Buddha Pushkar Revisited: Technological variability in Late Palaeolithic stone tools at the Thar Desert margin, India

James Blinkhorna,b

a Department of Geography, Royal Holloway, University of London, Egham, Surrey, U.K.

b Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany

Corresponding Author – J. Blinkhorn (\texttt{james.blinkhorn@rhul.ac.uk})
Abstract:

The terminology used to describe Palaeolithic industries has an important impact upon our interpretation of past behaviour. In South Asia, the term Late Palaeolithic is employed to refer to Late Pleistocene microlithic industries, distinguishing them chronologically from Holocene Mesolithic industries, and technologically from preceding Middle Palaeolithic technologies. Historically, however, an intermediate technological stage between Middle Palaeolithic and microlithic industries has been recognised and called ‘Upper’ Palaeolithic. Examining whether these ‘Upper’ Palaeolithic industries fit contemporary definitions of Middle or Late Palaeolithic technologies, distinct diversity within one of these technologies or a transitional phase between the two is therefore necessary to reintegrate these ‘Upper’ Palaeolithic sites into current debate. This is a particularly timely issue as the connection between some Late Palaeolithic artefact types, particularly backed microliths, and the earliest modern human populations in South Asia no longer appears tenable, and thus a rush to identify the earliest appearance of microliths must give way to more detailed examinations of behavioural variability. This paper re-examines lithic assemblages from Buddha Pushkar, western India, originally reported as an ‘Upper’ Palaeolithic industry. An attribute study of metric and categorical variables recorded on stone tools is used to examine how flaking technology, raw material use and reduction intensity vary within and between these assemblages. The results indicate raw material choices had a marked impact on stone tool technologies, nested within a pattern of technological diversity in western India during the terminal Pleistocene that complement models of regional trajectories in the evolution of Late Palaeolithic technologies.

Key Words: Late Palaeolithic; South Asia; Thar Desert; lithic technology; MIS 2
1) Introduction:

Late Palaeolithic stone tool industries in South Asia comprise a widespread and enduring adaptation to the region’s mosaic of habitats, that spans desert to savannah scrub, and from broad alluvial plains to tropical rainforest (Figure 1). These broadly comprise Upper Pleistocene lithic industries focused upon the production of small flakes and blades, often referred to as microliths, that are retouched in diverse ways and particularly as preparation for hafting in composite tools. Late Palaeolithic stone tool technologies begin to appear in the archaeological record from ~45 thousand years ago (ka) in South Asia (Basak et al., 2014; Mishra et al., 2013) and remain in use by hunter-gatherer populations for much of the Holocene, when they are referred to as Mesolithic industries. Non-lithic forms of material culture, such as beads, bone/antler tools and burials, first appear in the archaeological record of South Asia accompanying these Late Palaeolithic lithic industries (Clarkson et al., 2009; Deraniyagala, 1992; Perera et al., 2011; Sali, 1989). This broadly coincides with evidence for increases in population sizes in the region (Atkinson et al., 2007; Petraglia et al., 2009), and the change from more stable, warm and humid climates of early Marine Isotope Stage (MIS) 3 to higher levels of flux in the latter phases of this stage (Blinkhorn & Petraglia, 2017).

In recent debate, the associations between modern humans and Late Palaeolithic toolkits has led them to have been identified as potentially the earliest evidence for modern human colonisation of the region (e.g. Mellars et al., 2013; Mishra et al., 2013). This has resulted in increased emphasis on the appearance of specific artefact forms, such as backed crescents, and typological homogeneity amongst Late Palaeolithic industries in contrast to preceding Middle Palaeolithic assemblages, but without clear comparative studies. The single, late dispersal from Africa across Asia after 60ka that underlies such assertions can no longer be reconciled with a growing body of inter-regional and interdisciplinary evidence for earlier expansions (Bae et al., 2017). Rather, wider patterns in Late Pleistocene hominin demography in Asia are consistent with an alternate appraisal of cultural change in South Asia, which identify the gradual development of Late Palaeolithic technologies from earlier Middle Palaeolithic tool kits (see Blinkhorn & Petraglia, 2017). While the appearance of Late Palaeolithic industries in South Asia may no longer point to the earliest expansions of modern humans from Africa, their fluorescence within the region attests to adaptations to the Indian subcontinents unique mosaic of ecologies and establishment of behavioural trajectories that extend into the Holocene that are an important focus of study in their own right.

The history of research into South Asian Late Palaeolithic industries is heavily influenced by changing trends in Palaeolithic systematics and nomenclature, with those industries discussed here as Late Palaeolithic (following James & Petraglia, 2005) having previously been referred to by many different names. Following the diversification of named Palaeolithic industries in South Asia during the first half of the 20th century, Sankalia (1964) introduced the use of an African naming system, differentiating Early, Middle and Later Stone
Age stone tool assemblages, with the latter corresponding to assemblages referred to today as Late Palaeolithic and Mesolithic. During the 1970's, in the context of debate regarding the origins of modern humans, V. N. Misra (in Agrawal and Ghosh, 1973) proposed the use of European Palaeolithic nomenclature. In particular, he suggested that a discrete Upper Palaeolithic industry analogous to the burgeoning record of western Europe should be apparent in South Asia, corresponding with the appearance of Homo sapiens. Many Upper Palaeolithic sites have been reported (e.g. Murty, 1979), but from the late 1980's onwards it has become increasing apparent that these South Asian industries do not parallel developments in Europe. Rather, sites such as Patne (Sali, 1989) illustrate that Middle Palaeolithic industries are followed directly by those focusing on microlith production, without a discrete, intermediary stage. Numerous recent discoveries support the Late Pleistocene antiquity of microlithic industries (Basak et al., 2014; Clarkson et al., 2009; Mishra et al., 2013; Roberts et al., 2015), which directly follow Middle Palaeolithic industries (Clarkson et al., 2012; 2017; Petraglia et al., 2012). Comparability between Late Pleistocene and Holocene microlithic technologies suggests the division of Late Palaeolithic and Mesolithic represents chronological, rather than technological differences.

The result of this history of research is a number ‘Upper’ Palaeolithic assemblages offer key insight into patterns of cultural change across South Asia's diverse regions that may not neatly fit within contemporary Palaeolithic systematics. This is particularly pertinent for understanding the nature of transition between Middle and Late Palaeolithic technologies, which ‘Upper’ Palaeolithic assemblages once bridged. New appraisal of ‘Upper’ Palaeolithic assemblages may therefore help inform debate regarding the factors that promoted technological innovations and the nature of the appearance of new forms of stone tool production. Recent studies have appraised Late Palaeolithic assemblages from Sri Lanka (Lewis, 2015; Roberts et al., 2016), south India (Clarkson et al., 2012), central India (James, 2011; Mishra et al., 2013), northern India (Clarkson et al., 2017), and eastern India (Basak et al., 2014; Basak and Srivastava 2017). The overarching aim of this study is to re-evaluate the key ‘Upper’ Palaeolithic locality from western India, Buddha Pushkar, to offer a new, technological appraisal of behavioural diversity in this region, and establish its place in contemporary understanding of Late Pleistocene cultural change in South Asia.

2) Background

Prior to the recognition of the widespread Late Pleistocene antiquity of microlithic technologies (i.e. Late Palaeolithic), Misra (2001) indicated that although ‘Upper’ Palaeolithic evidence is well documented in the northern Vindhyan range (Jayswal, 1989; Sharma, 1980; Sharma and Clark, 1983), the Chota Nagpur Plateau (Ghosh, 1970), upland Maharashtra (Sali, 1989), Orissa and the Eastern Ghats (Murty, 1968; 1981; Nanda, 1984; Raju, 1988), few sites are known in western India. Such scarcity confirmed expectations that the Upper Palaeolithic timeframe matched with a period of arid climates and sparse vegetation over the Last Glacial Maximum in this region. This scarcity of ‘Upper’ Palaeolithic sites has been further
exacerbated as the only excavated ‘Upper’ Palaeolithic assemblage reported from western India, 16R Dune, is best described as Middle Palaeolithic and is more securely dated to 40-80ka, rather than 26ka (Blinkhorn, 2013). Except for rare Late Palaeolithic artefacts noted to occur at Katoati dating to ~21ka (Blinkhorn et al. 2015a), western India lacks Late or ‘Upper’ Palaeolithic assemblages dating to the Late Pleistocene.

Between 1969 and 1976 an international and interdisciplinary expedition in the Thar Desert of western India and south-eastern Pakistan aimed to investigate patterns of human behaviour in these more arid landscapes during phases of significantly different environmental conditions. The team comprised Bridget Allchin, an archaeologist from the University of Cambridge, Andrew Goudie, a physical geographer from the University of Oxford, and Karunakara Hegde, a chemist turned archaeologist from the Maharaja Sayajirao University (MSU), Baroda. This ambitious project integrated archaeological reconnaissance across a huge region into a scheme of geomorphological and palaeoenvironmental change, before the widespread application of chronometric dating (Allchin et al 1978), with a number of their conclusions borne out by more recent studies across the region. Here, focus is placed on the sites reported from the Pushkar Valley, which were a focal point of research in the 1970’s because “it is so exceptionally rich in both archaeological and geomorphic evidence” (Allchin et al. 1978: 114). Critically, large collections of artefacts from Buddha Pushkar are preserved in the Department of Archaeology and Ancient History, MSU Baroda, enabling new analyses from a rare example of an Upper Palaeolithic site in western India. Below, details of the geographic and palaeoenvironmental setting, and archaeological context of the sites are set out.

2.1) Regional Geography and Palaeoenvironments

A number of significant geographic, climatic and ecological boundaries appear to occur within close proximity to the Thar Desert. Subduction of the Indian tectonic plate under the Eurasian plate and the resulting orogeny marks the western extent of the Thar Desert with dramatic increase in relief in contrast to the regions low lying, alluvial plains. The eastern extent is similarly bounded by the Aravalli Range, the subcontinent’s oldest mountain chain which marks the main watershed between the south flowing drainages now dominated by the Indus to the west, and the east flowing drainages that dominate central India and feed into the Ganges. A distinct geological boundary is also evident as a result of the region’s tectonic history, with different suites of geological resources present on either side of the Thar Desert. The Indian Summer Monsoon (ISM) is the dominant climatic feature of the Indian subcontinent and a sharp longitudinal gradient of precipitation is present at the eastern edge of the Thar. Dramatic differences in ecology that have resulted from the distinct climatic conditions have led to a major divide in biogeography, between the Saharo-Arabian and Oriental zones, broadly corresponding to the location of the Thar Desert (Holt et al., 2013). As a result of these major overlapping changes in geography, the margins of the Thar Desert are significant locations to examine patterns of past behavioural adaptation.
The significance of the Thar Desert to understanding Palaeolithic behaviour is amplified by the high levels of palaeoenvironmental dynamism evident in the region, such as through the presence of sand dunes far beyond the modern arid zone (Allchin et al., 1978). Patterns of palaeoenvironmental change in the region are intimately tied to the waxing and waning intensity of the ISM, which is itself controlled by orbital scale influences on patterns of polar glaciation, insolation and trans-equatorial atmospheric and ocean currents. Focusing upon the latter half of the Upper Pleistocene, a period of enhanced humidity is evident between 60-40ka in off-shore climate archives (e.g. Clemens & Prell, 2003), which is attested to by the presence of widespread fluvial activity in the regional terrestrial records (Andrews et al., 1998; Chawla et al., 1992; Dhir et al., 2010; Singhvi et al., 2010). After 40ka, fluvial deposition becomes more limited or replaced by pedogenesis of overbank deposits towards the south, whereas in the north aeolian deposition becomes more commonplace (Jain et al., 2005; Juyal et al., 2006), commensurate with decreased ISM intensity evident in off-shore records. During the first half of MIS 2 fluvial deposition is replaced by dune formations well beyond the modern limits of the arid zone, whereas significant palaeoenvironmental flux between fluvial and aeolian depositional regimes is evident after the LGM (Jain et al., 2005; Juyal et al., 2006).

Although similar patterns in palaeoenvironmental change are echoed across the Indian subcontinent, the extremes between humidity and aridity are most pronounced in the margins of the Thar Desert, making it an important region to evaluate adaptation to palaeoenvironmental variability amongst Palaeolithic populations.

The Pushkar Valley is narrow and steep sided, located on the eastern edge of the Thar Desert in an important pass through the Aravalli Range. As a result, the Pushkar Valley is placed on a key east-west route of migration and communication between western and central India. Outflow from the Pushkar Valley forms one of the upper tributaries of the Luni River, the only major extant fluvial feature present in Rajasthan draining much of the western side of the Aravalli’s. The presence of perennial springs in the valley, leading to the occurrence of fresh water lakes that do not dry up between wet seasons, adds to the significance of the location for prehistoric and later populations alike, and stands in contrast to the salt lakes found elsewhere in the Thar. Beyond water resources (and the floral and faunal populations that they support), the immediate environs of the valley provide a ready supply of geological materials that are suitable for stone tool production, most notably quartzite and quartz. Combined, these factors make the Pushkar Valley a strategic location for Palaeolithic occupation, and although peak aridity could have resulted in depopulation of the region, the resources available make the Pushkar Valley an ideal staging post for recolonization of the Thar Desert with the resumption of more humid conditions.

2.2) Pushkar Valley Sites

During the 1970’s expedition, geomorphological study was undertaken to capture variability throughout the Pushkar valley (Figure 2a), whereas archaeological research concentrated upon a string of small perennial and seasonal lake basins, with particular focus at Buddha...
Pushkar and Hokra. Survey for Palaeolithic sites concentrated on the top of dunes to the south of the lake at Buddha Pushkar, with small quantities of Medieval and Early Historic ceramics located to the north, near to the modern village of Kanas. Sites were labelled A, B, C, D, E, E/F, F, G and H. Primary artefact collection was non-selective, with all lithics recovered from measured squares, supplemented by additional recovery of larger diagnostic artefacts where collections were otherwise dominated by small flaking debris. Although problems with surface assemblages were noted, the broad differences in character between the lithic artefacts from sites A-D and E-G suggested that contamination was limited. A composite stratigraphy that summarises the variability of sediments in the Pushkar Valley and their relationship to the sites has been presented (Figure 2a) (Allchin et al., 1978; Allchin and Goudie, 1974).

In all instances, artefact assemblages were found on top of distinct sediment units, rather than occurring buried within aeolian sediments. Although deflation onto erosion resistant surfaces cannot be ruled out, the absence of buried artefacts makes it more probable that prehistoric populations were occupying sites between rather than during phases of dune formation. Sites A-D were located on the crest of modern sand dunes where it was unbroken by gullying, and unlikely to be contaminated by mixing other than by deflation. Dating of aeolian deposits at Buddha Pushkar B (Figure 2b) suggests a maximum age for these sites of 16±2.5 ka (Singhvi et al., 1994).

Sites E-G were considered to have recently been exposed as a result of increased erosion from the use of motor vehicles on an adjacent trackway and the disintegration of a thin topsoil following a number of years of drought. These sites occur on top of a distinct sediment unit compared to sites A-D, originally referred to as a Rotlhem soil, although subsequent studies have brought this into question, instead supporting the presence of weak calcretised (and therefore alkaline) soil dating between 27-22ka (Singhvi et al., 1994), which offers a maximum age for these assemblages. It is likely that these assemblages were buried by the second phase of dune formation reported by Singhvi and colleagues (1994) commencing ca 16ka. Despite the considerable period of time since the publication of these dates, their relationship with the archaeological assemblages at Buddha Pushkar and broader relevance for debate surrounding cultural change have been overlooked until now. As a result, this study offers the first clear insight into behavioural variability in western India during MIS 2, although excavation and direct dating of stratified assemblages presents a key step to corroborate this tentative chronology.

2.3) Stone Tool Assemblages

Analysis of the stone tool assemblages undertaken by Allchin et al. (1978) was primarily conducted between the two major groups of sites: A-D and E-G. Artefacts were separated from debris and subsequently subject to typological assessment. In total, A-D yielded 1446 stone pieces, of which 672 were categorised by type, and E-G yielded 662 stone pieces, of which 540 were categorised by type (Table SI2.1). The original analysis of artefacts included a
metric assessment of length, width and thickness within major types (but across raw material
groups), and were presented as both average values and overall range of size encountered.

Based upon the typological study, both groups of assemblages were considered blade and
burin industries, with broadly comparable proportions of flake cores, core trimming flakes,
composite points, and scrapers. Noted departure from this includes greater proportions of
blade cores and blades in A-D, and marginally more burins in E-G. Decortification and
primary reduction was argued to have occurred away from the sites.

Two key differences were noted between the assemblages. Firstly, a conspicuous difference
in size between the two groups of assemblages, in spite of overlaps between their overall
size ranges. This difference occurred consistently between artefact classes, as well as
between artefact classes when split by raw material type. Allchin and colleagues (1978) note
variability exists between sites that has likely been obscured by using average values for the
groups of assemblages. Secondly, there is a different pattern of raw material use between
the two assemblage groups, although both focus upon use of quartz and quartzite. All
assemblages were characterised as representing short-term encampments of populations
exploiting the nexus of numerous ecological and geological resources, with artefact size and
raw material use the key function of change through time.

3) Buddha Pushkar Revisited: Materials and Methods

The Buddha Pushkar assemblages have been curated in the Archaeological Museum,
Department of Archaeology and Ancient History, MSU Baroda. A total of 1221 artefacts are
available for study, all but 2 of which were labelled with a site code that identified artefacts
to individual sites or a general collection (Table 1).

<table>
<thead>
<tr>
<th>BP A</th>
<th>BP B</th>
<th>BP C</th>
<th>BP D</th>
<th>BP E</th>
<th>BP E/F</th>
<th>BP F</th>
<th>BP G</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>175</td>
<td>278</td>
<td>172</td>
<td>98</td>
<td>26</td>
<td>67</td>
<td>213</td>
<td>101</td>
</tr>
</tbody>
</table>

Table 1: Count of artefacts in each site assemblage from Buddha Pushkar.

The analysis presented for Buddha Pushkar has remained one of the most detailed for an
‘Upper’ Palaeolithic site in South Asia. Nevertheless, theoretical and methodological
approaches to the study of stone tool assemblages have change significantly since these
sites were first studied, and statistical analyses have become simpler and faster. As a result, a
number of questions left unresolved by Allchin and colleagues (1978), particularly focusing
upon differences at a site, rather than group level, can now be addressed (Table 2).

<table>
<thead>
<tr>
<th>Question</th>
<th>Data Group</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Are size differences between A-D and E-G statistically significant?</td>
<td>All Cores, All Flakes, All Retouched</td>
<td>Gross Size</td>
</tr>
<tr>
<td>2) Are there differences in artefact sizes between sites?</td>
<td>All Cores, All Flakes, All Retouched</td>
<td>Gross Size</td>
</tr>
<tr>
<td>3) Are there differences in Raw Material Use between sites?</td>
<td>All Artefacts</td>
<td>Raw Material Use</td>
</tr>
</tbody>
</table>
4) Are there differences in core, flake and retouched sizes between raw material types?

<table>
<thead>
<tr>
<th>Question</th>
<th>Data Groups</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>4)</td>
<td>All Cores; All Flakes; All Retouched</td>
<td>Gross Size</td>
</tr>
</tbody>
</table>

5) Are there differences in core, flake and retouched sizes of different raw materials between sites?

<table>
<thead>
<tr>
<th>Question</th>
<th>Data Groups</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>5)</td>
<td>All Cores by raw material, All Flakes by raw material, All Retouched by raw material</td>
<td>Gross Size</td>
</tr>
</tbody>
</table>

Table 2: Framework to investigate validity of previous conclusions regarding BP assemblages

As a reductive technology the size and shape of stone tools vary significantly depending on the which stages of flaking processes are preserved, alternate reduction trajectories and the length of tool use (see Tostevin 2012). Attribute based analyses are regularly employed to examine choices made by knappers in the past at different stages of lithic reduction (Scerri 2013; Scerri et al. 2016). These include raw material procurement and primary reduction, core shaping, reduction intensity, control of flaking through platform management, flake production, blank selection and tool production. New analyses of the Buddha Pushkar assemblages are organised around questions to examine variability between these seven phases of reduction trajectories (Table 3). A typological description of the artefacts was made, according to definitions presented in Table S11.1. A range of metric and categorical attributes were recorded for all artefacts, described in Tables S11.2-5, in order to evaluate variability in artefact sizes, reduction intensity and technological choices. Metric attributes were measured using digital scales (to 0.1g) and callipers (to 0.01mm).

<table>
<thead>
<tr>
<th>Question</th>
<th>Data Groups</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>6)</td>
<td>Sites?</td>
<td>Data Groups</td>
</tr>
<tr>
<td>6)</td>
<td>All Cores; All Debitage</td>
<td>Cortex</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question</th>
<th>Data Groups</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>7)</td>
<td>All Cores</td>
<td>Core split by raw material</td>
</tr>
<tr>
<td>8)</td>
<td>Raw Material?</td>
<td>Sites?</td>
</tr>
<tr>
<td>8)</td>
<td>All Cores</td>
<td>Core split by raw material</td>
</tr>
<tr>
<td>9)</td>
<td>All Cores</td>
<td>Core split by raw material</td>
</tr>
</tbody>
</table>
Table 3: Framework to evaluate variability amongst Buddha Pushkar assemblages through different stages of reduction trajectories. Further details of variables analysed are reported in Tables SI2.2-5.

A revised typology will be presented and compared with the artefact inventories presented by Allchin and colleagues (1978) alongside an evaluation of assemblage taphonomy. However, given the nature of collections available for study, and specifically the absence of the fine artefact fraction and lack of systematic recovery by excavation, this is limited to assessing mixing rather than site formation factors. Following this, analyses of artefact attributes are used to address the twelve questions set out in Tables 3 and 4.

Shapiro-Wilks tests indicate non-normal distributions of key continuous variables, whereas sample sizes for site assemblages split by raw material at times fall below n=20. As a result, non-parametric tests that do not make distributional assumptions are used to examine continuous variables. Continuous variables were analysed at a group-wise level using Kruskal-Wallis tests, and where significant differences are identified multiple pairwise Mann-Whitney tests were conducted, with a Benjamini-Hochberg adjustment made to p-values. Categorical variables were analysed using a t-test at group-wise level, although as this assumes a normal distribution, its sole use is problematic where sample sizes are low. As a result, multiple Fishers Exact tests, for which small sample sizes are unproblematic and distributional assumptions are not relevant, with a Benjamini-Hochberg adjustment made to p-values are employed at a pairwise level. P-values of pairwise testing are reported in SI3 where group-wise analysis indicates a significant result (i.e. p<0.05) alongside descriptive statistics where pair-wise differences are significant.

