methods.

Proposition 4.4. There is a positive constant c such that

D(n, k) ≥ max(
n2

2
− cn

3
2 , k((n− 1) log(n− 1)− 2(n− 2))).

Proof. Since {fλ(x) : λ ∈ Par(n)} is a subset of {fσ(x) : σ ∈ Ck o Sn}, we

obtain immediately the lower bound D(n, k) ≥ n2

2 −cn
3
2 for some constant c

by [61, Proposition 3.3]. Let Wn−1 denote the set of partitions of n−1 which

have the form (ab, 1n−1−ab), where a, b ∈ N and a > 1, and let ζ = exp(2πi
k ).

We claim that Y = { 1
1−ζrxfλ(x) : 0 ≤ r < k, λ ∈ Wn−1} is a linearly

independent set. We prove this by induction on the position of the partition

λ in the lexicographic ordering on Par(n− 1).

Suppose that for some constants αλ,r, we have

∑
λ∈Wn−1

k−1∑
r=0

αλ,r
fλ(x)

1− ζrx
= 0.

Let µ1 be the partition (n− 1) ∈Wn−1, then we can re-write this as

−
k−1∑
r=0

αµ1,r
(1− ζrx)(1− xn−1)

=
∑

λ∈Wn−1\{µ1}

k−1∑
r=0

αλ,r
fλ(x)

1− ζrx
.
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The left-hand side has a singularity at exp( 2πi
n−1), whereas the right-hand

side is holomorphic at this point. It follows that
∑k−1

r=0
αµ1,r
1−ζrx = 0. Since the

function 1
1−ζrx has a pole at ζ−r only, we see that the power series 1

1−ζrx for

0 ≤ r < k are linearly independent. Hence αµ1,r = 0 for all r.

Let µ = (ab, 1n−ab−1) and suppose that αλ,r = 0 for every partition λ ∈

Wn−1 which is greater than µ in the lexicographic ordering. Then we can

write

−
k−1∑
r=0

αµ,r
(1− ζrx)(1− xa)b(1− x)n−ab−1

=
∑
λ<µ

k−1∑
r=0

αλ,r
fλ(x)

1− ζrx
.

The left-hand side has a pole of order b at exp(2πi
a ); we have two possibil-

ities to consider. If the right-hand side is holomorphic at exp(2πi
a ), then we

deduce that αµ,r = 0 by the same argument given in the base case, and so

we may suppose that the right-hand side has a pole at exp(2πi
a ). However,

if the pole at exp(2πi
a ) on right-hand side were of order b or greater, then

there would be a partition λ ∈ Wn−1 with the part a repeated at least b

times. By construction of the set Wn−1, this is impossible since λ < µ.

Hence the right-hand side has a pole at exp(2πi
a ) of order strictly less than

b. Consequently, we deduce that αµ,r = 0. It follows by induction that all

the αλ,r are equal to zero. This proves the claim.

Therefore, we have D(n, k) ≥ k|Wn−1|. It is clear that

|Wm| = 1 +
m∑
t=2

bm
t
c ≥ 1 +

m∑
t=2

(
m

t
− 1).

Therefore, we have |Wm| ≥ 1 + mHm − m − (m − 1), where Hm is the

mth harmonic number, and so, using the simple bound Hm ≥ logm, it

follows that |Wm| ≥ m logm − 2(m − 1). Consequently, we deduce that

D(n, k) ≥ k((n− 1) log(n− 1)− 2(n− 2)), as required. �

Remark 4.5. In the above proof we made use of the fact that the power

series 1
1−ζrx for r = 1, . . . , k are linearly independent, whence D(1, k) = k.

In particular, the upper bound D(n, k) ≤ kn2

2 + (k2 − 1)n+ 1 is an equality

when n = 1.
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4.2. Exterior Powers. Let ΛrV be the rth exterior power of the natural

representation of Ck o Sn with basis {ei1 ∧ . . . ∧ eik : 1 ≤ i1 < . . . < ik ≤ n}

and character ψr.

Note that with this basis of ΛrV , each σ ∈ Ck o Sn again sends a basis

vector to a multiple of a basis vector, so the only contribution to the trace

of the matrix of σ on ΛrV is from those basis vectors which are eigenvectors

for the action of σ. Let a basis vector be v = ec11 ∧ e
c2
2 ∧ . . . ∧ ecnn , where

cl ∈ {0, 1} and we interpret e0
l to mean that el does not appear (for example,

e1
1 ∧ e0

2 ∧ e1
3 = e1 ∧ e3). Without loss of generality, suppose that |σ| =

(1, . . . , λ1) . . . (λ1 + · · ·+ λs−1 + 1, . . . , n), so λ(σ) = (λ1, . . . , λs).

Observe that, for every j such that cj = 1, we must have ck = 1 whenever

k is in the same cycle as j in |σ|. Therefore, the eigenvectors correspond to

solutions to the equation λ1c1 + · · ·+λscs = r where each cl is either 0 or 1.

Moreover, a m-cycle in Sn with cl = 1 on its support sends v to (−1)m−1v

since an m-cycle has sign (−1)m−1.

Then σ.v =
∏
l(−1)λl−1tl, where the product is over 1 ≤ l ≤ s such that

cl = 1 and tl is as in Definition 4.1. It follows that

ψr(σ) =
∑

(c1,...cs)

∏
l

(−1)λl−1ti,

where the sum is over solutions (c1, . . . , cs) to the equation λ1c1+· · ·+λscs =

r and the product is again over 1 ≤ l ≤ s such that cl = 1.

Given σ ∈ Ck o Sn with λ(σ) = (λ1, . . . , λs) and associated s-tuple of kth

roots of unity (t1, . . . , ts), we define

gσ(x) =

s∏
l=1

(1 + tl(−1)λl−1xλl).

A similar argument to that used to prove Proposition 4.2 shows that

gσ(x) is the generating function for the values of ψr(σ). Let E(n, k) be the

dimension of the space spanned by the characters of the exterior powers of

the natural representation for Ck o Sn. Then we have proved:

Proposition 4.6. E(n, k) = dim(SpanC{gσ(x) : σ ∈ Ck o Sn}).

From this, we are able to deduce the following:
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Corollary 4.7. For any k ≥ 2, E(n, k) = n+ 1.

Proof. Let ζ = exp(2πi
k ). We consider two cases; first suppose that n is even.

Then for j = 1, . . . , n2 , we define the following n + 1 polynomials: aj(x) =

(1+(−1)n−jxn−j)(1+(−1)jζxj), bj(x) = (1+(−1)n−jxn−j)(1+(−1)jζ2xj)

together with 1− ζxn, giving n+ 1 polynomials which have the form gσ(x)

for some σ ∈ Ck o Sn. We claim these polynomials are linearly independent

in C[x].

Suppose that for some constants αj , βj , γ, we have

n
2∑
j=1

αjaj(x) +

n
2∑
j=1

βjbj(x) + γ(1− ζxn) = 0.

Equating coefficients of x and xn−1 gives us (after simplifying) the equations

α1ζ + β1ζ
2 = 0 and α1 + β1 = 0, from which we deduce that α1 = β1 = 0.

We similarly deduce αj = βj = 0 for 1 ≤ j < n
2 by equating coefficients

of xj and xn−j . This leaves three equations in αn
2
, βn

2
, γ, from which it is

trivial to show that these constants are all zero, thus proving the claim.

If, however, n is odd, then we consider the polynomials aj(x), bj(x) for

j = 0, 1, . . . , bn2 c, together with 1− ζxn and 1− ζ2xn. Again this gives n+ 1

polynomials which are of the form gσ(x), and a similar argument to that

given for the previous case establishes that they are linearly independent. �

4.3. Positive Characteristic. The arguments used in [61] worked over

the complex numbers, and so it is natural to ask what happens in prime

characteristic. To obtain a good theory of characters in this case, we need

to work with Brauer characters. Let βr,p denote the Brauer character of the

rth symmetric power of the natural representation of Sn in characteristic p.

