Late Pliocene Marine \(p\text{CO}_2 \) Reconstructions From the Subarctic Pacific Ocean

George E. A. Swann, Christopher P. Kendrick, Alexander J. Dickson, and Savannah Worne

1School of Geography, University of Nottingham, Nottingham, UK, 2NERC Isotope Geosciences Facility, British Geological Survey, Nottingham, UK, 3Department of Earth Sciences, Royal Holloway, University of London, Egham, UK

Abstract

The development of large ice sheets across the Northern Hemisphere during the late Pliocene and the emergence of the glacial-interglacial cycles that punctuate the Quaternary mark a significant threshold in Earth’s climate history. Although a number of different mechanisms have been proposed to initiate this cooling and the onset of major Northern Hemisphere glaciation, reductions in atmospheric concentrations of \(p\text{CO}_2 \) likely played a key role. The emergence of a stratified (halocline) water column in the subarctic northwest Pacific Ocean at 2.73 Ma has often been interpreted as an event which would have limited oceanic ventilation of \(p\text{CO}_2 \) to the atmosphere, thereby helping to cool the global climate system. Here diatom carbon isotopes (\(\delta^{13}\text{C}_{\text{diatom}} \)) are used to reconstruct changes in regional carbon dynamics through this interval. Results show that the development of a salinity stratification did not fundamentally alter the net oceanic/atmospheric flux of \(p\text{CO}_2 \) in the subarctic northwest Pacific Ocean through the late Pliocene/early Quaternary. These results provide further insights into the long-term controls on global carbon cycling and the role of the subarctic Pacific Ocean in instigating global climatic changes.

1. Introduction

Understanding the processes associated with the progressive Late Pliocene glaciation of the Northern Hemisphere remains an essential objective for understanding the long-term functionality and temporal variability of the global climate system (Mudelsee & Raymo, 2005). Of particular note is the transition associated with the onset of major Northern Hemisphere Glaciation (oNHG) and its intensification (iNHG) from circa 2.75 to 2.73 Ma onward in Marine Isotope Stage (MIS) G6 when significant ice sheets developed across Greenland, Eurasia, and Northern America (Bailey et al., 2013; Kleiven et al., 2002; Maslin et al., 1996; Matthiessen et al., 2009; Raymo, 1994). Instrumental to this transition are Late Pliocene changes in solar insolation, tectonic uplift, water column stratification, and the opening/closure of oceanic gateways, all of which triggered oceanic/atmospheric feedbacks that initiated cooler conditions and the increased supply of moisture to high-latitude continental regions (Brierley & Fedorov, 2016; Driscoll & Haug, 1998; Haug & Tiedemann, 1998; Maslin et al., 1998; Ravelo et al., 2004; Ruddiman & Kutzbach, 1989; Santhein et al., 2009).

The extent to which variations in atmospheric \(p\text{CO}_2 \) (\(p\text{CO}_2\text{atm} \)) played a role in triggering both the oNHG and iNHG remains unconstrained. Ocean-atmospheric models have demonstrated that reductions in \(p\text{CO}_2\text{atm} \) were probably critical in both instigating and sustaining the development of large ice sheets through the oNHG (Bonelli et al., 2009; Frank et al., 2010; Lunt et al., 2008, 2010; Willeit et al., 2015), a view supported by most but not all \(p\text{CO}_2\text{atm} \) reconstructions (e.g., Badger et al., 2013; Martinez-Boti et al., 2015; Pagani et al., 2010; Seki et al., 2010; Stap et al., 2016; van de Wal et al., 2011; Willeit et al., 2015). With any significant change in \(p\text{CO}_2\text{atm} \) likely linked to oceanic atmospheric exchanges, a need exists to identify and evaluate possible marine sources/sinks of \(p\text{CO}_2 \) through the late Pliocene.

1.1. Subarctic Northwest Pacific Ocean

The subarctic northwest Pacific Ocean (Figure 1) is one location that may have experienced significant changes in ocean atmospheric carbon dynamics through the late Pliocene and iNHG. Today the subarctic northwest Pacific Ocean acts as a net sink of atmospheric \(p\text{CO}_2 \) due to a halocline driven stratification at a depth of ~150–200 m that minimizes deep water exposure at the ocean-atmosphere interface (Chierici et al., 2006; Honda et al., 2002; Tabata, 1975; Figure 1). Proxy data records from Ocean Drilling Program (ODP) Site 882 indicate that the halocline developed over the iNHG at 2.73 Ma with increases in surface freshwater transforming the mixed water column to a stratified system (Haug et al., 2005; Sigman et al., 2004; Swann, 2010;...
Swann et al., 2006). This development altered regional biogeochemical cycling (Bailey et al., 2011; Reynolds et al., 2008; Shimada et al., 2009; Studer et al., 2012; Swann et al., 2016) with a drop in opal mass accumulation rates (MAR) from ~3 g·cm\(^{-2}\)·ka\(^{-1}\) to < 1 g·cm\(^{-2}\)·ka\(^{-1}\) at 2.73 Ma (Haug et al., 1999; Sigman et al., 2004).