4) Results
4.1) Assemblage Composition

Table SI2.2 presents a comparison of the basic typology of each site as reported by Allchin et al. (1978) and following renewed analysis, indicating some discrepancies. Additional cores were recorded in the present study in all assemblages except for A and E/F, and additional retouched artefacts were reported in B, C, D and E/F. Meanwhile, fewer flakes were reported in all assemblages apart from D. An overall increase in artefacts included in analysis is increased for B, C, D, but decreased for A, E, E/F and G. The increase in artefact counts likely indicates inclusion of items originally reported as ‘Misc. pieces of stone’, partially identifiable through the contribution of Flaked Pieces to the overall assemblage totals. Decreases in artefact counts may have resulted through curation practices. The differing proportions of cores, flakes and retouched pieces may result from the distinct methods of analysis applied, and in the absence of individual artefact numbering, these differences cannot be resolved with any further detail.

Differences also occur in the numbers of artefacts from different raw materials reported (Table SI2.3). While minor differences occur for most siliceous and quartz assemblages, substantial proportions of quartz artefacts are absent from A and E. Greater variability is observed amongst quartzite collections where E, E/F and G are presently missing substantial numbers of quartzite artefacts, whereas B and D have significantly more quartzite artefacts than originally reported. Such additions are also likely to have resulted from analysis or ‘Misc. pieces of stone’ and may be predominately comprised of Flaked Pieces.

Evaluation of macroscopic evidence for artefact surface weathering or arris rounding indicates that the majority of artefacts show little or no evidence of either, and no patterns of statistical difference were observed between sites. A single artefact in F was recorded as highly weathered, with small numbers of medium weathered artefacts in B (n=5), C (n=2) and D (n=3). This supports suggestions made by Allchin and colleagues (1978) that the impact of mixing in the assemblages is limited, and that they had been freshly exposed at the time of collection.

A revised typological description of the Buddha Pushkar assemblages is presented in Table 4. Overall, considerable similarity is shared with the typology presented by Allchin and colleagues (1978), with the addition of nuance within existing categories, rather than any radical departure from the previous evaluation of the assemblages. For instance, small numbers of Levallois cores, Kombewa cores and a point core are recognised amongst the ‘Flake Cores’, alongside single platform, bidirectional and multiplatform cores (Figure 3). While blade cores predominately show a unidirectional reduction scheme, a small number of bidirectional blade cores, and a single multi-directional blade core is recognised (Figure 4). Similarly, the presence of numerous blades, point blanks and core management flakes is corroborated in the debitage collections, along with identification of rare Levallois points (Figure 5). The use of descriptive terminology presented by Inizan and colleagues (1992) has led to a more diverse retouched typology than presented by Allchin and colleagues (1978),
yet a similar combination of burins, retouched blades and the use of diverse retouch strategies to facilitate hafting of small points or bars remains apparent.

<table>
<thead>
<tr>
<th></th>
<th>BP A</th>
<th>BP B</th>
<th>BP C</th>
<th>BP D</th>
<th>BP E</th>
<th>BP E/F</th>
<th>BP F</th>
<th>BP G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unspecified Core</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Single Platform</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Bidirectional Core</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Multi-Platform</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Undirectional Blade Core</td>
<td>0</td>
<td>14</td>
<td>15</td>
<td>11</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>Bidirectional Blade Core</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Multidirectional Blade Core</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Prepared</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Levallois Core</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Point Core</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Core on Flake</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Kombewa Core</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Flake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broken Flake (Siret)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Blade</td>
<td>15</td>
<td>3</td>
<td>29</td>
<td>11</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Broken Blade</td>
<td>3</td>
<td>7</td>
<td>29</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Point</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Levallois Point</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bidirectional Point</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kombewa Flake</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Core Management</td>
<td>1</td>
<td>7</td>
<td>16</td>
<td>6</td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>Bipolar Core Management</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Retouched</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retouched Flake</td>
<td>0</td>
<td>11</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Retouched Blade</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Retouched Levallois Flake</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RT Core Management Flake</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RT Kombewa Flake</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Backed</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Backed Blade</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Backed Point</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Backed Segment</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Triangle</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RT Point</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>RT Burin Point</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Tanged Point</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Nosed Point</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Burin</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Burin on Blade</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Core Toe</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Denticulate</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Notch</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nosed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Shouldered</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tanged</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 4: Typology of artefacts from Buddha Pushkar resulting from new analysis.
4.2) Reassessment of artefact variability between groups A-D and E-G

P-values of pairwise testing are reported in SI3.Q1-Q5 where group-wise analysis indicates a significant result (i.e. p<0.05) alongside descriptive statistics where pair-wise differences are significant.

Q1 - Are size differences between A-D and E-G statistically significant?

Significant size differences occur in length, width, and thickness between cores and flakes, as well as in length for retouched tools, from the Buddha Pushkar assemblages when split into broad groupings of younger (A-D) and older (E-G) sites, with the former consistently smaller than the latter.

Q2 - Are there differences in artefact sizes between sites?

When individual sites are compared for artefact sizes, significant differences occur in artefact sizes occur within the two groups of sites while a lack of significant differences occurs between a number of sites between the two groups. A recurrent trend is that artefacts from A are smaller than those from other sites, whereas artefacts from G are consistently larger than other sites. Size differences between sites B-F are rare, with artefacts from E and E/F occasionally larger than those from C or D.

Q3 - Are there differences in Raw Material Use between sites?

Significant differences in raw material use occur between the majority of sites. Quartz artefacts comprise 89% of those from A, whereas nearly three quarters of artefacts in G are made from quartzite, setting them apart from other sites. The use of rhyolite in D is notable, and while siliceous materials form notable proportions of E/F and F, they are minimal in A, D and G. E/F is also notable for the lowest use of quartz.

Q4 - Are there differences in core, flake and retouched sizes between raw material types?

Analysis of artefact sizes across the entire collection indicates significant artefact size diversity with respect to raw material type. Evidence across core, flake and retouched artefact groups indicates that quartzite artefacts are significantly larger in all three dimensions than both quartz and siliceous artefacts. Although rarer, siliceous artefacts are significantly smaller than quartz artefacts, whereas rhyolite pieces, especially flakes, are larger than quartz and siliceous materials.

Q5 - Are there differences in core, flake and retouched sizes of different raw materials between sites?

Significant size differences are apparent between sites when artefacts are split into raw material types (Figure 6). Quartz cores from A are smaller than all other sites except for B, whereas cores from both quartz and quartzite are larger in G than B-D and E. Quartz and quartzite flakes from G are larger than those across A-D, with limited differences to sites E to
Differences between B-F remain limited, as are differences in retouched artefact sizes. No significant differences in siliceous artefacts were noted between the sites.

Allchin and colleagues (1978) indicated that they observed some notable diversity in artefact sizes within the two groups of sites they proposed, as well as between artefacts of different raw materials. Although this analysis provides statistical support to this assessment, further analyses of lithic assemblages from Buddha Pushkar must evaluate variability between sites, rather than groups of sites, and take into account significant variability relating to raw material use.

4.3) Analysis of reduction trajectories at Buddha Pushkar

P-values of pairwise testing are reported in SI3.Q6-Q12 where group-wise analysis indicates a significant result (i.e. p<0.05) alongside descriptive statistics where pair-wise differences are significant.

Q6) Are there differences in procurement/primary reduction practices?

Differences in the preservation of cortex are only apparent with respect to raw material use. Quartzite artefacts preserve more cortex than quartz artefacts, and both preserve less cortex than siliceous artefact. A single pairwise difference in cortex preservation is identified when artefacts are split by raw material type, indicating that quartzite debitage from D preserves significantly more cortex than in C.

Q7) Are there differences in core shaping practices?

Core shape dimensions between raw materials reflect patterns observed in gross artefact sizes, with quartzite cores larger than both quartz and siliceous cores across all attributes, as well as quartz cores appearing significantly larger in one of five dimensions compared to siliceous cores. Blade cores show significantly higher proportions of unidirectional flaking schemes compared to higher multidirectional flaking of flake cores, with broadly comparable levels of bidirectional flaking. Quartz cores from G are larger than those from A and B in four and three dimensions respectively, with single dimension differences between (larger) C and F compared to (smaller) A.

Flake scar directionality varies significantly between sites, indicating that multidirectional flaking was more prevalent in G compared to A, B and C, where unidirectional flaking was dominant, with the same pattern evident between D and A. In addition, a higher proportion of cores from A indicate multidirectional flaking compared to flakes, suggesting multidirectional flaking became more prominent at the end of core reduction sequences at this site.

Q8) Are there differences in the extent of core reduction?
Quartzite cores preserve significantly more scars than either quartz or siliceous cores, as well as more aberrant terminations than quartz cores. No cores from A preserved scars larger than 15mm, precluding them from pairwise comparisons by site. The only significant difference in scar count between sites indicates quartz cores from G are more heavily flaked than those from B, with no other significant relationship for scar, core rotation or aberrant termination counts evident across quartz, quartzite or siliceous cores between sites. Blade cores have more scars than flake cores as well as more aberrant terminations. Unidirectional cores have been rotated less than either bidirectional cores or multidirectional cores, while multidirectional cores have fewer aberrant terminations, compared to unidirectional cores.

Across the entire flake population, core management flakes are more commonplace in G and E/F compared to A and are more commonplace amongst quartzite flakes compared to quartz flakes. Core management flakes preserves significantly higher frequencies of multidirectional flaking surfaces in total, as well as more bidirectional than unidirectional surfaces.

Q9) Are there differences in platform shaping and control?

Core platform surface sizes vary significantly with respect to raw material, with quartzite larger than quartz and siliceous. Significant variability between sites within raw material types is only identified amongst quartz cores. Amongst quartz cores, platforms from A are narrower than those from C, E and G, while those from G are wider than those from B and C, leading to a similar pattern in platform surface areas. In addition, platforms from G are thicker than those from A. The only significant difference between flake and blade cores is platform morphology with more multiple conchoidal and dihedral platforms amongst flakes in contrast to more plain or single conchoidal platforms amongst blades. Unidirectional cores have a higher ratio of platform to flaking face surface area than either bidirectional or multidirectional cores.

Amongst flakes, significant differences in both platform dimensions occur between raw material types, with quartzite and rhyolite flakes having larger platforms than quartz flakes, which are larger than siliceous flakes. In addition, siliceous flakes show much smaller platforms in relation to flake size compared to quartz or quartzite flakes. Platform morphologies differ significantly between raw material types, with the exception of rhyolite compared to either quartz or quartzite.

Blades have significantly smaller platform dimensions than all other flake types, as well as smaller platform to flake size ratios than either flakes or points. Points have wider platforms than flakes, while flakes have thinner platforms than core management flakes as well as larger ration of platform to flake surface area. A significantly larger proportion of point platforms exhibit evidence of faceting than either flakes or blades. Blades have significantly more punctiform platforms than all other flake types.
Quartz flake platform depth in A is smaller than B, D, E and G, with the latter also larger than C. Platform depth is larger in G than either A or C. Quartzite flake platform dimensions are larger in G and E/F than A, B and C, while platform dimensions in F are also smaller than those from E/F. Differences in platform depth resulting in significant differences in overall platform surface area also occur between E/F and E, and between G and F.

Q10) Are there differences in flake production?

Significant size differences are apparent between alternate raw materials, flake types and sites (Figure 7). Quartz and siliceous flakes are smaller than quartzite and rhyolite flakes in all axial dimensions. Siliceous flakes are thinner in axial proximal and medial width than quartz flakes, while rhyolite flakes have larger medial widths than quartzite flakes. Quartz flakes have more squared proximal proportions than quartzite flakes, while siliceous flakes are more elongate than quartz flakes.

Blades are smaller than other types in at least 3 dimensions, while flakes are smaller than core management flakes in all dimensions and have smaller axial length and proximal axial widths than points. Points have more squared proximal portion and tapered distal portion but are less elongate than CM flakes, while blades are more elongate than other flake types, with more squared proximal proportions than CM or flakes, and points have more tapered distal proportions than either blades or flakes.

Proportions of dorsal flake scar morphologies differ significantly between all debitage types. Blades have higher proportions of proximal flake scar patterns than other types, core management flakes showing low proportions of proximal flake scars and high levels of lateral or perpendicular flaking than flakes or points, whereas flakes show more proximal flaking and less bidirectional or weakly radial flaking than points. A high prominence of axial terminations amongst CM flakes occurs in respect to feather terminations in contrast to other flake types. Points have a higher incidence of feather terminations and fewer step terminations in contrast to blades.

Analysis of variability between sites when artefacts were split by both raw material and debitage type (e.g. quartz blades, quartzite points), only revealed significant differences amongst quartz and quartzite flakes. Amongst quartz flakes, three of four axial dimensions were smaller from A than either E or G, whereas A also has smaller proximal and medial widths than B. In addition, flakes from G show more diverse termination types than D, which are exclusively feather terminations. Amongst quartzite flakes, flakes from G are larger than either B or C in all axial dimensions, flakes from E/F are larger than those from A, B and C in axial length, proximal and medial width, while flakes from A are smaller in axial length than all sites, and smaller in axial medial width than G.

Further insight into the patterns of flake production are evident from comparing the size and shape of final flake scars from the core population with actual debitage. Comparisons of blade core scars to blade sizes within sites indicate only a single difference, indicating that
scars on quartzite blade cores from G are longer than quartzite blades found at the site, resulting in a larger surface area too. This suggests discard of blade cores did not occur because the size of blade products was below a desired size threshold, with discard through other problems in flaking procedure or abandonment before exhaustion both possible alternatives. Amongst quartz flakes, flake sizes from A, B, E and G are larger than those evident on flake scars, whereas for quartzite, flakes from B, C and G were larger than scars evident on cores. This diversity may reflect the breadth of technical activity producing flakes, and the continued production of flakes significantly smaller than average offers some insight into flake preferences for utilisation.

Q11) Are there differences in blank selection for tool production?

Across all sites, debitage pieces that have been selected for retouching are larger than both the wider debitage population and final core scars. Amongst retouched pieces, artefacts from E/F are larger than those from C in maximum length, with no further differences in size identified.

Q12) Are there differences in patterns of tool production?

The only significant difference amongst retouched tools occurred at a groupwise level for absolute retouch length amongst sites, but no significant pairwise relationships were identified.

5) Discussion

5.1) Typological Diversity at Buddha Pushkar

Typological diversity at Buddha Pushkar does not support a simple split of sites between those in older and younger sedimentary contexts. Site E/F lacks some basic artefact types found in all other sites, such as single platform flake cores and point blanks, but yields the only examples of a prepared point core, or a backed segment. Site A is notable for the absence of true blade cores, distinguishing it from the remaining six sites. The remaining six sites share more in common with a mix of blade and flake production methods and diverse packages of retouched tools, but can be split on the basis of tool typology into two groups, comprised of Sites B, C and E, and Sites D, F and G. While burins occur in all but one assemblage, it is notable that they do not occur in great frequency. Beyond the ‘blade and burin’ assemblages, once seen as typical of ‘Upper’ Palaeolithic industries in South Asia, considerably typological variability can be seen at Buddha Pushkar.

The presence of diverse forms of backed artefacts, evident in all sites, is significant within the wider picture of South Asian Palaeolithic industries for attributing the Buddha Pushkar assemblages to the Late Palaeolithic. The presence of points, both as predetermined blanks and as retouched pieces, is widely apparent in the Buddha Pushkar assemblages, which is a feature also shared with other Late Palaeolithic sites such as Patne (Sali 1989) or Batadomba...
Lena (Lewis et al. 2014). It is worth highlighting that although blade technologies form a core component of these industries, diverse forms of flake production remain widely evident in the Buddha Pushkar assemblages, particularly in the continuity of rare, small Levallois cores, suggesting limited continuity with Middle Palaeolithic methods. Similarly, tanged and shouldered artefacts present alternate methods of modifying artefacts for hafting that are present in regional Middle Palaeolithic assemblages, but not widely evident amongst dated Late Palaeolithic industries in South Asia.

5.2) Technological Diversity at Buddha Pushkar

Renewed analysis of the stone tool assemblages from Buddha Pushkar have been able to explicitly evaluate observations made by Allchin and colleagues (1978). In addressing Q1-Q5 it is apparent that differences between groups of sites, individual sites and raw material types noted during their original study are statistically significant. Critically, however, patterns of variability within groups of assemblages A-D and E-G, as well as significantly comparability between them, suggest they are not suitable groups for analysis, also supported by examination of variation amongst the presence and absence of types. Similarly, the answers to Q6 support previous, unquantified indication of low levels of cortical artefacts at the sites. Some differences in cortex coverage were identified by raw material type, but this does not detract from earlier suggestions that primary reduction was predominately conducted elsewhere for all assemblages.

A recurrent trend in size-based attributes was observed across multiple phases of reduction, including core shaping, platform control and flaking. Artefacts from A were typically smallest, whereas those from G were typically largest regardless of raw material type. Diversity within the remaining sites suggested artefacts from B-D were occasionally smaller than those from E to F, but without clear, recurrent trends, and often only observed in single variables from a reduction phase. As these trends occur within raw material types, the different patterns of raw material use at the sites may have been a factor of choice, with quartzite selected more frequently at G to produce larger tools, and quartz selected more frequently at A for the production of smaller tools.

The repeatedly smaller size of artefacts from A could also be a factor of reduction intensity, although the small size of cores from this site may also have obscured reduction features to support this. Instead, this is weakly supported by differences in flaking directionality between cores and flakes, suggesting a change in flaking practice immediately prior to core discard. Conversely, a range of indicators (e.g. scar counts; aberrant terminations) suggest a greater intensity of reduction of quartzite artefacts, especially those from G, despite their large size. This further supports the suggestion that raw materials were selected to enable production of tools of certain sizes, rather than size of tools produced constrained by raw material availability. Comparison of flake to scar sizes suggests at several sites quartz cores were producing smaller than average flakes at the point of discard, whereas quartzite cores were abandoned having produced larger than average flakes at some sites. Differences between
sites suggests alternate preferences in stone tools sizes. This may also relate to different patterns of skill in successful reduction from different materials and clast sizes, but this is not clearly apparent at Buddha Pushkar. Significant diversity in reduction practices are apparent between different debitage approaches, with blades, points, flakes and core management pieces distinguished across a range of features of platform control and flaking practice. This suggests that specific features of core shaping and platform control were employed for alternate debitage schemes, with impacts upon flaking outcomes. Critically, limited variability exists between blades and points between sites, suggesting aspects of continuity with regards to blank production that are not apparent from the wider debitage assemblage. Blanks selected for retouching are larger than the wider debitage assemblage or last removal evident on cores, but there is limited technological variability amongst retouched tools that differentiates between approaches to their production or between sites.

Technological variability amongst the Buddha Pushkar assemblages appears predominately driven by choices of raw material use and debitage strategy. Considerably continuity in debitage strategies is evident between sites, suggesting a comparable technological repertoire was employed by the populations that produced the assemblages. Raw material use patterns have an over-riding impact on variability amongst the assemblages, but do not appear to relate to differential access to different resources. Rather, decisions relating to raw material use may relate to the size of desired flaking outcomes, or potentially patterns of skill and the ability to successfully produce useable tools from smaller raw material clasts. While both explanations may play a role, the latter could explain changes in artefact sizes between that transcend raw material use as a factor.

5.3) Buddha Pushkar in the wider landscape

The Buddha Pushkar assemblages can best be described as Late Palaeolithic industries, all of which include the production of small flakes and blades, and use of backing as a retouch strategy. However, this detailed examination illustrates considerable technological diversity within these Late Palaeolithic industries, as well as the presence of features that are reminiscent of Middle Palaeolithic industries. Examining such diversity plays as important a role in understanding the nature of the emergence of Late Palaeolithic industries, and particularly serves to counter-balance a focus on identifying the earliest evidence of certain types, such as backed microliths. The evidence from Buddha Pushkar suggests Late Palaeolithic populations in western India had a diverse technological repertoire that enabled flexibility in using raw materials and producing tools of varying sizes.

No simple division between sites based on their sedimentary and probable chronological context is evident in this typological and technological study. As raw material choice and its impact on artefact sizes have an important impact on variability, Sites A and G appear to bracket a continuum of variability. The occupations at Buddha Pushkar span MIS 2, a period
of particularly high amplitude environmental change which may have significant implications for patterns of behavioural diversity. This could reflect an adaptation to high levels of environmental flux, with technological diversity enabling population resilience in the face of changing ecologies. Alternatively, based on the geographic position of the Pushkar Valley, the diversity of stone tool technologies could relate to accessing different resource bases on either side of the Aravalli range or cultural patterns arising from population structure. However, as the assemblages derive from surface collections and potentially represent a palimpsest of behaviour, a combination of these explanations may be applicable.

A number of Middle Palaeolithic assemblages can be found dating to the first half of MIS 3 (45-60ka), including 16R Dune (Blinkhorn 2013), Chamu and Shergarh Tri-Junction (Blinkhorn 2014), Jetpur (Baskaran et al. 1986), and Katoati (Blinkhorn et al. 2017). The youngest Middle Palaeolithic site in the Thar Desert, at Shergarh Tri-Junction, dates to less than 43ka, and is notable for incorporating both Levallois and non-Levallois forms of blade production amongst other flake reduction approaches (Blinkhorn 2014), which are otherwise extremely rare in the region. The attribution of the assemblages from Buddha Pushkar to early (E-G) and late (A-D) MIS 2 fills a significant gap in the chronology of Late Pleistocene occupation of the Thar Desert, which otherwise extended into the early Holocene. Although the timegap between the youngest Middle Palaeolithic assemblages and the Late Palaeolithic sites at Buddha Pushkar prohibits clear examination of the transition between these technologies, an element of continuity can be observed in the co-occurrence of blade and prepared core reduction approaches.

The Late Palaeolithic assemblages from Buddha Pushkar present two alternate retouch strategies associated with hafting: the use of backing, and basal modifications such as tangs and shoulders. Backed artefacts are reliant upon effective use of mastics to attach stone components to a shaft, whereas the basal modifications may enable stone tips to be affixed to shafts using bindings alone (Barham 2013). The co-occurrence of these alternate strategies at Buddha Pushkar could relate to differential patterns of use, although patterns of landscape learning, resource distribution and the availability of resinous plants suitable for mastic production influenced the choice of hafting strategy. Basally modified tools have elsewhere been noted as a repetitive element of Middle Palaeolithic technologies within the Thar Desert, occurring in assemblages dating to both MIS 5 and MIS 3 (Blinkhorn et al. 2015b), whereas backed elements are absent. While this highlights another area of continuity between Middle and Late Palaeolithic technologies in the region, the appearance of basally modified pieces in the Buddha Pushkar assemblages may simply reflect a conservative behavioural approach to recolonization of the Thar Desert, augmenting the application of more advanced multi-component hafting methods.

Table 6 presents patterns of presence or absence of key artefact types for major dated Late Palaeolithic sites across South Asia. Although the appearance of microblade technology is widespread, neither it, nor any other type considered, is ubiquitous across all assemblages.
Indeed, certain types are entirely absent in some regions, exemplified by the absence of burins reported from Batadomba Lena, Sri Lanka. As wider evidence from across Asia does not support models for the appearance of Late Palaeolithic assemblages with the earliest dispersals of modern humans across South Asia, new focus needs to be placed upon examining heterogeneity within these stone tool technologies and between different regions. West India, here represented by Buddha Pushkar, is notable for the high frequency of prepared core technologies (Levallois/Discoidal), which are found in all other regions of India except for East India, but within individual assemblages. The continued use of prepared core technologies within MIS 2 is comparable with other marginal regions within close proximity to highly arid environments (e.g. Scerri et al. 2017; Osypinska and Osypinska. 2016). Further examination of the western Indian Late Palaeolithic record may focus upon the nature of such technological longevity and its relationship to population resilience and environmental flux.