For a full account of Brauer characters see [41, Chapter 15]; all we need

to know about Brauer characters for our purposes is the following:

Lemma 4.8. If g ∈ Sn has order coprime to p, then βr,p(g) = χr(g).

Proof. This is a special case of the fact that the Brauer character of the p-

modular reduction of a characteristic zero representation affording χ equals

χ on the conjugacy classes of p-regular elements. For a proof, see [41, The-

orem 15.8]. �
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Let B(p, n) denote the dimension of the space spanned by the Brauer

characters of the symmetric powers of the natural representation of Sn in

characteristic p. An element g ∈ Sn has order coprime to p if and only

if its cycle type has all its parts coprime to p. Let Xp denote the set of

partitions of n whose parts are all coprime to p. The usual argument shows

that dim(SpanC{fλ : λ ∈ Xp}) = B(p, n).

We aim to put the rational functions fλ(x) (for λ ∈ Xp) over their least

common denominator, which we denote by gp(x). If gp(x) has degree δp,

then the elements 1
gp(x) ,

x
gp(x) , . . . ,

xδp−n

gp(x) are a spanning set for SpanC{fλ :

λ ∈ Xp}, giving B(p, n) ≤ δp + 1 − n. Our strategy is to identify gp(x) up

to sign and then bound its degree.

Definition 4.9. Let k ∈ N, and write k = pam where m is coprime to p.

Then we define rp(k) = m.

Proposition 4.10. We have gp(x) = ±
∏
k≤n(1− xrp(k)).

Proof. For λ ∈ Xp, the denominator of fλ(x) is a polynomial of degree

n which factorises over Z as a product of cyclotomic polynomials. If p

divides d, then the dth cyclotomic polynomial Φd(x) does not appear in this

factorisation, whereas if p does not divide d, then Φd(x) appears at most

bnd c times in the common denominator. It follows that

gp(x) =
∏

1≤k≤n,
(k,p)=1

Φk(x)b
n
k
c.

Note that
∏
k≤n(1 − xrp(k)) is also a product of cyclotomic polynomials

and Φd(x) appears if and only if rp(k) is a multiple of d. If p divides d, then

rp(k) is not a multiple of d; conversely, if p does not divide d, then whenever

k is a multiple of d, rp(k) is a multiple of d. Since there are bnd c multiples

of d between 1 and n, it follows that the dth cyclotomic polynomial appears

bnd c times in
∏
k≤n(1− xrp(k)). �

Proposition 4.11. The degree of gp(x) is at most p
2p+2n

2 + pn
p−1 .
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Proof. Let m ∈ N with m ≤ n. The equation rp(k) = m has no solutions if

m is divisible by p and 1+blogp(
n
m)c solutions if p does not divide m, giving

gp(x) =
∏

1≤k≤n,
(k,p)=1

(1− xk)1+blogp(n
k

)c.

Hence the degree of gp(x), namely δp, is∑
1≤k≤n,
(k,p)=1

k(1 + blogp(
n

k
)c).

Let l = blogp nc; we can rewrite the above as

δp =
∑

1≤k≤n,
(k,p)=1

k +
∑

1≤k≤n
p
,

(k,p)=1

k + · · ·+
∑

1≤k≤ n

pl
,

(k,p)=1

k.

It is easy to show that ∑
1≤k≤x,
(k,p)=1

k ≤ p− 1

2p
x2 + x.

Therefore, we have

δp ≤
p− 1

2p
(n2 +

n2

p2
+ · · ·+ n2

p2l
) + (n+

n

p
+ · · ·+ n

pl
).

Observe that the first bracketed sum is bounded above by the infinite geo-

metric series
∑∞

i=0
n
p2i

, and the second sum is bounded by
∑∞

i=0
n2

pi
. This

gives δp ≤ p−1
2p

n2

1−p−2 + pn
p−1 . After some simple algebra, we see that δp ≤

p
2p+2n

2 + n(logp n+ 1), as required. �

Recall that just before Definition 4.9, we established that B(p, n) ≤ δp +

1− n, and so the following result is immediate:

Corollary 4.12. We have B(p, n) ≤ p
2p+2n

2 + n
p−1 + 1.

Hence we have obtained an upper bound on B(p, n) which is asymptotic

to pn2

2p+2 ; this is always smaller than the n2

2 obtained in the characteristic

zero case in [61]. It is also worth noting that as p becomes very large, this

upper bound becomes close to the one obtained for characteristic zero. We

now aim to find a lower bound on B(p, n).
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Remark 4.13. It is, at first sight, natural to try to imitate the argument

for a lower bound given in [61, Section 3] by considering the dimension of

the vector space SpanC{eλ(1, x, x2, ...) : λ ∈ Xp}, where eλ is the elementary

symmetric function of type λ. However, the proof given relies on making a

change of basis for the vector space Λn of symmetric functions of degree n.

Unfortunately, this basis change is not compatible with the requirement that

all parts of λ be coprime to p. In other words, while {eλ(1, x, x2, ...) : λ ∈

Par(n)} is a basis for the C-vector space with basis {fλ(x) : λ ∈ Par(n)},

this statement is false if we replace Par(n) by Xp. Therefore, our strategy

is to exhibit a large linearly independent subset of SpanC{fλ : λ ∈ Xp}.

We define Ap,n to be the set of partitions of n which have the form (ra, 1b),

where r is coprime to p, and a, b ∈ N.

Proposition 4.14. We have B(p, n) ≥ p−1
p n log n+n(γ−1− p−1

p −
γ
p ), where

γ denotes the Euler–Mascheroni constant (which is 0.577 to three decimal

places).

Proof. Suppose that in Q(x), we have
∑

µ∈Ap,n αµfµ(x) = 0 for αµ ∈ Q.

The set Ap,n is totally ordered by the lexicographic order on partitions; let

µ1 = (ra, 1b) be the largest partition in Ap,n. Then in Q[x] we have that

Φr(x)a divides the denominator of fµ1(x), and Φr(x)a does not divide the

denominator of any other fµ(x) because µ1 is the largest partition in Ap,n.

Assume that αµ1 6= 0. Then we may write

∑
µ∈Ap,n\{µ1}

αµfµ(x) = −αµ1fµ1(x).

Putting the left-hand side over a common denominator and multiplying both

sides by 1
fµ1 (x)Φr(x)a , we obtain the relation F (x)

G(x) =
−αµ1

Φr(x)a , where Φr(x)a

does not divide G(x). But this gives, in Q[x], the relation F (x)Φa(x)b =

−αµ1G(x) which contradicts uniqueness of factorisation in Q[x]. Hence

αµ1 = 0, and by induction it follows that αµ = 0 for every µ ∈ Ap,n.

We deduce that the set {fλ(x) : λ ∈ Ap,n} is a linearly independent subset

of Q(x), and therefore that B(p, n) ≥ |Ap,n|.
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It is easy to see that

|Ap,n| = 1 +
∑

1<r≤n,
(p,r)=1

bn
r
c.

Therefore, we have (where Hn denotes the nth harmonic number)

|Ap,n| ≥ 1 +
∑

1<d≤n,
(p,d)=1

(
n

d
− 1) = 1 + n(Hn − 1− 1

p
Hbn

p
c).

It follows from [3, Theorem 1] that

|Ap,n| ≥ 1 +
p− 1

p
n log n+ n(γ − 1− γ

p
).

This gives the required result. �

4.4. Wreath Products. We now wish to combine our two extensions by

considering the case of the Brauer characters of the generalised symmetric

group. Let B(p, n, k) denote the dimension of the space spanned by the

Brauer characters of the symmetric powers of the natural representation

of Ck o Sn in characteristic p and let ζ = exp(2πi
k ). An element σ ∈ Ck o

Sn has order coprime to p if and only if both λ(σ) ∈ Xp and every tl

has order coprime to p. Let Rp,n,k be the subset of Ck o Sn consisting of

elements of order coprime to p. The usual argument shows that B(p, n, k) =

dim(SpanC{fσ(x) : σ ∈ Rp,n,k}).

