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Abstract

Public-key cryptography in use today is based on classically hard problems such as
factoring or solving discrete logarithms. These problems could be efficiently solved if
an adversary had access to a sufficiently large quantum computer. The potential of
such a quantum computer therefore represents a threat on current cryptography. The
field of post-quantum cryptography aims to mitigate against this threat by proposing
schemes based on alternative assumptions that are believed to be hard in both the
classical and quantum setting.

Lattice-based cryptography has emerged as a promising candidate for post-quantum
cryptography. One reason for this is the wealth of applications that are possible,
perhaps the most notable of which is Fully Homomorphic Encryption (FHE). This
enables computations to be performed on encrypted data, without requiring access
to the secret key, and for these computations to correspond to operations on the
underlying data in a meaningful way.

The Learning with Errors (LWE) problem and its variants, such as LWE with small
secret, LWE with binary error, and Ring-LWE, are used as hardness assumptions
in many lattice-based schemes. In this thesis we consider parameter selection in
cryptosystems based on LWE. We begin with a focus on security by considering the
concrete hardness of LWE. We comprehensively review the algorithms that can be
used to solve LWE and its variants with a small secret. Turning our attention to an
LWE variant where the error distribution is binary, we show there is an additional
attack applicable in this setting.

In applications, the selection of appropriate parameters is often very challenging due
to the conflicting requirements of security, correctness and performance. We highlight
this in the application setting of FHE by considering a scheme based on Ring-LWE.
In particular, we discuss the selection of parameters in SEAL, an implementation of
the scheme by Fan and Vercauteren.
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Chapter 1

Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Structure of thesis . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Original work and our individual contributions . . . . . 14

This chapter gives an overview of the thesis and its contributions. We provide the

motivation for our research and describe the structure of the thesis.

1.1 Motivation

Current public-key cryptography is based on problems such as factoring or solving

discrete logarithms. These problems have been widely studied and are believed to

be hard to solve on a classical computer. However, an adversary equipped with a

sufficiently large quantum computer can solve these problems easily using Shor’s

algorithm [203]. Such a quantum computer does not exist today; nonetheless, its

potential is considered such a threat that, since 2016, NIST is seeking to standardise

quantum-resistant public-key cryptographic algorithms [180].

The field of post-quantum cryptography, encompassing schemes based on various al-

ternative assumptions that are believed to be hard in both the classical and quantum

setting, has received increasing attention in recent years (although some schemes,

such as [162, 164], now falling under this umbrella have been considered for longer,

and even predate Shor’s algorithm). There are five main sub-fields of post-quantum

cryptography: multivariate cryptography, hash-based cryptography, cryptography

based on supersingular elliptic curve isogenies, code-based cryptography, and lattice-

based cryptography. The work in this thesis falls into this final area, mainly focussing

on assumed hard problems underlying lattice-based cryptography, but also consider-

10



1.1 Motivation

ing an application made possible in the lattice setting.

Lattice-based cryptography has become popular in recent years for several reasons

in addition to its potential use in a post-quantum world. A key reason dates back

to the work of Ajtai [5] who linked the average case complexity of lattice problems

to the worst case, showing that solving certain lattice problems in the average case

is at least as hard as solving approximate shortest vector problem in the worst case.

Another reason is the wealth of applications of lattice-based cryptography (see the

survey [187]). These include (Hierarchical) Identity Based Encryption [54, 111],

Attribute-Based Encryption [49], Oblivious Transfer schemes [190], Circular-Secure

Encryption [23], and Leakage-Resilient Encryption [114].

Fully Homomorphic Encryption (FHE) is perhaps the flagship application of lattice-

based cryptography. FHE enables computations to be performed on encrypted data,

without requiring access to the secret key, and for these computations to correspond

to operations on the underlying data in a meaningful way. First proposed by Rivest

et al. [198] in 1978, it remained a longstanding open problem to construct such a

scheme. This was finally resolved by Gentry [106] in 2009, who proposed a Fully

Homomorphic Encryption scheme based on problems in ideal lattices.

The Learning with Errors problem (LWE), introduced in 2005 by Regev [194], is

a presumed hard problem underlying many lattice-based schemes. A prominent

variant of LWE, which we discuss in detail in Chapter 6, is the Ring Learning with

Errors problem (Ring-LWE) [210, 157]. Ring-LWE is widely preferred for its smaller

key sizes compared with LWE. Other presumed hard problems used in lattice-based

cryptography include the Short Integer Solutions problem (SIS) [5], which can be

seen as dual to LWE [165]; and the Approximate Greatest Common Divisor problem

(AGCD) [132], which has a reduction from LWE [71]. A prominent lattice-based

scheme is the NTRU encryption scheme [131], a variant of which is based on Ring-

LWE [209]. It is therefore clear that LWE is a central problem in lattice-based

cryptography.

Besides Ring-LWE, many other variants of LWE have been proposed in the liter-

ature [183, 47, 191, 102, 166, 45, 147, 67, 199]. Work in this direction is often

motivated by the needs of applications: for example, the use of a small secret for
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1.1 Motivation

efficiency reasons [119], or a modified error distribution, for ease of sampling [19].

Confidence in some variants is bolstered by reductions from standard lattice prob-

lems [157, 166, 189]; indeed, certain variants have been introduced as intermediates

in reductions [45, 67].

For several variants of LWE it is the case that more attacks apply [29, 10, 8], some-

times so devastating that the variant would be considered easy in settings where

the analogous standard LWE instance would be considered infeasible to solve [129].

Motivated by identifying what would characterise an easy LWE variant, the line of

work [97, 99, 62, 145, 63, 56, 55, 188] has considered the limitations of the use of

LWE as a hardness assumption. In Chapter 5 we augment the literature, focussing

on LWE with uniform binary error [166, 10]. We show that this variant is easier than

expected, by exhibiting an additional attack that applies in this setting.

A common criticism of lattice-based cryptography is that it is challenging to select

secure parameters for lattice-based schemes. This thesis aims to address this issue,

focussing on schemes based on LWE. Such schemes are very often supported by

a security reduction from the underlying LWE problem. An adversary breaking a

scheme based on LWE can be used to solve the underlying LWE problem, possibly

with some extra effort, which corresponds to the so-called tightness gap [57, 17].

The tightness gap, in turn, corresponds to a difference in the bit security of the

scheme versus the bit hardness of the underlying LWE problem. In practice this

issue is overwhelmingly ignored and designers of schemes typically select parameters

to ensure a certain level of security (such as 80 or 128 bits) based solely on the

underlying LWE instance: that is, the LWE instance is expected to take 280 or 2128

operations respectively to solve. In Chapters 4 and 5 we therefore focus on the

concrete hardness of the Learning with Errors problem. We comprehensively review

the algorithms that can be used to solve LWE and its variants with small secret.

When selecting parameters in applications, we must consider not only security, but

also correctness and performance. In many application settings these requirements

can be conflicting. In Chapter 7, we highlight these issues in the setting of Fully

Homomorphic Encryption. For example, on the one hand, the larger the value of

the modulus q, the larger the number of homomorphic evaluation operations that

can be performed, while on the other hand, the larger the value of q, the lower the
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1.2 Structure of thesis

security. We discuss the selection of parameters in the homomorphic encryption

library SEAL [93], which implements the scheme of Fan and Vercauteren [100].

1.2 Structure of thesis

The remainder of the thesis is organised as follows.

Chapter 2. This chapter defines notation that will be used throughout the thesis,

and introduces lattices and the Learning with Errors problem (LWE).

Chapter 3. This chapter gives a comprehensive review of lattice basis reduction

algorithms, which are an essential step in many approaches for solving LWE. Almost

all of the material is from the literature, and the chapter is meant as an extended

background on the topic. However, we also present a new result on the asymp-

totic time complexity of the BKZ algorithm. This chapter is derived from material

presented in [16].

Chapter 4. This chapter reviews strategies and algorithms in the literature for

solving LWE. The material presented is an extended and updated version of material

presented in [16]. We provide evidence that the widely-used Lindner and Peikert [150]

model for the cost of lattice reduction is inaccurate. In this chapter and the previous

chapter, we give an up-to-date account of the LWE estimator of Albrecht [6], which

was developed alongside the paper [16].

Chapter 5. This chapter considers variants of LWE with unusually small secret

or error. We begin with a discussion of small secret LWE, extending and updating

material presented in [16].

The remainder of the chapter is based on material presented in [52]. We focus on the

variant of LWE with binary error and show that the hybrid attack, introduced by

Howgrave-Graham [133] as an attack on NTRU, can be applied in this setting. We
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1.3 Original work and our individual contributions

adapt algorithms discussed earlier in the chapter, and in the previous chapter, to the

binary error setting. A comparison of the hybrid attack with other approaches was

presented in [52], but used the Lindner and Peikert [150] model for the cost of lattice

reduction. We provide an updated comparison using a more realistic cost model.

Chapter 6. This chapter considers the Ring Learning with Errors problem (Ring-

LWE) and provides relevant algebraic and statistical background material that will

be required in the following chapter, based on material presented in [173]. We also

review a result of Ducas and Durmus [95], highlighting and correcting an error in

their proof: this is based on joint (unpublished) work with Cid and Murphy.

Chapter 7. This chapter considers homomorphic encryption schemes based on

variants of Ring-LWE. We begin by highlighting two general issues in such schemes,

namely security and encoding. We then turn our attention to parameter selection

in SEAL [93], a homomorphic encryption library developed by Microsoft Research

that the author became involved with during an internship [146, 58, 59, 60]. The

main task undertaken by the author during the internship was to implement the FV

scheme [100] which was released as SEAL v2.0 [146]. Previously, SEAL had been

based on the YASHE scheme [41]. We give a thorough analysis of noise growth

behaviour, considering both inherent and invariant noise, and argue that invariant

noise is more natural. We discuss parameters affecting security, and parameters

affecting the relinearization operation, which impact on noise growth and the running

time of key generation. The chapter is based on material presented in [146, 58, 59, 60].

1.3 Original work and our individual contributions

The material in Chapter 3, Chapter 4 and the first half of Chapter 5 is based on the

paper [16], which was a joint work of Albrecht, myself and Scott. I wrote the first

draft of most sections of [16], except [16, Section 5.4], a version of which appears here

as Section 4.7; and [16, Section 7 and Section 8], which are omitted here. Albrecht

then edited the draft sections I wrote, in some cases majorly. All authors contributed

to later stages of editing of the document. The paper [16] was a survey and so is

14



1.3 Original work and our individual contributions

largely not original, although the work does include the following contributions: an

asymptotic bound on the cost of BKZ, the details of a Meet-in-the-Middle algorithm

for solving LWE, evidence that the Lindner and Peikert [150] cost model for BKZ is

inaccurate, and the LWE estimator [6] sage tool. The last two of these contributions

are due to Albrecht.