Overall, close comparisons in the combinations of artefacts present occur between the sites at Buddha Pushkar, Patne and Jwalapuram, including the majority of artefact types considered, in contrast to other sites and regions where a more piecemeal appearance of these types occurs. Unlike locations such as Jwalapuram (see Petraglia et al. 2009), the Thar Desert margin is an unlikely context to have offered enduring refugia throughout major oscillations in Late Pleistocene ISM intensity. As a result, sites such as Buddha Pushkar are less likely to have been the locus of innovation of new technologies, such as microblade production, but may offer distinctly new contexts for their application. Recovery of excavated assemblages from western India are necessary to offer more detailed appraisal of the origins of Late Palaeolithic technologies in the region, and the contributions of technological conservation and the movement of populations or ideas in enabling occupation of a region of extreme environmental flux in the terminal Pleistocene.

<table>
<thead>
<tr>
<th>Region</th>
<th>Site</th>
<th>Assemblage</th>
<th>Age</th>
<th>Levallois/Discoidal</th>
<th>Flake Core (>4cm)</th>
<th>Blade (>4cm)</th>
<th>Burins</th>
<th>Scraper/Notch</th>
<th>Microblades (>4cm)</th>
<th>Microblade Cores</th>
<th>Backed Artefacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sri Lanka</td>
<td>Batadomba Lena</td>
<td>4</td>
<td>12.7</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>13.1</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>13.8</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7a</td>
<td>19.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7b</td>
<td>22.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7c</td>
<td>30.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>South India</td>
<td>JWP9</td>
<td>B</td>
<td><11</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>20.11</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>34</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>>34</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>East South India</td>
<td>Mahadebbera</td>
<td>Unit 1</td>
<td>39-28</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 6: Presence (+) and absence (-) of key artefact types across Late Palaeolithic assemblages across different regions within South Asia, synthesised from Perera et al. 2011; Clarkson et al. 2009; Basak et al. 2014; Sali 1989; Mishra et al. 2013; Clarkson et al. 2017.

6. Conclusion

Debate surrounding the origins of Late Palaeolithic technologies in South Asia is moving away from simplistic models associated with the dispersal of the earliest modern human populations. As a result, research focus must mature from identifying the earliest evidence of Late Palaeolithic technology as a simple index of human dispersal to explore behavioural diversity within Late Palaeolithic assemblages within the context of striking regional variability in ecology and the influence of climatic changes across MIS 3 and 2. The re-examination of the classic site of Buddha Pushkar presented here contributes to this goal by illustrating patterns of technological variability within early and later stages of MIS 2, offering the first clear insight into Late Palaeolithic behavioural strategies in western India. This detailed study has illustrated patterns of variability that transcend the binary division of sites originally presented by Allchin and colleagues (1978), highlighting changing preferences for raw material use and it influence upon artefact size while drawing from shared approaches to manufacture of alternate flake blank forms. Controlled recovery and chronometric studies...
are required to better integrate evidence from western India into a wider picture of the origin and evolution of Late Palaeolithic technologies across South Asia, as well as what, if any, technological changes differentiate them from regional manifestations of Mesolithic technologies. Nevertheless, evidence from Buddha Pushkar is consistent with the mosaic expression of Late Palaeolithic technology observed elsewhere in South Asia. Critically, the continued presence of technological features typically associated with Middle Palaeolithic assemblages may point towards conservative approaches to occupation of marginal landscapes during the adoption of new methods of stone tool production.

Acknowledgements

This paper is dedicated to the memory of Bridget Allchin, whose pioneering work in western India provides enduring inspiration. Prof Ajithprasad and the Department of Archaeology and Ancient History, MSU Baroda are thanked for their support during my visit and permitting access to the stone tool collections from Buddha Pushkar. Analysis undertaken in Baroda was supported by an INTACH Trust (UK) Travelling Scholarship, and the following analysis supported by the Fondation Fyssen and UMR5199 PACEA, Université de Bordeaux. Thanks to Huw Groucutt for commenting on the draft. I thank the Editor and the comments of two anonymous peer reviewers for their suggestions to improve the manuscript.

References Cited

Blinkhorn, J., Petraglia, M. D., 2017. Environments and cultural change in the Indian subcontinent: implications for the dispersal of Homo sapiens in the Late Pleistocene. Current Anthropology, 58(S17)

Clarkson, C., Jones, S., Harris, C., 2012. Continuity and change in the lithic industries of the Jurreru Valley, India, before and after the Toba eruption. Quaternary International 258, 165–179.

Murty, M.L.K., 1979. Recent Research on the Upper Palaeolithic Phase in India. Journal of
Field Archaeology 6, 301–320.

Sali, S., 1989. The Upper Palaeolithic and Mesolithic Cultures of Maharashtra. Deccan College, Post-Graduate and Research Institute, Pune.

Sharma, G. R., 1980. History to Prehistory: Archaeology of the Ganga Valley and the Vindhyas Allahabad: Department of AHC and Archaeology, University of Allahabad

Figure Captions:

Figure 1: Map illustrating the distribution of Late Palaeolithic sites dating between ~45 to 11.5 thousand years ago (blue circles) and the location of Buddha Pushkar (red star) within its topographic (left)(Jarvis et al. 2008) and ecological (right)(Olsen et al. 2001) context.

Figure 2: (A) Composite stratigraphy of sediment deposits and their archaeological associations throughout the Pushkar Valley (modified from Allchin et al. 1978); (B) dated section within vicinity of Buddha Pushkar B indicating landforms associated with Late Palaeolithic stone tool assemblages across the valley (modified from Singhvi et al. 1994).

Figure 3: Examples of flake cores including (two single platform quartz flake cores (A, B); a quartzite prepared core (C); a quartzite single platform core (D); and a quartzite Levallois core (E).

Figure 4: Examples of blades cores in quartz (A) and quartzite (B-D).

Figure 5: Examples of debitage, including: blades produced on a range of quartz, quartzite, rhyolite and siliceous material (A-I); rhyolite (J), quartzite (K) and quartz (L) points; elongate quartz flake (M); radial quartzite flake (N); convergent quartzite flake (O); quartz flake (P); quartzite Levallois flake (Q); quartzite blade (R).

Figure 6: Maximum dimension (mm) of cores, flakes and retouched pieces split between raw material types and sites, illustrating the key role raw material choice plays on artefact sizes, followed by differences between sites.
Figure 7: Maximum dimension (mm) of alternate flake types, split by raw material type and sites, illustrating the major trends in variability of flake production at Buddha Pushkar.
<table>
<thead>
<tr>
<th>Group</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>Single Platform Core</td>
<td>A core exploited from a single platform without distinct shaping of the flaking surface</td>
</tr>
<tr>
<td></td>
<td>Multi-Platform Core</td>
<td>A core exploited from more than one platform without distinct shaping of the flaking surface</td>
</tr>
<tr>
<td></td>
<td>Unidirectional Blade Core</td>
<td>Core exploited in a single direction that has been shaped to produce elongate flake blanks</td>
</tr>
<tr>
<td></td>
<td>Bidirectional Blade Core</td>
<td>Core with flaking surface shaped to produce elongate banks exploited from opposing platforms</td>
</tr>
<tr>
<td></td>
<td>Bipolar core</td>
<td>A core that has been struck while rested against an anvil</td>
</tr>
<tr>
<td></td>
<td>Levallois Core</td>
<td>A core with volumetric hierarchy between flaking and platform surfaces, and prepared flaking surface to remove flakes of predetermined shape</td>
</tr>
<tr>
<td></td>
<td>Prepared Core</td>
<td>A core with distinct, shaped flaking and platform surfaces that fit some but not all criteria of Levallois cores</td>
</tr>
<tr>
<td>Flake</td>
<td>Flake</td>
<td>A blank removed from a core with distinct ventral, dorsal and platform surfaces</td>
</tr>
<tr>
<td></td>
<td>Blade</td>
<td>Elongate flake at least twice as long as broad with at least one longitudinal arise</td>
</tr>
<tr>
<td></td>
<td>Point</td>
<td>Convergent flake with symmetry on morphological or flaking axis</td>
</tr>
<tr>
<td></td>
<td>Core Management Flake</td>
<td>A flake that has a prior flaking platform on the dorsal surface, or has removed an aberrant termination from a flaking surface paired with an axial or overshot termination.</td>
</tr>
<tr>
<td>Flaked Piece</td>
<td>Flaked Piece</td>
<td>Flaking debris that cannot be classified as either a flake or core</td>
</tr>
<tr>
<td>Retouched</td>
<td>Burin</td>
<td>A tool where a burin spall has been removed obliquely from the edge of a flake</td>
</tr>
<tr>
<td></td>
<td>Backed Piece</td>
<td>A tool with steep, blunting retouch on an edge</td>
</tr>
<tr>
<td></td>
<td>Point</td>
<td>A tool retouched on one on more edge to produce a convergent outline</td>
</tr>
<tr>
<td></td>
<td>Triangle</td>
<td>A blade segment with one edge blunted into two edges to form a triangle</td>
</tr>
<tr>
<td></td>
<td>Denticulate</td>
<td>A tool with a series of adjacent small notches</td>
</tr>
<tr>
<td></td>
<td>Notch</td>
<td>A tool with a single or multiple retouch removals producing a distinct convexity on the flake edge</td>
</tr>
<tr>
<td></td>
<td>Scraper</td>
<td>A tool with a contiguous section of retouch</td>
</tr>
</tbody>
</table>
Table SI1.2: Description of attributes recorded on all artefacts and their group for analysis

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Method</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weathering</td>
<td>Ranked assessment of surface macroscopic weathering (None, Low, Medium, High)</td>
<td></td>
</tr>
<tr>
<td>Rounding</td>
<td>Ranked assessment of macroscopic arise rounding (None, Low, Medium, High)</td>
<td></td>
</tr>
<tr>
<td>Raw Material Type</td>
<td>Quartz (Crystal or Milky), Siliceous (Chert, Chalcedony), Quartzite</td>
<td></td>
</tr>
<tr>
<td>Raw Material Colour</td>
<td>Recorded in 3 components: shade (Light, Mid, Dark); qualifier (minor colour); colour (major colour)</td>
<td></td>
</tr>
<tr>
<td>Cortex %</td>
<td>Percentage cortex coverage in 10% increments</td>
<td>Cortex</td>
</tr>
<tr>
<td>Cortex Surface Area</td>
<td>Cortex% * Surface Area</td>
<td>Cortex</td>
</tr>
<tr>
<td>Basic Type</td>
<td>Typology to determine attributes to record; Core, Flake or Flaked Piece (lacking diagnostic features to differentiate as either core or flake)</td>
<td></td>
</tr>
<tr>
<td>Broken</td>
<td>Yes or No</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>Maximum Length</td>
<td>Measurement of maximum artefact length</td>
<td>Gross size</td>
</tr>
<tr>
<td>Maximum Width</td>
<td>Largest measurement perpendicular to maximum length</td>
<td>Gross size</td>
</tr>
<tr>
<td>Maximum Thickness</td>
<td>Largest measurement perpendicular to plane of maximum length & width</td>
<td>Gross size</td>
</tr>
<tr>
<td>Surface Area</td>
<td>Max. Length * Max. Width</td>
<td>Gross size</td>
</tr>
</tbody>
</table>

Table S1: Attributes recorded on all artefacts
Table SI1.3: Description of attributes recorded on all cores and their group for analysis

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Method</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Type</td>
<td>Single Platform, Multi Platform, Blade, Levallois, Prepared (delineation/hierarchy of flaking and platform surfaces but not meeting criteria for Levallois)</td>
<td></td>
</tr>
<tr>
<td>Axial Length</td>
<td>Length along flaking axis of last major (>15mm) removal</td>
<td>Axial Size</td>
</tr>
<tr>
<td>Axial Proximal Width</td>
<td>Width perpendicular to flaking axis at ¼ of axial length</td>
<td>Axial Size</td>
</tr>
<tr>
<td>Axial Medial Width</td>
<td>Width perpendicular to flaking axis at ½ of axial length</td>
<td>Axial Size</td>
</tr>
<tr>
<td>Axial Distal Width</td>
<td>Width perpendicular to flaking axis at ¾ of axial length</td>
<td>Axial Size</td>
</tr>
<tr>
<td>Proximal Shape</td>
<td>APW / AMW (Index of shape indicating narrowing (>1), parallel (1) or expanding (<1) edges along flaking axis)</td>
<td>Axial Shape</td>
</tr>
<tr>
<td>Distal Shape</td>
<td>AMW / ADW (Index of shape indicating narrowing (>1), parallel (1) or expanding (<1) edges along flaking axis)</td>
<td>Axial Shape</td>
</tr>
<tr>
<td>Medial Axial Thickness</td>
<td>Thickness at ½ axial length, perpendicular to plane of flaking</td>
<td>Axial Size</td>
</tr>
<tr>
<td>Platform Width</td>
<td>Total width of platform surface perpendicular to flaking plane</td>
<td>Platform Size</td>
</tr>
<tr>
<td>Platform Depth</td>
<td>Depth of platform surface from point of percussion of last major (>15mm) removal</td>
<td>Platform Size</td>
</tr>
<tr>
<td>Platform Surface Area</td>
<td>PW * PD</td>
<td>Platform Size</td>
</tr>
<tr>
<td>Size Corrected Platform Area</td>
<td>PSA / SA</td>
<td>Platform Size</td>
</tr>
<tr>
<td>Platform Type</td>
<td>Cortical, Plain (no clear scar), Single Scar, Dihedral, Multiple Scar, Crushed, Punctiform</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Platform Preparation</td>
<td>Overhang Removal, Facetting, Both, Neither</td>
<td></td>
</tr>
<tr>
<td>Core cortex location</td>
<td>Platform, flaking surface, side, distal, rear surface, NA</td>
<td></td>
</tr>
<tr>
<td>Scar count (>15mm)</td>
<td>Count using digital calipers to assess scar sizes</td>
<td></td>
</tr>
<tr>
<td>Core Rotations</td>
<td>Count of minimum number of times core was rotated to produce scar pattern (e.g. a core flaked from a single, unprepared platform has not been rotated [0], a core flaked from two, separate unprepared platforms has been rotated once [1])</td>
<td></td>
</tr>
<tr>
<td>Aberrant Terminations</td>
<td>Count of the number of step or hinge terminations present on core</td>
<td></td>
</tr>
<tr>
<td>Last Scar Face Length</td>
<td>Length of last flaking face on flaking axis</td>
<td></td>
</tr>
<tr>
<td>Last Scar Length</td>
<td>Axial length of last scar (>15mm)</td>
<td></td>
</tr>
<tr>
<td>Last Scar Medial Width</td>
<td>Width of last scar perpendicular to flaking axis at ½ axial length</td>
<td></td>
</tr>
<tr>
<td>Last Scar Elongation</td>
<td>LSL / LSMW</td>
<td></td>
</tr>
<tr>
<td>Last Scar Surface Area</td>
<td>LSL * LSMW</td>
<td></td>
</tr>
<tr>
<td>Last Scar Size; Comparative Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Scar Shape; Comparative Shape</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table SI1.4: Description of attributes recorded on all flakes and their group for analysis

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Method</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flake Type</td>
<td>Flake, Blade, Core Management,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Point</td>
<td></td>
</tr>
<tr>
<td>Axial Length</td>
<td>Length along flaking axis</td>
<td>Axial Size; Comparative Size</td>
</tr>
<tr>
<td>Axial Proximal Width</td>
<td>Width perpendicular to flaking axis at ¼ of axial length</td>
<td>Axial Size</td>
</tr>
<tr>
<td>Axial Medial Width</td>
<td>Width perpendicular to flaking axis at ½ of axial length</td>
<td>Axial Size; Comparative Size</td>
</tr>
<tr>
<td>Axial Distal Width</td>
<td>Width perpendicular to flaking axis at ¾ of axial length</td>
<td>Axial Size</td>
</tr>
<tr>
<td>Proximal Shape</td>
<td>APW / AMW (Index of shape indicating narrowing (>1), parallel (1) or expanding (<1) edges along flaking axis)</td>
<td>Axial Shape</td>
</tr>
<tr>
<td>Distal Shape</td>
<td>AMW / ADW (Index of shape indicating narrowing (>1), parallel (1) or expanding (<1) edges along flaking axis)</td>
<td>Axial Shape</td>
</tr>
<tr>
<td>Medial Axial Thickness</td>
<td>Thickness at ½ axial length, perpendicular to plane of flaking</td>
<td>Axial Size</td>
</tr>
<tr>
<td>Elongation</td>
<td>AL / AMW</td>
<td>Axial Shape; Comparative Shape</td>
</tr>
<tr>
<td>Platform Width</td>
<td>Total width of platform surface perpendicular to flaking plane</td>
<td>Platform Size</td>
</tr>
<tr>
<td>Platform Depth</td>
<td>Depth of platform surface from point of percussion</td>
<td>Platform Size</td>
</tr>
<tr>
<td>Platform Surface Area</td>
<td>PW * PD</td>
<td>Platform Size</td>
</tr>
<tr>
<td>Size Corrected Platform Area</td>
<td>PSA / SA</td>
<td>Platform Size</td>
</tr>
<tr>
<td>Platform Type</td>
<td>Cortical, Plain (no clear scar), Single Scar, Dihedral, Multiple Scar, Crushed, Punctiform</td>
<td></td>
</tr>
<tr>
<td>Platform Preparation</td>
<td>Overhang Removal, Facetting, Both, Neither</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Platform on Dorsal Surface</td>
<td>Yes or No</td>
<td></td>
</tr>
<tr>
<td>Dorsal Scar Pattern</td>
<td>Proximal, Distal, Lateral, Bidirectional (Proximal & Distal), Bilateral (Left and Right), Perpendicular (combination of Proximal or Distal, and Left or Right), Weakly Radial (from 3 directions), Radial (from 4+ directions)</td>
<td></td>
</tr>
<tr>
<td>Termination Type</td>
<td>Feather, Hinge, Step, Outrepasse, Axial</td>
<td></td>
</tr>
<tr>
<td>Retouched?</td>
<td>Yes or No</td>
<td></td>
</tr>
<tr>
<td>Scar Count</td>
<td>Count of scars >15mm on dorsal surface</td>
<td></td>
</tr>
<tr>
<td>Aberrant Terminations</td>
<td>Count of aberrant terminations on dorsal surface</td>
<td></td>
</tr>
<tr>
<td>Longitudinal Arises</td>
<td>Count of arises aligned on flaking axis extending for more than 1/3 of axial length</td>
<td></td>
</tr>
<tr>
<td>Erralieur Scar</td>
<td>Present, absent</td>
<td></td>
</tr>
<tr>
<td>Lipped/Diffuse initiation</td>
<td>Yes or no (i.e. no lipped/diffuse initiation indicates a clear bulb of percussion is present)</td>
<td></td>
</tr>
</tbody>
</table>
Table SI1.5: Description of attributes recorded on retouched artefacts

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Method</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backing</td>
<td>Present or absent</td>
<td>Backing is identified as short, consecutive retouch removals that blunt an edge of a flake</td>
</tr>
<tr>
<td>Burin</td>
<td>Present or absent</td>
<td>A burin spall has been removed obliquely from the flake edge</td>
</tr>
<tr>
<td>Burin Spall Count</td>
<td>Count of burin spall removals</td>
<td></td>
</tr>
</tbody>
</table>
Table SI2.1: Artefact typology from A-D and E-G as reported by Allchin and colleagues (1978), showing the percentage of artefact type split between raw materials, and the percentage of total artefact type for the entire assemblage.

<table>
<thead>
<tr>
<th>Assemblage</th>
<th>A-D</th>
<th>E-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Material</td>
<td>Quartz</td>
<td>Quartzite</td>
</tr>
<tr>
<td>Flake Cores</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Blade Cores</td>
<td>19</td>
<td>27</td>
</tr>
<tr>
<td>Blade Core Rough Out</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Blade Core Fragments</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Longitudinal blade core-trimming flakes</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>Core tablets</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Core toes</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Blades</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>Retouched Blades and fragments</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Blade Fragments</td>
<td>53</td>
<td>35</td>
</tr>
<tr>
<td>Composite points and bars</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Concavo-convex scrapers</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Carinated scrapers</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Burins</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Burin spalls</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Flakes from prepared cores</td>
<td>76</td>
<td>98</td>
</tr>
<tr>
<td>Pointed flakes</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Other flakes</td>
<td>124</td>
<td>46</td>
</tr>
<tr>
<td>Adze blades</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Chopping tools</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Awls</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Saws</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>356</td>
<td>261</td>
</tr>
</tbody>
</table>

Table SI2.2: Differences between key artefact types reported by Allchin et al (1978) and recorded following renewed analysis within individual sites.

<table>
<thead>
<tr>
<th>Present Study</th>
<th>Core</th>
<th>Diff</th>
<th>Flake</th>
<th>Diff</th>
<th>RT</th>
<th>Diff</th>
<th>Flaked Piece</th>
<th>Total Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_A</td>
<td>9</td>
<td>-8</td>
<td>63</td>
<td>-24</td>
<td>7</td>
<td>-6</td>
<td>9</td>
<td>-29</td>
</tr>
<tr>
<td>BP_B</td>
<td>29</td>
<td>13</td>
<td>100</td>
<td>-3</td>
<td>20</td>
<td>2</td>
<td>26</td>
<td>38</td>
</tr>
<tr>
<td>BP_C</td>
<td>29</td>
<td>5</td>
<td>197</td>
<td>-42</td>
<td>33</td>
<td>23</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>BP_D</td>
<td>20</td>
<td>7</td>
<td>122</td>
<td>-2</td>
<td>19</td>
<td>8</td>
<td>11</td>
<td>28</td>
</tr>
<tr>
<td>BP_E</td>
<td>15</td>
<td>3</td>
<td>66</td>
<td>-53</td>
<td>16</td>
<td>-2</td>
<td>2</td>
<td>-50</td>
</tr>
</tbody>
</table>
Table SI2.3: Differences between raw material use within individual sites as reported by Allchin et al. (1978) and following renewed analysis.