These changes observed in the subarctic North Pacific Ocean may also have dramatically impacted ocean-atmosphere exchanges of CO\(_2\). With the deep North Pacific Ocean enriched in CO\(_2\) relative to other ocean basins with dissolved inorganic carbon at >2,300 \(\mu\text{mol/kg}\) (Lauvset et al., 2016), a mixed water column prior to 2.73 Ma characterized by deep water upwelling may have ventilated CO\(_2\) to the atmosphere, thereby helping to maintain the warm Pliocene climatic state (Haug et al., 1999). The emergence of a halocline from 2.73 Ma would have then minimized such exchanges, transforming the region to a net sink of atmospheric CO\(_2\) similar to the modern day. This alteration in the direction of net ocean-atmosphere CO\(_2\) exchange would have aided the iNHG and the global shift to colder climatic conditions (Haug et al., 1999).

In an attempt to constrain the role of the subarctic Pacific in regulating the global climate system and \(p\text{CO}_2\)\(_\text{atm}\) in the Pliocene (3.60–2.58 Ma), diatom carbon isotopes (\(\delta^{13}\text{C}_{\text{diatom}}\)) are employed to reconstruct carbon dynamics in the subarctic northwest Pacific Ocean and assess their response to the expansion of ice sheets across the Northern Hemisphere over the iNHG and the transition to a stratified water column.

1.2. Reconstructing \(p\text{CO}_2\) From \(\delta^{13}\text{C}_{\text{diatom}}\)

Hitherto, estimates of marine \(p\text{CO}_2\) (\(p\text{CO}_2\)\(_\text{aq}\)) and \(p\text{CO}_2\)\(_\text{atm}\) have been derived from the boron isotopes (\(\delta^{11}\text{B}\)) of foraminifera (Foster & Rae, 2016), the \(\delta^{13}\text{C}\) composition of alkenones (Pagani, 2002), B/Ca measurements in foraminifera (Yu et al., 2007), fossil leaf stomata (Bai et al., 2015), and pedogenic carbonate (Montañez et al., 2016). Although each approach contains uncertainties and assumptions, the combination of approaches together with model simulations (Stap et al., 2016; van de Wal et al., 2011) are providing increasing consensus on the magnitude of past \(p\text{CO}_2\)\(_\text{atm}\) and on the drivers, responses, and climate sensitivity of the Earth system.

Emerging work has promoted the use of \(\delta^{13}\text{C}_{\text{diatom}}\) to reconstruct \(p\text{CO}_2\)\(_\text{atm}\) (Heureux & Rickaby, 2015; Mejia et al., 2017; Stoll et al., 2017). The intrinsic organic carbon matter in diatoms frustules is comprised of proteins and polyamines that forms a key template for diatom biomineralization (Hecky et al., 1973; Kröger et al., 1999,
2000; Swift & Wheeler, 1992; Sumper & Kröger, 2004). During the photosynthetic production of this organic matter, diatoms preferentially fractionate 12C over 13C with the isotopic composition of δ^{13}C$_{\text{diatom}}$:

$$\delta^{13}C_{\text{diatom}} = \delta^{13}C_{\text{DIC}} - \varepsilon_p - (\varepsilon_f - \varepsilon_p) \frac{C_i}{C_e}$$ \hspace{1cm} (1)

where δ^{13}C$_{\text{DIC}}$ is the isotopic value of the dissolved inorganic carbon (DIC) substrate, ε_p is the isotopic fractionation for the diffusion of carbon into the cell, ε_f is the isotopic fractionation associated with carbon capture by the photosynthetic enzyme RuBisCO having been constrained at +25‰ by Bidigare et al. (1997) and where C_i and C_e are the intracellular and extracellular concentrations of CO$_2$ in the water column (CO$_2$(aq); Laws et al., 1995; Rau et al., 1996, 1997). Accordingly, δ^{13}C$_{\text{diatom}}$ can be linked to factors including changes in (1) δ^{13}C$_{\text{DIC}}$ arising from changes in ocean circulation and the production/dissolution of carbonate producers, (2) photic zone pCO$_2$(aq) with increases (decreases) triggering a corresponding decrease (increase) in δ^{13}C$_{\text{diatom}}$ through modification of C_i:Ce, and (3) photosynthetic carbon demand with increases causing a 12C depletion in ambient seawater and so increasing δ^{13}C$_{\text{diatom}}$. Attempts to reconstruct pCO$_2$(aq) have mainly focused on ε_p (the fractionation between diatom bound carbon and CO$_2$(aq)):

$$\varepsilon_p = \left(\frac{\delta^{13}CO_2$(aq) + 1000}{\delta^{13}$C$_{\text{diatom}} + 1000} - 1\right) \cdot 10^3$$ \hspace{1cm} (2)