The analysis of a Meet-in-the-Middle algorithm, presented here in Section 4.3.1, was

developed for [16] through joint discussions among all the authors, and has been

refined for the thesis by Albrecht and myself. The asymptotic bound on BKZ is due

to myself. The version presented here in Section 3.2.1 is a more clear formulation

of the original [16, Lemma 5]. Other parts of Chapter 3, Chapter 4 and the first

half of Chapter 5 extend or update [16]. The case λ2(L(B)) = q, discussed in

Section 4.8, provides the analysis required to fix an open issue1 in [6] and is an

additional contribution of the thesis.

The material in the second half of Chapter 5 is based on the paper [52], which was

a joint work of Buchmann, Göpfert, myself and Wunderer. The main idea of the

paper [52], that the hybrid attack would apply to LWE instances with binary error,

was developed jointly during a research visit in Prof. Buchmann’s group. A theo-

retical analysis of the hybrid attack given in [52, Section 3.2] is due to Göpfert and

Wunderer, so the details are omitted here. Adapting other algorithms for the case of

LWE with binary error, presented here in Sections 5.7, 5.8 and 5.9, is another original

contribution of [52], due to Göpfert and myself. For other parts of the paper [52],

Göpfert, myself and Wunderer contributed equally, while Prof. Buchmann acted in

a supervisory role and suggested improvements to the structure and motivation of

early drafts of the paper.

The comparison to other approaches for solving LWE with binary error, presented

here in Section 5.11, improves on the comparison presented in [52, Section 4] as it

no longer uses the Lindner and Peikert cost model for BKZ, and is an additional

contribution of the thesis. Correspondingly to the general LWE case, the Meet-in-

the-Middle algorithm presented in Section 5.7 has been updated compared to [52]

and is an additional contribution of the thesis.
1https://bitbucket.org/malb/lwe-estimator/issues/4/lambda_2-not-implemented
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1.3 Original work and our individual contributions

Most of the material in Chapter 6 is derived from parts of the paper [173], which is

a joint work with Murphy. In particular, the chapter is an extended version of [173,

Sections 1 and 2], which were largely written by myself. The material presented in

Section 6.3 is based on [173, Section 5], and is due to Murphy. The original material

in [173] consists of statistical results due to Murphy that are omitted here. Section 6.6

arose from discussions with Cid and Murphy and contains material based on original

drafts by Murphy and myself. This is the only part of the chapter containing original

work: namely, the correction to the proof [95, Theorem 5].

The material in Chapter 7 is based on the paper [146], which was a joint work of Laine

and myself, and the papers [58, 59, 60], which were joint works of Chen, Laine and

myself. The technical report [146] describes the implementation of the FV scheme

in SEAL [93] to form SEAL v2.0, which is work I undertook during an internship at

Microsoft Research. I drafted the paper [146] and it was later edited and improved

by Laine and myself.

Improvements to SEAL were later released as SEAL v2.1 [58] and v2.2 [60]. The

technical reports [58, 60] are extensions of [146] reporting on these improvements

and in general the sections extending [146] were not written by me, since I have not

been involved in the development of code for SEAL since v2.0. However, during a

subsequent research visit to Microsoft Research, I was involved with producing the

invariant noise estimates described in [60], which are presented here in Section 7.4.2

and arose from joint discussions with Chen and Laine. The definition of invariant

noise is a new notion of noise for FV and an original contribution of [60].

The publication [59] is derived from [58] with a new section on related work and

and extended discussion on security, which were drafted by myself, and subsequently

edited by all authors. These sections, which have themselves been extended for the

thesis, form the basis of Sections 7.1.1 and 7.2 respectively.

The full proofs for the noise bounds, presented in Section 7.4 have not previously

been published and are additional contributions of the thesis. The discussion on

relinearization, presented in Section 7.6, has also not previously been published.

This section arose from joint discussions with Laine.
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Chapter 2

Notation and background
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This chapter establishes notation used throughout the thesis, and provides background

material.

2.1 Notation

We denote vectors in bold: for example, a; and matrices in upper-case bold: for

example, A. By a(i) we denote the ith component of a; that is, a scalar. In contrast,

ai denotes the ith element of a list of vectors. For a vector a ∈ Rn we write a mod q

for its unique representative modulo q in [−b q2c,
q
2)n. We denote by 〈·, ·〉 the usual

dot product of two vectors and by 〈·, ·〉p this dot product modulo p.

The base-a logarithm of x is denoted loga(x) except for the natural logarithm of x

which is denoted ln(x). Logarithms are base 2 if no base is explicitly stated.

The complex conjugate of z is denoted z. We denote by A† the complex conjugate

transpose of the matrix A, so A† = A
T .

The expectation of a random variable X is denoted E [X] and the variance is denoted

Var[X]. A Gaussian or Normal distribution with mean µ and standard deviation σ
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2.2 Lattice background

is denoted N(µ, σ). A complex Normal distribution with mean µ, covariance matrix

Γ and relation matrix C is denoted CN(µ,Γ,C) and is real if and only if Γ = C.

By a $← S we denote that a is sampled uniformly at random from the finite set S. By
e ← χ we denote that e is sampled according to the distribution χ. Such sampling

is independent of any other sampling.

For a ring R and an integer q, we denote by Rq the quotient ring R/qR. Euler’s

totient function is denoted ϕ(m). The tensor product of the vector spaces V and W

over a field K is denoted V ⊗K W .

We use b·c and d·e to denote respectively rounding down and up to the nearest

integer. We use b·e to denote rounding to the nearest integer, rounding up in case of

ambiguity. When these operations are applied to a polynomial, we mean performing

the corresponding operation to each coefficient separately. The operation [·]t denotes
the reduction of an integer or a polynomial modulo an integer t. When applied to

polynomials, the reduction modulo t is applied to every integer coefficient separately.

The reductions are always done into the symmetric interval
[
− t

2 ,
t
2

)
.

The norm ‖ · ‖ always denotes the infinity norm, while the usual Euclidean norm is

denoted ‖ · ‖2. The norm ‖ · ‖1 denotes the `1 norm. The norm ‖ · ‖can denotes the

canonical embedding norm, which will be defined in Chapter 7.

A negligible function negl : N→ R is a function such that for all c ∈ N, there exists

Nc ∈ N such that for all n > Nc, |negl(n)| < 1
nc . The error function (see [3]) of

a value x ≥ 0 is denoted erf(x). We write 2 ≤ ω < 3 for any constant such that,

for sufficiently large n, there is an algorithm that multiplies two n × n matrices in

O (nω) arithmetic operations.

2.2 Lattice background

A lattice L is a discrete additive subgroup of Rm. We always consider a lattice in

terms of a specified basis B = {b0, . . . ,bn−1} of n linearly independent vectors where

n ≤ m. The lattice L(B) is the set of linear combinations of the basis vectors with

18



2.2 Lattice background

integer coefficients:

L(B) =

{
n−1∑
i=0

xibi

∣∣∣∣∣xi ∈ Z

}
.

We slightly abuse notation and let B also denote the matrix whose rows are the basis

vectors. The rank of the lattice L is defined to be the rank of the matrix B. If the

rank equals m we say that L is full-rank. For a full-rank lattice L, the dual lattice is

defined as

L∗ = {v ∈ Rm | ∀w ∈ L, 〈w,v〉 ∈ Z} .

We will very often be concerned with lattices L such that qZm ⊆ L ⊆ Zm: these are

known as q-ary lattices. Every q-ary lattice is full-rank.

A unimodular matrix is a square integer matrix having determinant ±1. There are

infinitely many lattice bases for n > 1, and it is a standard result that two bases

generate the same lattice if they are related by a unimodular matrix in the following

way.

Lemma 1. Let B and B′ be two bases. Then L(B′) = L(B) if and only if B′ = UB

where U is a unimodular matrix.

The determinant or volume vol (L) of a full-rank lattice L is the absolute value of

the determinant of any basis of the lattice. This can be seen to be an invariant of the

lattice: suppose B and B′ are two bases of the lattice, then, by Lemma 1, B′ = UB

for some unimodular matrix U. So, since unimodular matrices have determinant ±1,

|det(B′)| = | det(UB)| = |det(U) · det(B)| = |det(U)| · | det(B)| = |det(B)| .

The fundamental parallelepiped of a lattice L(B) where B = {b0, ...,bn−1} is given

by

P(B) =

{
x ∈ Rm | x =

n−1∑
i=0

αibi for −
1

2
≤ αi <

1

2

}
.

An equivalent definition of the volume vol (L) of a lattice L = L(B) is the volume

of its fundamental parallelepiped P(B).

The ith successive minimum of a lattice, λi(L), is the radius of the smallest ball

centred at the origin containing at least i linearly independent lattice vectors. In

particular, λ1(L) is the length of a shortest nonzero lattice vector.
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2.2 Lattice background

Definition 1. The Shortest Vector Problem (SVP) is defined as follows. Given a

basis B of a lattice L = L(B), find a vector v ∈ L such that ‖v‖2 = λ1(L).

We now define a series of problems related to SVP. Each is parameterised by an

approximation factor γ > 1.

Definition 2. The γ-Approximate Shortest Vector Problem (SVPγ) is defined as

follows. Given a basis B of a lattice L = L(B), find a nonzero vector v ∈ L such

that ‖v‖2 ≤ γ · λ1(L).

Definition 3. The γ-Gap Shortest Vector Problem (GapSVPγ) is defined as follows.

Given a basis B of a lattice L = L(B) and a real number d > 0, return YES if

λ1(L) ≤ d and NO if λ1(L) > γ · d. If d < λ1(L) ≤ γ · d, there are no requirements

on the output.

Definition 4. The γ-Shortest Independent Vector Problem (SIVPγ) is defined as

follows. Given a basis B of a lattice L = L(B), find n linearly independent vectors

v1, . . . , vn such that max (‖vi‖2) ≤ γ · λn(L).

Definition 5. The γ-unique Shortest Vector Problem (uSVPγ) is defined as follows.

Given a basis B of a lattice L = L(B) such that λ2(L) > γλ1(L), find a vector v ∈ L
such that ‖v‖2 = λ1(L).

It may be difficult to verify a solution to approximate SVP in a lattice L as even the

length λ1(L) itself may not be known [104]. In contrast, the volume vol (L) can be

computed easily from any basis. By Minkowski’s second theorem [172],

λ1(L) ≤ √γn · vol (L)
1
n ,

where γn is Hermite’s constant [126] in dimension n. This motivates the following

problem.

Definition 6. The γ-Hermite Shortest Vector Problem (γ-HSVP) is defined as fol-

lows. Given a basis B of a lattice L = L(B), find a nonzero vector v ∈ L such that

‖v‖2 ≤ γ · vol (L)
1
n .

The Gaussian heuristic states that for a measurable subset K ⊂ Rm and a lattice

L ⊂ Rm, we expect that the number of lattice points in K is approximately equal
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2.2 Lattice background

to vol(K)
vol(L) . Specialising this to K being the unit Euclidean ball we can approximate

λ1(L) as follows.