<table>
<thead>
<tr>
<th></th>
<th>Quartz</th>
<th>Difference</th>
<th>Quartzite</th>
<th>Difference</th>
<th>Rhyolite</th>
<th>Siliceous</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_A</td>
<td>78</td>
<td>-27</td>
<td>9</td>
<td>+1</td>
<td>1</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>BP_B</td>
<td>74</td>
<td>+9</td>
<td>84</td>
<td>+25</td>
<td>17</td>
<td>+4</td>
<td></td>
</tr>
<tr>
<td>BP_C</td>
<td>112</td>
<td>+3</td>
<td>153</td>
<td>-1</td>
<td>14</td>
<td>+4</td>
<td></td>
</tr>
<tr>
<td>BP_D</td>
<td>80</td>
<td>+3</td>
<td>61</td>
<td>+21</td>
<td>7</td>
<td>-5</td>
<td></td>
</tr>
<tr>
<td>BP_E</td>
<td>48</td>
<td>-18</td>
<td>39</td>
<td>-35</td>
<td>12</td>
<td>+3</td>
<td></td>
</tr>
<tr>
<td>BP_E-F</td>
<td>2</td>
<td>-1</td>
<td>16</td>
<td>-19</td>
<td>8</td>
<td>+5</td>
<td></td>
</tr>
<tr>
<td>BP_F</td>
<td>26</td>
<td>+2</td>
<td>24</td>
<td>-5</td>
<td>17</td>
<td>+4</td>
<td></td>
</tr>
<tr>
<td>BP_G</td>
<td>45</td>
<td>0</td>
<td>154</td>
<td>-66</td>
<td>1</td>
<td>12</td>
<td>+5</td>
</tr>
<tr>
<td>Variable</td>
<td>E-G</td>
<td>p</td>
<td>Min.</td>
<td>1st Qu.</td>
<td>Median</td>
<td>Mean</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-----</td>
<td>----</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Core Max Length</td>
<td>A-D</td>
<td>E-G</td>
<td>0.00</td>
<td>17.88</td>
<td>29.68</td>
<td>36.05</td>
<td>37.52</td>
</tr>
<tr>
<td>Core Max Width</td>
<td>A-D</td>
<td>E-G</td>
<td>0.00</td>
<td>14.96</td>
<td>25.02</td>
<td>30.34</td>
<td>30.8</td>
</tr>
<tr>
<td>Core Max Thickness</td>
<td>A-D</td>
<td>E-G</td>
<td>0.01</td>
<td>3.82</td>
<td>15.15</td>
<td>20.25</td>
<td>20.15</td>
</tr>
<tr>
<td>Flake Max Length</td>
<td>A-D</td>
<td>E-G</td>
<td>0.00</td>
<td>9.84</td>
<td>23.61</td>
<td>31.68</td>
<td>33.06</td>
</tr>
<tr>
<td>Flake Max Width</td>
<td>A-D</td>
<td>E-G</td>
<td>0.00</td>
<td>4.45</td>
<td>17.03</td>
<td>23.24</td>
<td>23.7</td>
</tr>
<tr>
<td>Flake Max Thickness</td>
<td>A-D</td>
<td>E-G</td>
<td>0.00</td>
<td>1.2</td>
<td>5.36</td>
<td>8.21</td>
<td>9.055</td>
</tr>
<tr>
<td>RT Max Length</td>
<td>A-D</td>
<td>E-G</td>
<td>0.02</td>
<td>11.24</td>
<td>18.79</td>
<td>28.76</td>
<td>31.77</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>Max.</td>
<td>NA</td>
<td>A-D M n.</td>
<td>1st Qu.</td>
<td>Median</td>
<td>Mean</td>
<td>3rd Qu.</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----</td>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>42.79</td>
<td>62.39</td>
<td>15.42</td>
<td>22.37</td>
<td>30.35</td>
<td>30.1</td>
<td>35.75</td>
<td>54.91</td>
</tr>
<tr>
<td>35.47</td>
<td>54.11</td>
<td>10.23</td>
<td>17.78</td>
<td>23.40</td>
<td>23.33</td>
<td>28.57</td>
<td>43.47</td>
</tr>
<tr>
<td>24.5</td>
<td>50.62</td>
<td>5.77</td>
<td>13.3</td>
<td>15.48</td>
<td>17.16</td>
<td>21.46</td>
<td>31.61</td>
</tr>
<tr>
<td>41.78</td>
<td>75.98</td>
<td>1</td>
<td>8.09</td>
<td>16.03</td>
<td>21.84</td>
<td>24.78</td>
<td>31.3</td>
</tr>
<tr>
<td>30.64</td>
<td>49.5</td>
<td>4.16</td>
<td>10.68</td>
<td>15.44</td>
<td>17.33</td>
<td>21.98</td>
<td>64.62</td>
</tr>
<tr>
<td>11.59</td>
<td>39.08</td>
<td>1</td>
<td>3.61</td>
<td>5.65</td>
<td>6.64</td>
<td>8.82</td>
<td>23.08</td>
</tr>
<tr>
<td>43.3</td>
<td>56.72</td>
<td>9.09</td>
<td>18.03</td>
<td>23.62</td>
<td>25.09</td>
<td>29.51</td>
<td>60.02</td>
</tr>
</tbody>
</table>
Results of Pairwise testing (adjusted p-values) where a significant relationship is identified by Group:

<table>
<thead>
<tr>
<th>Core Max Length</th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_E_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>0.01</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>0.00</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>0.00</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>0.00</td>
<td>>0.05</td>
<td>NA</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E_F</td>
<td>0.02</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_F</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_G</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>>0.05</td>
<td>0.00</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Max Width</th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_E_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>0.00</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>0.00</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E_F</td>
<td>0.04</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_F</td>
<td>0.00</td>
<td>0.01</td>
<td>>0.05</td>
<td>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_G</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Max Thickness</th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_E_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>0.01</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>0.00</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>0.01</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>0.01</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_F</td>
<td>0.02</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_G</td>
<td>0.00</td>
<td>0.00</td>
<td>>0.05</td>
<td>0.03</td>
<td>0.00</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Max Length</th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_E_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>0.00</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>0.00</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E_F</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_F</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_G</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Max Width</th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_E_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>0.00</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>0.00</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E_F</td>
<td>0.01</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_F</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_G</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Max Thickness</th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_E_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>0.00</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>0.00</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>BP_E</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>BP_E_F</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>BP_F</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td></td>
</tr>
<tr>
<td>BP_G</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00 >0.05</td>
<td></td>
</tr>
<tr>
<td>wise testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>BP_F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>15.42</td>
<td>16.45</td>
<td>18.37</td>
<td>19.74</td>
<td>20.12</td>
<td>30.35</td>
</tr>
<tr>
<td>B</td>
<td>15.8</td>
<td>21.64</td>
<td>26.22</td>
<td>28.2</td>
<td>33.2</td>
<td>46.45</td>
</tr>
<tr>
<td>C</td>
<td>18.11</td>
<td>27.99</td>
<td>32.23</td>
<td>32.29</td>
<td>37.26</td>
<td>49.43</td>
</tr>
<tr>
<td>D</td>
<td>19.06</td>
<td>27.05</td>
<td>35.23</td>
<td>34.36</td>
<td>42.41</td>
<td>54.91</td>
</tr>
<tr>
<td>E</td>
<td>17.88</td>
<td>25.7</td>
<td>28.28</td>
<td>30.19</td>
<td>33.75</td>
<td>47.53</td>
</tr>
<tr>
<td>E/F</td>
<td>29.55</td>
<td>30.81</td>
<td>32.38</td>
<td>33.43</td>
<td>35</td>
<td>39.41</td>
</tr>
<tr>
<td>F</td>
<td>20.42</td>
<td>29.58</td>
<td>36.3</td>
<td>37.29</td>
<td>48.22</td>
<td>48.75</td>
</tr>
<tr>
<td>G</td>
<td>>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BP_F						
A	10.23	12.12	14.21	15.1	14.64	25.34
B	12.85	17.53	20.94	22.15	27.04	37.74
D	14.52	18.32	25.84	24.73	29.64	43.47
E	14.96	20.96	24.04	24.25	27.34	35.63
E/F	20.2	22.71	24.36	24.7	26.35	29.85
F	19.85	26.09	33.61	33.63	41.75	46.23
G	>0.05					

BP_F						
A	5.77	9.22	10.32	10.54	12.83	14.79
B	7.46	12.53	14.68	15.82	18.1	29.5
C	12.41	15.51	20.02	20.08	24.05	31.61
D	6.28	14.41	15.9	17.82	22.39	28.51
E	3.82	9.76	13.97	14.17	18.96	22.61
F	11.29	13.84	17.02	19.25	22.57	33.64
G	6.87	18.49	22.68	23	26.33	50.62

BP_F							
A	8.51	14.34	17.35	18.03	21.54	35.86	
B	9.52	16.54	22.8	25.69	31.48	77.03	
C	8.09	16.32	23.05	25.48	33.05	66.48	
D	10.17	16.49	23.23	26.34	33.25	71.81	
E	9.84	19.47	26.57	29.18	36.05	69.96	
E/F	13.6	26.14	33.56	34.34	41.95	58.75	
F	11.36	18.8	22.51	25.7	29.7	58.4	
G	>0.05	10.34	29.67	36.44	37.05	44.15	75.98

<p>| BP_F | | | | | |
| A | 1.52 | 3.132 | 4.115 | 4.433 | 5.272 | 11.88 |
| B | 1 | 4.225 | 6.87 | 6.954 | 8.75 | 23.08 |
| C | 1.35 | 3.85 | 6.27 | 7.138 | 9.78 | 21.2 |
| D | 1.36 | 3.38 | 5.8 | 6.712 | 9.02 | 20.46 |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>E</td>
<td>1.69</td>
<td>4.178</td>
<td>6.92</td>
<td>7.083</td>
<td>9.845</td>
</tr>
<tr>
<td>NA</td>
<td>E/F</td>
<td>2.39</td>
<td>5.588</td>
<td>8.86</td>
<td>8.328</td>
<td>9.758</td>
</tr>
<tr>
<td>NA</td>
<td>F</td>
<td>1.2</td>
<td>4.04</td>
<td>6.02</td>
<td>7.941</td>
<td>9.015</td>
</tr>
<tr>
<td>0.00</td>
<td>G</td>
<td>1.56</td>
<td>7.29</td>
<td>9.7</td>
<td>10.36</td>
<td>12.5</td>
</tr>
</tbody>
</table>
Results of Pairwise testing (adjusted p-values) where a significant relationship is identified by Group

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>E-F</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>0.00</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>E-F</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>F</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
<td>0.01</td>
<td>NA</td>
</tr>
<tr>
<td>G</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Raw material use between sites
<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
<th>Siliceous</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>78</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>74</td>
<td>84</td>
<td>0</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>112</td>
<td>153</td>
<td>0</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>80</td>
<td>61</td>
<td>7</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>48</td>
<td>39</td>
<td>0</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>E_F</td>
<td>2</td>
<td>16</td>
<td>0</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>26</td>
<td>24</td>
<td>0</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>45</td>
<td>154</td>
<td>1</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
Results of Pairwise testing (adjusted p-values) where a significant relationship is identified by Groupwise

<table>
<thead>
<tr>
<th></th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Max Length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartzite</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>Siliceous</td>
<td>>0.05</td>
<td>0.00</td>
<td>>0.05</td>
</tr>
<tr>
<td>Core Max Width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartzite</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>Siliceous</td>
<td>0.03</td>
<td>0.00</td>
<td>>0.05</td>
</tr>
<tr>
<td>Core Max Thickness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartzite</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>Siliceous</td>
<td>>0.05</td>
<td>0.00</td>
<td>>0.05</td>
</tr>
<tr>
<td>Flake Max Length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartzite</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>0.00</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>Siliceous</td>
<td>>0.05</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Flake Max Width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartzite</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>0.00</td>
<td>0.04</td>
<td>NA</td>
</tr>
<tr>
<td>Siliceous</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Flake Max Thickness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartzite</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>0.00</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>Siliceous</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>RT Max Length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartzite</td>
<td>0.00</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>>0.05</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>RT Max Width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartzite</td>
<td>0.00</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>RT Max Thickness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartzite</td>
<td>0.00</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mn.</td>
<td>1st Qu.</td>
<td>Median</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Quartz</td>
<td>15.42</td>
<td>21.64</td>
<td>26.68</td>
</tr>
<tr>
<td>Quartzite</td>
<td>17.82</td>
<td>31.5</td>
<td>37.09</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>45.24</td>
<td>45.24</td>
<td>45.24</td>
</tr>
<tr>
<td>Siliceous</td>
<td>15.98</td>
<td>20.66</td>
<td>22.33</td>
</tr>
<tr>
<td>Quartz</td>
<td>10.23</td>
<td>16.58</td>
<td>21.13</td>
</tr>
<tr>
<td>Quartzite</td>
<td>15.7</td>
<td>26.19</td>
<td>29.3</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>33.11</td>
<td>33.11</td>
<td>33.11</td>
</tr>
<tr>
<td>Siliceous</td>
<td>13.8</td>
<td>14.65</td>
<td>16.5</td>
</tr>
<tr>
<td>Quartz</td>
<td>3.82</td>
<td>10.67</td>
<td>14.24</td>
</tr>
<tr>
<td>Quartzite</td>
<td>9.41</td>
<td>16.86</td>
<td>20.95</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>26.4</td>
<td>26.4</td>
<td>26.4</td>
</tr>
<tr>
<td>Siliceous</td>
<td>7.65</td>
<td>8.77</td>
<td>11.62</td>
</tr>
<tr>
<td>Quartz</td>
<td>8.51</td>
<td>15.72</td>
<td>20.22</td>
</tr>
<tr>
<td>Quartzite</td>
<td>8.09</td>
<td>23.51</td>
<td>33.28</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>26.2</td>
<td>39.66</td>
<td>41.1</td>
</tr>
<tr>
<td>Siliceous</td>
<td>10.02</td>
<td>14.24</td>
<td>18.95</td>
</tr>
<tr>
<td>Quartz</td>
<td>4.16</td>
<td>10.11</td>
<td>14.2</td>
</tr>
<tr>
<td>Quartzite</td>
<td>4.57</td>
<td>16.92</td>
<td>23.41</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>18.25</td>
<td>27.87</td>
<td>34.34</td>
</tr>
<tr>
<td>Siliceous</td>
<td>4.71</td>
<td>7.125</td>
<td>11.81</td>
</tr>
<tr>
<td>Quartz</td>
<td>1.36</td>
<td>3.515</td>
<td>5.15</td>
</tr>
<tr>
<td>Quartzite</td>
<td>1.86</td>
<td>5.85</td>
<td>8.665</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>5.29</td>
<td>8.865</td>
<td>9.32</td>
</tr>
<tr>
<td>Siliceous</td>
<td>1</td>
<td>2.235</td>
<td>3.44</td>
</tr>
<tr>
<td>Quartz</td>
<td>10.57</td>
<td>17.58</td>
<td>23.18</td>
</tr>
<tr>
<td>Quartzite</td>
<td>9.09</td>
<td>29.9</td>
<td>42</td>
</tr>
<tr>
<td>Quartz</td>
<td>3.53</td>
<td>10.9</td>
<td>16.27</td>
</tr>
<tr>
<td>Quartzite</td>
<td>4.49</td>
<td>19</td>
<td>28.52</td>
</tr>
<tr>
<td>Siliceous</td>
<td>3.62</td>
<td>4.817</td>
<td>8.62</td>
</tr>
<tr>
<td>Quartz</td>
<td>1.54</td>
<td>3.94</td>
<td>5.79</td>
</tr>
<tr>
<td>Quartzite</td>
<td>1.81</td>
<td>6.655</td>
<td>10.89</td>
</tr>
<tr>
<td>Siliceous</td>
<td>1.23</td>
<td>1.81</td>
<td>2.935</td>
</tr>
</tbody>
</table>
Results of Pairwise testing (adjusted p-values) where a significant relationship is identified by Groupwise t

Quartz

<table>
<thead>
<tr>
<th>Core Max Length</th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>0.02</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>0.03</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>0.04</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_F</td>
<td>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_G</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Max Width</th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>0.02</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>0.02</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>0.02</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_F</td>
<td>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_G</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Max Thickness</th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>0.02</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_G</td>
<td>0.00</td>
<td>0.03</td>
<td>>0.05</td>
<td>>0.05</td>
<td>0.03</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Max Length</th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_F</th>
<th>BP_E_F</th>
<th>BP_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_G</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Max Width</th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_F</th>
<th>BP_E_F</th>
<th>BP_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_G</td>
<td>0.00</td>
<td>>0.05</td>
<td>0.00</td>
<td>0.01</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Max Thickness</th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_F</th>
<th>BP_E_F</th>
<th>BP_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>0.01</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>BP_E_F</td>
<td>BP_F</td>
<td>BP_G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>0.05</td>
<td>>0.05</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Retouched Max Length</th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>0.03</td>
<td>>0.05</td>
<td>0.03</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_G</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

Quartzite

<table>
<thead>
<tr>
<th>Core Max Length</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_E_F</th>
<th>BP_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_C</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_G</td>
<td>0.01</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Max Width</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_E_F</th>
<th>BP_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_C</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_F</td>
<td>0.04</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_G</td>
<td>0.00</td>
<td>0.05</td>
<td>0.04</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Max Thickness</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_E_F</th>
<th>BP_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_C</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_G</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Max Length</th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_E_F</th>
<th>BP_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>0.03</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>0.01</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>0.02</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E_F</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_F</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_G</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Max Width</th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_E_F</th>
<th>BP_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_E_F</th>
<th>BP_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>0.02</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>0.03</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>0.02</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E_F</td>
<td>0.01</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_F</td>
<td>0.01</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_G</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Max Thickness</th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_E_F</th>
<th>BP_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>0.02</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>0.02</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>0.03</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E_F</td>
<td>0.02</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_F</td>
<td>0.01</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_G</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Retouched Max Length</th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_E_F</th>
<th>BP_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_G</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Retouched Max Thickness</th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_E_F</th>
<th>BP_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_G</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Siliceous</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Flake Max Length</th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_E_F</th>
<th>BP_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_G</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>Site</td>
<td>Min.</td>
<td>1st Qu.</td>
<td>Median</td>
<td>Mean</td>
<td>3rd Qu.</td>
<td>Max.</td>
<td>NA's</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>A</td>
<td>15.42</td>
<td>16.45</td>
<td>18.37</td>
<td>19.74</td>
<td>20.12</td>
<td>30.35</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>15.8</td>
<td>20.96</td>
<td>22.59</td>
<td>23.08</td>
<td>24.17</td>
<td>34.38</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>18.11</td>
<td>24.33</td>
<td>27.52</td>
<td>26.97</td>
<td>29.8</td>
<td>34.58</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>19.06</td>
<td>21.42</td>
<td>31.29</td>
<td>32.38</td>
<td>39.64</td>
<td>50.8</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>17.88</td>
<td>24.83</td>
<td>26.25</td>
<td>25.38</td>
<td>27.92</td>
<td>29.19</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>24.53</td>
<td>29.58</td>
<td>34.63</td>
<td>35.97</td>
<td>41.69</td>
<td>48.75</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>22.31</td>
<td>30.19</td>
<td>33.89</td>
<td>33.81</td>
<td>37.52</td>
<td>44.61</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site</th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10.23</td>
<td>12.12</td>
<td>14.21</td>
<td>15.1</td>
<td>14.64</td>
<td>25.34</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>15</td>
<td>19.8</td>
<td>21.09</td>
<td>20.99</td>
<td>23.36</td>
<td>25.16</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>14.64</td>
<td>15.87</td>
<td>21.3</td>
<td>22.93</td>
<td>30.5</td>
<td>32.29</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>14.96</td>
<td>17.27</td>
<td>22.85</td>
<td>21.35</td>
<td>24.39</td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>21.93</td>
<td>26.09</td>
<td>30.26</td>
<td>32.21</td>
<td>37.34</td>
<td>44.43</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>18.12</td>
<td>26.33</td>
<td>28.98</td>
<td>29.49</td>
<td>31.43</td>
<td>40.76</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site</th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5.77</td>
<td>9.22</td>
<td>10.32</td>
<td>10.54</td>
<td>12.83</td>
<td>14.79</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>7.46</td>
<td>11.79</td>
<td>12.89</td>
<td>13.58</td>
<td>15.25</td>
<td>20.34</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>12.41</td>
<td>13.8</td>
<td>14.2</td>
<td>16.15</td>
<td>17.08</td>
<td>24.55</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>6.28</td>
<td>11.73</td>
<td>14.47</td>
<td>15.88</td>
<td>21.56</td>
<td>26.75</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>3.82</td>
<td>8.658</td>
<td>10.93</td>
<td>12.218</td>
<td>15.71</td>
<td>20.56</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>11.29</td>
<td>14.15</td>
<td>17.02</td>
<td>15.19</td>
<td>17.14</td>
<td>17.25</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>6.87</td>
<td>17.69</td>
<td>20.52</td>
<td>20.31</td>
<td>23.25</td>
<td>28.28</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site</th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8.51</td>
<td>14.01</td>
<td>16.79</td>
<td>17.85</td>
<td>21.54</td>
<td>35.86</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>10.79</td>
<td>16.46</td>
<td>22</td>
<td>22.3</td>
<td>27.16</td>
<td>35.18</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>9.57</td>
<td>14.87</td>
<td>17.09</td>
<td>18.64</td>
<td>22.14</td>
<td>33.42</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>10.17</td>
<td>15.15</td>
<td>19.27</td>
<td>21.01</td>
<td>25.36</td>
<td>44.59</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>11.77</td>
<td>18.47</td>
<td>24.91</td>
<td>24.99</td>
<td>28.88</td>
<td>51.79</td>
<td></td>
</tr>
<tr>
<td>E_F</td>
<td>13.6</td>
<td>13.6</td>
<td>13.6</td>
<td>13.6</td>
<td>13.6</td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>12.92</td>
<td>16.03</td>
<td>18.99</td>
<td>19.35</td>
<td>20.89</td>
<td>31.23</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>10.9</td>
<td>22.87</td>
<td>30.93</td>
<td>30.83</td>
<td>38.37</td>
<td>63.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site</th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5.14</td>
<td>8.57</td>
<td>10.79</td>
<td>12.23</td>
<td>15.62</td>
<td>23.75</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>7.75</td>
<td>12.67</td>
<td>15.8</td>
<td>15.7</td>
<td>19</td>
<td>26.59</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5.23</td>
<td>9.585</td>
<td>13.625</td>
<td>13.349</td>
<td>15.883</td>
<td>27.83</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>4.16</td>
<td>10.52</td>
<td>12.72</td>
<td>13.94</td>
<td>18.21</td>
<td>32.4</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5.36</td>
<td>14.09</td>
<td>17.39</td>
<td>18.33</td>
<td>22</td>
<td>43.28</td>
<td></td>
</tr>
<tr>
<td>E_F</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>5.98</td>
<td>9.25</td>
<td>15.63</td>
<td>15.17</td>
<td>18.98</td>
<td>30.38</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4.45</td>
<td>14.54</td>
<td>19.43</td>
<td>20.32</td>
<td>25.48</td>
<td>41.81</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site</th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.52</td>
<td>2.815</td>
<td>4.115</td>
<td>4.494</td>
<td>5.535</td>
<td>11.88</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2.41</td>
<td>4.612</td>
<td>5.705</td>
<td>6.268</td>
<td>8.14</td>
<td>11.72</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.83</td>
<td>3.4</td>
<td>4.835</td>
<td>5.061</td>
<td>6.272</td>
<td>9.79</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1.36</td>
<td>2.8</td>
<td>4.81</td>
<td>5.144</td>
<td>6.63</td>
<td>14.19</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>2.13</td>
<td>4.612</td>
<td>5.505</td>
<td>6.241</td>
<td>8.03</td>
<td>11.06</td>
<td></td>
</tr>
<tr>
<td>Min.</td>
<td>1st Qu.</td>
<td>Median</td>
<td>Mean</td>
<td>3rd Qu.</td>
<td>Max.</td>
<td>NA's</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>17.82</td>
<td>27.91</td>
<td>31.16</td>
<td>32.63</td>
<td>36.69</td>
<td>46.45</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>27.13</td>
<td>32.3</td>
<td>36.6</td>
<td>35.55</td>
<td>37.84</td>
<td>49.43</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>20.83</td>
<td>28.39</td>
<td>35.49</td>
<td>35.24</td>
<td>40.74</td>
<td>54.91</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>28.51</td>
<td>38.31</td>
<td>42.2</td>
<td>39.81</td>
<td>42.52</td>
<td>47.53</td>
<td></td>
</tr>
<tr>
<td>E_F</td>
<td>31.23</td>
<td>32.38</td>
<td>33.53</td>
<td>34.72</td>
<td>36.47</td>
<td>39.41</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>36.3</td>
<td>42.1</td>
<td>47.9</td>
<td>44.24</td>
<td>48.22</td>
<td>48.53</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>29.93</td>
<td>36.05</td>
<td>40.95</td>
<td>43.89</td>
<td>52.02</td>
<td>62.39</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>15.7</td>
<td>23.11</td>
<td>25.95</td>
<td>25.44</td>
<td>27.97</td>
<td>37.74</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>17.56</td>
<td>21.16</td>
<td>28.28</td>
<td>27.36</td>
<td>29.22</td>
<td>43.47</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>24.04</td>
<td>28.18</td>
<td>28.48</td>
<td>30.04</td>
<td>33.85</td>
<td>35.63</td>
<td></td>
</tr>
<tr>
<td>E_F</td>
<td>23.55</td>
<td>24.36</td>
<td>25.18</td>
<td>26.19</td>
<td>27.52</td>
<td>29.85</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>33.61</td>
<td>36.34</td>
<td>39.07</td>
<td>39.64</td>
<td>42.65</td>
<td>46.23</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>21.28</td>
<td>30.58</td>
<td>32.61</td>
<td>35.2</td>
<td>36.38</td>
<td>54.11</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>13.36</td>
<td>14.87</td>
<td>17.23</td>
<td>18.45</td>
<td>20.44</td>
<td>29.5</td>
</tr>
<tr>
<td>C</td>
<td>15.6</td>
<td>19.65</td>
<td>22.84</td>
<td>22.49</td>
<td>24.94</td>
<td>31.61</td>
</tr>
<tr>
<td>D</td>
<td>14.86</td>
<td>15.66</td>
<td>19.64</td>
<td>20.59</td>
<td>25.33</td>
<td>28.51</td>
</tr>
<tr>
<td>E</td>
<td>13.52</td>
<td>16.06</td>
<td>17.57</td>
<td>18.09</td>
<td>20.68</td>
<td>22.61</td>
</tr>
<tr>
<td>E_F</td>
<td>9.41</td>
<td>9.78</td>
<td>10.15</td>
<td>14.04</td>
<td>16.36</td>
<td>22.57</td>
</tr>
<tr>
<td>F</td>
<td>19.98</td>
<td>21.44</td>
<td>27.9</td>
<td>25.51</td>
<td>30.77</td>
<td>33.64</td>
</tr>
<tr>
<td>G</td>
<td>13.01</td>
<td>19.29</td>
<td>24.01</td>
<td>24.26</td>
<td>26.72</td>
<td>50.62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>6.64</td>
<td>13.73</td>
<td>20.55</td>
<td>21.13</td>
<td>29.45</td>
<td>40.18</td>
</tr>
<tr>
<td>C</td>
<td>4.57</td>
<td>14.82</td>
<td>19.75</td>
<td>21.13</td>
<td>25.76</td>
<td>64.62</td>
</tr>
<tr>
<td></td>
<td>M. n.</td>
<td>1st Qu.</td>
<td>Median</td>
<td>Mean</td>
<td>3rd Qu.</td>
<td>Max.</td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>B</td>
<td>10.38</td>
<td>12.53</td>
<td>15.3</td>
<td>16.55</td>
<td>18.09</td>
<td>28.13</td>
</tr>
<tr>
<td>C</td>
<td>11.11</td>
<td>13.4</td>
<td>15.31</td>
<td>15.28</td>
<td>17.2</td>
<td>19.13</td>
</tr>
<tr>
<td>D</td>
<td>11.3</td>
<td>15.89</td>
<td>19.21</td>
<td>19.81</td>
<td>23.21</td>
<td>34.07</td>
</tr>
<tr>
<td>E</td>
<td>10.02</td>
<td>11.63</td>
<td>18.52</td>
<td>19.17</td>
<td>25.55</td>
<td>31.45</td>
</tr>
<tr>
<td>E_F</td>
<td>17.37</td>
<td>22.53</td>
<td>27.34</td>
<td>24.99</td>
<td>28.31</td>
<td>29.42</td>
</tr>
<tr>
<td>F</td>
<td>11.36</td>
<td>18.09</td>
<td>21.66</td>
<td>23.47</td>
<td>27.77</td>
<td>41.58</td>
</tr>
<tr>
<td>G</td>
<td>14.93</td>
<td>20.39</td>
<td>23.89</td>
<td>25.34</td>
<td>26.96</td>
<td>42.11</td>
</tr>
</tbody>
</table>
Results of Pairwise testing (adjusted p-values) where a significant relationship is identified by Group