In turn, δ^{13}CO$_2$(aq) can be calculated from the δ^{13}C of planktonic carbonate (δ^{13}C$_{\text{carbonate}}$), such as a planktonic foraminifera, building on the temperature-dependent fractionation between HCO$_3^-$ and CO$_2$(aq) at a given sea surface temperature (T; Mook et al., 1974; Romanek et al., 1992):

$$\delta^{13}CO_2$(g) = \left(\varepsilon_{\text{calcite}}/\varepsilon_{\text{CO}_2(g)}\right) \cdot \delta^{13}C_{\text{carbonate}}$$ \hspace{1cm} (3)

By targeting marine sediments in which both diatoms and planktonic foraminifera are preserved in the sediment record, δ^{13}C$_{\text{diatom}}$ and δ^{13}C$_{\text{foram}}$ can be combined to obtain absolute values of CO$_2$(aq) in the ambient photic zone waters:

$$\text{CO}_2(aq) = \frac{b}{\varepsilon_f - \varepsilon_p}$$ \hspace{1cm} (7)

where ε_f is the isotopic fractionation during carbon fixation which has been constrained as 25‰ (Bidigare et al., 1997) and b is the combination of physiological factors relating to cell size and growth rate. From this relationship, pCO$_2$(aq) can be calculated using Henry’s law via the solubility coefficient K_H (Weiss, 1970, 1974):

$$pCO_2$(aq) = CO$_2(aq) / K_H$$ \hspace{1cm} (8)

from which differences between pCO$_2$(aq) and pCO$_2$(atm) can be calculated as

$$\Delta pCO_2 = pCO_2$(aq) - pCO$_2$(atm)$$ \hspace{1cm} (9)

In instances where equilibrium exists between the surface ocean and the atmosphere, ΔpCO$_2$ should be zero. Where the two system are not in equilibrium, ΔpCO$_2$ provides insights into the net exchange between the two systems with positive (negative) values of ΔpCO$_2$ indicating the marine system acts a source (sink) of atmospheric CO$_2$.

An advantage in using δ^{13}C$_{\text{diatom}}$ to reconstruct pCO$_2$(aq) is the widespread abundance of well-preserved diatoms in sediments across the globe, particularly in polar regions where carbonates are not readily preserved. However, while clear evidence exists that diatom carbon fixation is linked to CO$_2$(aq) (Popp et al., 1998; Rosenthal et al., 2000), reconstructions of pCO$_2$(aq) require robust estimates of b that accounts for physiological fractionation effects in δ^{13}C$_{\text{diatom}}$ including those related to growth rate and cell size.
Paleoceanography and Paleoclimatology

A number of low-resolution foraminifera δ13C records exist at ODP Site 882 over the INHG (Maslin et al., 1996) and so can be used to monitor the δ13C of the HCO3~ substrate. For the purpose of this study only the planktonic *Globigerina bulloides* record is used due to its tendency to mainly calcify in the uppermost section of the water column at depths similar to the analyzed diatom taxa. For example, data from other available planktonic taxa, including *Neogloboquadrina pachyderma* (right plus left coiling), are not comparable to δ13C_{diatom} due to their scarcity in the sediment record and/or due to their potential to calcify at lower depths outside the photic zone. In an attempt to increase the resolution of the *G. bulloides* record, additional samples were picked where possible and analyzed using an Isoprime Multiprep system attached to a GV Isoprime dual-inlet mass spectrometer as a tracer of δ13C_{diatom} (Heureux & Rickaby, 2015; Stoll et al., 2017).

Other records from ODP Site 882 that are relevant to this study include estimates of sea surface salinity (SSS; δ18O_{diatom}) and sea surface temperature (SST; δ18O_{diatom}; Haug et al., 2005; Swann, 2010; Swann et al., 2006), which were required for calculating δCO₂ in equation (8). Values of pCO₂ were reconstructed following equations (1)–(8) using interpolated values of δ13C_{foram}, SST, and SSS with δ13C_{foram} measurements corrected for their offset from δ13C_{CIC} following Spero and Lea (1996). Estimates of δ were derived using existing opal concentrations data (Haug et al., 1999; Sigman et al., 2004) and calibrations for published in Stoll et al. (2017) for centric taxa. The uncertainty associated with δ and pCO₂ was calculated using Monte Carlo simulations (10,000 replicates) with the Monte Carlo package in R (Leschinski, 2017; R Core Team, 2017), assuming a normal distribution for proxy data uncertainty (SSS = 0.3 practical salinity unit, SST = 1.2 °C) in equations (1)–(8).