Heuristic 1. The Gaussian heuristic states that

λ1(L) ≈
√

m

2πe
vol (L)1/m .

There are several occasions when we wish to find a lattice point close in Euclidean

distance to a given point in space.

Definition 7. Let L be a lattice and let x be a point. Let y ∈ L be the lattice point

for which the length ‖x− y‖2 is minimised. We define the distance to the lattice L

from the point x to be this length, which we denote dist(x, L).

The Closest Vector Problem is to find a closest lattice vector to a target point in space.

This can be seen as an inhomogeneous version of SVP, which could be formulated

as finding a closest nonzero lattice vector to the point 0.

Definition 8. The Closest Vector Problem (CVP) is defined as follows. Given a

basis B of a lattice L = L(B) and a target vector t, find a vector y ∈ L such that

‖t− y‖2 is minimised.

Again, for an approximation factor γ > 1, we can define two problems related to

CVP.

Definition 9. The γ-Closest Vector Problem is defined as follows. Given a basis

B of a lattice L = L(B) and a target vector t, find a vector y ∈ L such that

‖t− y‖2 < γ · dist(t, L).

Definition 10. The γ-Bounded Distance Decoding problem (BDDγ) is defined as

follows. Given a basis B of a lattice L = L(B) and a target vector t such that

dist(t, L) ≤ γ · λ1(L), find the vector y ∈ L that is closest to t.

Babai’s Nearest Plane algorithm [27] solves the approximate Closest Vector Problem.

Its input is a lattice basis B ⊂ Zm and a target vector t ∈ Rm. Its output is a vector

e ∈ Rm such that t− e ∈ L(B), which we denote by NPB(t) = e. If the basis B is

clear from the context, we omit it in the notation and simply write NP(t). Babai’s
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2.2 Lattice background

Nearest Plane algorithm works by recursively computing the closest vector on the

sublattice spanned by subsets of the Gram-Schmidt vectors b∗i .

Definition 11. For a lattice basis b0, . . . ,bn−1 ∈ Zm, the Gram-Schmidt vectors

are defined as b∗0, . . . ,b
∗
n−1 with

b∗0 = b0

b∗i = bi −
i−1∑
j=0

µi,jb
∗
j

where µi,j =
〈b∗j ,bi〉
〈b∗j ,b∗j〉

are the Gram-Schmidt coefficients.

As with a basis, the Gram-Schmidt vectors can be arranged in a matrix, which we

denote B∗. The product of the norm of the Gram-Schmidt vectors is equal to the

volume of the lattice.

In general, the Gram-Schmidt vectors b∗i do not themselves form a basis of the lattice

L(B). By an abuse of notation, for a matrix of Gram-Schmidt vectors B∗ we define

the parallelepiped P(B∗) as for the definition of the fundamental parallelepiped. We

will use the following result about the output of Babai’s Nearest Plane algorithm.

Lemma 2 ([28]). For a lattice basis B with Gram-Schmidt vectors B∗ and a target

vector t as input, Babai’s Nearest Plane algorithm returns the unique vector e ∈
P(B∗) that satisfies t− e ∈ L(B).

As noted above, lattice bases are not unique, and certain bases may be preferable to

others. In Chapter 3 we will discuss lattice basis reduction algorithms, which take

as input a basis and output a reduced basis that can be considered more preferable.

The quality of a reduced basis is characterised by the Hermite factor δn0 , which can

be easily computed. We adopt the convention that the first nonzero vector, say b0,

in a reduced lattice basis is a shortest vector in the basis.

Definition 12. Let {b0, . . . ,bn−1} be a basis output by a lattice reduction algorithm.

The Hermite factor δn0 is such that the shortest nonzero vector b0 in the basis has

the following property:

‖b0‖2 = δn0 vol (L)1/n .

We may also refer to δ0 itself, and call it the root-Hermite factor. The logarithm to

base 2 of δ0 is called the log root-Hermite factor.
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2.3 The Learning with Errors problem

The Gram-Schmidt vectors of a reduced lattice basis are commonly estimated using

the Geometric Series Assumption [201].

Heuristic 2. Let {b0 . . .bn−1} be a basis of a lattice L that is output by a lattice

basis reduction algorithm of quality given by root-Hermite factor δ0. Let b∗i denote

the corresponding Gram-Schmidt vectors. Then the Geometric Series Assumption

asserts that, for some 0 < υ < 1, the length of b∗i is approximated by

‖b∗i ‖2 ≈ υ
i ‖b0‖2 .

Using Heuristic 2 we have that

vol (L)
1
n =

n−1∏
i=0

‖b∗i ‖2 =

(
n−1∏
i=0

υi ‖b0‖2

) 1
n

=

√
‖b0‖22 υn−1 = ‖b0‖2

√
υn−1 .

Using the Definition 12, we can conclude that δ−n0 =
√
υn−1 and hence υ = δ

−2n/(n+1)
0 .

Approximating this as υ ≈ δ−2
0 and again using Definition 12 gives a reformulation

of Heuristic 2 as

‖bi‖∗2 ≈ δ
−2i+n
0 vol (L)

1
n .

2.3 The Learning with Errors problem

The Learning with Errors (LWE) problem was introduced by Regev [194, 195] and is

provably as hard as certain worst-case lattice problems [194, 45]. LWE can be thought

of as a generalisation of the Learning Parity with Noise (LPN) problem [137] into

large moduli q. We now define LWE and the related Short Integer Solutions problem

[5, 167].

Definition 13. The Learning with Errors problem (LWE) is defined as follows. Let

n, q be positive integers, χ be a probability distribution on Z and s be a secret vector

in Znq . We denote by Ls,χ the probability distribution on Znq ×Zq obtained by choosing

a ∈ Znq uniformly at random, choosing e ∈ Z according to χ and considering it in Zq
and returning

(a, c) = (a, 〈a, s〉+ e) ∈ Znq × Zq .

Decision-LWE is the problem of deciding whether pairs (a, c) ∈ Znq ×Zq are sampled

according to Ls,χ or the uniform distribution on Znq × Zq.
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2.3 The Learning with Errors problem

Search-LWE is the problem of recovering s from (a, c) = (a, 〈a, s〉 + e) ∈ Znq × Zq
sampled according to Ls,χ.

Definition 14. The Short Integers Solutions problem (SIS) is defined as follows.

Let A ∈ Zn×mq be a matrix. Let β ∈ R be a bound. Find a short vector ‖v‖2 < β in

the lattice

L = {w ∈ Zmq | wA ≡ 0 mod q} .

Typically, the distribution χ in Ls,χ is a discrete Gaussian distribution on Z with cen-

tre parameter zero and width parameter αq, denoted by DZ,αq. A discrete Gaussian

distribution with centre parameter µ and width parameter αq samples elements with

a probability proportional to exp(−π (x−µ)2

(αq)2
). The standard deviation of a continuous

Gaussian with width parameter αq is σ = αq√
2π
.

The smoothing parameter ηε(L) of a lattice L [167] is equal to the smallest s > 0

such that the distribution obtained by sampling a continuous Gaussian of width

parameter s and reducing modulo L is very close to uniform. In particular, the two

distributions have a pointwise probability density to within a (1 ± ε) factor of each

other [74]. If σ ≥ ηε(Z) is the standard deviation of a discrete Gaussian with width

parameter αq, then we also have that σ = αq√
2π

is a good approximation [96].

We will use the following standard fact about the Gaussian distribution.

Lemma 3. Let χ denote the Gaussian distribution with standard deviation σ. For

x > 0, denote Q(x) =
(

1− erf
(
x√
2

))
. Then, for all C > 0,

P(e
$← χ : |e| > C · σ) ≈ Q(C) ≤ 2e−C

2/2

C
√

2π
.

Suppose we sample m times independently from the distribution Ls,χ. The resulting

LWE instance is parameterised by its dimension n, its modulus q, the number of

samples m and the error distribution, characterised by the parameter α. This gives

the most generic characterisation of an LWE instance.

In this thesis we are mainly concerned with choosing parameters for security and

hence a key question is how hard it is to solve a given LWE instance. To consider the

widest range of possible approaches, we typically assume the attacker, who is trying
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2.3 The Learning with Errors problem

to solve LWE, may query Ls,χ for as many samples m as they like. One argument

why this is reasonable is that given a fixed polynomial number of samples, we can

generate arbitrarily many more independent samples, with only a slight worsening

in the error [111, 23, 196]. In addition, there is typically an optimal choice for m,

and the best strategy if the number of available samples is larger is to discard the

extra samples. Therefore, in most cases we will ignore m, or assume it is chosen to

be the most convenient value, and characterise LWE instances just by n, α, and q.

A typical choice for q and α is given by the following. Inspired by Regev’s choice [195]

of αq = 2
√
n, we let c > 1

2 be a small constant, then choose q = nc and α ≈ n
1
2
−c.

In this case we may characterise the LWE instance by n and c. This choice of width

parameter αq ≈
√
n can be considered typical since we require αq >

√
n for the

reduction from GapSVP to LWE to go through [195] and furthermore if αq <
√
n

then Arora and Ge’s algorithm [25] becomes subexponential.

In some applications, the secret s does not have components s(i) chosen from the

whole of Zq as in Definition 13 but instead chosen such that they are small, for

example taking values in {0, 1} or {−1, 0, 1}. We call such an LWE instance a small

secret LWE instance. In this case we characterise the instance by n, α, q, and ψ

where ψ is the distribution of the s(i).

In Chapter 5 we will consider a variant of LWE where χ is not a discrete Gaussian

but instead is the uniform distribution on {0, 1}. We call this LWE with binary

error.

Definition 15. The LWE with binary error problem is defined as follows. Let n, q

be positive integers, U be the uniform distribution on {0, 1} and s
$← Un be a secret

vector in {0, 1}n. We denote by Ls,U the probability distribution on Znq ×Zq obtained
by choosing a ∈ Znq uniformly at random, choosing e $← U and returning

(a, 〈a, s〉+ e) ∈ Znq × Zq .

The search variant of LWE with binary error is the problem of recovering s from m

samples (ai, 〈ai, si〉+ ei) ∈ Znq × Zq sampled according to Ls,U , with i ∈ {1, . . . ,m}.
The decision variant of LWE with binary error is the problem of deciding whether

m pairs (ai, ci) ∈ Znq × Zq with i ∈ {1, . . . ,m} are sampled according to Ls,U or the

uniform distribution on Znq × Zq.
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2.3 The Learning with Errors problem

We show in Lemma 4 that we can transform an LWE instance where the secret is

chosen uniformly at random from Znq into one where the secret vector follows the

same distribution as the error, at the cost of n samples. Lemma 4 considers LWE

with a discrete Gaussian error distribution, but the same argument can be generalised

to other error distributions, for example a uniform binary error distribution. This is

why in Definition 15 we used a secret following the same distribution as the error,

rather than a general secret, chosen uniformly at random from Znq .