<table>
<thead>
<tr>
<th>Debitage Cortex %</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartzite</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>Siliceous</td>
<td>0.00</td>
<td>0.02</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Debitage Cortex SA</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartzite</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>Siliceous</td>
<td>0.00</td>
<td>0.03</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Debitage Cortex %</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>E-F</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>0.01</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>E-F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>G</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Debitage Cortex SA</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>E-F</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>0.01</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>E-F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>G</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>M n.</td>
<td>1st Qu.</td>
<td>Median</td>
<td>Mean</td>
<td>3rd Qu.</td>
<td>Max.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td>0</td>
<td>0</td>
<td>0.3448</td>
<td>0</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartzite</td>
<td>0</td>
<td>0</td>
<td>2.464</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhyolite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>0</td>
<td>0</td>
<td>4.953</td>
<td>0</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td>0</td>
<td>0</td>
<td>1.068</td>
<td>0</td>
<td>377.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartzite</td>
<td>0</td>
<td>0</td>
<td>21.22</td>
<td>0</td>
<td>1710</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhyolite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>0</td>
<td>0</td>
<td>25.77</td>
<td>0</td>
<td>1600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A	0	0	0	0	0
B	0	0	2.388	0	60
C	0	0	1.567	0	90
D	0	0	7.347	0	90
E	0	0	0.3333	0	5
E_F	0	0	5.385	0	40
F	0	0	1.429	0	20
G	0	0	2.756	0	100

<p>| A | 0 | 0 | 0 | 0 | 0 |
| B | 0 | 0 | 5.292 | 0 | 132.3|
| C | 0 | 0 | 5.003 | 0 | 251.2|
| D | 0 | 0 | 81.51 | 0 | 1710 |
| E | 0 | 0 | 7.715 | 0 | 195.6|
| E_F | 0 | 0 | 47.61 | 0 | 398.8|
| F | 0 | 0 | 5.282 | 0 | 88.5 |
| G | 0 | 0 | 31.91 | 0 | 1254 |</p>
<table>
<thead>
<tr>
<th>NA's</th>
<th>10</th>
<th>9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
Results of Pairwise testing (adjusted p-values) where a significant relationship is identified by Groupwise

<table>
<thead>
<tr>
<th>Core Axial Length</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartzize</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhyolite</td>
<td>>0.05</td>
<td>>0.05</td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>0.05</td>
<td>0.00 >0.05</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Axial Proximal Width</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartzize</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhyolite</td>
<td>>0.05</td>
<td>>0.05</td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>>0.05</td>
<td>0.00 >0.05</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Axial Medial Width</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartzite</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhyolite</td>
<td>>0.05</td>
<td>>0.05</td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>>0.05</td>
<td>0.00 >0.05</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Axial Distal Width</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartzite</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhyolite</td>
<td>>0.05</td>
<td>>0.05</td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>>0.05</td>
<td>0.00 >0.05</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Medial Axial Thickness</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartzite</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhyolite</td>
<td>>0.05</td>
<td>>0.05</td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>>0.05</td>
<td>0.00 >0.05</td>
<td></td>
</tr>
</tbody>
</table>

Quartz

<table>
<thead>
<tr>
<th>Core Axial Length</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>G</td>
<td>0.01</td>
<td>0.01>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>------------------</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Core Axial Distal Width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>G</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Medial Axial Thickness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>G</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

Quartzite

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>E_F</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Axial Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>E-F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>0.02</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>G</td>
<td>0.00</td>
<td>0.01</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>E_F</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Medial Axial Thickness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>E_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>G</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

Flaking Directionality of All Cores by Debitage Type

<table>
<thead>
<tr>
<th></th>
<th>X-squared</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson's Chi-squared test</td>
<td>55.07</td>
<td>2.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>E_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaking Directionality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>E_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>G</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flaking Directionality between Cores and Flakes in BP A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UniBi</td>
<td>>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UniMulti</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiMulti</td>
<td>>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>M n.</td>
<td>1st Qu.</td>
<td>Median</td>
<td>Mean</td>
<td>3rd Qu.</td>
<td>Max.</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Quartz</td>
<td>8.88</td>
<td>15.71</td>
<td>19.83</td>
<td>20.63</td>
<td>23.52</td>
<td>47.9</td>
</tr>
<tr>
<td>Quartzite</td>
<td>13.63</td>
<td>23.59</td>
<td>26.92</td>
<td>28.98</td>
<td>31.96</td>
<td>60.8</td>
</tr>
<tr>
<td>Siliceous</td>
<td>12.05</td>
<td>15.04</td>
<td>16.57</td>
<td>18.05</td>
<td>19.64</td>
<td>29.03</td>
</tr>
<tr>
<td>Quartz</td>
<td>9.48</td>
<td>15.71</td>
<td>19.28</td>
<td>20.68</td>
<td>23.84</td>
<td>39.46</td>
</tr>
<tr>
<td>Quartzite</td>
<td>33.41</td>
<td>33.41</td>
<td>33.41</td>
<td>33.41</td>
<td>33.41</td>
<td>33.41</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>11.13</td>
<td>14.32</td>
<td>15.16</td>
<td>17.09</td>
<td>18.62</td>
<td>29.48</td>
</tr>
<tr>
<td>Siliceous</td>
<td>7.02</td>
<td>11.64</td>
<td>14.92</td>
<td>16.54</td>
<td>21.26</td>
<td>42.31</td>
</tr>
<tr>
<td>Quartz</td>
<td>9.25</td>
<td>11.75</td>
<td>13.4</td>
<td>15.53</td>
<td>18.53</td>
<td>30.35</td>
</tr>
<tr>
<td>Quartzite</td>
<td>12.09</td>
<td>14.63</td>
<td>16.87</td>
<td>16.8</td>
<td>18.92</td>
<td>22.78</td>
</tr>
<tr>
<td>Siliceous</td>
<td>13.16</td>
<td>19.72</td>
<td>26.96</td>
<td>26.2</td>
<td>29.35</td>
<td>43.99</td>
</tr>
<tr>
<td>Quartz</td>
<td>4.33</td>
<td>11.45</td>
<td>14.62</td>
<td>15.8</td>
<td>20.95</td>
<td>37.49</td>
</tr>
<tr>
<td>Quartzite</td>
<td>12.51</td>
<td>17.35</td>
<td>19.72</td>
<td>21.16</td>
<td>22.15</td>
<td>22.42</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>20.53</td>
<td>26.99</td>
<td>33.45</td>
<td>30.3</td>
<td>35.19</td>
<td>36.93</td>
</tr>
<tr>
<td>Siliceous</td>
<td>16.3</td>
<td>20.52</td>
<td>24.45</td>
<td>24.96</td>
<td>28.92</td>
<td>32.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>M n.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8.88</td>
<td>12.04</td>
<td>14.56</td>
<td>14.17</td>
<td>17.48</td>
<td>19.79</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>12.76</td>
<td>15.3</td>
<td>16.91</td>
<td>18.04</td>
<td>19.98</td>
<td>25.57</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>13.86</td>
<td>16.46</td>
<td>20.66</td>
<td>20.14</td>
<td>22.74</td>
<td>28.05</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>11.6</td>
<td>14.98</td>
<td>19.35</td>
<td>18.99</td>
<td>23.03</td>
<td>25.97</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>12.51</td>
<td>17.35</td>
<td>19.72</td>
<td>19.31</td>
<td>23.32</td>
<td>23.76</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>20.45</td>
<td>22.76</td>
<td>25.08</td>
<td>25.32</td>
<td>27.76</td>
<td>30.43</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>16.84</td>
<td>21.35</td>
<td>24.06</td>
<td>26.38</td>
<td>28.38</td>
<td>32.38</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>M n.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9.48</td>
<td>12.3</td>
<td>14.38</td>
<td>14.74</td>
<td>15.57</td>
<td>21.6</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>10.73</td>
<td>13</td>
<td>14.37</td>
<td>16</td>
<td>18.08</td>
<td>25.47</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>12.55</td>
<td>16.33</td>
<td>20.18</td>
<td>19.96</td>
<td>22.48</td>
<td>28.79</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>15.99</td>
<td>18.1</td>
<td>21.05</td>
<td>22.08</td>
<td>22.9</td>
<td>35.55</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>12.5</td>
<td>17.59</td>
<td>18.93</td>
<td>20.32</td>
<td>24.65</td>
<td>28.96</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>20.57</td>
<td>25.1</td>
<td>29.64</td>
<td>29.74</td>
<td>34.33</td>
<td>39.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>15.18</td>
<td>19.84</td>
<td>23.84</td>
<td>24.88</td>
<td>28.71</td>
<td>34.69</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>8.26</td>
<td>9.87</td>
<td>10.02</td>
<td>11.99</td>
<td>11.74</td>
<td>21.36</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>7.1</td>
<td>9.545</td>
<td>12.54</td>
<td>13.02</td>
<td>14.43</td>
<td>23.63</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>10.81</td>
<td>11.4</td>
<td>13.89</td>
<td>15.61</td>
<td>19.72</td>
<td>24.69</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>12.68</td>
<td>14.48</td>
<td>16.42</td>
<td>17.45</td>
<td>19.73</td>
<td>24.64</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>8.85</td>
<td>12.9</td>
<td>16.05</td>
<td>14.92</td>
<td>16.11</td>
<td>22.09</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>16.2</td>
<td>21.68</td>
<td>27.16</td>
<td>28.56</td>
<td>34.74</td>
<td>42.31</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>9.7</td>
<td>14.4</td>
<td>21.2</td>
<td>20.45</td>
<td>25.6</td>
<td>33.76</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.33</td>
<td>7.67</td>
<td>10.6</td>
<td>10.39</td>
<td>13.23</td>
<td>15.15</td>
</tr>
<tr>
<td>C</td>
<td>11.45</td>
<td>13.5</td>
<td>13.92</td>
<td>16.08</td>
<td>18.45</td>
<td>24.97</td>
</tr>
<tr>
<td>D</td>
<td>7.02</td>
<td>12.82</td>
<td>14.76</td>
<td>18.29</td>
<td>21.55</td>
<td>37.49</td>
</tr>
<tr>
<td>E</td>
<td>7.37</td>
<td>8.96</td>
<td>11.54</td>
<td>14.45</td>
<td>20.01</td>
<td>25.54</td>
</tr>
<tr>
<td>F</td>
<td>10.44</td>
<td>12.86</td>
<td>15.28</td>
<td>13.87</td>
<td>15.58</td>
<td>15.88</td>
</tr>
<tr>
<td>G</td>
<td>7.26</td>
<td>17.42</td>
<td>21.74</td>
<td>20.91</td>
<td>24.26</td>
<td>34.26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M n.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>15.98</td>
<td>20.12</td>
<td>21.57</td>
<td>25.07</td>
<td>26.89</td>
<td>41.8</td>
</tr>
<tr>
<td>C</td>
<td>19.79</td>
<td>24.81</td>
<td>27.77</td>
<td>27.74</td>
<td>30.68</td>
<td>34.96</td>
</tr>
<tr>
<td>D</td>
<td>19.11</td>
<td>26.22</td>
<td>28.08</td>
<td>29.57</td>
<td>31.53</td>
<td>43.37</td>
</tr>
<tr>
<td>E</td>
<td>19.75</td>
<td>22.45</td>
<td>28.05</td>
<td>27.95</td>
<td>33.92</td>
<td>35.58</td>
</tr>
<tr>
<td>E_F</td>
<td>22.6</td>
<td>24.03</td>
<td>25.46</td>
<td>25.69</td>
<td>27.23</td>
<td>29</td>
</tr>
<tr>
<td>F</td>
<td>32.89</td>
<td>34.94</td>
<td>36.99</td>
<td>37.83</td>
<td>40.3</td>
<td>43.62</td>
</tr>
<tr>
<td>G</td>
<td>23.81</td>
<td>29.36</td>
<td>33.15</td>
<td>36.2</td>
<td>42.16</td>
<td>60.17</td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>13.14</td>
<td>13.93</td>
<td>17.31</td>
<td>17.92</td>
<td>18.99</td>
<td>30.44</td>
</tr>
<tr>
<td>C</td>
<td>12.01</td>
<td>18.63</td>
<td>20.92</td>
<td>20.87</td>
<td>23.97</td>
<td>32.74</td>
</tr>
<tr>
<td>D</td>
<td>12.75</td>
<td>15.24</td>
<td>20.2</td>
<td>20.18</td>
<td>24.92</td>
<td>27.91</td>
</tr>
<tr>
<td>E</td>
<td>12.02</td>
<td>17.09</td>
<td>20.13</td>
<td>18.69</td>
<td>22.07</td>
<td>22.12</td>
</tr>
<tr>
<td>E_F</td>
<td>9.53</td>
<td>9.845</td>
<td>10.16</td>
<td>13.19</td>
<td>15.02</td>
<td>19.88</td>
</tr>
<tr>
<td>F</td>
<td>10.01</td>
<td>16.72</td>
<td>23.43</td>
<td>21.63</td>
<td>27.44</td>
<td>31.44</td>
</tr>
<tr>
<td>G</td>
<td>11.73</td>
<td>17.8</td>
<td>23.14</td>
<td>24.11</td>
<td>27.11</td>
<td>49.29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bidirection</th>
<th>Multidirectional</th>
<th>Unidirectional</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>B</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>C</td>
<td>48</td>
<td>43</td>
</tr>
<tr>
<td>D</td>
<td>24</td>
<td>37</td>
</tr>
<tr>
<td>E</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>E_F</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>G</td>
<td>28</td>
<td>65</td>
</tr>
</tbody>
</table>
Results of Pairwise testing (adjusted p-values) where a significant relationship is identified by Groupwise test

<table>
<thead>
<tr>
<th>Core Scar Count</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartzite</td>
<td>0.00</td>
<td></td>
<td></td>
<td>Quartzite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhyolite</td>
<td>>0.05</td>
<td>>0.05</td>
<td></td>
<td>Rhyolite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>>0.05</td>
<td>0.00 >0.05</td>
<td></td>
<td>Siliceous</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Scar Density</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartzite</td>
<td>0.00</td>
<td></td>
<td></td>
<td>Quartzite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhyolite</td>
<td>>0.05</td>
<td>>0.05</td>
<td></td>
<td>Rhyolite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>>0.05</td>
<td>0.00 >0.05</td>
<td></td>
<td>Siliceous</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Aberrant Terminations</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartzite</td>
<td>0.02</td>
<td></td>
<td></td>
<td>Quartzite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhyolite</td>
<td>>0.05</td>
<td>>0.05</td>
<td></td>
<td>Rhyolite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>>0.05</td>
<td>>0.05 >0.05</td>
<td></td>
<td>Siliceous</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quartz

<table>
<thead>
<tr>
<th>Quartz Core Scar Count by Site</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>E</td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>0.01</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>G</td>
</tr>
</tbody>
</table>

Type

<table>
<thead>
<tr>
<th>Core Scar Count</th>
<th>Blade</th>
<th>Blade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flake</td>
<td>0.00</td>
<td>Flake</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Scar Density</th>
<th>Blade</th>
<th>Blade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flake</td>
<td>0.00</td>
<td>Flake</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Aberant Terminations</th>
<th>Blade</th>
<th>Blade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flake</td>
<td>0.00</td>
<td>Flake</td>
</tr>
</tbody>
</table>

Directionality

<table>
<thead>
<tr>
<th>Core Scar Density</th>
<th>Bidirection Multidirectional</th>
<th>Bidirection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multidirectional</td>
<td>0.00 NA</td>
<td>Multidirect</td>
</tr>
<tr>
<td>Unidirectional</td>
<td>0.00 >0.05</td>
<td>Unidirectic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Core Rotations</th>
<th>Bidirection Multidirectional</th>
<th>Bidirection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multidirectional</td>
<td>>0.05 NA</td>
<td>Multidirect</td>
</tr>
<tr>
<td>Unidirectional</td>
<td>0.00 0.00</td>
<td>Unidirectic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Aberant Terminations</th>
<th>Bidirection Multidirectional</th>
<th>Bidirection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multidirectional</td>
<td>>0.05 NA</td>
<td>Multidirect</td>
</tr>
<tr>
<td>Unidirectional</td>
<td>>0.05 0.03</td>
<td>Unidirectic</td>
</tr>
<tr>
<td>Proportion of Core Management Flakes</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>B</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>E</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>E_F</td>
<td>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>G</td>
<td>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

Raw Material

<table>
<thead>
<tr>
<th>Proportion of Core Management Flakes</th>
<th>Siliceous</th>
<th>Quartzite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartzite</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>Quartz</td>
<td>>0.05</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Directionality