3. Results

Analytical reproducibility (1σ) from replicate analysis of sample material was 0.3‰ and <0.1‰ for δ13C_{diatom} and δ13C_{foram}, respectively. Over the analyzed interval through the Pliocene/early Quaternary, values of
δ\(^{13}\)C\(_{\text{diatom}}\) range from −12.9‰ to −20.8‰ (Figure 2, supporting information Table S1). From 2.85 to 2.73 Ma values of δ\(^{13}\)C\(_{\text{diatom}}\) are near constant (mean = −14.1‰, 1σ = 0.6‰). Values of δ\(^{13}\)C\(_{\text{diatom}}\) then decrease for the remainder of the analyzed interval (mean = −18.0‰, 1σ = 2.1‰) in a shift that is concomitant with the marked decline in opal MAR at ODP Site 882. Through the post-iNHG interval significant variability is apparent in the δ\(^{13}\)C\(_{\text{diatom}}\) data with recurrent changes of up to 3–4‰ that do not coincide with further changes in opal MAR. Values of δ\(^{13}\)C\(_{\text{foram}}\) typically range from −0.46‰ to −0.95‰ with a shift to marginally higher values after the iNHG (Figure 2). Despite efforts to increase the resolution of the δ\(^{13}\)C\(_{\text{foram}}\) record, the number of data points declines after 2.73 Ma with sediments largely free of carbonate microfossils (Figure 2).

Values of ε\(_{\text{p}}\) are at or below 5 until 2.73 Ma before increasing to >5 and a mean of 8 (Figure 3). Reconstructed p\(\text{CO}_2\)\(_{\text{aq}}\) at ODP Site 882 typically range from ~225 to 250 ppm with a peak value of 314 ppm at 2.81 Ma, a low of 192 ppm at 2.58 Ma, and mean uncertainties of 39.5 ppm (1σ; Figure 3 and supporting information Table S1). From 2.85 to 2.73 Ma p\(\text{CO}_2\)\(_{\text{aq}}\) displays a long-term decline from ~280 to ~230 ppm (x = 247 ppm; 1σ = 25 ppm). Thereafter, from 2.71 to 2.55 Ma, p\(\text{CO}_2\)\(_{\text{aq}}\) show a marked increase in variability with fluctuation of 20–60 ppm over the interval (x = 225 ppm; 1σ = 28 ppm).
Figure 3. Temporal changes in carbon dynamics at ODP Site 882. Values of δ^{13}C$_{\text{diatom}}$, ε_p, b and pCO$_2$(aq) are compared to pCO$_2$(atm) (Martinez-Boti et al., 2015) and used to calculate ΔpCO$_2$. Shaded polygons for b, pCO$_2$(aq), pCO$_2$(atm) and ΔpCO$_2$ reflect the 1σ uncertainty derived from Monte Carlo simulations. Changes in opal concentrations (Haug et al., 1999; Sigman et al., 2004) and rates of Si(OH)$_4$ utilization (Swann et al., 2016) provide information on the biological pump and the export of carbon into the ocean interior. Orange dashed line denotes transition from unstratified to stratified water column at 2.73 Ma with gray (white) shading reflecting glacial (interglacial) intervals.
4. Discussion

4.1. Changes in Photic Zone pCO_2 (aq)

High values of δ^{30}Si$_{diatom}$ and opal MAR from 2.85 to 2.73 Ma indicate significant upwelling of nutrient-rich subsurface waters, which resulted in a productive water column marked by high rates of silicic acid [Si(OH)$_4$]$_2$ utilization (Bailey et al., 2011; Haug et al., 1999; Reynolds et al., 2008; Sigman et al., 2004; Swann et al., 2016; Figure 3). This situation contrasts with the post-2.73 Ma interval when the development of a halocline ceased significant upwelling and associated reductions in Si(OH)$_4$ utilization and siliceous productivity (Haug et al., 1999, 2005; Reynolds et al., 2008; Sigman et al., 2004; Swann et al., 2006, 2016; Figure 3). The presence of lower pCO_2 (aq) after 2.73 Ma is consistent with these paleoceanographic changes, namely, a reduction in deeper CO$_2$-rich waters reaching the photic zone under conditions of enhanced near-surface stratification. On this basis, the increased variability of pCO_2 (aq) after 2.73 Ma may reflect changes in the strength of this stratification, an event which might impact the advection of carbon and nutrient-rich deep water supply to the photic zone and so rates of Si(OH)$_4$ utilization. However, before and after the establishment of the halocline at 2.73 Ma, changes in pCO_2 (aq) show no relationship to rates of Si(OH)$_4$ utilization, SSS or SST (Figure 3).