Lemma 4 ([23]). Let q be prime. Let DZn,αq be an n-dimensional extension of DZ,αq

where each component is sampled according to DZ,αq. Then, given access to an oracle

Ls,χ returning samples of the form (a, c) = (a, 〈a, s〉+e) ∈ Znq ×Zq with a
$← U

(
Znq
)
,

e
$← DZ,αq and s ∈ Znq , we can construct samples of the form

(a, c) = (a, 〈a, e〉+ e) ∈ Znq × Zq

with a
$← U

(
Znq
)
, e $← DZ,αq and e

$← DZn,αq in 2n2 operations in Zq per sample,

at the loss of n samples overall and with O (nω) operations for precomputation.

Proof: Take n samples from Ls,χ and write:

(A0, c0) = (A0,A0 · s + e0)

where A0 ∈ Zn×nq . With probability
∏n
i=1(qn − qi−1)/qn

2 this matrix is invertible.

Precompute A−1
0 and store it; this costs O (nω) operations. Now, to produce samples

of the form (a, c) = (a, 〈a, e〉 + e) ∈ Znq × Zq with a
$← U

(
Znq
)
, e $← DZ,αq and

e
$← DZn,αq we sample

(a1, c1) = (a1, 〈a1, s〉+ e1)

from Ls,χ and compute:

a1 ·A−1
0 · c0 − c1 = a1 ·A−1

0 (A0 · s + e0)− a1 · s − e1

= a1 ·A−1
0 ·A0 · s + a1 ·A−1

0 e0 − a1 · s − e1

= a1 · s + a1 ·A−1
0 e0 − a1 · s − e1

= a1 ·A−1
0 e0 − e1 .

Since DZ,αq is symmetric and A−1
0 has full rank, we see that

(a1 ·A−1
0 ,a1 ·A−1

0 c0 + c1) = (a1 ·A−1
0 ,a1 ·A−1

0 e0 − e1)
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is a valid sample of the form (a, c) = (a, 〈a, e〉 + e) ∈ Znq × Zq with a
$← U

(
Znq
)
,

e
$← DZ,αq and e

$← DZn,αq. �

We now show that Decision-LWE and Search-LWE are equivalent. The direction

from search to decision is trivial: suppose samples (ai, ci) are given to a search

oracle, and it returns a vector s. We then compute ci − 〈ai, s〉, which is distributed

according to χ if (ai, ci) are LWE samples, and is uniformly distributed if (ai, ci)

is uniform. Hence we can distinguish these cases. The nontrivial direction, due to

Regev [195], is reproduced in Lemma 5. Having established equivalence, whenever

a method can be shown to solve Search-LWE or Decision-LWE we can speak of it

solving LWE.

Lemma 5 ([195]). Let n ≥ 1 be an integer, 2 ≤ q ≤ poly(n) be a prime, and χ be

some distribution on Zq. Assume that we have access to a procedure W that, for all

s, accepts with probability exponentially close to 1 on inputs from Ls,χ and rejects

with probability exponentially close to 1 on uniformly random inputs. Then, there

exists an efficient algorithm W ′ that, given samples from Ls,χ for some s, outputs s

with probability exponentially close to 1.

Proof: We show how W ′ finds the first component s(0) of s; finding the other com-

ponents is similar. For any k ∈ Zq consider the following transformation. Given a

pair (a, c) as input to W ′, let it output the pair (a +(l, 0, . . . , 0), c+ lk) where l ∈ Zq
is chosen uniformly at random. It is easy to see that this transformation takes the

uniform distribution to itself. On the other hand suppose the input pair (a, c) is

sampled from Ls,χ. If k = s(0) then this transformation takes Ls,χ into itself. If

k 6= s(0) then this transformation takes Ls,χ to the uniform distribution. There are

only polynomially many (namely q) possibilities for s(0), so we can try all of them as

possible k values. For each k value, let the output of W ′ be the input to W . Then

as W can distinguish Ls,χ from uniform, it can tell whether k = s(0). �

In certain cases, given samples from Ls,χ, we can construct LWE instances where

the modulus is now p for some particular p < q using a technique known as modulus

switching. This was initially introduced to improve homomorphic encryption [46]

but, as we will discuss in Chapter 5, can also be employed to reduce the cost of

solving LWE in certain cases. In the context of solving LWE, modulus switching is

the process of considering an instance of LWE with modulus q as a scaled instance
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of LWE with modulus p. Modulus switching is achieved by scaling and rounding,

and this process incurs a noise increase that depends on s. Therefore, the technique

can only be used for LWE instances with sufficiently small secret.

Lemma 6 ([46, 45]). Let (a, c) = (a, 〈a, s〉 + e) ∈ Znq × Zq be sampled from Ls,χ.

Let p ≈
√

2π n
12 ·

σs
α , where σs is the standard deviation of elements in the secret s. If

p < q then
(⌊

p
q · a

⌉
,
⌊
p
q · c

⌉)
∈ Znp×Zp follows a distribution close to Ls,DZ,

√
2αp+O(1)

.

Hence, we can heuristically treat
(⌊

p
q · a

⌉
,
⌊
p
q · c

⌉)
as an LWE sample parameterised

by n,
√

2α, p.

Proof: Consider⌊
p

q
· c
⌉

=

⌊
p

q
(〈a, s〉+ e)

⌉
=

⌊〈
p

q
· a, s

〉
p

+
p

q
· e

⌉

=

⌊〈⌊
p

q
· a
⌉
, s

〉
p

+

〈
p

q
· a −

⌊
p

q
· a
⌉
, s

〉
p

+
p

q
· e

⌉

=

〈⌊
p

q
· a
⌉
, s

〉
p

+

〈
p

q
· a −

⌊
p

q
· a
⌉
, s

〉
p

+
p

q
· e+ e′

=

〈⌊
p

q
· a
⌉
, s

〉
p

+ e′′ +
p

q
· e+ e′ ,

where e′ ∈ [−0.5, 0.5] is the error from rounding and e′′ =
〈
p
q · a −

⌊
p
q · a

⌉
, s
〉
p
. As an

inner product, e′′ approaches a discrete Gaussian as n increases. Since the rounding
p
q ·a−

⌊
p
q · a

⌉
takes values uniformly in [−0.5, 0.5] we have that e′′ ≈

√
n/12σs. We

have that p
q · e is also a discrete Gaussian, since it is a scaling of e. We choose p to

balance the dominant noise terms and thus the resulting overall noise is approximated

by a discrete Gaussian (plus a small O (1) noise given by the e′ term). We require

p

q
· αq/

√
2π ≈

√
n/12σs

p · α/
√

2π ≈
√
n/12σs

p ≈
√

2π

α
·
√
n/12σs

p ≈
√

2π n

12
· σs
α
.

�
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2.3 The Learning with Errors problem

We note that
(⌊

p
q · a

⌉
,
⌊
p
q · c

⌉)
can only heuristically be considered as an LWE

sample parameterised by n,
√

2α, p because
⌊
p
q · a

⌉
is not exactly uniform and the

error distribution is not exactly DZ,
√

2αp. This is not problematic from a cryptana-

lytic point of view because, as we will see in Chapter 4, the complexity of attacks

typically depends on the size of the error, rather than its exact distribution. For

BKW-type algorithms (see Section 4.5), the non-uniformity of
⌊
p
q · a

⌉
may even be

beneficial as we would expect to require fewer samples before encountering a pair

that agrees on the first several components.

In Lemma 6, we chose p to ensure that
∥∥∥∥〈pq · a − ⌊pq · a⌉, s〉p

∥∥∥∥
2

≈ p
q · ‖e‖2 if s is

small enough. This means that after modulus switching, the new error e′′+ p
q · e+ e′

is essentially a scaling of the previous error e (ignoring the small contribution of e′).

In principle, one can modulus switch to any p, even one larger than q, but reducing

p is typically advantageous as it will reduce the running time of most algorithms.

However, picking p too small could make e′ or e′′ a more dominant noise term and

increase the overall noise level leading to a higher solving complexity.
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Chapter 3

Lattice reduction
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Many algorithms for solving LWE rely on a lattice reduction step. In this chapter we

review lattice reduction algorithms and discuss estimates in the literature for their

running time. We also give a new result on the asymptotic time complexity of BKZ.

This chapter is based on material presented in [16].

As discussed in Chapter 2, in dimension n ≥ 2 there are infinitely many bases of

a lattice. A natural question is whether one possible basis should be preferred to

another possible basis. Indeed, a basis that would be considered good is one that

has short vectors that are close to orthogonal. Knowing a good basis typically makes

lattice problems, such as finding the lattice point closest to a given target point, easier

to solve. The goal of a lattice basis reduction algorithm is to transform an input

lattice basis into a better basis, with vectors that are shorter and more orthogonal.

Recall that the quality of a basis that is output by a lattice reduction algorithm is

characterised by the Hermite factor δn0 , which is easy to compute.

BKZ [202] is a prominent family of lattice reduction algorithms, parameterised by

a block size k, that we will discuss in detail. When k = 2 the algorithm produces

an output basis containing a short vector that is only guaranteed to be within an

exponential factor of a shortest vector. In particular, the basis that is output sat-
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isfies the LLL-reduced property of Lenstra, Lenstra and Lovász [148], specified in

Definition 16. The definition depends on a value δ ∈ (1
4 , 1); a typical choice for this

value is δ = 3
4 .

Definition 16 ([148]). Let {b0, . . . ,bn−1} be a basis of a lattice. Let b∗i be the

Gram-Schmidt vectors and µi,j be the Gram-Schmidt coefficients. The basis is size

reduced if |µi,j | ≤ 1
2 for 0 ≤ j < i ≤ n− 1. Let δ ∈ (1

4 , 1). The Lovász condition is
‖b∗i ‖2
‖b∗i−1‖2

≥ δ − µ2
i,i−1. The basis is LLL-reduced if it is size reduced and satisfies the

Lovász condition for some δ.

When the block size k = n; that is, the block size is equal to the full size of the

basis, then the output basis is said to be HKZ-reduced, after Hermite, Korkine and

Zolotarev [127, 140]. Let v0, . . . ,vm−1 be vectors spanning a subspace V . The

orthogonal complement V ⊥ = 〈v0, . . . ,vm−1〉⊥ is the set of all vectors orthogonal to

every vector in V .

Definition 17. Let {b0, . . . ,bn−1} be a basis of a lattice L and let {b∗0, . . . ,b∗n−1}
be the Gram-Schmidt vectors. The basis is HKZ-reduced if ‖b0‖2 = λ1(L) and

‖b∗i ‖2 = λ1(πi(L)) where πi(L) = 〈b0, . . . ,bi−1〉⊥ for 1 ≤ i ≤ n− 1.

In some sense, a HKZ-reduced basis is optimally reduced, since it contains a shortest

nonzero vector of the lattice. Indeed, each HKZ-reduced basis vector is known to be

close in length to the respective successive minimum.