<table>
<thead>
<tr>
<th>Proportion of Core Management Flakes</th>
<th>Unidirectic</th>
<th>Bidirectional</th>
<th>Multidirectional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bidirectional</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multidirectional</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>M n.</td>
<td>1st Qu.</td>
<td>Median</td>
<td>Mean</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.758</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>4</td>
<td>4.964</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M n.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.0005964</td>
<td>0.00276</td>
<td>0.002446</td>
<td>0.02427</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0.001463</td>
<td>0.002739</td>
<td>0.006758</td>
<td>0.006008</td>
<td>0.05536</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0.001746</td>
<td>0.001746</td>
<td>0.001746</td>
<td>0.001746</td>
<td>0.001746</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M n.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.8529</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.602</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>0.75</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M n.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0.625</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.818</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1.667</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.429</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0.5</td>
<td>1</td>
<td>2.333</td>
<td>3.5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3.5</td>
<td>3.786</td>
<td>5</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M n.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4.397</td>
<td>7</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2.512</td>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M n.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.001381</td>
<td>0.002645</td>
<td>0.005737</td>
<td>0.00536</td>
<td>0.05536</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.0008752</td>
<td>0.00392</td>
<td>0.002906</td>
<td>0.03986</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M n.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.823</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6747</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M n.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.003801</td>
<td>0.0121</td>
<td>0.01557</td>
<td>0.02116</td>
<td>0.05536</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.0007449</td>
<td>0.003445</td>
<td>0.002354</td>
<td>0.03986</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0.000634</td>
<td>0.001956</td>
<td>0.003664</td>
<td>0.004246</td>
<td>0.02922</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M n.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.25</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.388</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.6632</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M n.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>1.312</td>
<td>1.25</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6667</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.49</td>
<td>2.25</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>109</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>212</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>132</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>71</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_F</td>
<td>15</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>50</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>144</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td>368</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartzit</td>
<td>409</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>91</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bidirect</td>
<td>170</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multidirect</td>
<td>171</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidirectic</td>
<td>436</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results of Pairwise testing (adjusted p-values) where a significant relationship is identified by Groupwi

<table>
<thead>
<tr>
<th>Core</th>
<th>Platform Width</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartzite</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Rhyolite</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>>0.05</td>
<td>0.00</td>
<td>>0.05</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core</th>
<th>Platform Depth</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartzite</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Rhyolite</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>>0.05</td>
<td>0.00</td>
<td>>0.05</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core</th>
<th>Surface Area</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartzite</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Rhyolite</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>>0.05</td>
<td>0.00</td>
<td>>0.05</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core</th>
<th>Size Corrected Platform Area</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartzite</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Rhyolite</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td></td>
</tr>
</tbody>
</table>

Quartz

<table>
<thead>
<tr>
<th>Core</th>
<th>Platform Width</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartzite</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>0.04</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core</th>
<th>Platform Depth</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartzite</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core</th>
<th>Platform Surface Area</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartzite</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core</th>
<th>Platform Preparation</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td></td>
</tr>
<tr>
<td>E_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td></td>
</tr>
</tbody>
</table>

Quartzite

<table>
<thead>
<tr>
<th>Core Platform Width</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>EF</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>G</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Platform Type</th>
<th>Flake</th>
<th>Blade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size Corrected Platform Area</th>
<th>Bidirectional</th>
<th>Multidirectional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multidirectional</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>Unidirectional</td>
<td>0.00</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Debitage

Raw Material

<table>
<thead>
<tr>
<th>Flake Platform Width</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>0.00</td>
<td>0.12</td>
<td>NA</td>
</tr>
<tr>
<td>Siliceous</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Platform Depth</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>0.01</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>Siliceous</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Platform Surface Area</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>0.00</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>Siliceous</td>
<td>0.00</td>
<td>0.00</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Size Corrected Platform Area</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>Siliceous</td>
<td>0.00</td>
<td>0.00</td>
<td>>0.05</td>
</tr>
<tr>
<td>Flake Platform Type</td>
<td>Quartz</td>
<td>Quartzite</td>
<td>Siliceous</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Quartzite</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Rhyolite</td>
<td>>0.05</td>
<td>>0.05</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flake Platform Width</td>
</tr>
<tr>
<td>Blade</td>
</tr>
<tr>
<td>Core_Man:Flake</td>
</tr>
<tr>
<td>Core_Management</td>
</tr>
<tr>
<td>Flake</td>
</tr>
<tr>
<td>Point</td>
</tr>
<tr>
<td>Flake Platform Depth</td>
</tr>
<tr>
<td>Blade</td>
</tr>
<tr>
<td>Core_Man:Flake</td>
</tr>
<tr>
<td>Core_Management</td>
</tr>
<tr>
<td>Flake</td>
</tr>
<tr>
<td>Point</td>
</tr>
<tr>
<td>Flake Platform Surface Area</td>
</tr>
<tr>
<td>Blade</td>
</tr>
<tr>
<td>Core_Man:Flake</td>
</tr>
<tr>
<td>Core_Management</td>
</tr>
<tr>
<td>Flake</td>
</tr>
<tr>
<td>Point</td>
</tr>
<tr>
<td>Flake Size Corrected Platform Area</td>
</tr>
<tr>
<td>Blade</td>
</tr>
<tr>
<td>Core_Man:Flake</td>
</tr>
<tr>
<td>Core_Management</td>
</tr>
<tr>
<td>Flake</td>
</tr>
<tr>
<td>Point</td>
</tr>
<tr>
<td>Flake Platform Preparation</td>
</tr>
<tr>
<td>Core_Management</td>
</tr>
<tr>
<td>Flake</td>
</tr>
<tr>
<td>Point</td>
</tr>
<tr>
<td>Flake Platform Type</td>
</tr>
<tr>
<td>Blade</td>
</tr>
<tr>
<td>Core_Man:Flake</td>
</tr>
<tr>
<td>Core_Management</td>
</tr>
<tr>
<td>Flake</td>
</tr>
<tr>
<td>Point</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quartz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flake Platform Width</td>
</tr>
<tr>
<td>BP_A</td>
</tr>
<tr>
<td>BP_B</td>
</tr>
<tr>
<td>BP_C</td>
</tr>
<tr>
<td>BP_D</td>
</tr>
<tr>
<td>BP_E</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>BP_E_F</td>
</tr>
<tr>
<td>BP_F</td>
</tr>
<tr>
<td>BP_G</td>
</tr>
</tbody>
</table>

Flake Platform Depth

<table>
<thead>
<tr>
<th></th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_E_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_G</td>
<td>0.02</td>
<td>>0.05</td>
<td>0.02</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

Flake Platform Surface Area

<table>
<thead>
<tr>
<th></th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>0.02</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>0.02</td>
<td>>0.05</td>
<td>0.04</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_E_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_G</td>
<td>0.02</td>
<td>>0.05</td>
<td>0.02</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

Quartzite

Flake Platform Width

<table>
<thead>
<tr>
<th></th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_E_F</td>
<td>0.04</td>
<td>0.02</td>
<td>0.04</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_G</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

Flake Platform Depth

<table>
<thead>
<tr>
<th></th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_E_F</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.09</td>
</tr>
<tr>
<td>BP_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_G</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

Flake Platform Surface Area

<table>
<thead>
<tr>
<th></th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_E_F</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>BP_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_G</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01 >0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min.</td>
<td>1st Qu.</td>
<td>Median</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td>8.16</td>
<td>14.6</td>
<td>19.4</td>
<td></td>
</tr>
<tr>
<td>Quartzite</td>
<td>13.45</td>
<td>23.28</td>
<td>26.85</td>
<td></td>
</tr>
<tr>
<td>Rhyolite</td>
<td>21.77</td>
<td>21.77</td>
<td>21.77</td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>8.24</td>
<td>15.58</td>
<td>18.2</td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td>1.12</td>
<td>14.11</td>
<td>19.34</td>
<td></td>
</tr>
<tr>
<td>Quartzite</td>
<td>4.26</td>
<td>15.48</td>
<td>19.76</td>
<td></td>
</tr>
<tr>
<td>Rhyolite</td>
<td>20.37</td>
<td>20.37</td>
<td>20.37</td>
<td></td>
</tr>
<tr>
<td>Siliceous</td>
<td>3.9</td>
<td>7.663</td>
<td>11.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>18.02</td>
<td>174.4</td>
<td>255</td>
</tr>
<tr>
<td>Quartzite</td>
<td>100.1</td>
<td>369.1</td>
<td>561.3</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>443.5</td>
<td>443.5</td>
<td>443.5</td>
</tr>
<tr>
<td>Siliceous</td>
<td>32.14</td>
<td>123.5</td>
<td>201.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>F</td>
<td>A</td>
<td>8.16</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>B</td>
<td>11.96</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>C</td>
<td>12.48</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>D</td>
<td>12.44</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>E</td>
<td>12.48</td>
</tr>
<tr>
<td>>0.05</td>
<td>NA</td>
<td>F</td>
<td>19.13</td>
</tr>
<tr>
<td>>0.05</td>
<td>>0.05</td>
<td>G</td>
<td>12.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>F</td>
<td>A</td>
<td>3.52</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>B</td>
<td>1.12</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>C</td>
<td>6.43</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>D</td>
<td>5.86</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>E</td>
<td>7.07</td>
</tr>
<tr>
<td>>0.05</td>
<td>NA</td>
<td>F</td>
<td>8.94</td>
</tr>
<tr>
<td>>0.05</td>
<td>>0.05</td>
<td>G</td>
<td>3.83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>F</td>
<td>A</td>
<td>29.64</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>B</td>
<td>18.02</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>C</td>
<td>93.17</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>D</td>
<td>82.45</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>E</td>
<td>88.23</td>
</tr>
<tr>
<td>>0.05</td>
<td>NA</td>
<td>F</td>
<td>189.6</td>
</tr>
<tr>
<td>>0.05</td>
<td>>0.05</td>
<td>G</td>
<td>46.57</td>
</tr>
<tr>
<td></td>
<td>E_F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Complex</th>
<th>Cortical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bl ade</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Fl ake</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Bidirectional</th>
<th>Multidirectional</th>
<th>Unidirectional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.03854</td>
<td>0.0583</td>
<td>0.03744</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>0.302</td>
<td>0.289</td>
<td>0.433</td>
</tr>
<tr>
<td>Median</td>
<td>0.39</td>
<td>0.4117</td>
<td>0.5486</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>2.21</td>
<td>7.48</td>
<td>12.11</td>
<td>12.79</td>
</tr>
<tr>
<td>Quartzite</td>
<td>3.49</td>
<td>11.4</td>
<td>16.69</td>
<td>19.37</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>12.01</td>
<td>17.5</td>
<td>23.49</td>
<td>26.1</td>
</tr>
<tr>
<td>Siliceous</td>
<td>2.9</td>
<td>5.11</td>
<td>8.3</td>
<td>9.383</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>0.79</td>
<td>2.725</td>
<td>4.34</td>
<td>4.827</td>
</tr>
<tr>
<td>Quartzite</td>
<td>1.04</td>
<td>3.953</td>
<td>6.5</td>
<td>7.094</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>4.28</td>
<td>5.75</td>
<td>6.8</td>
<td>7.764</td>
</tr>
<tr>
<td>Siliceous</td>
<td>0.46</td>
<td>1.88</td>
<td>2.39</td>
<td>3.251</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>2.994</td>
<td>21.09</td>
<td>49.68</td>
<td>77.68</td>
</tr>
<tr>
<td>Quartzite</td>
<td>5.154</td>
<td>45.73</td>
<td>104.3</td>
<td>166</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>61.03</td>
<td>105.2</td>
<td>143.3</td>
<td>217.2</td>
</tr>
<tr>
<td>Siliceous</td>
<td>1.348</td>
<td>10.01</td>
<td>18.84</td>
<td>38.19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>0.00476</td>
<td>0.09349</td>
<td>0.1532</td>
<td>0.1737</td>
</tr>
<tr>
<td>Quartzite</td>
<td>0.01</td>
<td>0.08527</td>
<td>0.136</td>
<td>0.167</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>0.06206</td>
<td>0.09375</td>
<td>0.1276</td>
<td>0.1602</td>
</tr>
<tr>
<td>Siliceous</td>
<td>0.00694</td>
<td>0.06705</td>
<td>0.09033</td>
<td>0.1133</td>
</tr>
<tr>
<td>Complex</td>
<td>Cortical</td>
<td>Crushed/B Dihedral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td>57</td>
<td>0</td>
<td>23</td>
<td>34</td>
</tr>
<tr>
<td>Quartzite</td>
<td>35</td>
<td>10</td>
<td>22</td>
<td>59</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Siliceous</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade</td>
<td>2.21</td>
<td>4.93</td>
<td>6.43</td>
<td>7.83</td>
</tr>
<tr>
<td>Core Mana</td>
<td>3.49</td>
<td>11.24</td>
<td>16.73</td>
<td>18.39</td>
</tr>
<tr>
<td>Flake</td>
<td>2.7</td>
<td>9.66</td>
<td>14.56</td>
<td>16.65</td>
</tr>
<tr>
<td>Point</td>
<td>6.64</td>
<td>14.3</td>
<td>18.05</td>
<td>19.38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade</td>
<td>0.71</td>
<td>1.83</td>
<td>2.35</td>
<td>3.105</td>
</tr>
<tr>
<td>Core Mana</td>
<td>1.29</td>
<td>4.125</td>
<td>6.68</td>
<td>7.427</td>
</tr>
<tr>
<td>Flake</td>
<td>0.46</td>
<td>3.185</td>
<td>5.21</td>
<td>6.01</td>
</tr>
<tr>
<td>Point</td>
<td>1.09</td>
<td>4.28</td>
<td>6.47</td>
<td>6.815</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade</td>
<td>2.84</td>
<td>9.413</td>
<td>13.41</td>
<td>30.76</td>
</tr>
<tr>
<td>Core Mana</td>
<td>7.469</td>
<td>45.37</td>
<td>107.1</td>
<td>162.5</td>
</tr>
<tr>
<td>Flake</td>
<td>1.348</td>
<td>33.9</td>
<td>75.47</td>
<td>126.5</td>
</tr>
<tr>
<td>Point</td>
<td>17.59</td>
<td>61.98</td>
<td>102.7</td>
<td>152</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade</td>
<td>0.00694</td>
<td>0.0761</td>
<td>0.1085</td>
<td>0.1206</td>
</tr>
<tr>
<td>Core Mana</td>
<td>0.01026</td>
<td>0.0624</td>
<td>0.1039</td>
<td>0.1552</td>
</tr>
<tr>
<td>Flake</td>
<td>0.00476</td>
<td>0.09007</td>
<td>0.147</td>
<td>0.173</td>
</tr>
<tr>
<td>Point</td>
<td>0.01901</td>
<td>0.09881</td>
<td>0.1644</td>
<td>0.157</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade</td>
<td>120</td>
</tr>
<tr>
<td>Core_Mana</td>
<td>72</td>
</tr>
<tr>
<td>Flake</td>
<td>652</td>
</tr>
<tr>
<td>Point</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade</td>
<td>2.21</td>
<td>10.23</td>
<td>15.09</td>
<td>15.1</td>
</tr>
<tr>
<td>Core Mana</td>
<td>2.85</td>
<td>6.07</td>
<td>7.82</td>
<td>8.859</td>
</tr>
<tr>
<td>Flake</td>
<td>5.7</td>
<td>10.54</td>
<td>12.86</td>
<td>13.47</td>
</tr>
<tr>
<td>Point</td>
<td>2.7</td>
<td>5.96</td>
<td>10.32</td>
<td>10.41</td>
</tr>
<tr>
<td>D</td>
<td>3.33</td>
<td>7.86</td>
<td>12.82</td>
<td>13.29</td>
</tr>
<tr>
<td>E</td>
<td>2.21</td>
<td>10.23</td>
<td>15.09</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E_F</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>BP_E</td>
<td>BP_E_F</td>
<td>BP_F</td>
<td>A</td>
<td>1.04</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>B</td>
<td>1.57</td>
<td>3.685</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>C</td>
<td>0.79</td>
<td>2.252</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>D</td>
<td>1.51</td>
<td>2.535</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>E</td>
<td>2</td>
<td>3.808</td>
</tr>
<tr>
<td>>0.05</td>
<td>NA</td>
<td>E_F</td>
<td>1.33</td>
<td>5.28</td>
</tr>
<tr>
<td>>0.05</td>
<td>NA</td>
<td>F</td>
<td>1.12</td>
<td>3</td>
</tr>
<tr>
<td>>0.05</td>
<td>>0.05</td>
<td>G</td>
<td>1.75</td>
<td>3.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>A</th>
<th>3.306</th>
<th>10.38</th>
<th>24.38</th>
<th>37.57</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>NA</td>
<td>B</td>
<td>11.72</td>
<td>40.07</td>
<td>59.06</td>
<td>77.43</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>C</td>
<td>2.994</td>
<td>13.21</td>
<td>34.45</td>
<td>46.23</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>D</td>
<td>5.228</td>
<td>21.15</td>
<td>54.69</td>
<td>73.96</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>E</td>
<td>4.619</td>
<td>40.93</td>
<td>85.32</td>
<td>92.81</td>
<td></td>
</tr>
<tr>
<td>>0.05</td>
<td>NA</td>
<td>E_F</td>
<td>4.761</td>
<td>137.6</td>
<td>270.4</td>
<td>270.4</td>
<td></td>
</tr>
<tr>
<td>>0.05</td>
<td>>0.05</td>
<td>G</td>
<td>8.823</td>
<td>48.12</td>
<td>104</td>
<td>185.6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_E</td>
<td>BP_E_F</td>
<td>BP_F</td>
<td>A</td>
<td>9.15</td>
<td>11.27</td>
<td>12.38</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>B</td>
<td>3.84</td>
<td>9.955</td>
<td>13.56</td>
<td>16.09</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>C</td>
<td>3.7</td>
<td>10.47</td>
<td>14.76</td>
<td>17</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>D</td>
<td>6.55</td>
<td>12.2</td>
<td>17.57</td>
<td>20.44</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>E</td>
<td>4.19</td>
<td>9.23</td>
<td>16.26</td>
<td>17.67</td>
</tr>
<tr>
<td>>0.05</td>
<td>NA</td>
<td>E_F</td>
<td>13.44</td>
<td>22.14</td>
<td>33.98</td>
<td>31.83</td>
</tr>
<tr>
<td>>0.05</td>
<td>0.04</td>
<td>NA</td>
<td>3.49</td>
<td>11.23</td>
<td>15.58</td>
<td>16.2</td>
</tr>
<tr>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>G</td>
<td>4.56</td>
<td>14.68</td>
<td>20.23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>A</th>
<th>2.85</th>
<th>3.365</th>
<th>3.975</th>
<th>3.857</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>NA</td>
<td>B</td>
<td>1.66</td>
<td>3.65</td>
<td>5.57</td>
<td>6.536</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>C</td>
<td>1.1</td>
<td>3.61</td>
<td>5.67</td>
<td>6.447</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>D</td>
<td>2.07</td>
<td>3.57</td>
<td>6.66</td>
<td>7.621</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>E</td>
<td>1.23</td>
<td>3.18</td>
<td>5.16</td>
<td>5.914</td>
<td></td>
</tr>
<tr>
<td>0.02</td>
<td>NA</td>
<td>E_F</td>
<td>5.41</td>
<td>8.79</td>
<td>13.02</td>
<td>12.35</td>
<td></td>
</tr>
<tr>
<td>>0.05</td>
<td>0.02</td>
<td>NA</td>
<td>2.14</td>
<td>3.195</td>
<td>5.38</td>
<td>6.373</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>>0.05</td>
<td>0.03</td>
<td>G</td>
<td>1.04</td>
<td>5.158</td>
<td>7.395</td>
<td>8.014</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>A</th>
<th>29.74</th>
<th>45.07</th>
<th>47.85</th>
<th>48.37</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>NA</td>
<td>B</td>
<td>8.018</td>
<td>36.74</td>
<td>83.64</td>
<td>127.4</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>C</td>
<td>6.544</td>
<td>42.94</td>
<td>83.87</td>
<td>133.1</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>D</td>
<td>17.19</td>
<td>41.78</td>
<td>109.2</td>
<td>196.3</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>E</td>
<td>5.154</td>
<td>25.22</td>
<td>87.12</td>
<td>124.4</td>
<td></td>
</tr>
<tr>
<td>0.02</td>
<td>NA</td>
<td>E_F</td>
<td>72.71</td>
<td>244.2</td>
<td>441.5</td>
<td>418.8</td>
<td></td>
</tr>
<tr>
<td>>0.05</td>
<td>0.02</td>
<td>NA</td>
<td>7.469</td>
<td>39.6</td>
<td>68.56</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td>>0.05</td>
<td>0.02</td>
<td>G</td>
<td>9.413</td>
<td>76.56</td>
<td>141.4</td>
<td>209.2</td>
</tr>
<tr>
<td>Mean</td>
<td>3rd Qu.</td>
<td>Max.</td>
<td>NA's</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.53</td>
<td>25.03</td>
<td>47.23</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.65</td>
<td>33.89</td>
<td>62.37</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.77</td>
<td>21.77</td>
<td>21.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.68</td>
<td>19.1</td>
<td>21.13</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.32</td>
<td>19.56</td>
<td>36.69</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.25</td>
<td>24.86</td>
<td>50.45</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.37</td>
<td>20.37</td>
<td>20.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.92</td>
<td>14.4</td>
<td>17.3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>324.4</td>
<td>451.6</td>
<td>1184</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>640.1</td>
<td>740.1</td>
<td>3147</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>443.5</td>
<td>443.5</td>
<td>443.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.2</td>
<td>274.3</td>
<td>311.4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.64</td>
<td>14.91</td>
<td>19.68</td>
<td></td>
</tr>
<tr>
<td>17.45</td>
<td>19.29</td>
<td>25.58</td>
<td></td>
</tr>
<tr>
<td>18.93</td>
<td>22.85</td>
<td>25.57</td>
<td></td>
</tr>
<tr>
<td>20.17</td>
<td>24.9</td>
<td>28.57</td>
<td>2</td>
</tr>
<tr>
<td>21.85</td>
<td>25.14</td>
<td>27.75</td>
<td>1</td>
</tr>
<tr>
<td>25.63</td>
<td>28.88</td>
<td>30.46</td>
<td></td>
</tr>
<tr>
<td>25.95</td>
<td>31.81</td>
<td>37.47</td>
<td></td>
</tr>
<tr>
<td>8.247</td>
<td>11.66</td>
<td>13.8</td>
<td></td>
</tr>
<tr>
<td>13.76</td>
<td>17.46</td>
<td>20.86</td>
<td></td>
</tr>
<tr>
<td>13.68</td>
<td>14.8</td>
<td>20.92</td>
<td></td>
</tr>
<tr>
<td>16.68</td>
<td>19.69</td>
<td>36.69</td>
<td>2</td>
</tr>
<tr>
<td>15.69</td>
<td>21.39</td>
<td>24.29</td>
<td>1</td>
</tr>
<tr>
<td>10.02</td>
<td>10.56</td>
<td>11.21</td>
<td></td>
</tr>
<tr>
<td>19.57</td>
<td>21.56</td>
<td>32.82</td>
<td></td>
</tr>
<tr>
<td>109.7</td>
<td>152.7</td>
<td>205.8</td>
<td></td>
</tr>
<tr>
<td>251.4</td>
<td>365.5</td>
<td>533.6</td>
<td></td>
</tr>
<tr>
<td>264.3</td>
<td>302</td>
<td>503.8</td>
<td></td>
</tr>
<tr>
<td>377.1</td>
<td>510</td>
<td>973.8</td>
<td>2</td>
</tr>
<tr>
<td>356.1</td>
<td>423.6</td>
<td>668.2</td>
<td>1</td>
</tr>
<tr>
<td>255.9</td>
<td>289.1</td>
<td>305.9</td>
<td></td>
</tr>
<tr>
<td>542.1</td>
<td>612</td>
<td>1184</td>
<td></td>
</tr>
<tr>
<td>Crushed/B Dihedral</td>
<td>Simple</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>39</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3735</td>
<td>0.4759</td>
<td>0.5631</td>
<td>2</td>
</tr>
<tr>
<td>0.4692</td>
<td>0.6257</td>
<td>1.098</td>
<td>3</td>
</tr>
<tr>
<td>0.5539</td>
<td>0.6744</td>
<td>0.9768</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.09</td>
<td>60.08</td>
<td>108</td>
</tr>
<tr>
<td>25.3</td>
<td>68.34</td>
<td>89</td>
</tr>
<tr>
<td>33.71</td>
<td>44.75</td>
<td></td>
</tr>
<tr>
<td>11.23</td>
<td>28.17</td>
<td>28</td>
</tr>
</tbody>
</table>