4.2. Implications for Ocean Ventilation Over the iNHG

To establish whether changes in subarctic Pacific pCO_2 (aq) resulted in the region acting as a net sink or source of CO$_2$, comparisons are needed to estimates of global pCO_2 (atm). A number of modeled and proxy-based records have been published in recent years, but here we focus our comparisons on a recent multi-site δ^{11}B record, which is the highest-resolution record to date and displays a decline in pCO_2 (atm) of 40–90 ppm through the late Pliocene/early Pleistocene interval (Martinez-Boti et al., 2015). Calculation of ΔpCO_2 (equation (9)) between all $\delta^{13}C_{diatom}$ derived pCO_2 (aq) at ODP Site 882 and interpolated pCO_2 (atm) reveals considerate variation over the analyzed interval (Figure 3). The mean age difference between the interpolated and original pCO_2 (atm) data is 4.3 ka ($1\sigma = 3.7$ ka). With the exception of one sample at 2.81 Ma, values of ΔpCO_2 are negative throughout the analyzed interval ($x^- = -68$ ppm; $1\sigma = 43$ ppm). While ΔpCO_2 is lower after the development of the halocline at 2.73 Ma (pre-2.73 Ma: $x^- = -61$ ppm; $1\sigma = 40$ ppm; post-2.73 Ma: $x^- = -78$ ppm; $1\sigma = 47$ ppm), consistent with reduced upwelling of deep waters to the photic zone, this change is not significant ($p = 0.2$). The lack of a systematic shift in mean ΔpCO_2 values after 2.73 Ma can be attributed to the large variations in both pCO_2 (aq) and ΔpCO_2 post-iNHG. More significantly, the results cast doubt on the notion that changes in the regional carbon dynamics in the subarctic Pacific Ocean played a key role in driving the iNHG. Although there is considerable variability in estimates of late Pliocene pCO_2 (atm) both within and between individual studies (e.g., Badger et al., 2013; Bartoli et al., 2011; Martinez-Boti et al., 2015; Pagani et al., 2010; Seki et al., 2010; Stap et al., 2016; van de Wal et al., 2011; Willeit et al., 2015) in all cases reconstructed values of pCO_2 (atm) remain above typical values of pCO_2 (aq) at ODP Site 882. Values of ΔpCO_2 at ODP Site 882 remains predominantly negative even when considering the Monte Carlo-derived uncertainties for both pCO_2 (aq) and pCO_2 (atm) (Figure 3).

Consistently low values of ΔpCO_2 from 2.85 to 2.73 Ma suggest that the mixed water column that prevailed in the Pliocene prior to stratification did not release significant volumes of CO$_2$ to the atmosphere and so did not help maintain the warm Pliocene climate state. This interval in the ODP Site 882 record is marked by exceptional high opal high concentrations of circa 60–75% (~2.2–3.2 g cm$^{-2}$ ka$^{-1}$; Haug et al., 1999) and rates of Si(OH)$_4$ utilization (Swann et al., 2016; Figure 3). Consequently, although the mixed water column in this interval would have led to increased delivery of carbon rich waters to the surface, the negative values of ΔpCO_2 suggest that the associated flux of nutrients to the photic zone enabled a highly efficient biological pump that prevented carbon release from the ocean to the atmosphere (Figure 3, 4a). We note, however, that this scenario is not supported by comparisons to the modern day where regions of strong upwelling and high diatom productivity/export remain net sources of CO$_2$ to the atmosphere (Takahashi et al., 2009, 2016). The uncertainties in using $\delta^{13}C_{diatom}$ to reconstruct pCO_2 (aq) are discussed in section 4.3. While these indicate the issues in quantifying pCO_2 (aq) and ΔpCO_2 from $\delta^{13}C_{diatom}$, thereby potentially explaining the anomalous negative values of ΔpCO_2 at ODP Site 882, the underlying trends in pCO_2 (aq) and ΔpCO_2 can be used to understand regional late Pliocene/early Quaternary carbon dynamics in the subarctic Pacific. Although the development of the halocline at 2.73 Ma lowered pCO_2 (aq) in line with reduced deep water upwelling, the...
absence of a bigger decline in \(p\text{CO}_2(\text{aq}) \) as well as \(\Delta p\text{CO}_2 \) is unexpected. After 2.73 Ma, opal concentration fall to ~20–33% (~0.5–1.0 g·cm\(^{-2}\)·ka\(^{-1}\); Haug et al., 1999; Sigman et al., 2004) with corresponding declines in silicic acid utilization (Swann et al., 2016; Figure 3). We argue that a decline in Si(OH)\(_4\) utilization and the efficiency of biological export of carbon balanced out the reduced rate at which deep water carbon was advected to the photic zone, preventing a major decline in \(p\text{CO}_2(\text{aq}) \) or the net flux of CO\(_2\) across the ocean-atmosphere interface (\(\Delta p\text{CO}_2 \); Figure 4b).