Theorem 1 ([144, 161]). Let {b0, . . . ,bn−1} be a HKZ-reduced basis of a lattice L.

Then for 0 ≤ i ≤ n− 1,
4

i+ 4
≤
‖bi‖22
λ2
i+1(L)

≤ i+ 4

4
.

However, BKZ with block size n runs in at least exponential time in the worst case.

In practice, a variant of BKZ with some intermediary block size 2 < k < n would be

used.

In the remainder of this chapter we review the lattice reduction algorithms LLL [148]

and BKZ [202]. For brevity we do not describe Slide reduction [103] or Dual BKZ

[171], although Micciancio and Walter [171] show experimentally that these are com-

petitive with BKZ: for example, the average root-Hermite factor achieved by these
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3.1 The LLL algorithm

algorithms is shown to converge to that of BKZ. We introduce LLL in Section 3.1 and

BKZ in Section 3.2. We conclude in Section 3.3 by specifying the runtime estimates

for lattice reduction that will be used later in the thesis.

3.1 The LLL algorithm

Introduced by Lenstra, Lenstra and Lovász in [148], the LLL algorithm was initially

proposed as an algorithm for factoring polynomials, but has since found a wealth

of applications [179]. The LLL algorithm can be considered as a generalisation of

the two dimensional lattice reduction algorithm due to Lagrange (see, for example,

[134, 179]), which is sometimes attributed to Gauss.

The output of Lagrange’s lattice reduction algorithm is a basis {b0,b1} such that

λ1 = ‖b0‖2 ≤ ‖b1‖2 = λ2 and the Gram-Schmidt coefficient |µ1,0| ≤ 1
2 . The algo-

rithm works by taking in a pair of vectors {b0,b1} arranged such that ‖b0‖2 ≤ ‖b1‖2
and then setting b1 = b1 − bµ1,0eb0, then swapping the vectors and repeating until

no more changes can be made. Thus, when this terminates, we must have |µ1,0| ≤ 1
2 .

To extend into higher dimensions we would like to do something similar, but the

optimal way to do this is not immediately clear because of the additional choice of

directions. As we will see below, the LLL algorithm can be seen as a generalisation

of the Lagrange algorithm that is relaxed in some sense; other generalisations are

discussed for example in [178].

The Lagrange algorithm ensures that ‖b1‖2
‖b0‖2

is not too small; in particular, we have
‖b1‖2
‖b0‖2

≥ 1 − µ2
1,0. The Lovász condition (recall Definition 16) is a relaxed general

version of this. Essentially, the LLL algorithm works by size reducing each basis

vector, updating the Gram-Schmidt vectors and coefficients, and then checking if

the Lovász condition still holds; if it does not, then it swaps the current vector with

the previous vector. In more detail, let the input basis be {b0, . . . ,bn−1}. Starting

at i = 1 and incrementing upwards, consider bi and size reduce with respect to bj

for j = i− 1 down to j = 0. Then check if bi and bi−1 satisfy the Lovász condition.

If they do, increment i; if not, swap them and decrement i to ensure the swap has

not affected the Lovász condition holding in the previous pair.
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3.2 The BKZ algorithm

Lenstra, Lenstra and Lovász in [148] showed that their algorithm runs in polynomial

time. Several provable variants of the LLL algorithm, which improve the running

time, have been proposed [135, 200, 176, 181, 175]. Suppose a bound B is known on

the norms of the input basis, so that ‖bi‖2 < B for all 0 ≤ i ≤ n − 1. The variant

due to Neumaier and Stehlé [175], for example, runs in time O
(
n4+ε log1+εB

)
for

any ε > 0. Heuristically, variants of LLL, such as L2 [176], perform even better: for

example, Stehlé [206] showed that O
(
n2 log2B

)
can be achieved in practice.

In terms of quality of output, the LLL algorithm theoretically achieves a Hermite fac-

tor of
(

4
3

)n−1
4 [148], although in practice, the output quality is much better. Nguyen

and Stehlé [177] conclude from experiments in dimension up to n = 130 that the root-

Hermite factor δ0 appears to converge towards 1.02 as the dimension increases. For

comparison, the theoretical root-Hermite factor in dimension 130 is approximately

1.074.

3.2 The BKZ algorithm

The BKZ algorithm was introduced by Schnorr and Euchner [202]. As mentioned

above, BKZ is in fact a family of algorithms parameterised by a block size k. We

call a basis that is output by the BKZ algorithm with block size k a BKZk-reduced

basis. The BKZ algorithm requires an algorithm solving exact SVP in dimension up

to k as a subroutine, which we refer to as calling an SVP oracle.

The BKZ algorithm with block size k runs as follows, where at every stage the

updated basis is denoted b0, . . . ,bn−1. The input basis is LLL-reduced, and the first

block is b0, . . . ,bk−1. We call the SVP oracle to obtain a short vector, b′0, in the

space spanned by these vectors. We now have k+1 vectors spanning a k dimensional

space, so we call LLL to obtain a new set of k linearly independent vectors. The

second block is made of vectors that are the projections of b1, . . . ,bk onto 〈b0〉⊥

(the space that is the span of the orthogonal complement of b0). Again we call the

SVP oracle to obtain a short vector in this space, b′1, which can be viewed as the

projection of some b′′1 in the lattice. Now we call LLL on b0,b1, . . . ,bk,b
′′
1 to update

the list of basis vectors. The next block is made of vectors that are the projection of

b2, . . . ,bk+1 onto 〈b0,b1〉⊥ (the space that is the span of the orthogonal complement
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3.2 The BKZ algorithm

of b0 and b1), and again the SVP oracle is called to obtain a short vector in this

space, which can be viewed as a projected b′′2; and this procedure carries on through

the basis. The first n − k + 1 blocks are all of size k, and then after this point

each block is one vector shorter than the previous block. The output basis of this

process is another LLL-reduced basis, which can be treated as a new input, and the

whole process continues, until a basis passes through unchanged, at which point the

algorithm terminates. We can see that BKZ constructively achieves a basis with the

following property: each block of size k, that is, all the first n − k + 1 blocks, is a

HKZ-reduced basis.

To implement the SVP oracle in dimension k, four main possibilities exist: sieving,

enumeration, computing the Voronoi cell and Discrete Gaussian sampling. Discrete

Gaussian sampling takes 2k+o(k) operations and 2k+o(k) memory [4]. Computing the

Voronoi cell of the lattice takes 22k+o(k) operations and 2k+o(k) memory [169]. The

provable variant of sieving takes 2k+o(k) operations and 2k+o(k) memory [192, 4]. The

best heuristic classical variant of sieving takes 20.292 k+o(k) operations [33] and the

best heuristic quantum variant of sieving takes 20.265 k+o(k) operations [141]. The run-

ning time of provable variants of enumeration depends on the preprocessing. Fincke

and Pohst [101] show that by preprocessing with LLL, enumeration requires 2O(k2)

operations and poly(k) memory. Kannan [136] showed that with stronger prepro-

cessing, enumeration be done in kO(k) operations and poly(k) memory. Achieving

kO(k) was considered prohibitively expensive in practice until recently, but Miccian-

cio and Walter [170] proposed a variant that achieves kO(k) with smaller overhead.

Moreover, Walter [213] showed that preprocessing local blocks with BKZ-k′ where

k′ = O (k) before enumeration also reduces the complexity of BKZ-k to kO(k).

In terms of quality of output, Chen [64] gives a limiting value of the root-Hermite

factor δ0 achievable by BKZ as a function of the block size k. Experimental evidence

suggests that we may use Chen’s limiting value as an estimate also when n is finite.

Lemma 7 ([64]). Let vk be the volume of the unit ball in dimension k and let δ0

be the root-Hermite factor achievable by BKZ with block size k. Assume that both

Heuristic 1 and Heuristic 2 hold. Then

lim
n→∞

δ0 =

(
v
−1
k
k

) 1
k−1

≈
(

k

2πe
(πk)

1
k

) 1
2(k−1)

.
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3.2 The BKZ algorithm

Another approximation for the δ0 achievable for a fixed k is known as the lattice rule

of thumb (see, for example [207]) and states that δ0 = k
1
2k . This expression itself is

often [208] approximated by δ0 = 2
1
k . However, we will show that this simplification

implies a subexponential algorithm for solving LWE.

Several possible improvements to BKZ have been suggested, namely early termina-

tion [124], local block preprocessing, extreme pruning [105] and optimising the enu-

meration radius. These improvements have been combined and tested as so-called

BKZ 2.0 [65].

No closed formula for the expected number of BKZ rounds ρ is known and the

best upper bound is exponential [124, 104]. However, it has been observed that the

quality of the output basis increases more dramatically in the earlier rounds of BKZ,

and this gives rise to the idea of early termination. Assuming n calls to an SVP

oracle per round, Hanrot et al. [124] show that after ρ = n2

k2
log n many rounds, the

quality of the basis is already very close to the final output. The choice to terminate

BKZ early may therefore still return a basis close to the desired quality, whereas

performing more rounds would increase the runtime while not increasing the basis

quality much.

Recall that in BKZ the local basis (of a block) is always LLL-reduced. Local block

preprocessing involves performing a stronger reduction of the local basis, so that it

is more than just LLL-reduced. For example, it could be a basis that is BKZk′-

reduced with some block size k′ < k. Chen and Nguyen [65] use a recursive BKZ

with early termination as preprocessing. We can also consider a global preprocessing:

computing a BKZk-reduced basis by beginning with a BKZk′-reduced basis for some

k′ < k, rather than an LLL-reduced basis. The BKZk′-reduced basis could itself be

computed by beginning with a BKZk′′-reduced basis for some k′′ < k′, rather than

an LLL-reduced basis, and so on. This idea is known as progressive BKZ [22].

Pruning is an improvement that can be applied when the SVP oracle is implemented

as enumeration. Rather than exploring all branches in the search tree, we instead

explore only a subset of the branches, according to some rule. This is faster than

exploring all branches, but may not return the shortest vector.
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3.2 The BKZ algorithm

For optimising the enumeration radius, Chen and Nguyen [65] use ν =
√

1.1 times

the Gaussian Heuristic as an upper bound for the enumeration radius, where the

fixed value ν is determined from experiments, while Aono et al. [22] allow the value

ν to be varied.

3.2.1 Asymptotic running time of BKZ

In this section we consider the asymptotic runtime behaviour of the BKZ algorithm,

and in the following section we will discuss estimates from in the literature for the

running time of BKZ in practice.

We determine an asymptotic lower bound of the running time of BKZ required to

achieve a certain basis quality characterised by δ0 as a function of δ0 as follows. We

know that BKZ with block size k should cost at least as much as the cost of calling

an SVP oracle in dimension k. Thus, we can write k in terms of δ0, using one of

the estimates of quality of output of BKZ with block size k. We then substitute this

value for k into an appropriate asymptotic cost of an SVP oracle.