6.32	25.61	108
8.815	23.64	88
9.51	12.75	
3.81	11.89	28

97.47	1539	108
222.4	908.9	89
288.6	528.6	
53.92	264.9	28

0.2376	0.6798	108
0.2261	0.7339	89
0.1959	0.3523	
0.1327	0.4079	28
Punctiform Simple

<table>
<thead>
<tr>
<th>Tex</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>138</td>
</tr>
<tr>
<td>31</td>
<td>245</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

3rd Qu. | Max. | NA's |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10.08</td>
<td>42.87</td>
<td>45</td>
</tr>
<tr>
<td>23.16</td>
<td>51.83</td>
<td>2</td>
</tr>
<tr>
<td>21.08</td>
<td>68.34</td>
<td>177</td>
</tr>
<tr>
<td>22.05</td>
<td>51.38</td>
<td>2</td>
</tr>
<tr>
<td>3.72</td>
<td>13.27</td>
<td>45</td>
</tr>
<tr>
<td>9.235</td>
<td>22.07</td>
<td>2</td>
</tr>
<tr>
<td>7.78</td>
<td>25.61</td>
<td>176</td>
</tr>
<tr>
<td>8.48</td>
<td>17.39</td>
<td>2</td>
</tr>
<tr>
<td>31.45</td>
<td>240.1</td>
<td>45</td>
</tr>
<tr>
<td>203.1</td>
<td>737.6</td>
<td>2</td>
</tr>
<tr>
<td>153</td>
<td>1539</td>
<td>177</td>
</tr>
<tr>
<td>188.8</td>
<td>843.7</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tex</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>36</td>
</tr>
<tr>
<td>10</td>
<td>46</td>
</tr>
<tr>
<td>52</td>
<td>312</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
</tr>
</tbody>
</table>

3rd Qu. | Max. | NA's |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>27.65</td>
<td>20</td>
</tr>
<tr>
<td>16.05</td>
<td>26.93</td>
<td>16</td>
</tr>
<tr>
<td>13.16</td>
<td>29.9</td>
<td>25</td>
</tr>
<tr>
<td>17.77</td>
<td>26.86</td>
<td>18</td>
</tr>
<tr>
<td>20.28</td>
<td>26.86</td>
<td>6</td>
</tr>
<tr>
<td>24.36</td>
<td>31.29</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>13.84</td>
<td>24.82</td>
<td>4</td>
</tr>
<tr>
<td>20.64</td>
<td>60.08</td>
<td>9</td>
</tr>
<tr>
<td>4.46</td>
<td>10.9</td>
<td>20</td>
</tr>
<tr>
<td>6.68</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>4.895</td>
<td>9.14</td>
<td>25</td>
</tr>
<tr>
<td>6.41</td>
<td>13.68</td>
<td>18</td>
</tr>
<tr>
<td>6.79</td>
<td>11.03</td>
<td>6</td>
</tr>
<tr>
<td>13.18</td>
<td>17.13</td>
<td></td>
</tr>
<tr>
<td>6.22</td>
<td>7.68</td>
<td>4</td>
</tr>
<tr>
<td>8.7</td>
<td>25.61</td>
<td>9</td>
</tr>
<tr>
<td>48.27</td>
<td>183.6</td>
<td>20</td>
</tr>
<tr>
<td>103.9</td>
<td>267.7</td>
<td>16</td>
</tr>
<tr>
<td>72.06</td>
<td>174.5</td>
<td>25</td>
</tr>
<tr>
<td>107.7</td>
<td>311.8</td>
<td>18</td>
</tr>
<tr>
<td>135.2</td>
<td>248.4</td>
<td>6</td>
</tr>
<tr>
<td>403.2</td>
<td>536</td>
<td></td>
</tr>
<tr>
<td>79.83</td>
<td>185.4</td>
<td>4</td>
</tr>
<tr>
<td>188.9</td>
<td>1539</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.58</td>
<td>16.87</td>
<td>2</td>
</tr>
<tr>
<td>22.58</td>
<td>38.43</td>
<td>11</td>
</tr>
<tr>
<td>21.68</td>
<td>47.59</td>
<td>31</td>
</tr>
<tr>
<td>28.08</td>
<td>49.67</td>
<td>18</td>
</tr>
<tr>
<td>23.74</td>
<td>44.83</td>
<td></td>
</tr>
<tr>
<td>40.89</td>
<td>49.3</td>
<td>1</td>
</tr>
<tr>
<td>20.73</td>
<td>28.36</td>
<td>6</td>
</tr>
<tr>
<td>29.2</td>
<td>68.34</td>
<td>15</td>
</tr>
<tr>
<td>4.292</td>
<td>4.78</td>
<td>2</td>
</tr>
<tr>
<td>8.65</td>
<td>22.07</td>
<td>10</td>
</tr>
<tr>
<td>8.47</td>
<td>16.85</td>
<td>31</td>
</tr>
<tr>
<td>9.248</td>
<td>19.8</td>
<td>18</td>
</tr>
<tr>
<td>8.33</td>
<td>12.74</td>
<td></td>
</tr>
<tr>
<td>15.59</td>
<td>17.54</td>
<td>1</td>
</tr>
<tr>
<td>7.575</td>
<td>17.56</td>
<td>6</td>
</tr>
<tr>
<td>9.685</td>
<td>23.64</td>
<td>15</td>
</tr>
<tr>
<td>52.88</td>
<td>66.06</td>
<td>2</td>
</tr>
<tr>
<td>175.3</td>
<td>599</td>
<td>11</td>
</tr>
<tr>
<td>171.4</td>
<td>690.1</td>
<td>31</td>
</tr>
<tr>
<td>221.9</td>
<td>737.6</td>
<td>18</td>
</tr>
<tr>
<td>181.4</td>
<td>532.7</td>
<td></td>
</tr>
<tr>
<td>614.8</td>
<td>728.3</td>
<td>1</td>
</tr>
<tr>
<td>159.2</td>
<td>498</td>
<td>6</td>
</tr>
<tr>
<td>287.4</td>
<td>908.9</td>
<td>15</td>
</tr>
</tbody>
</table>
Results of Pairwise testing (adjusted p-values) where a significant relationship is identified by Groupwise testing.

Raw Material

<table>
<thead>
<tr>
<th>Flake Material</th>
<th>Quartz</th>
<th>Quartzite</th>
<th>Rhyolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flake Axial Length</td>
<td>0.00 -</td>
<td>>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>Flake Axial Proximal Width</td>
<td>0.00 -</td>
<td>>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>Flake Axial Medial Width</td>
<td>0.00 -</td>
<td>0.02 -</td>
<td>0.00</td>
</tr>
<tr>
<td>Flake Axial Distal Width</td>
<td>0.01 >0.05</td>
<td>>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>Flake Proximal Shape</td>
<td>0.04 -</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>Flake Distal Shape</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>Flake Elongation</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

Debitage Type

<table>
<thead>
<tr>
<th>Flake Material</th>
<th>Blade</th>
<th>Core_Man.Flake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flake Axial Length</td>
<td>0.00 -</td>
<td>>0.05</td>
</tr>
<tr>
<td>Flake Axial Proximal Width</td>
<td>0.00 -</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Note: For Flake Material, the comparison is made only within the same category (e.g., Quartz vs. Quartzite). For Debitage Type, comparison is made across all categories (Blade, Core_Management, Flake, Point).
<table>
<thead>
<tr>
<th>Flake Axial Medial Width</th>
<th>Blade</th>
<th>Core_Man:Flake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core_Management</td>
<td>0.00</td>
<td>-</td>
</tr>
<tr>
<td>Flake</td>
<td>0.00</td>
<td>0.00 -</td>
</tr>
<tr>
<td>Point</td>
<td>0.00</td>
<td>>0.05 >0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Axial Distal Width</th>
<th>Blade</th>
<th>Core_Man:Flake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core_Management</td>
<td>0.00</td>
<td>-</td>
</tr>
<tr>
<td>Flake</td>
<td>0.00</td>
<td>0.00 -</td>
</tr>
<tr>
<td>Point</td>
<td>0.00</td>
<td>0.00 >0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Proximal Shape</th>
<th>Blade</th>
<th>Core_Man:Flake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core_Management</td>
<td>0.00</td>
<td>-</td>
</tr>
<tr>
<td>Flake</td>
<td>0.00</td>
<td>>0.05 -</td>
</tr>
<tr>
<td>Point</td>
<td>>0.05</td>
<td>0.04 >0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Distal Shape</th>
<th>Blade</th>
<th>Core_Man:Flake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core_Management</td>
<td>>0.05</td>
<td>-</td>
</tr>
<tr>
<td>Flake</td>
<td>>0.05</td>
<td>>0.05 -</td>
</tr>
<tr>
<td>Point</td>
<td>0.00</td>
<td>0.00 0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Elongation</th>
<th>Blade</th>
<th>Core_Man:Flake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core_Management</td>
<td>0.00</td>
<td>-</td>
</tr>
<tr>
<td>Flake</td>
<td>0.00</td>
<td>0.02 -</td>
</tr>
<tr>
<td>Point</td>
<td>0.00</td>
<td>>0.05 >0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Dorsal Scar Pattern</th>
<th>Blade</th>
<th>Core_Man:Flake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core_Management</td>
<td>0.00</td>
<td>NA NA</td>
</tr>
<tr>
<td>Flake</td>
<td>0.00</td>
<td>0.00 NA</td>
</tr>
<tr>
<td>Point</td>
<td>0.00</td>
<td>0.00 0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Termination Type</th>
<th>Blade</th>
<th>Core_Man:Flake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core_Management</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Flake</td>
<td>>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>Point</td>
<td>0.03</td>
<td>0.00 >0.05</td>
</tr>
</tbody>
</table>

Quartz

<table>
<thead>
<tr>
<th>Flake Axial Length</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>0.02</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>E-F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>G</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Axial Proximal Width</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.01</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>E-F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>G</td>
<td>0.01</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Axial Medial Width</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.04</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>0.01</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>E-F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>G</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
<td>0.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Axial Distal Width</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>0.02</td>
<td>>0.05</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>E-F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>G</td>
<td>0.01</td>
<td>>0.05</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Proximal Shape</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>E-F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>G</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>0.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Dorsal Scar Pattern</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>E-F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>G</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Termination Type</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>B</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>G</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

Quartzite

<table>
<thead>
<tr>
<th>Flake Axial Length</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td></td>
<td>0.01</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>0.01</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>0.01</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>0.01</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>E-F</td>
<td></td>
<td>0.01</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>0.01</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>0.01</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Axial Proximal Width</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>E-F</td>
<td>>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>>0.05</td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>0.04</td>
<td>0.03</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Axial Medial Width</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>E-F</td>
<td></td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Axial Distal Width</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>E-F</td>
<td></td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>G</td>
<td>>0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flake Elongation</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>E-F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td></td>
<td>Blade Core</td>
<td>Blade Core</td>
<td>Blade Core</td>
<td>Blade Core</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Quartzite Blade Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP G Comparative Axial Length Blade Core</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz Flake Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP A Comparative Axial Length Core</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP A Comparative Medial Axial Width Core</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP A Comparative Surface Area Core</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP B Comparative Medial Axial Width Core</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP B Comparative Surface Area Core</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP E Comparative Axial Length Core</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP E Comparative Medial Axial Width Core</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP E Comparative Surface Area Core</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP G Comparative Surface Area Core</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartzite Flake Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP C Comparative Medial Axial Width Core</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP C Comparative Surface Area Core</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP G Comparative Medial Axial Width Core</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP G Comparative Surface Area Core</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min.</td>
<td>1st Qu.</td>
<td>Median</td>
<td>Mean</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Quartz</td>
<td>6.09</td>
<td>14.84</td>
<td>18.8</td>
<td>20.37</td>
</tr>
<tr>
<td>Quartzite</td>
<td>8.18</td>
<td>22.74</td>
<td>30.22</td>
<td>31.08</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>20.73</td>
<td>26.3</td>
<td>33.23</td>
<td>31.86</td>
</tr>
<tr>
<td>Siliceous</td>
<td>8.39</td>
<td>12.43</td>
<td>16.97</td>
<td>18.51</td>
</tr>
<tr>
<td>Quartz</td>
<td>3.41</td>
<td>8.9</td>
<td>13.31</td>
<td>13.79</td>
</tr>
<tr>
<td>Quartzite</td>
<td>4.51</td>
<td>14</td>
<td>18.74</td>
<td>20.96</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>14.74</td>
<td>22.76</td>
<td>25.01</td>
<td>27.38</td>
</tr>
<tr>
<td>Siliceous</td>
<td>3.56</td>
<td>7.218</td>
<td>10.28</td>
<td>11.16</td>
</tr>
<tr>
<td>Quartz</td>
<td>3.72</td>
<td>9.72</td>
<td>14.6</td>
<td>15.37</td>
</tr>
<tr>
<td>Quartzite</td>
<td>3.6</td>
<td>17.04</td>
<td>23.68</td>
<td>24.78</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>19.68</td>
<td>27.9</td>
<td>38.02</td>
<td>34.63</td>
</tr>
<tr>
<td>Siliceous</td>
<td>4.37</td>
<td>7.132</td>
<td>11.93</td>
<td>12.32</td>
</tr>
<tr>
<td>Quartz</td>
<td>3.05</td>
<td>8.352</td>
<td>11.94</td>
<td>13.41</td>
</tr>
<tr>
<td>Quartzite</td>
<td>2.24</td>
<td>14.4</td>
<td>19.66</td>
<td>21.39</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>14.05</td>
<td>17.31</td>
<td>23.71</td>
<td>23.76</td>
</tr>
<tr>
<td>Siliceous</td>
<td>3.02</td>
<td>7.19</td>
<td>9.51</td>
<td>11.39</td>
</tr>
<tr>
<td>Quartz</td>
<td>0.4555</td>
<td>0.7304</td>
<td>0.8909</td>
<td>0.8953</td>
</tr>
<tr>
<td>Quartzite</td>
<td>0.3169</td>
<td>0.6971</td>
<td>0.8258</td>
<td>0.8382</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>0.5236</td>
<td>0.5454</td>
<td>0.6673</td>
<td>0.7822</td>
</tr>
<tr>
<td>Siliceous</td>
<td>0.4623</td>
<td>0.7408</td>
<td>0.87</td>
<td>0.8762</td>
</tr>
<tr>
<td>Quartz</td>
<td>0.7366</td>
<td>1.038</td>
<td>1.22</td>
<td>1.299</td>
</tr>
<tr>
<td>Quartzite</td>
<td>0.7312</td>
<td>1.034</td>
<td>1.22</td>
<td>1.271</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>1.271</td>
<td>1.351</td>
<td>1.416</td>
<td>1.457</td>
</tr>
<tr>
<td>Siliceous</td>
<td>0.6547</td>
<td>0.9177</td>
<td>1.049</td>
<td>1.204</td>
</tr>
<tr>
<td>Quartz</td>
<td>0.514</td>
<td>1.043</td>
<td>1.427</td>
<td>1.567</td>
</tr>
<tr>
<td>Quartzite</td>
<td>0.2507</td>
<td>1.18</td>
<td>1.587</td>
<td>1.618</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>0.9337</td>
<td>1.061</td>
<td>1.374</td>
<td>1.329</td>
</tr>
<tr>
<td>Siliceous</td>
<td>0.5302</td>
<td>1.345</td>
<td>1.735</td>
<td>1.92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade</td>
<td>9.96</td>
<td>14.9</td>
<td>18.56</td>
<td>21.49</td>
</tr>
<tr>
<td>Core Man</td>
<td>13.76</td>
<td>23.28</td>
<td>31.17</td>
<td>34.26</td>
</tr>
<tr>
<td>Flake</td>
<td>6.09</td>
<td>16.34</td>
<td>22.7</td>
<td>24.61</td>
</tr>
<tr>
<td>Point</td>
<td>13.77</td>
<td>24.53</td>
<td>31.06</td>
<td>31.72</td>
</tr>
<tr>
<td>Blade</td>
<td>4.25</td>
<td>6.255</td>
<td>7.91</td>
<td>8.985</td>
</tr>
<tr>
<td>Core Man</td>
<td>5.97</td>
<td>15.14</td>
<td>19.12</td>
<td>20.97</td>
</tr>
<tr>
<td>Flake</td>
<td>3.41</td>
<td>11.74</td>
<td>16.22</td>
<td>17.89</td>
</tr>
<tr>
<td>Point</td>
<td>9.91</td>
<td>15.65</td>
<td>18.18</td>
<td>20.9</td>
</tr>
<tr>
<td></td>
<td>Blade</td>
<td>Core Man</td>
<td>Flake</td>
<td>Point</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>8.01</td>
<td>3.72</td>
<td>7.71</td>
</tr>
<tr>
<td></td>
<td>6.453</td>
<td>17.08</td>
<td>13.78</td>
<td>16.95</td>
</tr>
<tr>
<td></td>
<td>7.91</td>
<td>24.96</td>
<td>19.31</td>
<td>20.16</td>
</tr>
<tr>
<td></td>
<td>9.267</td>
<td>25.68</td>
<td>21.15</td>
<td>23.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Blade</th>
<th>Core Man</th>
<th>Flake</th>
<th>Point</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.24</td>
<td>7.03</td>
<td>3.02</td>
<td>4.86</td>
</tr>
<tr>
<td></td>
<td>5.04</td>
<td>15.26</td>
<td>10.67</td>
<td>9.235</td>
</tr>
<tr>
<td></td>
<td>6.61</td>
<td>20.69</td>
<td>16.05</td>
<td>14.25</td>
</tr>
<tr>
<td></td>
<td>6.813</td>
<td>22.09</td>
<td>17.9</td>
<td>16.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Blade</th>
<th>Core Man</th>
<th>Flake</th>
<th>Point</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.7304</td>
<td>0.3169</td>
<td>0.443</td>
<td>0.5521</td>
</tr>
<tr>
<td></td>
<td>0.891</td>
<td>0.6862</td>
<td>0.6985</td>
<td>0.7515</td>
</tr>
<tr>
<td></td>
<td>0.963</td>
<td>0.7792</td>
<td>0.8464</td>
<td>0.9355</td>
</tr>
<tr>
<td></td>
<td>0.9997</td>
<td>0.826</td>
<td>0.8526</td>
<td>0.9193</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Blade</th>
<th>Core Man</th>
<th>Flake</th>
<th>Point</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.8833</td>
<td>0.7142</td>
<td>0.6547</td>
<td>0.8141</td>
</tr>
<tr>
<td></td>
<td>1.033</td>
<td>1.003</td>
<td>1.021</td>
<td>1.394</td>
</tr>
<tr>
<td></td>
<td>1.191</td>
<td>1.197</td>
<td>1.197</td>
<td>1.551</td>
</tr>
<tr>
<td></td>
<td>1.276</td>
<td>1.244</td>
<td>1.252</td>
<td>1.584</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Blade</th>
<th>Core Man</th>
<th>Flake</th>
<th>Point</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.625</td>
<td>0.6162</td>
<td>0.2507</td>
<td>0.514</td>
</tr>
<tr>
<td></td>
<td>2.252</td>
<td>1.271</td>
<td>1.061</td>
<td>1.323</td>
</tr>
<tr>
<td></td>
<td>2.606</td>
<td>1.646</td>
<td>1.454</td>
<td>1.549</td>
</tr>
<tr>
<td></td>
<td>2.548</td>
<td>1.739</td>
<td>1.546</td>
<td>1.627</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bidirection</th>
<th>Bilateral</th>
<th>Distal</th>
<th>Lateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade</td>
<td>13</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Core Man</td>
<td>10</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Flake</td>
<td>109</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>Point</td>
<td>15</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Axial</th>
<th>Bipolar</th>
<th>Feather</th>
<th>Hinge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade</td>
<td>0</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>Core Man</td>
<td>20</td>
<td>2</td>
<td>47</td>
</tr>
<tr>
<td>Flake</td>
<td>23</td>
<td>6</td>
<td>422</td>
</tr>
<tr>
<td>Point</td>
<td>0</td>
<td>0</td>
<td>41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E-F</td>
<td>F</td>
<td>A</td>
<td>8.06</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>B</td>
<td>9.44</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>C</td>
<td>9.21</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>D</td>
<td>8.43</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>E</td>
<td>10.68</td>
</tr>
<tr>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>E_F</td>
<td>13.24</td>
</tr>
<tr>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>F</td>
<td>9.26</td>
</tr>
<tr>
<td>>0.05</td>
<td>>0.05</td>
<td>0.01</td>
<td>G</td>
<td>12.31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E-F</td>
<td>F</td>
<td>A</td>
<td>4.31</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>B</td>
<td>5.62</td>
</tr>
<tr>
<td></td>
<td>Bidirection</td>
<td>Bilateral</td>
<td>Distal</td>
<td>Lateral</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>-----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>E E-F F</td>
<td>A 8</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>NA NA NA</td>
<td>B 8</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>NA NA NA</td>
<td>C 16</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>NA NA NA</td>
<td>D 9</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>NA NA NA</td>
<td>E 7</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>>0.05 NA NA</td>
<td>E_F 0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>>0.05 NA NA</td>
<td>F 3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>>0.05 >0.05</td>
<td>G 4</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bidirection</th>
<th>Axial</th>
<th>Bipolar</th>
<th>Feather</th>
<th>Hinge</th>
</tr>
</thead>
<tbody>
<tr>
<td>E E-F F</td>
<td>A 1</td>
<td>0</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>NA NA NA</td>
<td>B 2</td>
<td>0</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>NA NA NA</td>
<td>C 2</td>
<td>0</td>
<td>41</td>
<td>1</td>
</tr>
<tr>
<td>NA NA NA</td>
<td>D 0</td>
<td>0</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>Min.</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>E</td>
</tr>
<tr>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>E_F</td>
<td>0.00</td>
</tr>
<tr>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>F</td>
<td>1.00</td>
</tr>
<tr>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>G</td>
<td>1.00</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E-F</td>
<td>F</td>
<td>A</td>
<td>8.18</td>
<td>9.48</td>
<td>13.42</td>
<td>14.09</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>B</td>
<td>8.96</td>
<td>21.02</td>
<td>27.96</td>
<td>28.91</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>C</td>
<td>8.79</td>
<td>20.93</td>
<td>26.63</td>
<td>28.42</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>D</td>
<td>10.31</td>
<td>21.58</td>
<td>31.57</td>
<td>30.21</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>E</td>
<td>13.71</td>
<td>22.89</td>
<td>27.52</td>
<td>32.15</td>
</tr>
<tr>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>E_F</td>
<td>27.8</td>
<td>30.62</td>
<td>36.02</td>
<td>34.14</td>
</tr>
<tr>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>F</td>
<td>16.29</td>
<td>22.72</td>
<td>33.57</td>
<td>32.28</td>
</tr>
<tr>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>G</td>
<td>9.96</td>
<td>25.54</td>
<td>32.07</td>
<td>33.07</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E-F</td>
<td>F</td>
<td>A</td>
<td>9.45</td>
<td>11.98</td>
<td>13.6</td>
<td>14</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>B</td>
<td>5.21</td>
<td>11.68</td>
<td>16.91</td>
<td>18.3</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>C</td>
<td>4.51</td>
<td>12.77</td>
<td>16.82</td>
<td>18.7</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>D</td>
<td>6.56</td>
<td>12.35</td>
<td>21.05</td>
<td>21.64</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>E</td>
<td>4.64</td>
<td>15.14</td>
<td>18.87</td>
<td>21.24</td>
</tr>
<tr>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>E_F</td>
<td>13.9</td>
<td>24.93</td>
<td>34.88</td>
<td>32.21</td>
</tr>
<tr>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>F</td>
<td>6.24</td>
<td>20.29</td>
<td>33.57</td>
<td>32.28</td>
</tr>
<tr>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>G</td>
<td>5.1</td>
<td>15.93</td>
<td>20.46</td>
<td>22.74</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E-F</td>
<td>F</td>
<td>A</td>
<td>12.5</td>
<td>13.34</td>
<td>13.93</td>
<td>16.08</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>B</td>
<td>5.66</td>
<td>13.66</td>
<td>21.27</td>
<td>20.89</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>C</td>
<td>4.03</td>
<td>14.02</td>
<td>18.94</td>
<td>20.14</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>D</td>
<td>6.89</td>
<td>19.66</td>
<td>27.47</td>
<td>28.87</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>E</td>
<td>5.23</td>
<td>18.6</td>
<td>25.98</td>
<td>25.64</td>
</tr>
<tr>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>E_F</td>
<td>18.21</td>
<td>30.36</td>
<td>32.74</td>
<td>35.87</td>
</tr>
<tr>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>F</td>
<td>12.75</td>
<td>18.4</td>
<td>30.07</td>
<td>25.98</td>
</tr>
<tr>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>G</td>
<td>3.6</td>
<td>22.69</td>
<td>28.48</td>
<td>28.72</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E-F</td>
<td>F</td>
<td>A</td>
<td>12.89</td>
<td>13.6</td>
<td>14.14</td>
<td>14.85</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>B</td>
<td>5.64</td>
<td>11.08</td>
<td>16.47</td>
<td>17.39</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>C</td>
<td>2.74</td>
<td>12.13</td>
<td>16.08</td>
<td>18.25</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>D</td>
<td>6.6</td>
<td>16.88</td>
<td>20.31</td>
<td>24.67</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>E</td>
<td>4.44</td>
<td>11.92</td>
<td>20.34</td>
<td>20.87</td>
</tr>
<tr>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>E_F</td>
<td>10.08</td>
<td>22.28</td>
<td>26.32</td>
<td>26.48</td>
</tr>
<tr>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>F</td>
<td>10.8</td>
<td>14.99</td>
<td>19.54</td>
<td>22.93</td>
</tr>
<tr>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>G</td>
<td>2.24</td>
<td>18.09</td>
<td>23.88</td>
<td>24.25</td>
</tr>
<tr>
<td></td>
<td>Min.</td>
<td>1st Qu.</td>
<td>Median</td>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td>157.9</td>
<td>237.4</td>
<td>264.5</td>
<td>336.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flake</td>
<td>46.4</td>
<td>54.08</td>
<td>61.75</td>
<td>116.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>8.08</td>
<td>9.205</td>
<td>11.24</td>
<td>11.05</td>
</tr>
<tr>
<td>Flake</td>
<td>8.06</td>
<td>13.52</td>
<td>16.62</td>
<td>17.26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>6.68</td>
<td>6.838</td>
<td>7.225</td>
<td>10.37</td>
</tr>
<tr>
<td>Flake</td>
<td>4.47</td>
<td>9.45</td>
<td>12.87</td>
<td>13.42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>55.51</td>
<td>67.96</td>
<td>81.94</td>
<td>115.3</td>
</tr>
<tr>
<td>Flake</td>
<td>36.03</td>
<td>139.6</td>
<td>202.1</td>
<td>253</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>9.11</td>
<td>10.28</td>
<td>11.45</td>
<td>10.72</td>
</tr>
<tr>
<td>Flake</td>
<td>7.71</td>
<td>14.17</td>
<td>16.58</td>
<td>17.82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>64.68</td>
<td>109.9</td>
<td>155.2</td>
<td>149.4</td>
</tr>
<tr>
<td>Flake</td>
<td>137.5</td>
<td>225.7</td>
<td>327.3</td>
<td>344.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>0</td>
<td>11.68</td>
<td>15.34</td>
<td>13.19</td>
</tr>
<tr>
<td>Flake</td>
<td>10.68</td>
<td>16.68</td>
<td>22.45</td>
<td>23.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>0</td>
<td>7.365</td>
<td>9.8</td>
<td>9.163</td>
</tr>
<tr>
<td>Flake</td>
<td>5.22</td>
<td>17.25</td>
<td>20.07</td>
<td>21.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>61.23</td>
<td>132</td>
<td>156.5</td>
<td>168.1</td>
</tr>
<tr>
<td>Flake</td>
<td>62.12</td>
<td>342.9</td>
<td>447.2</td>
<td>531.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>157.9</td>
<td>269.7</td>
<td>386.6</td>
<td>358.5</td>
</tr>
<tr>
<td>Flake</td>
<td>147.8</td>
<td>395</td>
<td>648.3</td>
<td>629</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>13.03</td>
<td>14.43</td>
<td>15.49</td>
<td>16.86</td>
</tr>
<tr>
<td>Flake</td>
<td>5.55</td>
<td>16.02</td>
<td>21.1</td>
<td>22.54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>222.2</td>
<td>229.7</td>
<td>365.2</td>
<td>393.7</td>
</tr>
<tr>
<td>Flake</td>
<td>50.72</td>
<td>355.6</td>
<td>579.7</td>
<td>726.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>11.66</td>
<td>18.54</td>
<td>21.46</td>
<td>19.91</td>
</tr>
<tr>
<td>Flake</td>
<td>12.28</td>
<td>23.04</td>
<td>28.95</td>
<td>29.58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>173.2</td>
<td>476.3</td>
<td>557</td>
<td>548.6</td>
</tr>
<tr>
<td>Flake</td>
<td>233.9</td>
<td>619.5</td>
<td>912.3</td>
<td>1025</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>Max.</td>
<td>NA's</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.23</td>
<td>49.19</td>
<td>161</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.7</td>
<td>70.13</td>
<td>144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.8</td>
<td>44.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.44</td>
<td>37.92</td>
<td>47</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17.09	34.35	140
26.67	59.56	119
32.49	41.43	
12.03	27.97	35