A number of models have indicated that a decline in \(p\text{CO}_2(\text{atm}) \) is critical for the development of large Northern Hemisphere ice sheets (e.g., Lunt et al., 2008). With evidence presented here that carbon dynamics and \(\Delta p\text{CO}_2 \) did not significantly change in the subarctic North Pacific Ocean over the iNHG, the focus shifts to the Southern Ocean which plays a key role in regulating the ~100 ppm variations in \(p\text{CO}_2(\text{atm}) \) over Pleistocene glacial-interglacial cycles (Sigman et al., 2010). Evidence for changes in Antarctic ice sheet extent together with variations in Southern Ocean sea ice and stratification through the Pliocene and oNHG (Hillenbrand & Cortese, 2006; Hodell & Venz-Curtis, 2006; McKay et al., 2012; Naish et al., 2009; Waddell et al., 2009) could have enhanced the ability of the Southern Ocean to act as a sink of atmospheric \(p\text{CO}_2(\text{atm}) \) through mechanisms that are analogous to those that occur in the Pleistocene (see Sigman et al., 2010). These processes could have been strengthened by increased eolian iron deposition in the Southern Ocean over this interval, which would have increased the efficiency of the biological pump and the sequestration of carbon into the ocean interior (Martínez-Garcia et al., 2011).

4.3. Uncertainties With \(\delta^{13}\text{C}_{\text{diatom}} \)

Despite measurements of \(\delta^{13}\text{C}_{\text{diatom}} \) having been used in palaeoenvironmental reconstructions for over a decade to examine changes in photosynthetic carbon demand/productivity, its use to reconstruct \(p\text{CO}_2(\text{aq}) \) is relatively novel. Consequently, a discussion of the potential errors/limitations with \(\delta^{13}\text{C}_{\text{diatom}} \) is appropriate to place the reconstructions of \(p\text{CO}_2(\text{aq}) \) at ODP Site 882 into a wider context.

4.3.1. Diatom Carbon Uptake

In contrast to foraminifera formed via the precipitation of HCO\(_3^-\), diatoms uptake carbon from both HCO\(_3^-\) and CO\(_2(\text{aq})\) through carbon concentrating mechanisms (CCM) that catalyze carbon fixation (Tortell et al., 1997). Such processes primarily involve either an active, direct, transportation of HCO\(_3^-\) and CO\(_2(\text{aq})\) into the cell or an indirect HCO\(_3^-\) uptake in which an extracellular carbonic anhydrase dehydrates HCO\(_3^-\) to CO\(_2\) (Badger, 2003; Sültemeyer et al., 1993). In addition to these C\(_3\) photosynthetic pathways, an indirect C\(_4\) pathway has also been identified in which HCO\(_3^-\) is...
converted to malic or aspartic acid and then to CO$_2$ by decarboxylation (Reinfelder et al., 2000, 2004; Roberts et al., 2007).

Results from the Bering Sea, North Pacific, Equatorial Pacific, and Southern Oceans show that significant, but variable, amounts of diatom carbon originates from HCO$_3^-$ with the majority of this occurring via direct transportation (Cassar et al., 2004; Martin & Tortell, 2006; Tortell et al., 2006, 2008, 2010; Tortell & Morel, 2002). Although HCO$_3^-$:CO$_2$(aq) uptake ratios may vary with large changes in pH (Trimborn et al., 2008) and interspecies variations in cell morphologies (Martin & Tortell, 2008), others have shown that this ratio does not change with pCO$_2$(aq). Fe availability, growth rates, primary productivity, or frustule area:volume ratios (Cassar et al., 2004; Martin & Tortell, 2006; Tortell et al., 2006, 2008). The results presented here from ODP Site 882 do not account for any isotopic offset that may arise over the usage of HCO$_3^-$ over CO$_2$ or the potential for active carbon uptake to alter ε_p (Burkhardt et al., 2001). For example, increases in pCO$_2$(aq) have been shown to downregulate CCM (Hennen et al., 2015), introducing a nonlinear relationship between ε_p and $\delta^{13}C_{\text{diatom}}$ which impacts the ability to accurately reconstruct changes in pCO$_2$(aq) (Laws et al., 2002; Raven et al., 2011). Although these issues may impact the absolute values of reconstructed pCO$_2$(aq), we feel confident given the points made above that changes in HCO$_3^-$:CO$_2$ uptake ratios and transportation mechanism have not significantly altered over the analyzed interval or impacted the underlying trends in pCO$_2$(aq) and our assertion that the development of the halocline did not fundamentally alter regional carbon dynamics across the iNHG. For example, attempts to reconstruct pCO$_2$(aq) over the last 14 Ma using models that accounts for diffusive and active uptake of CO$_2$ by CCM results in different absolute values of pCO$_2$(aq) but similar temporal trends (Mejía et al., 2017).