Proposition 4.15. We have B(p, n, k) ≤ rp(k)( p
2p+2n

2 + n(logp n + 1)) −

n+ 1.

Proof. Recall from the proof of Proposition 4.3 that a common denominator

for the fσ(x) for σ ∈ Ck o Sn is

D(x) =
∏

0≤l<k
1≤j≤n

(1− ζ lxj).

We say that we can cancel p(x) ∈ C[x] if D(x)
p(x) is a common denominator for

the fσ(x), where σ ∈ Rp,n,k. Our strategy is to cancel factors from D(x).

First, note that if p divides the order of ζ l, then we may cancel
∏n
j=1(1−ζ lxj)

from D(x) by definition of Rp,n,k. Fix l such that ζ l has order coprime to p.

We need the following lemma.
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Lemma 4.16. If σ ∈ Rp,n,k and x−θ divides 1
fσ(x) in C[x], then θ has order

coprime to p.

Proof. Suppose that x − θ divides 1
fσ(x) in C[x], then 1

fσ(θ) = 0 and so∏
l(1 − tlθ

λl) = 0. Hence there exist l, j such that 1 − ζ lθλj = 0. Since

σ ∈ Rp,n,k, ζ l has order coprime to p and λj is coprime to p. But the order

of θ divides ord(ζ l)λj , and so is coprime to p. �

Therefore, in a factorisation of
∏n
j=1(1− ζ lxj) into linear factors, we may

cancel any factor x− θ where the order of θ is divisible by p. Consider the

factor 1 − ζ lxj where ζ l has order d, and write j = per where p does not

divide r. We claim that exactly r roots of the equation 1 − ζ lxj = 0 have

order not divisible by p. Indeed, let η be a primitive jth root of unity and

let ν be a primitive (dj)th root of unity. Then the roots of 1− ζ lxj = 0 form

a 〈η〉-coset in the group 〈ν〉. Since a cyclic group of order per has exactly r

elements of order coprime to p and 〈ν〉 is abelian, this establishes our claim.

It follows that we may cancel j − r linear factors from the factorisation of

1− ζ lxj , leaving a term of degree r = rp(j), as defined in Definition 4.9.

Consequently, cancelling factors from
∏n
j=1(1 − ζ lxj), replaces 1 − ζ lxj

with a term of degree rp(j). This new polynomial has degree
∑n

j=1 rp(j),

which is at most p
2p+2n

2 + n(logp n + 1) by the proof of Proposition 4.11.

We thus can put the power series {fσ(x) : σ ∈ Rp,n,k} over a common

denominator of degree at most rp(k)( p
2p+2n

2 + n(logp n + 1)), giving the

desired result. �

4.5. Permutation Modules. The analysis so far has only considered tak-

ing symmetric or exterior powers of the natural representation. However,

there is nothing preventing us from asking analogous questions concern-

ing other characters; we shall illustrate this with the symmetric powers of

π(n−2,2). For ease of notation, we identify a (n − 2, 2)-tabloid with a 2-

element subset of {1, . . . , n}. Write Ω(n−2,2) for the set of 2-element subsets

of {1, . . . , n}, so M (n−2,2) ∼= CΩ(n−2,2).
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First of all, we need to understand the cycle structure of an element

σ ∈ Sn in its action on Ω(n−2,2). Take {i, j} ∈ Ω(n−2,2); we want to examine

the orbit of {i, j} under σ.

Suppose that i and j are in different cycles of σ; say that i is in a cycle of

length s and j is in a cycle of length t. Then the orbit of {i, j} has size equal

to the least common multiple of s and t, lcm(s, t). There are st 2-element

subsets of {1, . . . , n} with one element from the support of the s-cycle and

the other from the support of the t-cycle. Hence these subsets comprise

hcf(s, t) orbits each of size lcm(s, t).

Conversely, suppose that i and j are in the same cycle; say the m-cycle

(x1, . . . xm) where for some a, b ∈ {1, . . . , k} we have xa = i, xb = j. If m is

odd, then the orbits of {x1, x2}, {x1, x3}, . . . {x1, xm+1
2
} all have size m and

are distinct. Since mm−1
2 =

(
m
2

)
, these are all the orbits. If m is even, then

the orbits of {x1, x2}, {x1, x3}, . . . {x1, xm
2

+1} are all distinct and have size

m except for the orbit of {x1, xm
2

+1} which has size m
2 .

We define a map θ : N→ Par by

θ(m) =

 (m
m−1

2 ) if m is odd;

(m
m
2
−1, m2 ) if m is even.

Further, we define a map ψ : N× N→ Par by ψ((s, t)) = (lcm(s, t)hcf(s,t)).

Given partitions λ and µ, we define the partition λtµ to be the partition

obtained by taking all the parts of λ and µ, and re-ordering them to form a

partition. For example, (4, 3, 13) t (32, 1) = (4, 33, 14).

Therefore, given σ ∈ Sn with cycle type λ = (λ1, . . . λk) we have shown

that the cycle type of σ on Ω(n−2,2) is T2(λ) where

T2((λ1, . . . , λk)) = θ(λ1) t . . . t θ(λk) t
⊔
i>j

ψ(λi, λj).

We can, incidentally, obtain the following corollary from this:

Corollary 4.17. Let σ ∈ Sn have cycle type λ = (λ1, . . . λk). Then the

number of orbits of σ on Ω(n−2,2) is given by

k∑
i=1

bλi
2
c+

∑
i>j

hcf(λi, λj).
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Let Y (n, 2) denote the dimension of the space spanned by the symmetric

powers of π(n−2,2). The usual argument shows that Y (n, 2) is equal to the

dimension of the vector space SpanC{fT2(λ)(x) : λ ∈ Par(n)}. We know

that w2(x) = (1− x)(1− x2) . . . (1− x(n2)) is a common denominator for the

fT2(λ)(x), from which we can deduce

Y (n, 2) ≤
(
n
2

)
2

(

(
n

2

)
+ 1)−

(
n

2

)
+ 1 =

n4

8
− n3

4
− n2

8
+
n

4
+ 1.

However, note that this common denominator is certainly not the least com-

mon denominator for the fT2(λ)(x), and so we aim to improve upon this

upper bound.

We make two observations about the partition T2(λ). Firstly, except when

n = 3, the parts of T2(λ) do not exceed n2

4 . This is because the parts of θ(λi)

do not exceed λi, and hence n; whereas the parts of ψ(λi, λj) are equal to

lcm(λi, λj), which is at most λiλj , and λiλj ≤ (n2 )2. Secondly, observe that

the parts of T2(λ) are n-smooth; that is, they do not have a prime factor

exceeding n.

In light of the first observation, for n2

4 < j ≤
(
n
2

)
, we may cancel a factor

of Φj(x) from w2(x). The degree of the cancelled terms is
∑

n2

4
<j≤(n2)

φ(j).

It is known that [2, Theorem 3.7]:

m∑
j=1

φ(j) =
3

π2
m2 +O(m logm),

from which it follows that the degree of the cancelled terms is 3
π2 (
(
n
2

)2 −
n4

16 ) +O(n2 log n) = 9n4

16π2 +O(n3).

Let p be a prime satisfying n < p ≤ n2

4 . Then, by the second observation,

we may cancel a factor of Φj(x) from w2(x) where n < j ≤ n2

4 and p divides

j. Therefore, we reduce the degree of w2(x) by

bn
2

4p
c∑

r=1

φ(rp) =

bn
2

4p
c∑

r=1

φ(r)φ(p) = (p− 1)

bn
2

4p
c∑

r=1

φ(r)

where the first equality follows since p > n and rp ≤ n2

4 (which forces r and

p to be coprime). We can do this for every prime p where n < p ≤ n2

4 , to
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get a reduction in the degree of w2(x) by

∑
n<p≤n

2

4
,

p prime

(p− 1)

bn
2

4p
c∑

r=1

φ(r) =
∑

n<p≤n
2

4
,

p prime

(p− 1)
3

π2

n4

16p2
+O(n2 log n).