In order to relate k and δ0 we use the lattice rule of thumb (recall Section 3.2). Recall

that this states δ0 = k
1
2k , which implies k

log k = 1
2 log δ0

. We will lower bound k using

Lemma 8.

Lemma 8. Let gn(t) for some t be the sequence defined such that g0(t) = 2 and for

i ≥ 1, gi(t) = t log(gi−1(t)). For a > 0, define b = a
log a . If a ≥ 2 then a ≥ gn(b) for

any n ≥ 0.

Proof: We prove the claim by induction. For the base case, by assumption we have

a ≥ 2 = g0(b). For the inductive step, suppose a ≥ gi(b). This implies

log a ≥ log (gi(b))

b log a ≥ b log (gi(b))

b log a ≥ gi+1(b)

a ≥ gi+1(b)

since b log a = a by definition, and we are done. �
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3.2 The BKZ algorithm

In BKZ the block size k ≥ 2, so by Lemma 8 we have k ≥ gn

(
1

2 log δ0

)
for all n. In

particular, we can use k ≥ g2

(
1

2 log δ0

)
= − log(2 log δ0)

2 log δ0
to lower bound the log of the

asymptotic time complexity of the BKZ algorithm as follows.

Corollary 1. The log of the asymptotic time complexity for running BKZ to achieve

a root-Hermite factor δ0 is:

Ω

(
log2 (2 log δ0)

4 log2 δ0

)
if calling the SVP oracle costs 2O(k2),

Ω

− log
(
− log (2 log δ0)

2 log δ0

)
log (2 log δ0)

2 log δ0

 if calling the SVP oracle costs kO(k),

Ω

(
− log (2 log δ0)

2 log δ0

)
if calling the SVP oracle costs 2O(k).

For sufficiently large k, the bound of Lemma 8 becomes tighter as n increases. In

particular, applying the following lemma shows that k is the limit of the sequence

gn

(
1

2 log δ0

)
when k ≥ 4.

Lemma 9. Let gn(t) for some t be the sequence defined such that g0(t) = 2 and for

i ≥ 1, gi(t) = t log(gi−1(t)). Define g∞(t) = limn→∞ gn(t), if it exists. For a > 0,

define b = a
log a . If a ≥ 4, then a = g∞(b).

Proof: By Lemma 8, since a ≥ 4 > 2, the sequence gn(b) is bounded above by a.

We will show that gn(b) is a monotonic sequence and hence we can conclude it is

convergent. We will use the fact that if a ≥ 4 then a
log a = b ≥ 2. We prove by

induction that gn(b) ≥ gn−1(b) for all n ≥ 1. For the base case, we have

g1(b) = b log (g0(b)) = b log 2 = b ≥ 2 = g0(b) .

For the inductive step, suppose gi(b) ≥ gi−1(b). This implies

gi(b)

gi−1(b)
≥ 1

log

(
gi(b)

gi−1(b)

)
≥ 0

b log

(
gi(b)

gi−1(b)

)
≥ 0

b log gi(b)− b log gi−1(b) ≥ 0

gi+1(b)− gi(b) ≥ 0

gi+1(b) ≥ gi(b)
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3.2 The BKZ algorithm

as required. We have shown than gn(b) is convergent and we may denote its limit

by g∞(b). This satisfies g∞(b) = b log (g∞(b)) and since b = a
log a we have that

g∞(b)
log (g∞(b)) = a

log a . For x ≥ 4, the function x
log(x) is one-to-one. By assumption, a ≥ 4

and we can conclude g∞(b) = a as desired. �

3.2.2 Estimating running time of BKZ in practice

We now review various estimates for the running time of BKZ that exist in the

literature. Perhaps the most prominent and widely used estimate is due to Lindner

and Peikert [150] who estimate that the runtime (in seconds) of BKZ is

log tBKZ(δ0) =
1.8

log δ0
− 110 .

To convert the estimate to a more general metric we convert to clock cycles. Lindner

and Peikert obtained their estimate based on experiments using the implementation

of BKZ in the NTL library [204]. The experiments were performed on a 2.3 GHz

computer, so the estimate corresponds to a runtime of approximately 2
1.8

log δ0
−78.9

clock cycles.

We argue the Lindner and Peikert model is inaccurate. One reason for this is due to

the implementation of the SVP oracle in NTL. This is implemented as enumeration

without improvements such as extreme pruning, local block preprocessing, and early

termination, which means the SVP oracle requires 2O(k2) time. According to the

Lindner and Peikert model the log of the running time is linear in 1
log δ0

whereas

using Corollary 1 it is clear that the log of the running time is nonlinear in 1
log δ0

.

Even deriving an analogous result to Corollary 1 using the less tight bound

k ≥ g1

(
1

2 log δ0

)
=

1

2 log δ0

we would obtain that the log of the running time is Ω
(

1
4 log2 δ0

)
, which is still nonlin-

ear in 1
log δ0

. A second reason, which we will discuss in Section 4.6, is that applying

this model to predict the behaviour of BKZ leads to a subexponential algorithm for

solving LWE.

Albrecht et al. [9] use data points of Liu and Nguyen [152] to extrapolate a model

similar to Lindner and Peikert’s [150]. We refer to the model of Albrecht et al. [9]
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3.2 The BKZ algorithm

as the delta-squared model. The running time in seconds on a 2.3 GHz computer of

BKZ 2.0 is estimated to be

log tBKZ(δ0) =
0.009

log2 δ0

− 27 ,

corresponding to a runtime of 2
0.009
log2 δ0

+4.1
clock cycles. We note that this model

also assumes that enumeration in BKZ 2.0 has a complexity of 2O(k2), and that the

running times on which this model is based were not independently verified, which

limits their utility.

Chen and Nguyen [65, 64] provide a simulation algorithm for BKZ 2.0 for arbitrarily

high block size k, under the assumption that each block behaves as a random basis.

They note that this assumption may not hold for block sizes k < 50. The algorithm

takes as input the logs of the norms of the Gram-Schmidt vectors belonging to the

input matrix and a block size k. It outputs the expected logs of the norms of the

Gram-Schmidt vectors of the BKZk-reduced basis as well as the number of rounds ρ

needed. The simulation algorithm allows us to calculate the block size k that will be

required to obtain the given approximate δ0 by BKZ 2.0 (see [65, Table 2]). Chen

and Nguyen assume the SVP oracle is implemented using a pruned enumeration and

they estimate the upper bound of the cost of this, for various values of k, in terms of

the number of nodes of the enumeration tree (see [65, Table 3]). Each round of BKZ

is estimated to cost n−k enumeration calls, so the total cost of BKZ is estimated to

be the number of rounds multiplied by n−k multiplied by the cost of an enumeration

call.

In [211] van de Pol and Smart consider the problem of estimating the cost of BKZ

from the perspective of using BKZ to solve an LWE instance or some other compu-

tational problem in lattices. They assume we have a desired level of security 2λ; that

is, a maximum number of operations an adversary can perform, and a given lattice

dimension m. These values are used to find the lowest δ0 that can be achieved in 2λ

operations, minimising over possible choices of the block size k and the number of

rounds ρ = ρ(k,m, λ). This is in contrast to an approach where the parameters of

the system correspond to a δ0, which then implies a certain security level. They use

data of Chen and Nguyen [65, Table 3] to estimate the cost of one enumeration for

a given k and to calculate the total number of enumerations that can be performed

for this k, to reach the maximum of 2λ operations. Note that this means they do not
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3.3 Estimating lattice reduction in this thesis

consider block sizes k > 250 as Chen and Nguyen do not give estimates for those.

They remark that δ0 seems to converge to a value depending only on k, corroborat-

ing other results in the literature. They note further that the convergence is slower

in higher dimension. The approach of van de Pol and Smart was later refined by

Lepoint and Naehrig [149].

Alkim et al. [19] and Bos et al. [39] also consider the cost of BKZ in the setting of

estimating security of their respective key exchange schemes. Suppose an attacker

uses BKZ with appropriate block size to obtain an output basis of quality such that

they expect to be able to break the scheme. It can be argued that this attacker can

be expected to make at most a polynomial number of SVP oracle calls, for example

by using an early termination strategy [124]. In particular, experiments of Chen [64]

suggest that a linear number of calls to the SVP oracle may be sufficient. Alkim et

al. [19] and Bos et al. [39] take a more conservative view and instead imagine that

the attacker is successful after just one call to the SVP oracle. In [39] it is argued

that this accounts both for potential improvements to BKZ, as well as for a case in

which the attacker requires to run BKZ several times and may be able to amortise

its cost.

Albrecht [7] estimates the cost of BKZ in clock cycles as

tBKZ = 8 · n ·
(

20.292k+12.31
)
.

This follows Chen [64] in estimating a linear number of calls to the SVP oracle,

namely c · n calls for a constant c, and assumes the SVP oracle is implemented via

sieving. The constant c = 8 is chosen based on experiments using fplll [88]. The

0.292k term is based on the asymptotic estimate of the cost of sieving given by

Becker et al. [33] and the 12.31 term is based on experiments of Laarhoven [142].

3.3 Estimating lattice reduction in this thesis

Alongside the article [16], Albrecht developed a module in Sage for determining the

bit security of LWE instances [6], which we call the LWE estimator. The LWE

estimator takes as input an LWE instance parameterised by n, α and q and returns

estimates for the bit operations required to solve that instance via various algorithms,

40



3.3 Estimating lattice reduction in this thesis

SVP oracle Data source Log of cost tk of SVP oracle
Enumeration [66] 0.270 k log(k)− 1.019 k + 16.10
Classical sieve small [33] 0.387 k + 16.4
Classical sieve asymptotic [33] 0.292k + 16.4
Quantum sieve [141] 0.265 k + 16.4

Table 3.1: Estimates used in the LWE estimator for the log of the cost in clock cycles
log(tk) to solve SVP in dimension k.

as well as the amount of memory and number of LWE samples that would be required

when using each algorithm. As we will discuss in detail in Chapter 4, lattice reduction

is required in many approaches for solving LWE. In this section we discuss how the

cost of lattice reduction is estimated in the LWE estimator. We focus on commit

f13c4a7, which is the version we will use in the remainder of the thesis.

Let tk be an estimate for the cost in clock cycles for an SVP oracle in dimension k. In

earlier versions of the LWE estimator, for example at the time of publication of [16],

the cost of BKZ in dimension n with block size k was estimated in clock cycles as

n ·ρ · tk. The number of rounds was estimated as ρ = n2

k2
log n, following [124], giving

the estimate in clock cycles as

tBKZ =
n3

k2
log n · tk .

In commit f13c4a7 of the LWE estimator the cost of BKZ in dimension n with block

size k is estimated in clock cycles as

tBKZ = 8 · n · tk ,

following Albrecht [7]. It is assumed that the SVP oracle is implemented as sieving

or enumeration and estimates for tk that are used are summarised in Table 3.1. The

classical sieving estimates are based on the work of Becker et al. [33] and the quantum

sieving estimate is based on the thesis of Laarhoven [141]. The enumeration estimate

is based on the work of Chen and Nguyen [66].