4.3.2. Physiological Factors

Physiological controls on the diffusion and fractionation of carbon into diatom, summarized by the term b (equation (7)), may change and alter $\delta^{13}C_{\text{diatom}}$ in response to different forms of RubisCO, amino acids, growth rates, cell morphology, and CCM (Cassar et al., 2006; Laws et al., 1995, 2002; Rau et al., 1996, 1997, 2001; Rosenthal et al., 2000; Scott et al., 2007), which in turn are potentially linked to evidence of a possible interspecies isotope vital effects in fossil measurements of $\delta^{13}C_{\text{diatom}}$ (Jacot des Combes et al., 2008).

Within the context of this study the impact of isotope vital effects, other symbiont/physiological processes such as diatom cell size, geometry as well as the aforementioned HCO$_3^-$:CO$_2$ uptake process (Jacot des Combes et al., 2008; Laws et al., 1995, 1997; Martin & Tortell, 2008; Popp et al., 1998) can be partially circumvented by the use of a single size fraction of diatoms, dominated by only two taxa (supporting information Table S1). This point is emphasized from 2.85 to 2.73 Ma when analyzed samples are dominated by *C. marginatus* (>90% relative abundance) and high nutrient concentrations would have created near-steady photic zone growth rates. While declines in $\delta^{13}C_{\text{diatom}}$ and b as well as increases in ε_p coincide at 2.73 Ma with a change from *C. marginatus* to *C. radiatus* dominance in the analyzed samples, we attribute this change to the development of the regional halocline, with concordant changes in SST, SSS, and opal concentrations, rather than an interspecies vital effect process (Figures 2 and 3). While modern samples/culture experiments are needed to fully confirm the absence of an interspecies vital effect, we note that values of $\delta^{13}C_{\text{diatom}}$ both before ($R^2 = 0.01$) and after 2.73 Ma ($R^2 = –0.12$) are not related to the relative abundance of either *C. marginatus* or *C. radiatus* despite notable variation in the populations of both taxa in each interval (supporting information Table S1). Finally, to fully account for physiological processes and reconstruct pCO$_2$ from $\delta^{13}C_{\text{diatom}}$, accurate estimates of b are required. Some previous studies have primarily based pCO$_2$ reconstructions from diatoms on growth rates (μ; e.g., Heureux & Rickaby, 2015; Rosenthal et al., 2000). Here we elect to directly constrain b based on the results of a Southern Ocean core-top study between the Polar Front and Southern Antarctic Circumpolar Current Front (Stoll et al., 2017). Despite calibrations being statistically significant, the standard error associated with this calibration results in a large uncertainty with the estimates of b used in this study ($1\sigma = 32.3 \pm 0.5$). This, in turn, is the main source of the uncertainty derived in the Monte Carlo simulations for pCO$_2$(aq) (Figure 3). It also remains unknown to what extent the Southern Ocean calibration of b can be directly applied elsewhere in the global ocean, to different taxa and/or through the geological record (Stoll et al., 2017), although these calibrations have been used on samples back to the Miocene (Mejía et al., 2017).
4.3.3. Underestimation of $\text{pCO}_2(\text{aq})$

In addition to the discussion above, we note that the reconstructed values of $\text{pCO}_2(\text{aq})$ (173–288 ppm) are considerably lower than modern values of $\text{pCO}_2(\text{aq})$ (331–408 µatm) from 50°–50.5°N and 167°–168°E that have been collected over the past two decades in different seasons (Takahashi et al., 2016). The low values are also reflected in the reconstructed values of ΔpCO_2 over the analyzed interval (+15 to −145 ppm; $x' = −68$ ppm; $1\sigma = 43$ ppm). In contrast, modern monthly ΔpCO_2 from the region range from −50 to +44 µatm (Takahashi et al., 2009) with mean annual preindustrial ΔpCO_2 + 3 ppm ($\text{pCO}_2(\text{aq}) = −280$ ppm; $\text{CO}_2(\text{atm}) = −277$; Japan Agency for Marine-Earth Science and Technology; Atmospheric and Ocean Research Institute; Centre for Climate System Research-National Institute for Environmental Studies, 2013).