Note that since we are cancelling Φj(x) for n < j ≤ n2

4 , each j can have at

most one prime factor exceeding n, and so there are no issues with double

counting.

It follows that the reduction in the degree of w2(x) is

3n4

16π2

∑
n<p≤n

2

4
,

p prime

p− 1

p2
+O(n2 log n).

It is known (see, for example, [2, Theorem 4.12]) that for some constant

A we have ∑
1<p≤m,
p prime

1

p
= log logm+A+O(

1

logm
).

Moreover the sum ∑
1<p≤m,
p prime

1

p2

converges by a simple application of the comparison test. Using the two

results mentioned above, we see that this is

3n4

16π2
(log 2 +O(

1

log n
) +O(

1

n log n
)) +O(n2 log n) =

3 log 2

16π2
n4 +O(

n4

log n
).

Combining both our results, we see that

Y (n, 2) ≤ (
1

8
− 9

16π2
− 3 log 2

16π2
)n4 +O(

n4

log n
).

The coefficient of n4 is approximately 0.0548, whereas the original crude es-

timate had leading term 0.125n4, demonstrating that we have significantly

improved the upper bound by this argument. We observe that the argu-

ment based on bounding the parts of T2(λ) is stronger than the smoothness

argument. Indeed, the smoothness argument accounted for just 19% of the

reduction of the coefficient of n4 in Y (n, 2).

We might wonder whether the remarks above are indicative of a general

pattern. We shall now show that this is the case. Let Y (n, r) denote the
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dimension of the space spanned by the symmetric powers of π(n−r,r). As

usual, we have an easy upper bound for Y (n, r) which is simply based on

regarding the Sn-action on Ω(n−r,r) as an S(nr)
-action. Concretely, if Tr(λ)

describes the cycle type of σ ∈ Sn with cycle type λ, then wr(x) = (1−x)(1−

x2) . . . (1 − x(nr)) is a common denominator for the power series fTr(λ)(x).

Therefore, Y (n, r) ≤ n2r

2(r!)2
+O(n2r−1).

While describing Tr(λ) explicitly in terms of the parts of λ is compli-

cated, we can still establish what we need to know. For this, we require a

straightforward preliminary lemma.

Lemma 4.18. For positive real numbers x1, . . . , xm which have fixed sum∑m
i=1 xi = n, their product

∏m
i=1 xi is maximised by taking xi = n

m for each

i.

Proof. Suppose the result is false, so that
∏m
i=1 xi is maximal subject to∑m

i=1 xi = n where xi and xj are distinct and let y =
xi+xj

2 . Note that

2y = xi + xj and also that

y2 − xixj =
(xi − xj)2

4
> 0.

Therefore, replacing xi and xj both with y gives a larger product while

keeping the sum fixed. This is a contradiction, so the maximal value of∏m
i=1 xi is attained when all the xi are equal; that is, when xi = n

m for every

i. �

Lemma 4.19. All parts of Tr(λ) are n-smooth, and if n ≥ r( r
r−1)r−1, then

the parts of Tr(λ) do not exceed nr

rr .

Proof. Let σ ∈ Sn have cycle type λ and order k ∈ N. The parts of Tr(λ)

correspond to the lengths of orbits of σ on Ω(n−r,r). The size of an orbit

of any element of Ω(n−r,r) must divide k, and hence |Sn| = n!. Since n! is

n-smooth, this proves the first claim.

For the second part, let X = {x1, . . . , xr} ∈ Ω(n−r,r); we want to bound

the length of the orbit of X under σ. Suppose that elements of X lie in

different cycles of σ of lengths µ1, . . . , µa, where 1 ≤ a ≤ r. Then the orbit
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of X under σ has length at most
∏a
i=1 µi; moreover

∑a
i=1 µi ≤ n. By Lemma

4.18, the orbit of X under σ has length at most (na )a.

Therefore, the orbit of X has length at most

max
1≤a≤r

{n
a

aa
} = max{n, n

2

4
, . . . ,

nr

rr
},

and provided n ≥ r( r
r−1)r−1, the largest of these – and hence an upper

bound for the largest part of Tr(λ) – is nr

rr , as required. �

As usual, we can make two improvements to the bound for Y (n, r), via

bounding the parts of Tr(λ) and noting that the parts of Tr(λ) are n-smooth.

Let the degree of cyclotomic factors cancelled from the bounding argument

be A1n
2r+O(n2r−1) and the degree of cyclotomic factors cancelled from the

smoothness argument be A2n
2r + O(n2r−1). We can now state our result

formally.

Proposition 4.20. When viewed as a function of r, we have that 1
2(r!)2

−

A1 → 0, and moreover that A2
A1
→ 0.

Proof. For j > (nr )r, by Lemma 4.19, we can cancel every factor of Φj(x)

which appears in wr(x). Since there is a factor of Φj(x) in 1− xmj for each

m ∈ N, we can cancel from wr(x) cyclotomic factors of total degree

∑
(n
r

)r<j≤(nr)

φ(j) +
∑

(n
r

)r<j≤ 1
2(nr)

φ(j) + . . .+
∑

(n
r

)r<j≤ 1
α(nr)

φ(j),

where α = b( rn)r
(
n
r

)
c (we need to stop the sum when 1

α

(
n
r

)
< (nr )r, which

justifies the choice of α). The degree is therefore:

3

π2
(

(
n

r

)2

(1 +
1

4
+ . . .+

1

α2
− α(

n

r
)
2r

) +O(nr log n).

This simplifies to

3n2r

π2
(

1

(r!)2

α∑
i=1

1

i2
− α

r2r
) +O(n2r−1).

Since
∑

i>α
1
i2

= O(α−1) = O( r!rr ), the coefficient A1 equals

3

π2
(

1

(r!)2
(
π2

6
−O(

r!

rr
))−O(

1

rrr!
) =

1

2(r!)2
−O(

1

rrr!
),

which establishes the first claim.
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Moreover, 1
2(r!)2

−A1 −A2 ≥ 0, because otherwise our upper bound is of

the form Y (n, r) ≤ −δn2r +O(n2r−1) for some δ > 0, giving Y (n, r) < 0 for

large enough n, which is a contradiction. So we also deduce that A2
A1
→ 0,

as required. �

Recall that we have the ‘obvious’ inequality Y (n, r) ≤ n2r

2(r!)2
+ O(n2r−1).

Therefore, this result means that for large r, we can obtain a sizeable reduc-

tion in the coefficient of n2r, and ‘almost all’ of this reduction is attributable

to the process of cancelling cyclotomic factors from wr(x).

Direct sums and tensor products of Young permutation modules are also

amenable to this sort of analysis. Let σ ∈ Sn, λ, µ be partitions of n and say

that σ has cycle type α = (α1, . . . αs) on Mλ and cycle type β = (β1, . . . , βt)

on Mµ. Then, with respect to the canonical basis of Mλ ⊕ Mµ, σ has

cycle type α t β. This obviously extends to the direct sum of finitely many

permutation modules. Furthermore, the cycle type of σ on Mλ ⊗Mµ with

respect to the canonical basis is

⊔
(i,j)∈{1,...,s}×{1,...,t}

(lcm(αi, βj)
hcf(αi,βj ).

Remark 4.21. It follows that the generating function for the symmetric

powers of a direct sum of Young permutation modules is the product of the

generating functions for each module. However, there does not appear to

be any ‘nice’ characterisation of the generating function for the symmetric

powers of a tensor product of Young permutation modules.