The enumeration estimate, given in the first row of Table 3.1, was derived by fitting

a k log(k) + b k + c to data in [66, Table 4] and assuming one enumeration costs 200

clock cycles as in [66]. Although BKZ 2.0 does perform local block preprocessing

with BKZ-k′ before calling the SVP oracle, it is not clear when implemented as in [66]
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3.3 Estimating lattice reduction in this thesis

that it achieves a complexity of kO(k). This is because [66] does not give sufficient

details to decide if preprocessing was performed with k′ = O (k). However, from a

cryptanalytical perspective, it is safer to assume it achieves this bound, which is why

the curve was fit to a k log(k) + b k + c rather than a k2 + b k + c.

The estimates for classical sieving are given in the second and third rows of Table 3.1.

Becker et al. [33] report a heuristic asymptotic time complexity of 20.292 k+o(k) and

experimental time complexities of 20.405k−16 seconds and 20.387k−15 seconds on a

2.83 GHz CPU. The faster experimental estimate is used for small k. The estimate

20.292k+c is used for k > 90; that is, the o(k) term is treated as a constant c, which

is chosen to be the same as the constant term for small k.

The estimate for quantum sieving is given in the final row of Table 3.1. An asymptotic

complexity of quantum sieving of 20.265 k+o(k) is reported by Laarhoven [141]. Again,

the o(k) term is treated as a constant c which is set to the same value as for the

other sieving estimates.

While it could be argued that it is unreasonable to ignore the contribution of the o(k)

terms in the sieving estimates, we note that Becker et al. [33] also fit experimental

data to a curve of the form 2ak+b for constants a and b. Furthermore, we note that

estimating the cost of sieving in practice has been stressed as an open problem by,

for example, Laarhoven and de Weger [143].
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Chapter 4

Algorithms for solving LWE
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This chapter discusses approaches for solving the Learning with Errors problem. In

particular, we identify three strategies for solving LWE and describe the algorithms

available in the literature for solving LWE via these strategies. This chapter is based

on material presented in [16].

4.1 Motivation

The hardness of the Learning with Errors problem is considered only asymptotically

in much of the literature. Such asymptotic expressions can be useful: for example,

they give a good overview of the general behaviour of algorithms for solving LWE.

This is illustrated by Herold et al. [128], who show that for a polynomial number of
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4.1 Motivation

samples, all known algorithms for solving LWE in dimension n have running time at

least 2O(n). In addition, asymptotic results can indicate weaker parameter settings.

For example, the algorithm of Arora and Ge [25] runs in time 2Õ(n2ξ) for some ξ such

that αq = nξ and so we can conclude that it is subexponential when ξ < 1
2 . This

result coincides nicely with the reduction from GapSVP to LWE due to Regev [195],

which requires αq >
√
n. As another example, Kirchner and Fouque [139] give an

algorithm that is subexponential in the case of a uniform binary error. This indicates

that LWE with binary error is somewhat weaker than general LWE, an idea which

we will discuss in more detail in the following chapter.

However, asymptotic expressions for the runtime of algorithms may hide logarithmic

and constant factors in the exponent. Therefore, using such expressions can make

determining secure parameters challenging when designing cryptosystems. When

choosing parameters for an LWE-based cryptosystem we must ensure that the un-

derlying LWE instance is hard with respect to a particular security parameter λ. To

choose optimal parameters for security we must be able to identify the fastest known

way of solving LWE with that choice of parameters and be assured that this attack

requires at least 2λ operations. Our goal in this chapter is therefore to determine

the concrete hardness of LWE.

In the following section we identify three strategies for solving LWE: firstly, via

solving the Short Integer Solutions problem, known as the dual attack; secondly, via

solving the Bounded Distance Decoding problem, known as the primal attack; and

finally, recovering the secret directly by other means. In the remainder of the chapter,

for each of these strategies, we discuss the algorithms that can be used to solve LWE.

We consider all possible approaches for solving LWE, including algorithms that may

require a very large number of samples m. Indeed, in this chapter we assume the

attacker has access to an unlimited number of samples. We therefore parameterise

an LWE instance by n, α and q. This is in line with the implementation of the LWE

estimator [6] at the time of publication of [16].

For some approaches for solving LWE, it turns out that the optimal attack requires

a specific number of samples m, and the attacker having access to more should

discard any excess samples. In particular, during the attack the aim will be to find a

vector v with a target norm in a lattice L with a fixed volume vol (L) but a variable
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4.2 Strategies for solving LWE

dimension m. In particular, the optimal attack will require m to be chosen such that

the following is minimised:

‖v‖2 = δm0 vol (L)1/m .

In many applications, it holds that vol (L) = qn and in this case, this minimal value

is given by

m =

√
n log q

log δ0

and is referred to as the optimal subdimension [168].

A criticism of allowing any number of samples is that this does not always represent

the situation in practice, since there are scenarios in which an attacker attempting

to solve LWE would only have access to a limited number of samples. Hence it

can be argued [18] that allowing unlimited samples, and thus assuming the attacker

is more powerful, leads to overly conservative security estimates. To address this

issue, Bindel et al. [36] have implemented an extension to the LWE estimator [6]

that enables the user to specify a limit on the number of samples m, in addition to

the usual parameters n, α and q, and then obtain an estimate of the hardness of the

LWE instance in this case.

4.2 Strategies for solving LWE

In this section we discuss three strategies for solving LWE given samples (A, c). All

of the algorithms that we will discuss in the remainder of this chapter follow one of

these strategies.

In Section 4.2.1, we discuss the strategy of solving Decision-LWE by finding a short

vector v such that vA = 0. This strategy solves the Short Integer Solutions problem

and is also known as the dual attack.

In Section 4.2.2, we discuss the strategy of solving Search-LWE by finding a short

e such that Ax = c − e for some unknown x. This strategy solves the Bounded

Distance Decoding problem and is also known as the primal attack.
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4.2 Strategies for solving LWE

In Section 4.2.3, we discuss the strategy of solving Search-LWE directly by finding

an s′ such that As′ is close to c.

4.2.1 Solving LWE via solving the Short Integer Solutions problem

The strategy of solving LWE via solving the Short Integer Solutions problem solves

Decision-LWE. The goal is to distinguish the case where m samples (A, c) follow

Ls,χ, and hence satisfy c = As + e with e(i)
$← DZ,αq, from the case where both A

and c are uniformly random. To do so, we aim to find a short vector v in the lattice

L = {w ∈ Zmq | wA ≡ 0 mod q} ,

which is the dual lattice, scaled by q, of the lattice generated by A. Finding such

a v is exactly solving the Short Integer Solutions problem. To see that such a v

will enable us to distinguish, consider the inner product 〈v, c〉. If c = As + e

then 〈v, c〉 = 〈v, e〉 which approximately follows a Gaussian distribution over Z
considered modulo q, provided not too many of the components of v are too large.

In particular, 〈v, e〉 is often small as both v and e are small. On the other hand,

if c is uniform then 〈v, c〉 is uniform over Zq. So we can indeed distinguish these

two cases, thus solving Decision-LWE. We must however ensure ‖v‖2 is suitably

short. If ‖v‖2 is too large then the Gaussian distribution of 〈v, e〉 will be too flat to

distinguish from random. In particular, we have the following lemma specifying the

distinguishing advantage for a given vector v.

Lemma 10 ([150]). Given an LWE instance parameterised by n, α, q and a vector

v of length ‖v‖2 in the scaled dual lattice L = {w ∈ Zmq | wA ≡ 0 mod q}, the
advantage of distinguishing 〈v, e〉 from random is close to exp(−π(‖v‖2 · α)2).

Corollary 2. To obtain an advantage ε in solving an LWE instance that is pa-

rameterised by n, α and q via the SIS strategy, we require a vector v of norm

‖v‖2 = 1
α ·
√

ln( 1
ε )
π .

Stehlé [208] states that a suitably short choice to distinguish Ls,χ from random is

‖v‖2 · αq ≤ q; that is, ‖v‖2 ≤
1
α . By Lemma 10, choosing ‖v‖2 = 1

α results in an

advantage of about 1
23 to distinguish correctly.
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4.2 Strategies for solving LWE

Depending on the algorithm used to obtain the short vector v, it may be advan-

tageous to accept a longer vector as output. This decreases the distinguishing ad-

vantage ε, but, by the Chernoff bound [72], running the algorithm about 1
ε2

times

will achieve a success probability close to 1. This may be faster than the alternative,

which uses fewer vectors at a higher success probability, but takes significantly longer

to obtain these shorter vectors.

4.2.2 Solving LWE via solving Bounded Distance Decoding

The strategy of solving LWE via solving the Bounded Distance Decoding problem

(BDD) solves Search-LWE. Given m samples (A, c) following Ls,χ, we may observe

that c = As + e is close to a linear combination of the columns of A. Furthermore,

since the noise e is Gaussian, almost all of the noise is bounded in norm by a small

multiple of the standard deviation. Considering the lattice spanned by the columns

of A, we can see that c is a point within a bounded distance from the lattice point

w = As. Hence, we may view the LWE instance as an instance of the BDD problem

for this lattice. In this case, our solution to the BDD problem would be the lattice

point w, from which we may then use linear algebra to recover s and therefore solve

Search-LWE. In the case that A is not invertible, we call for more samples until it

is.

Let ε′ be the overall target success probability. Depending on the algorithm used, it

may be advantageous to run the algorithm independently t times, each with a lower

success probability ε. Since we are solving a search problem, we will fail overall only

if we fail on all of the t attempts. Hence we have 1− ε′ = (1− ε)t and so an overall

success probability of ε′ is achieved after repeating t = log(1−ε′)
log(1−ε) times.

4.2.3 Solving LWE via recovering the secret directly

The final strategy is to solve Search-LWE directly by searching for a suitable s′ such

that ‖As′ − c‖2 is small. While this and the BDD strategy are related by simple

linear algebra, since knowing e trivially allows us to recover s and vice versa, they

differ in which of e or s they target.
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4.3 Exhaustive search for LWE

4.3 Exhaustive search for LWE

The most naive approach for solving LWE is an exhaustive search. This directly

solves for s as in Section 4.2.3.

Theorem 2. Let an LWE instance be parameterised by n, α and q. The time com-

plexity of solving Search-LWE with success probability ε with exhaustive search is

m · (2tαq + 1)n · 2n = 2n log (2tαq+1)+logn+1+logm

operations in Zq. The memory complexity is n and the number of samples required

is n+m with

m =
log(1− ε)− n log(2tαq + 1)

log(2tα)

for some small parameter t = ω(
√

log n).