Although comparing modern and palaeo-estimates of $\text{pCO}_2(\text{aq})$ and ΔpCO_2 is problematic given the storage of anthropogenic carbon and warming SST in the modern marine system, these lines of evidences suggest that our $\delta^{13}\text{C}_{\text{diatom}}$ reconstruction might underestimate the true values of $\text{pCO}_2(\text{aq})$ and ΔpCO_2 at ODP Site 882 through the late Pliocene/early Quaternary. While part of this underestimation may relate to differences in $\text{pCO}_2(\text{aq})$ seasonality before/after the development of the halocline, the impact of this is likely to be less than the Monte Carlo inferred uncertainty of the $\text{pCO}_2(\text{aq})$ reconstruction (mean uncertainty = 39.5 ppm; see Supplementary Table 1). Given the limited work conducted to date on diatom and its identification above as the main source of uncertainty in reconstructing $\text{pCO}_2(\text{aq})$ in this study, we suggest that further calibrations of this parameter are needed outside of the Southern Ocean and involving a greater range of taxa. Notwithstanding this issue, based on current knowledge we remain confident in the overall trend and magnitude of change in our reconstructed record of $\text{pCO}_2(\text{aq})$ and ΔpCO_2. As such, we reiterate our main finding that the development of the halocline in the subarctic northwest Pacific Ocean at 2.73 Ma did not lead to a major change in regional marine-atmospheric fluxes of CO2 and that therefore carbon dynamics in the region did not play a major role in aiding the inNHG.

5. Conclusions

Understanding the potential sources and sinks of atmospheric CO2 that helped regulate the global climate through the late Pliocene is of critical importance given the interval’s potential to act as an analog for a warmer climate state in the 21st century and beyond. New results based on $\delta^{13}\text{C}_{\text{diatom}}$ from ODP Site 882 in the northwest subarctic Pacific Ocean show that regional ocean atmospheric exchanges of CO2 did not fundamental alter over the inNHG. This occurred despite a reduction in the upwelling of high-$\text{pCO}_2(\text{aq})$ deep waters at 2.73 Ma that were balanced by a corresponding reduction in carbon export by a less efficient biological pump. While uncertainties exist in using $\delta^{13}\text{C}_{\text{diatom}}$ to reconstruct $\text{pCO}_2(\text{aq})$ and ΔpCO_2 highlighting the need for more modern calibrations in particular for the term b, the results suggest that any decline in $\text{pCO}_2(\text{atm})$ through the late Pliocene and early Quaternary was not driven by changes in the northwest subarctic Pacific Ocean.

References

Badger, M. (2003). The roles of carbonic anhydrases in photosynthetic CO2 concentrating mechanisms. _Photosynthesis Research_, 77(2/3), 83–94. https://doi.org/10.1023/A:10258217171773 Badger, M. P. S., Schmidt, D. N., Mackensen, A., & Pancost, R. D. (2013). High-resolution alkenone palaeobarometry indicates relatively stable CO2 fluxes of CO2 and that therefore carbon dynamics in the region did not play a major role in aiding the inNHG. This occurred despite a reduction in the upwelling of high-$\text{pCO}_2(\text{aq})$ deep waters at 2.73 Ma that were balanced by a corresponding reduction in carbon export by a less efficient biological pump. While uncertainties exist in using $\delta^{13}\text{C}_{\text{diatom}}$ to reconstruct $\text{pCO}_2(\text{aq})$ and ΔpCO_2 highlighting the need for more modern calibrations in particular for the term b, the results suggest that any decline in $\text{pCO}_2(\text{atm})$ through the late Pliocene and early Quaternary was not driven by changes in the northwest subarctic Pacific Ocean.

5. Conclusions

Understanding the potential sources and sinks of atmospheric CO2 that helped regulate the global climate through the late Pliocene is of critical importance given the interval’s potential to act as an analog for a warmer climate state in the 21st century and beyond. New results based on $\delta^{13}\text{C}_{\text{diatom}}$ from ODP Site 882 in the northwest subarctic Pacific Ocean show that regional ocean atmospheric exchanges of CO2 did not fundamental alter over the inNHG. This occurred despite a reduction in the upwelling of high-$\text{pCO}_2(\text{aq})$ deep waters at 2.73 Ma that were balanced by a corresponding reduction in carbon export by a less efficient biological pump. While uncertainties exist in using $\delta^{13}\text{C}_{\text{diatom}}$ to reconstruct $\text{pCO}_2(\text{aq})$ and ΔpCO_2 highlighting the need for more modern calibrations in particular for the term b, the results suggest that any decline in $\text{pCO}_2(\text{atm})$ through the late Pliocene and early Quaternary was not driven by changes in the northwest subarctic Pacific Ocean.

10.1029/2017PA003296

10.1029/2006PA001347

https://doi.org/10.1111/j.1600-0739.1996.tb01776.x

https://doi.org/10.1039/B401028K

http://dx.doi.org/10.1029/2005PA001147

https://doi.org/10.1029/2016PA002978

https://doi.org/10.1111/j.1529-8817.2010.00839.x

https://doi.org/10.4319/lo.2006.51.5.2102

https://doi.org/10.1029/2008PA001661

https://doi.org/10.1029/2006PA001347