Example 4.22. We outline how the analysis proceeds by looking at the

example M (n−2,2) ⊕M (n−2,2). Then an element of Sn of cycle type λ has

cycle type T2(λ) t T2(λ) on the canonical basis of M (n−2,2) ⊕M (n−2,2), and

T2(λ) t T2(λ) has no parts exceeding n2

4 . As usual, we want to bound the

dimension of the vector space SpanC{fT2(λ)tT2(λ)(x) : λ ∈ Par(n)}. The ob-

vious common denominator for the fT2(λ)tT2(λ)(x) is (1−x) . . . (1−xn(n−1)),

and so we may cancel all cyclotomic factors Φj(x) whenever n2

4 < j ≤

n(n− 1). This gives an asymptotically significant improvement on the triv-

ial upper bound.
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For M (n−2,2) ⊗M (n−2,2), we can bound the parts of the cycle type of an

element of Sn by (n
2

4 )2 = n4

16 . This time, the ‘trivial’ common denominator

is (1− x) . . . (1− x(n2)
2
)), and so we may cancel all cyclotomic factors Φj(x)

whenever n2

4 < j ≤
(
n
2

)2
, which again yields a better bound.

Since the details of these calculations are similar to examples already

done, we omit them.
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5. Conjugacy and Commuting Probabilities in Wreath Products

Given a non-abelian group G, a natural question is how far G is from

being abelian. There are parallels with other areas of mathematics, such as

the idea of the class number of an algebraic number field quantifying how

far the ring of integers of a number field is from being a Principal Ideal

Domain.

One way to measure the extent to which the commutativity property in

G fails is via the commuting probability of G, which is the probability that

two randomly chosen elements of G, chosen independently and uniformly,

commute. We write cp(G) for the commuting probability of G.

The commuting probability of a finite group was first introduced by Erdős

and Turán in [21]. An important, but elementary, fact is that cp(G) = k(G)
|G| ,

as was first shown in [21, Theorem IV]. There are a number of striking results

in this area which demonstrate that the commuting probability encodes more

information about the group than may first appear. An early one from [36]

is that if G is a non-abelian finite group, then cp(G) ≤ 5
8 , with equality if

and only if Z(G) has index 4 in G.

The literature on the commuting probability contains a number of striking

results, such as a theorem due to Guralnick and Robinson [35, Theorem 11]

that if a group has commuting probability above 3
40 , then either the group

is soluble or is a direct product of an abelian group with A5. Questions

pertaining to the commuting probability have also been extended to profinite

groups (using Haar measure in place of the uniform distribution); see [40]

for an account.

Another probabilistic quantity of interest is the conjugacy probability of

G, which we define to be the probability that two randomly chosen elements

of G, chosen independently and uniformly, are conjugate; this is denoted by

κ(G). In contrast with the commuting probability, the conjugacy probability

received less attention.

If G is a finite abelian group, then κ(G) = 1
|G| . There is an analogous

result to the “gap” result on the commuting probability from [4, Theorem

1.1]: if G is non-abelian, then κ(G) ≥ 7
4|G| , with equality holding if and only
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if |G : Z(G)| = 4. It may appear that the groups with large commuting

probability have small conjugacy probability. However, this is not the case;

[4, Theorem 1.3] shows that if G satisfies κ(G) ≥ 1
4 then G is either one

of nine small groups (the largest of which is A5), or else is of form A o C2

where A is an abelian group of odd order on which the non-identity element

of C2 acts by inversion. In the latter case, G also satisfies cp(G) ≥ 1
4 .

As well as theoretical results, efforts have been made to calculate both

these quantities for groups of particular interest. Indeed, Erdős and Turán

calculated cp(Sn) asymptotically in [21]. In [4], it was proved that κ(Sn) ≤
C
n2 for an explicitly determined constant C (about 5.48).

In this section, we consider the commuting and conjugacy probabilities

for groups of the form H o Cp, where H is a p-group. Note that the Sy-

low subgroups of the symmetric group arise in this form, guaranteeing us

an interesting family of examples. We shall achieve this by introducing a

new combinatorial object for p-groups: an integer-valued polynomial which

encodes the conjugacy class sizes.

5.1. The Conjugacy Classes of G oCp. We begin by trying to achieve an

understanding of the conjugacy classes of GoCp comparable to that given for

the wreath product G o Sn by Theorem 1.35. In this subsection, G denotes

a finite group (we do not assume that G is a p-group). Let the conjugacy

classes of G be C1, . . . , Cs. For convenience we shall specify a top group by

taking the copy of Cp inside Sp generated by the p-cycle (1, 2, . . . , p).

Let (f ;π) and (g;σ) be elements of G o Cp. For 1 ≤ k ≤ p, suppose that

f(k) is in the G-conjugacy class Cik and g(k) is in the G-conjugacy class Cjk .

We define ordered p-tuples λf = (i1, . . . , ip) and λg = (j1, . . . , jp), which we

call the cycle shapes of f and g; these shall play an analogous role to the

type defined in [46, p.131]. There is a natural action of Cp on a p-tuple via

place permutation, i.e. σ(i1, . . . , ip) = (iσ−1(1), . . . , iσ−1(p)) for σ ∈ Cp.

Proposition 5.1. The elements (f ;π) and (g;σ) ∈ G o Cp are conjugate if

and only if either:

(1) π = σ 6= 1Cp and the cycle products f(1)f(π−1(1)) . . . f(π−p+1(1))

and g(1)g(σ−1(1)) . . . g(σ−p+1(1)) are conjugate in G, or;
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(2) π = σ = 1Cp and there exists ρ ∈ Cp such that λf = ρλg.

Proof. Observe that for elements (a;α), (b;β) of a general wreath product

G oH, we have

(b;β)(a;α)(b;β)−1 = (baβ;βα)(b−1
β−1 ;β−1) = (baβb

−1
βαβ−1 ;βαβ−1),

and hence if (f ;π) is conjugate to (g;σ), then π and σ must be conjugate

in Cp. However, Cp is abelian, so the conjugacy and equality relations

coincide; it follows that σ = π is a necessary condition for (f ;π) and (g;σ)

to be conjugate. First suppose that σ = π is not the identity element of Cp.

Note that the condition in (1) is precisely the condition for (f ;π) and

(g;σ) to be conjugate in G oSp, so it is necessary; we show that it is sufficient

for conjugacy in G o Cp. Indeed, suppose that there is an element h1 ∈ G

such that

h1f(1)f(π−1(1)) . . . f(π−p+1(1))h−1
1 = g(1)g(π−1(1)) . . . g(π−p+1(1)).

Let hπ−1(1) be an element of G such that h1f(1)h−1
π−1(1)

= g(1). Then,

inserting a factor of h−1
π−1(1)

hπ−1(1) into the above equation between f(1) and

f(π−1(1)) and multiplying on the left by g(1)−1, we obtain:

hπ−1(1)f(π−1(1)) . . . f(π−p+1(1))h−1
1 = g(π−1(1)) . . . g(π−p+1(1)).

Letting hπ−2(1) be an element of G such that hπ−1(1)f(π−1(1))h−1
π−2(1)

=

g(π−1(1)), we may repeat the same argument to yield an element (h; 1Cp) =

(h1, hπ−1(1), . . . , hπ−p+1(1); 1Cp) such that (h; 1Cp)(f ;π)(h−1; 1Cp) = (g;π) by

construction of the elements hi, and therefore (f ;π) and (g;σ) are conjugate.

We now investigate conjugacy of the base group elements in G o Cp; let

(g; 1Cp) be such an element. Since we may factorise any (f ;π) ∈ G o Cp as

(f ; 1Cp)(1;π), conjugating (g; 1Cp) by (f ;π) is the same as conjugating by

(f ; 1Cp) followed by (1;π). The action of a group on its conjugacy classes

is transitive, so (g(1), . . . , g(p)) is conjugate to any element (h(1), . . . , h(p))

such that g(i) and h(i) are conjugate in G for 1 ≤ i ≤ p.