19.54	43.99	122
31.26	57.38	116
41.94	45.02	
15.08	40.49	35

17.28	51.94	185
27.86	60.62	171
30.16	33.6	1
15	27.27	48

1.035	1.469	202
0.965	1.61	187
0.9592	1.274	1
1.038	1.32	51

1.478	2.554	206
1.455	2.46	190
1.461	1.832	1
1.409	2.542	51

1.899	4.268	206
1.973	4.963	190
1.501	1.792	1
2.403	3.97	51

<table>
<thead>
<tr>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.78</td>
<td>37.09</td>
<td>98</td>
</tr>
<tr>
<td>41.74</td>
<td>70.13</td>
<td>8</td>
</tr>
<tr>
<td>31.51</td>
<td>64.25</td>
<td>244</td>
</tr>
<tr>
<td>38.48</td>
<td>52.77</td>
<td>3</td>
</tr>
</tbody>
</table>

11.7	19.03	54
25.59	48.33	3
22.2	59.56	235
25.39	53.68	3
10.98	25.24	31
31.22	50.74	3
27.42	57.38	237
26.18	55.64	3
8.05	18.78	92
28.22	48.89	8
23.34	56.36	303
18.44	60.62	3
1.064	1.469	100
0.9357	1.61	11
0.9841	1.469	326
1.062	1.285	5
1.496	1.807	102
1.488	2.139	11
1.416	2.46	331
1.796	2.554	5
2.743	3.89	102
1.998	4.963	11
1.888	4.268	331
1.859	3.295	5

<table>
<thead>
<tr>
<th>Perpendicular</th>
<th>Proximal</th>
<th>Radial</th>
<th>Weakly Radial</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>92</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>69</td>
<td>331</td>
<td>10</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outrepasse Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>33</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.62</td>
<td>33.36</td>
<td>25</td>
</tr>
<tr>
<td>21.9</td>
<td>31.66</td>
<td>19</td>
</tr>
<tr>
<td>21.12</td>
<td>34.44</td>
<td>44</td>
</tr>
<tr>
<td>24.08</td>
<td>43.2</td>
<td>25</td>
</tr>
<tr>
<td>25.52</td>
<td>40.59</td>
<td>10</td>
</tr>
<tr>
<td>40.2</td>
<td>49.19</td>
<td></td>
</tr>
<tr>
<td>18.62</td>
<td>27.75</td>
<td>12</td>
</tr>
<tr>
<td>32.57</td>
<td>38.71</td>
<td>13</td>
</tr>
<tr>
<td>13.05</td>
<td>27.9</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>25.51</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>14.74</td>
<td>21</td>
<td>27</td>
</tr>
<tr>
<td>17.14</td>
<td>25.51</td>
<td>28</td>
</tr>
<tr>
<td>22.2</td>
<td>33.67</td>
<td>11</td>
</tr>
<tr>
<td>25.12</td>
<td>32.15</td>
<td></td>
</tr>
<tr>
<td>17.27</td>
<td>26.09</td>
<td>10</td>
</tr>
<tr>
<td>21.01</td>
<td>28.24</td>
<td>16</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15.68</td>
<td>22.71</td>
<td>13</td>
</tr>
<tr>
<td>19.83</td>
<td>31.89</td>
<td>17</td>
</tr>
<tr>
<td>17.84</td>
<td>31.89</td>
<td>16</td>
</tr>
<tr>
<td>18.98</td>
<td>28.71</td>
<td>28</td>
</tr>
<tr>
<td>25.12</td>
<td>43.99</td>
<td>11</td>
</tr>
<tr>
<td>32.05</td>
<td>40.22</td>
<td></td>
</tr>
<tr>
<td>18.44</td>
<td>29.53</td>
<td>10</td>
</tr>
<tr>
<td>24.62</td>
<td>38.37</td>
<td>16</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14.23</td>
<td>30.83</td>
<td>29</td>
</tr>
<tr>
<td>17.1</td>
<td>29.57</td>
<td>25</td>
</tr>
<tr>
<td>14.3</td>
<td>23.05</td>
<td>43</td>
</tr>
<tr>
<td>14.76</td>
<td>28.46</td>
<td>30</td>
</tr>
<tr>
<td>19.66</td>
<td>40.89</td>
<td>11</td>
</tr>
<tr>
<td>41.03</td>
<td>51.94</td>
<td></td>
</tr>
<tr>
<td>17.52</td>
<td>19.76</td>
<td>12</td>
</tr>
<tr>
<td>23.19</td>
<td>39.79</td>
<td>16</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.09</td>
<td>1.469</td>
<td>33</td>
</tr>
<tr>
<td>1.068</td>
<td>1.285</td>
<td>27</td>
</tr>
<tr>
<td>0.9507</td>
<td>1.259</td>
<td>52</td>
</tr>
<tr>
<td>1.119</td>
<td>1.379</td>
<td>31</td>
</tr>
<tr>
<td>0.9579</td>
<td>1.35</td>
<td>11</td>
</tr>
<tr>
<td>0.7333</td>
<td>0.7994</td>
<td></td>
</tr>
<tr>
<td>0.9235</td>
<td>0.9933</td>
<td>11</td>
</tr>
<tr>
<td>0.8983</td>
<td>1.057</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perpendicular</th>
<th>Proximal</th>
<th>Radial</th>
<th>Weakly Radial</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>41</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>43</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outrepasse Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>3rd Qu.</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>19.09</td>
</tr>
<tr>
<td>33.78</td>
</tr>
<tr>
<td>34.84</td>
</tr>
<tr>
<td>35.42</td>
</tr>
<tr>
<td>38.31</td>
</tr>
<tr>
<td>37.4</td>
</tr>
<tr>
<td>37.73</td>
</tr>
<tr>
<td>41.31</td>
</tr>
<tr>
<td>16.07</td>
</tr>
<tr>
<td>24.12</td>
</tr>
<tr>
<td>24.14</td>
</tr>
<tr>
<td>27.44</td>
</tr>
<tr>
<td>27.85</td>
</tr>
<tr>
<td>40.2</td>
</tr>
<tr>
<td>26.83</td>
</tr>
<tr>
<td>28.3</td>
</tr>
<tr>
<td>19.88</td>
</tr>
<tr>
<td>28.99</td>
</tr>
<tr>
<td>25.34</td>
</tr>
<tr>
<td>36.1</td>
</tr>
<tr>
<td>35.38</td>
</tr>
<tr>
<td>44.62</td>
</tr>
<tr>
<td>32.03</td>
</tr>
<tr>
<td>33.58</td>
</tr>
<tr>
<td>15.39</td>
</tr>
<tr>
<td>21.88</td>
</tr>
<tr>
<td>23.61</td>
</tr>
<tr>
<td>32.47</td>
</tr>
<tr>
<td>30.4</td>
</tr>
<tr>
<td>34.86</td>
</tr>
<tr>
<td>32.23</td>
</tr>
<tr>
<td>29.1</td>
</tr>
<tr>
<td>3rd Qu.</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>323.6</td>
</tr>
<tr>
<td>151.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.43</td>
<td>14.84</td>
<td></td>
</tr>
<tr>
<td>20.72</td>
<td>33.36</td>
<td>12</td>
</tr>
<tr>
<td>8.998</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td>17.44</td>
<td>22.71</td>
<td>12</td>
</tr>
<tr>
<td>125.5</td>
<td>294.6</td>
<td></td>
</tr>
<tr>
<td>362.4</td>
<td>736.6</td>
<td>20</td>
</tr>
<tr>
<td>11.52</td>
<td>11.59</td>
<td></td>
</tr>
<tr>
<td>20.08</td>
<td>31.89</td>
<td>17</td>
</tr>
<tr>
<td>191.8</td>
<td>228.4</td>
<td></td>
</tr>
<tr>
<td>461.9</td>
<td>725.7</td>
<td>24</td>
</tr>
<tr>
<td>16.48</td>
<td>20.66</td>
<td></td>
</tr>
<tr>
<td>25.75</td>
<td>40.59</td>
<td>8</td>
</tr>
<tr>
<td>10.36</td>
<td>18.89</td>
<td></td>
</tr>
<tr>
<td>25.14</td>
<td>43.99</td>
<td>9</td>
</tr>
<tr>
<td>204.8</td>
<td>289.8</td>
<td></td>
</tr>
<tr>
<td>691.6</td>
<td>1786</td>
<td>9</td>
</tr>
<tr>
<td>427.5</td>
<td>570.5</td>
<td></td>
</tr>
<tr>
<td>761.7</td>
<td>1485</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd Qu.</th>
<th>Max.</th>
<th>NA's</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.7</td>
<td>23.26</td>
<td></td>
</tr>
<tr>
<td>27.5</td>
<td>51.76</td>
<td>26</td>
</tr>
<tr>
<td>486</td>
<td>718.5</td>
<td></td>
</tr>
<tr>
<td>866.4</td>
<td>3091</td>
<td>44</td>
</tr>
<tr>
<td>22.69</td>
<td>26.33</td>
<td></td>
</tr>
<tr>
<td>35.42</td>
<td>57.38</td>
<td>20</td>
</tr>
<tr>
<td>630.1</td>
<td>899.4</td>
<td></td>
</tr>
<tr>
<td>1299</td>
<td>2645</td>
<td>24</td>
</tr>
</tbody>
</table>
Results of Pairwise testing (adjusted p-values) where a significant relationship is identified by Groupwise

<table>
<thead>
<tr>
<th>Retouched Max Length</th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_E_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>>0.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BP_C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BP_D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BP_E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BP_E_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>0.02</td>
<td>>0.05</td>
<td>>0.05</td>
<td>-</td>
</tr>
<tr>
<td>BP_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_G</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

Quartz

<table>
<thead>
<tr>
<th>Comparative Length</th>
<th>Core</th>
<th>Flake</th>
<th>Flaked_Piece</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flake</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flaked_Piece</td>
<td>0.05</td>
<td>>0.05</td>
<td>-</td>
</tr>
<tr>
<td>RT</td>
<td>0.00</td>
<td>0.05</td>
<td>0.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparative Width</th>
<th>Core</th>
<th>Flake</th>
<th>Flaked_Piece</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flake</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flaked_Piece</td>
<td>0.00</td>
<td>>0.05</td>
<td>-</td>
</tr>
<tr>
<td>RT</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparative Elongation</th>
<th>Core</th>
<th>Flake</th>
<th>Flaked_Piece</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flake</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flaked_Piece</td>
<td>0.03</td>
<td>>0.05</td>
<td>-</td>
</tr>
<tr>
<td>RT</td>
<td>0.04</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparative Surface Area</th>
<th>Core</th>
<th>Flake</th>
<th>Flaked_Piece</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flake</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flaked_Piece</td>
<td>0.00</td>
<td>>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>RT</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Quartzite

<table>
<thead>
<tr>
<th>Comparative Length</th>
<th>Core</th>
<th>Flake</th>
<th>Flaked_Piece</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flake</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flaked_Piece</td>
<td>>0.05</td>
<td>0.00</td>
<td>-</td>
</tr>
<tr>
<td>RT</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparative Width</th>
<th>Core</th>
<th>Flake</th>
<th>Flaked_Piece</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flake</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flaked_Piece</td>
<td>0.04</td>
<td>0.00</td>
<td>-</td>
</tr>
<tr>
<td>RT</td>
<td>0.00</td>
<td>0.04</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparative Elongation</th>
<th>Core</th>
<th>Flake</th>
<th>Flaked_Piece</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flake</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flaked_Piece</td>
<td>0.00</td>
<td>>0.05</td>
<td>-</td>
</tr>
<tr>
<td>RT</td>
<td>0.00</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparative Surface Area</th>
<th>Core</th>
<th>Flake</th>
<th>Flaked_Piece</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Flake</td>
<td>0.00</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Flaked_Piece</td>
<td>>0.05</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>M n.</td>
<td>1st Qu.</td>
<td>Median</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>BP_F</td>
<td>A</td>
<td>11.74</td>
<td>16.05</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>12.93</td>
<td>18.97</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>9.09</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>13.28</td>
<td>21.24</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>12.37</td>
<td>22.38</td>
</tr>
<tr>
<td></td>
<td>E_F</td>
<td>17.22</td>
<td>40.8</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>13.31</td>
<td>19.41</td>
</tr>
<tr>
<td>>0.05</td>
<td>G</td>
<td>11.24</td>
<td>14.71</td>
</tr>
<tr>
<td></td>
<td>Core</td>
<td>6.43</td>
<td>12.58</td>
</tr>
<tr>
<td></td>
<td>Flake</td>
<td>8.51</td>
<td>15.7</td>
</tr>
<tr>
<td></td>
<td>Flaked Piec</td>
<td>9.51</td>
<td>16.16</td>
</tr>
<tr>
<td></td>
<td>RT</td>
<td>10.57</td>
<td>17.68</td>
</tr>
<tr>
<td></td>
<td>Core</td>
<td>4.31</td>
<td>6.875</td>
</tr>
<tr>
<td></td>
<td>Flake</td>
<td>4.16</td>
<td>10.23</td>
</tr>
<tr>
<td></td>
<td>Flaked Piec</td>
<td>5.73</td>
<td>9.878</td>
</tr>
<tr>
<td></td>
<td>RT</td>
<td>3.53</td>
<td>9.58</td>
</tr>
<tr>
<td></td>
<td>Core</td>
<td>0.3923</td>
<td>1.303</td>
</tr>
<tr>
<td></td>
<td>Flake</td>
<td>0.9395</td>
<td>1.198</td>
</tr>
<tr>
<td></td>
<td>Flaked Piec</td>
<td>1.012</td>
<td>1.207</td>
</tr>
<tr>
<td></td>
<td>RT</td>
<td>1.043</td>
<td>1.237</td>
</tr>
<tr>
<td></td>
<td>Core</td>
<td>44.82</td>
<td>99.48</td>
</tr>
<tr>
<td></td>
<td>Flake</td>
<td>47.03</td>
<td>153.8</td>
</tr>
<tr>
<td></td>
<td>Flaked Piec</td>
<td>64.19</td>
<td>162.1</td>
</tr>
<tr>
<td></td>
<td>RT</td>
<td>51.93</td>
<td>163.6</td>
</tr>
<tr>
<td></td>
<td>Core</td>
<td>4.31</td>
<td>7.72</td>
</tr>
<tr>
<td></td>
<td>Flake</td>
<td>4.57</td>
<td>16.92</td>
</tr>
<tr>
<td></td>
<td>Flaked Piec</td>
<td>7.42</td>
<td>10.34</td>
</tr>
<tr>
<td></td>
<td>RT</td>
<td>4.49</td>
<td>18.99</td>
</tr>
<tr>
<td></td>
<td>Core</td>
<td>0.6888</td>
<td>1.424</td>
</tr>
<tr>
<td></td>
<td>Flake</td>
<td>0.9958</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>Flaked Piec</td>
<td>1.061</td>
<td>1.261</td>
</tr>
<tr>
<td></td>
<td>RT</td>
<td>1.008</td>
<td>1.235</td>
</tr>
<tr>
<td></td>
<td>Core</td>
<td>69.74</td>
<td>182.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Flake</td>
<td>36.97</td>
<td>432.5</td>
<td>776.5</td>
</tr>
<tr>
<td>Flaked Piece</td>
<td>95.2</td>
<td>172.9</td>
<td>296</td>
</tr>
<tr>
<td>RT</td>
<td>63.99</td>
<td>593</td>
<td>1295</td>
</tr>
</tbody>
</table>
Results of Pairwise testing (adjusted p-values) where a significant relationship is identified by Groupwise

<table>
<thead>
<tr>
<th>Total Retouched Length</th>
<th>BP_A</th>
<th>BP_B</th>
<th>BP_C</th>
<th>BP_D</th>
<th>BP_E</th>
<th>BP_E_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_B</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_C</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_D</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BP_E_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>NA</td>
</tr>
<tr>
<td>BP_F</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>BP_G</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td></td>
<td>BP_F</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>