Moreover, the conjugates of (h(1), . . . , h(p); 1Cp) under the action of el-

ements of the form (1;π) are elements (h(α(1)), . . . , h(α(p)); 1Cp) where
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α ∈ 〈(1, . . . , p)〉. Therefore, the conjugacy class of (g; 1Cp) consists pre-

cisely of those elements (f ; 1Cp) for which there exists ρ ∈ Cp such that

λf = ρλg, as required. �

We illustrate this proposition with an example.

Example 5.2. We find the conjugacy classes of Cp o Cp. Two elements

(f ;π) and (g;π) of Cp o Cp are conjugate if and only if the associated cycle

products are equal, because Cp is abelian. There are p − 1 possibilities for

π as a non-identity element in Cp and p different cycle products, giving a

total of p(p−1) conjugacy classes not contained in the base group of Cp oCp;

each such class has size pp−1.

Now consider an element of the form (f(1), . . . , f(p); 1Cp) where each

f(i) ∈ Cp. If all the elements f(1), . . . , f(p) belong to the same conjugacy

class of Cp, i.e. they are all equal, then the element is in a conjugacy class

of size one. There are p such classes arising in this way. On the other

hand, if there are i and j such that f(i) 6= f(j), then the conjugacy class

consists of the p elements of the form (f(α(1)), . . . , f(α(p)); 1Cp). There are

pp−p
p = pp−1 − 1 such conjugacy classes.

5.2. Conjugacy Polynomials. In order to facilitate our analysis of the

wreath product, we introduce a new combinatorial object which records all

the information about the conjugacy class sizes.

Now let G be a finite p-group, and say that G has ai conjugacy classes

of size pi for i ≥ 0. We define the conjugacy polynomial of G to be fG(t) =∑
i≥0 ait

i. For example, if G = Cp o Cp, then

fG(t) = p+ (pp−1 − 1)t+ p(p− 1)tp−1.

We take a moment to give an example of this definition for a family of

p-groups which are of interest to finite group theorists.

Example 5.3. We say that a p-group G is extra-special if Z(G) is cyclic of

order p and G/Z(G) is a non-trivial elementary abelian p-group. For n ≥ 1,

there are exactly two non-isomorphic extra-special p-groups of order p1+2n.
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Since G is non-abelian, G′ is not the identity group. On the other hand,

G′ is the intersection of all normal subgroups N such that G/N is abelian,

so G′ ≤ Z(G) ∼= Cp, showing that G′ is also cyclic of order p. Now, note

that for x, g ∈ G, we have g−1xg = x[x, g], so |xG| = |xG′|. Therefore, all

the conjugacy classes of G either have size 1 or p, and since the centre has

order p, there must be p2n+1−p
p = p2n − 1 conjugacy classes in G of size p.

Consequently, the conjugacy polynomial for an extraspecial p-group of

order p1+2n is the same for both isomorphism classes and is p+ (p2n − 1)t.

We would now like to understand some of the basic properties of these new

conjugacy polynomials which we have defined. It is clear that the conjugacy

polynomial of a direct product is easy to compute: if G and H are p-groups,

then fG×H(t) = fG(t)fH(t).

We define a map θG : G/Z(G)×G/Z(G)→ G′ by setting, for g1, g2 ∈ G,

θG(g1Z(G), g2Z(G)) = [g1, g2].

We say that groups G and H are isoclinic if there are isomorphisms α :

G/Z(G)→ H/Z(H) and β : G′ → H ′ satisfying

β(θG(g1, g2)) = θH(α(g1), α(g2)).

Roughly speaking, groups are isoclinic when their commutator tables are

essentially the same, just as groups are isomorphic when their multiplication

tables are essentially the same. For example, all abelian groups are isoclinic

to the trivial group.

The notion of isoclinism was introduced by Hall in order to help classify

finite p-groups, so it is interesting that the conjugacy polynomials of isoclinic

p-groups are related in a very simple manner.

Proposition 5.4. Suppose that G and H are isoclinic p-groups. Then their

conjugacy polynomials satisfy

fG(t)

|G|
=
fH(t)

|H|
.
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Proof. We begin by observing that, with the notation used above, for g ∈ G,

we have [g,G] = θG(gZ(G), G/Z(G)). Moreover, we note that

|gG| = |{x−1gx : x ∈ G}| = |{g−1x−1gx : x ∈ G}| = |[g,G]|.

For brevity, let l(r) = logp(r). Now we calculate:

∑
g∈G

tl(|g
G|) =

∑
g∈G

tl(|[g,G]|)

=
∑
g∈G

tl(|θG(gZ(G),G/Z(G))|)

=
∑

gZ(G)∈G/Z(G)

|Z(G)|tl(|θG(gZ(G),G/Z(G))|

=
∑

gZ(G)∈G/Z(G)

|Z(G)|tl(|β(θG(gZ(G),G/Z(G))|

=
∑

gZ(G)∈G/Z(G)

|Z(G)|tl(|θH(α(gZ(G)),α((G/Z(G))|

=
∑

hZ(H)∈H/Z(H)

|Z(G)|tl(|θH(hZ(H),H/Z(H))|

=
∑
h∈H

|Z(G)|
|Z(H)|

tl(|θH(hZ(G),H/Z(H))|

=
∑
h∈H

|Z(G)|
|Z(H)|

tl(|[h,H]|

=
∑
h∈H

|Z(G)|
|Z(H)|

tl(|h
H |).

The steps are justified by: our second observation; the first observation;

replacing a sum over G with cosets of Z(G) (as the sum is constant on these

cosets); β being an isomorphism; the definition of G and H being isoclinic;

α being an isomorphism; converting a sum over cosets of Z(H) to a sum

over H; the first observation, and finally the second observation.

Since the quotients G/Z(G) and H/Z(H) are isomorphic, |Z(G)|
|Z(H)| = |G|

|H| ,

which allows us to rearrange the above to

1

|G|
∑
g∈G

tl(|g
G|) =

1

|H|
∑
h∈H

tl(|h
H |).
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Suppose that G and H have ai and bi conjugacy classes of size pi respectively.

Then the above equation rearranges to

1

|G|
∑
i≥0

aip
iti =

1

|H|
∑
i≥0

bip
iti.

Replacing pt with t gives the result claimed. �

Moreover, conjugacy polynomials are not just a convenient tool for rep-

resenting the conjugacy class sizes, but evaluating a conjugacy polynomial

at certain values of t produces useful information about G: setting t = 1

gives the number of conjugacy classes of G, t = p gives the order of G and

t = p2 gives the sum of the squares of the conjugacy class sizes. Therefore,

we may evaluate the commuting and conjugacy probabilities of G from its

conjugacy polynomial by noting that

cp(G) =
fG(1)

fG(p)
and κ(G) =

fG(p2)

fG(p)2
.

.

Again, suppose that G and H are isoclinic p-groups. Now,

κ(G) =
fG(p2)

fG(p)2
=

|G|
|H|fH(p2)

|G|2
|H|2 fH(p)2

=
|H|
|G|

κ(H),

demonstrating that Proposition 5.4 implies [4, Theorem 1.2] in the context

of p-groups. A similar calculation shows that cp(G) = cp(H), which was

one of the main results of [48].

For this observation to have any utility in calculating these quantities,

we need to be able to compute conjugacy polynomials easily. The following

result shows how we can calculate the conjugacy polynomial of G o Cp from

that of G.

Theorem 5.5. If G has conjugacy polynomial fG(t), then G o Cp has con-

jugacy polynomial

fG(tp) + (p− 1)tlogp(|G|p−1)fG(t) +
t

p
(fG(t)p − fG(tp)).

Proof. Consider an element (f ;π) of G o Cp with π 6= 1Cp , such that the

cycle product associated to f lies in the conjugacy class C of G. By Proposi-

tion 5.1, the conjugates of (f ;π) are precisely the elements (g;π) where the
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cycle products associated g also belongs to C. We may choose the (p − 1)

elements g(1), . . . , g(π−p+2(1)) to be any elements from G, and then choose

g(π−p+1(1)) so that the cycle product lies in C, showing that the conjugacy

class of (f ;π) has size |G|p−1|C|.

Therefore, if there are aj conjugacy classes in G of size pj , there are

(p − 1)aj classes in G o Cp of size |G|p−1pj . This accounts for all the con-

jugacy classes in G o Cp which are not contained in the base group, and

yields a contribution of (p−1)tlogp(|G|p−1)fG(t) to the conjugacy polynomial.

We now consider the conjugacy classes contained in the base group: let

(g(1), . . . , g(p); 1Cp) ∈ G o Cp.

If all the elements g(j) belong to the same conjugacy class D of G, then

by the second part of Proposition 5.1, the conjugates of (g(1), . . . , g(p); 1Cp)

are exactly the elements (h(1), . . . , h(p); 1Cp) where h(j) ∈ D for each j.

Consequently, this conjugacy class has size |D|p, and if there are m classes

in G of size |D|, then there are also m conjugacy classes in G o Cp of size

|D|p, showing that these elements contribute a fG(tp) term to the conjugacy

polynomial.

Finally, we consider the case where at least two of the elements g(j) lie

in different G-conjugacy classes.

Again by the second part of Proposition 5.1, a conjugacy class C in G oCp
of this form splits into p classes in Gp, each of size Cp . Therefore, the con-

tribution to the conjugacy polynomial of G o Cp is the contribution of the

corresponding classes to the conjugacy polynomial of Gp multiplied by a fac-

tor of t
p . The conjugacy polynomial for Gp is fG(t)p−fG(tp), reflecting that

we must discount conjugacy classes of elements of the form (g1, . . . , gp) ∈ Gp

such that each gi is in the same G-conjugacy class.

Combining all three parts of the argument, which cover all the possible

cases of conjugacy classes in G o Cp, we establish the result as claimed. �

Therefore, calculating the conjugacy probability or commuting probabil-

ity in these cases reduces a group theoretic problem to fairly straightforward

calculations with integral polynomials. This is already significant from a
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computational perspective. For example, attempting to calculate the con-

jugacy probability of a Sylow 2-subgroup of S32 via Magma [5] in the naive

way fails to return a result after 3 hours of computation, but the system is

able to give an answer very quickly using this polynomial recursion.

We apply this result to the groups Pn; recall that this is a Sylow p-

subgroup of Spn . Let fn(t) denote the conjugacy polynomial of Pn.

Observe that |Pn+1| = p|Pn|p – or, in the language of the polynomials,

fn+1(p) = pfn(p)p – and so an easy induction shows that

|Pn| = p1+p+·+pn−1
= p

pn−1
p−1 .

Theorem 5.5 thus gives a particularly elegant formula in the case of the

polynomials fn:

fn+1(t) = fn(tp) +
t

p
(fn(t)p − fn(tp)) + (p− 1)tp

n−1fn(t).

We now use this to establish a recurrence relation for the commuting

probability of Pn.

Lemma 5.6. We have

cp(Pn+1) = (1− 1

p2
)
cp(Pn)

ppn−1
+

cp(Pn)p

p2
.

Proof. Evaluating the recursion at t = 1 shows that

fn+1(1) = fn(1) +
1

p
(fn(1)p− fn(1)) + (p− 1)fn(1) = (p− 1

p
)fn(1) +

fn(1)p

p
.

The commuting probability of Pn+1 is given by

fn+1(1)

fn+1(p)
=

(p− 1
p)fn(1) + fn(1)p

p

pfn(p)p
.

Dividing by p and recalling that cp(Pn) = fn(1)
fn(p) demonstrates that

cp(Pn+1) = (1− 1

p2
)

cp(Pn)

|Pn|p−1
+

cp(Pn)p

p2
.

Recalling that |Pn|p−1 = pp
n−1 gives the claimed result. �

When p = 2, the expression for fn(1) shows that the number of conjugacy

classes of a Sylow 2-subgroup of S2n satisfies the recurrence relation

k(Pn) =
3

2
k(Pn−1) +

k(Pn−1)2

2
.
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Note that the first five values of k(Pn) for p = 2 are 1,2,5,20 and 230. The

first few terms appear as sequence A006893 in [64].

We can write a natural numberm as a sum of triangular numbers following

a greedy algorithm, by writing m =
∑

i

(
mi
2

)
where for each i, mi is chosen

so that
(
mi
2

)
is the largest triangular number less than m−

∑i−1
j=1

(mj
2

)
. For

example, 20 = 15 + 3 + 1 + 1 using this method; note that the greedy

algorithm does not, in general, give the shortest expression of a number,

because we also have 20 = 10 + 10.

Let xn denote the smallest positive integer m such that the expression of

m as a sum of triangular numbers via this greedy algorithm requires n terms.

So x4 ≤ 20, and one can verify that in fact x4 = 20. It is not immediately

obvious that xn exists for all n; Gauss proved in [30, p.495–496] that any

positive integer may be written as a sum of three triangular numbers. We

now show that this is not the case, and prove a recurrence relation for the

numbers xn which demonstrates their connection with Sylow subgroups of

symmetric groups.

Proposition 5.7. The numbers xn exist for all n, and satisfy the recurrence

relation

xn+1 =
3

2
xn +

x2
n

2
,

with initial condition x1 = 1.

Proof. We proceed by induction on n. Certainly 1 may be written as the

sum of one triangular number, so x1 = 1. Suppose that xn exists and define

y = xn +

(
xn + 1

2

)
=

3

2
xn +

x2
n

2
.

Since

y −
(
xn + 2

2

)
= xn +

xn(xn + 1)

2
− (xn + 1)(xn + 2

2
= −1,

it follows that
(
xn+1

2

)
is the largest triangular number which is at most y.

So the decomposition of y into triangular numbers via the greedy algorithm

starts with
(
xn+1

2

)
, and by the inductive hypothesis xn requires n triangular

numbers in the greedy algorithm. Hence y requires n+1 triangular numbers,
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showing that xn+1 is defined and xn+1 ≤ y. We claim that this is, in fact,

an equality.

Suppose that z is a positive integer which needs n+ 1 terms in its expres-

sion by the greedy algorithm as a sum of triangular numbers, and say that

z =
(
a
2

)
+ b for a, b ∈ N. Then b ≥ xn because any positive integer less than

xn may be written as the sum of at most n− 1 triangular numbers via the

greedy algorithm. But we also have, since z <
(
a+1

2

)
, that

xn ≤ b = z −
(
a

2

)
<

(
a+ 1

2

)
−
(
a

2

)
= a,

so a > xn. Taking a = xn+1 and b = xn is therefore the smallest possibility,

and this gives y. Therefore xn+1 exists and satisfies the desired recurrence

relation, so the result follows by induction. �

The following result is now immediate from the recurrence relation fol-

lowing Lemma 5.6.

Corollary 5.8. The number of conjugacy classes of a Sylow 2-subgroup of

S2n is equal to xn−1.

For example, 20 = 15 + 3 + 1 + 1, and any integer between 1 and 19 can

be written as the sum of at most three triangular numbers using the greedy

algorithm. Therefore, a Sylow 2-subgroup of S8 has 20 conjugacy classes.

This result is proved simply by noting that both these sequences of in-

tegers satisfy the same generating function. Yet this corollary somehow

deserves a more conceptual justification: for there to be any connection be-

tween enumerating conjugacy classes in a Sylow subgroup of a symmetric

group and decompositions of integers into sums of triangular numbers is sur-

prising. It would be interesting to know whether there is a more illuminating

argument, perhaps by means of some explicit bijection.

We can also use Theorem 5.5 to obtain an inequality on the possible values

of the conjuacy probability of Pn, which will be essential for our analysis.

Lemma 5.9. The conjugacy probability of Pn satisfies

p− 1

p2
κ(Pn) +

κ(Pn)p

p2
≤ κ(Pn+1) ≤ p− 1

p2
κ(Pn) +

κ(Pn)p

p
.
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Proof. Substituting t = p2 into the recurrence given by Theorem 5.5 gives

fn+1(p2) = fn(p2) +
p2

p
(fn(p2)p − fn(p2)) + (p− 1)(p2)p

n−1fn(p2).

Moreover, fn+1(p)2 = |Pn+1|2 = p2|Pn|2p and so

(p− 1)(p2)p
n−1fn(p2)

fn+1(p)2
=

(p− 1)|Pn|2p−2fn(p2)

|Pn|2p
=
p− 1

p2

fn(p2)

|Pn|2
,

which gives a contribution of p−1
p2
κ(Pn). To obtain the stated result, it now

suffices to prove that

κ(Pn)p

p2
≤ pfn(p2)p + (1− p)fn(p2p)

|P 2
n+1|

≤ κ(Pn)p

p
.

The upper bound follows by noting that (1 − p)fn(p2p) is negative (the

polynomials fn have coefficients in N so are positive when evaluated at any

natural number) and hence

pfn(p2)p + (1− p)fn(p2p)

|P 2
n+1|

≤ pfn(p2)p

p2|Pn|2p
=

1

p
κ(Pn)p.

As for the lower bound, we claim that

pfn(p2) + (1− p)fn(pp) ≥ fn(p2)p,

which is true if and only if fn(p2)p ≥ fn(pp). This last statement follows very

easily from the multinomial theorem, and the fact that the coefficients of the

polynomials fn are all integral. This completes the proof of the Lemma. �

Proposition 5.10. For n ≥ 1, we have (p−1)n−1

p2n−1 ≤ κ(Pn) ≤ 1
pn .

Proof. Lemma 5.9 shows that κ(Pn+1) ≥ p−1
p2
κ(Pn). Since κ(P1) = 1

p , an

easy induction gives the lower bound as stated above.

On the other hand, since the quotient of Pn by its derived subgroup is

an abelian group of order pn, it follows from [4, Lemma 3.1] that κ(Pn) <

κ(Pn/P
′
n) = 1

pn . �

Lemma 5.9 gives us an interval of width p−1
p2
κ(Pn)p for the possible value

of κ(Pn+1). Therefore, the interval we have obtained for the value of κ(Pn)

has width at most pp−1−np, which suggests the strength of this result.
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5.3. Character Polynomials. The ideas of the previous section apply to

other questions concerning p-groups. In this section, we use similar tech-

niques to investigate the degrees of the irreducible characters of groups of

the form G o Cp.

As before, let G be a finite p-group, and say that G has bi irreducible

characters of degree pi for i ≥ 0. We define the character polynomial of

G to be cG(t) =
∑

i≥0 bit
i. Since the degrees of the irreducible characters

divide the group order, this construction makes sense.

Observe that the character polynomial and conjugacy polynomial are

different objects: for example, if G = C2 o C2, then fG(t) = 2 + 3t and

cG(t) = 4 + t. In general, these two polynomials do not have the same

degree.

Evaluating the character polynomial at particular values yields useful in-

formation about G. Indeed, cG(1) is the number of irreducible characters of

G; cG(p) is the sum of the degrees of the irreducible characters of G, and

cG(p2) is the sum of the squares of the degrees of the irreducible characters,

i.e. the order of G. Since the number of conjugacy classes and the number

of irreducible characters are equal, it is possible to use the character poly-

nomials to analyse cp(G). The important observation for our purposes is

that the average degree of a character of G is therefore cG(p)
cG(1) .

Just as for the conjugacy polynomial, we may find the character polyno-

mial of G o Cp in terms of the character polynomial for G:

Theorem 5.11. If G has character polynomial cG(t), then the character

polynomial for G o Cp is

pcG(tp) +
t

p
(cG(t)p − cG(tp)).

Proof. Recall from Theorem 1.36 that the simple C[G o Cp]-modules have

the form Ũ�X
xGoCp
GoCp∩S(p)

where Ũ runs through the pairwise non-conjugate

simple CGp-modules and with Ũ fixed, X runs through all the simple C[Cp∩

S(p)]-modules.

Firstly, suppose that Ũ is a p-fold outer tensor product of the same simple

CG-module. In this case, S(p) is the full symmetric group Sp; there are p
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different choices for X, and the induction is trivial. Therefore, a simple

CG-module of dimension pi gives p different simple C[G o Cp]-modules of

dimension pip in this way. It follows that there is a contribution of a pcG(tp)

term to the character polynomial of G o Cp.

On the other hand, suppose that Ũ is a p-fold outer tensor product involv-

ing at least two non-isomorphic simple CG-modules. Then S(p) is a proper

subgroup of Sp and hence has trivial intersection with Cp. There is only one

choice for X, namely the trivial module, so the simple C[G o Cp]-modules

arising in this way all have the form

Ũ
xGoCp
Gp

.

Therefore, there is a bijection between the simple C[G oCp]-modules arising

in this way and equivalence classes of CGp-modules where at least two of

the tensor factors are non-isomorphic. Note that each equivalence class is

an orbit of size greater than one under the action of a cyclic group of prime

order, and thus has size p. We additionally note that

dim Ũ
xGoCp
Gp

= |G o Cp : Gp|dim Ũ = p dim Ũ .

The contribution to the character polynomial from these simple modules is

hence t
p(cG(t)p − cG(tp)), which establishes the required result. �

Example 5.12. Since the character polynomial for Cp is simply the constant

p, it follows easily from Theorem 5.11 that Cp oCp has character polynomial

p2+(pp−1−1)t. Recall that the conjugacy polynomial for CpoCp is p+(pp−1−

1)t+p(p−1)tp−1, which has degree p−1. Therefore, the difference between

the degree of the character and conjugacy polynomials can be arbitrarily

large.

This result has some immediate consequences for character degrees of

Sylow p-subgroups of symmetric groups. Let cn denote the character poly-

nomial of Pn.

Proposition 5.13. The group Pn has pn linear irreducible characters. If p

is odd, then the maximum degree of an irreducible character of Pn is

p
pn−1−1
p−1 .
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When p = 2, the largest degree of an irreducible character of Pn is 1 if

n ∈ {0, 1}, 2 if n = 2 and 3× 2n−3 − 1 for n ≥ 3.

Proof. The number of linear irreducible characters is the constant term in

cPn(t). Since cP1(t) = p, it follows from Theorem 5.11 and an easy induction

that cPn(t) has constant term pn which establishes the first claim.

Let dn be the degree of cPn(t), so that the largest degree of an irreducible

character of Pn is pdn . When p is odd, Theorem 5.11 shows that dn+1 =

1 + pdn. This recurrence relation, along with the initial condition d1 = 0,

has as the solution

dn =

n−2∑
i=0

pi =
pn−1 − 1

p− 1
.

This establishes the result for odd primes; when p = 2, the argument is very

similar. �

Proposition 5.14. For n ≥ 2, there are exactly pn−2(p(p−1)(n−1) − 1) irre-

ducible characters of Pn of degree p.

Proof. The number of characters of Pn of degree p is the coefficient of t in

cn(t). By Theorem 5.11, the coefficient of t in cn(t) is equal to 1
p multiplied

by the constant term in cn−1(t)p − cn−1(tp) because the degree of any term

in pcn−1(tp) which has a non-zero coefficient is a multiple of p. But the

constant term in cn−1(t) is the number of linear characters of Pn−1, which

is pn−1. Therefore, the coefficient of t is

1

p
(pn−1)p − pn−1) = pnp−p−1 − pn−2 = pn−2(p(p−1)(n−1) − 1),

as claimed. �
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