Proof: Consider {−tαq, . . . , tαq} for t = ω(
√

log n). By Lemma 3, an LWE sample

has error that falls in this range with high probability. Applying Lemma 4 we obtain

an LWE instance with s(i)
$← DZ,αq; that is, the secret s follows the same distribution

as the error. Therefore we are able to estimate the size of each component s(i) of

the secret s as |s(i)| ≤ tαq and so to check all possible secrets we must enumerate

approximately (2tαq + 1)n vectors. For each guess s′ and for all available samples

(ai, ci) we calculate xi = ci−〈ai, s′〉 and see if xi follows the error distribution, which

would be the case for the correct secret. For each guess s′ and for each sample we

perform about 2n operations in Zq when computing the inner product, which gives

the stated time complexity.

We require n of the overall set of samples to apply Lemma 4. We determine the

number of additional samples m required by bounding the probability of a false

positive. We know that the correct secret s′ = s will produce ei = ci − 〈ai, s〉 with
ei ∈ {−tαq, . . . , tαq} with overwhelming probability. Wrong guesses s′ will produce

random elements in Zq that land within the acceptable range with probability at most
d2tαqe+1

q ≈ 2tα. For an incorrect guess s′ 6= s to pass the test it must pass for all m

samples, which happens with probability (2tα)m. There are (2tαq + 1)n − 1 wrong

choices for s. By the union bound, we will accept a false positive with probability

pf ≤ (2tα)m · (2tαq + 1)n. For small failure probability pf = 1 − ε we obtain the

stated bound on the number of additional samples m. �
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4.3 Exhaustive search for LWE

In the LWE estimator [6] commit f13c4a7, the parameter t is set to t =
⌈
2
√

lnn
⌉
.

Using Lemma 3, the probability of the error falling outside the range {−tαq, . . . , tαq}
is at most

2e−4π lnn(
2
√

2π
√

lnn
)
·
√

2π
=

2eln (n−4π)

4π
√

lnn
=

1

n4π · 2π
√

lnn
.

Corollary 3. Let an LWE instance be parameterised by n, α and q where q = nc

for some constant c and αq =
√
n. Then the time complexity of solving Search-LWE

with success probability ε with exhaustive search is

2n log (2t
√
n+1)+logn+1+logm .

The memory complexity is n. The number of samples required is m+ n with

m =
log (1− ε)− n log (2t

√
n+ 1)(

1
2 − c

)
log n+ log (2t)

.

4.3.1 Meet-in-the-Middle for LWE

There is a Meet-in-the-Middle (MITM) algorithm to solve LWE, which directly solves

for s as in Section 4.2.3. This is a time-memory trade-off and is therefore a faster

method than a naive brute force at the cost of an increased memory requirement. The

existence of an MITM algorithm for LWE was mentioned by Bai and Galbraith [29]

but a detailed description was not provided.

Theorem 3. Let an LWE instance be parameterised by n, α and q. If there are n+m

samples satisfying
(

2tαq+1
q

)m
·
(

(2tαq + 1)
n
2 − 1

)
= poly(n) and 3tαm ≤ 1

C for some

small parameter t = ω(
√

log n), then there is a Meet-in-the-Middle algorithm that

solves Search-LWE with non-negligible probability that runs in time

(2tαq + 1)
n
2 ·
(
m · n+ log

(n
2

)
+ log (log tαq) +

n

2
· log (2tαq + 1)

)
and requires memory n

2 · log (tαq) · (2tαq + 1)
n
2 .

Proof: We apply Lemma 4, which costs n samples, to obtain an LWE instance with

s(j)
$← DZ,αq. That is, the secret follows the same distribution as the error, and by

Lemma 3 has elements in the range {−tαq, . . . , tαq} for t = ω(
√

log n) with high

probability.
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4.3 Exhaustive search for LWE

With each of the remaining m samples (ak, 〈ak, s〉 + ek), we split ak = ak
l ||akr in

half. For every possible first half of the secret si
l, and for each of the m samples ak,

we compute
〈
ak

l, si
l
〉
. Let the output of a guess si

l ∈ Zn/2q be the vector

usil =
(〈

a0
l, si

l
〉
, . . . ,

〈
am−1

l, si
l
〉)

.

We store a table T whose entries map usil to si
l. In particular, we index si

l by the

(log q − log (tαq)) most significant bits of usil in T .

Since the secret follows the error distribution, we expect (2tαq + 1)
n
2 candidate secret

halves si
l and for each candidate we must calculate m inner products. Therefore,

generating the table costsm·n·(2tαq + 1)
n
2 operations. We need to store (2tαq + 1)

n
2

candidates si
l, each of which has n

2 components, each of which requires log (tαq)

space. Hence the memory requirement is |T | = n
2 · log (tαq) · (2tαq + 1)

n
2 .

Once the table is generated and sorted, for each candidate sj
r ∈ Zn/2q for the second

half of the secret, and for each of the samples ak, we compute ck − 〈akr, sjr〉. Let

the output for a guess sj
r be the vector

vsjr = (c0 − 〈a0
r, sj

r〉 , . . . , cm−1 − 〈am−1
r, sj

r〉) .

We take the (log q − log (tαq)) most significant bits of vsjr and query T . If T returns

a value si
l, we treat si

l || sjr as a candidate secret. By construction, if T is queried

for the guess sj
r and returns si

l, then ‖vsjr − usil‖ ≤ tαq since vsjr and usil agree

except for the least log (tαq) significant bits. If this process returns no candidate

secret, we call for more samples and repeat.

For each guess sj
r, we can query vsjr in

log(|T |) = log
(n

2
· log (tαq) · (2tαq + 1)

n
2

)
= log

(n
2

)
+ log (log tαq) +

n

2
log (2tαq + 1)

operations by binary search. Since there are (2tαq + 1)
n
2 possible guesses sj

r, the

overall cost of querying is (2tαq+ 1)
n
2 ·
(
log
(
n
2

)
+ log (log tαq) + n

2 · log (2tαq + 1)
)
.

Let the kth component of vsr be vsr,k and let the kth component of usl be usl,k. For

the correct secret s = sl || sr, if the (log q − log (tαq)) most significant bits of vsr

and usl agree, then

vsr,k − usl,k = ck − 〈ark, sr〉 −
〈
alk, s

l
〉

= ck − 〈ak, s〉 = ek mod q
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for all k. By Lemma 3 the errors ek are in the range {−tαq, . . . , tαq} with overwhelm-

ing probability. Therefore, if this process returns any candidate secrets si
l || sjr at

all, then with overwhelming probability, one of them will be the correct secret s.

We need to ensure the b = (log q − log (tαq)) most significant bits of vsr and usl

agree. We denote this requirement as MSBb (vsr) = MSBb
(
usl
)
. For all k, by

definition of the LWE samples,

ck = 〈ak, s〉+ ek mod q

ck =
〈
ak

l, sl
〉

+ 〈akr, sr〉+ ek mod q

ck − 〈akr, sr〉 =
〈
ak

l, sl
〉

+ ek mod q

vsr,k = usl,k + ek mod q

MSBb (vsr,k) = MSBb
(
usl,k + ek

)
.

Hence, it is sufficient to show thatMSBb
(
usl,k + ek

)
= MSBb

(
usl,k

)
for all k. Since

with overwhelming probability ‖ek‖ ≤ tαq, this holds whenever the inner product〈
ak

l, sl
〉
takes a value in the range {tαq, . . . , q − 1 − 2tαq}. In this range, adding

ek will not cause a wrap around modulo q or influence the b most significant bits.

We would like the probability that the inner product is not in this range to be

small. Since a is uniformly random, so is the inner product
〈
ak

l, sl
〉
. Therefore the

probability that
〈
ak

l, sl
〉
is not in the range {tαq, . . . , q−1−2tαq} is tαq+2tαq

q = 3tα.

By the union bound, the probability that this occurs for any of the m samples is less

than or equal to 3tαm. We therefore require that m satisfies 3tαm ≤ 1
C for some

constant C.

Consider now the probability of a false positive, that is, a wrong candidate secret si
l

being suggested for some candidate sj
r. Since ak is uniformly random, for any si

l,

we have that usil is essentially a random vector where each component takes one of

q values. The probability of a wrong candidate sj
r producing a vsjr matching to a

given usil is the probability of getting to within ±tαq on every component. Therefore

the probability of a false positive is
(

2tαq+1
q

)m
. There are (2tαq + 1)

n
2 − 1 wrong

choices for si
l. We hence expect to test

(
2tαq+1

q

)m
·
(

(2tαq + 1)
n
2 − 1

)
candidates

per sj
r and thus we also require that m satisfies(

2tαq + 1

q

)m
·
(

(2tαq + 1)
n
2 − 1

)
= poly(n) .

�
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4.4 The Arora-Ge algorithm

In the LWE estimator [6] commit f13c4a7, the required number of samples m is

estimated heuristically as follows. The probability of a false positive is approximated

as (2tα)m. The number of wrong choices for si
l is approximated as (αq)n/2. The

choice 2n is fixed for poly(n). Hence the required number of samples is estimated as

m =
log
(

2n
(αq)n/2

)
log (2tα)

.

To heuristically ensure the second condition on the number of samples, it is then

checked that

2mα > 1− 1

2n
.

4.4 The Arora-Ge algorithm

Arora and Ge [25] proposed an algorithm that solves Search-LWE via recovering the

secret directly as described in Section 4.2.3. The algorithm works by setting up a

system of noise-free nonlinear polynomials of which the secret s is a root. The system

is then solved by linearisation to recover s.

In more detail, the algorithm proceeds by assuming that the error always falls in

the range [−t, t] for some t ∈ Z such that d = 2t + 1 < q. This is a reasonable

assumption in the case of a Gaussian error distribution since by Lemma 3 the chance

of falling outside this interval drops exponentially fast. Polynomials are constructed

from the observation that the error, when falling in this range, is always a root of

the polynomial P (x) = x
∏t
i=1(x+ i)(x− i). Then, we know the secret s is a root of

P (a · x − c) constructed from LWE samples. This system of nonlinear equations is

solved by linearisation; that is, by replacing each monomial with a new variable and

solving the resulting linear system. This approach requires a large number, O
(
nd
)
,

of samples and as we increase the number of samples, we increase the probability

that the error falls outside of the interval [−t, t]. We then have to increase the range,

which in turn requires even more samples. Balancing these two requirements of

keeping t low and acquiring enough samples, the overall complexity is given by the

following result.

Theorem 4 ([10]). Let an LWE instance be parameterised by n, q and σ = αq, let ω

denote the linear algebra constant, and define DAG = 8σ2 log n + 1. If DAG ∈ o(n)
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4.5 The BKW algorithm

then the Arora-Ge algorithm solves Search-LWE in time complexity

O
(

2
ω·DAG log n

DAG · σ q log q
)

= O
(

2 8ω σ2 logn(logn−log(8σ2 logn))
)

and memory complexity

O
(

2
2·DAG log n

DAG · σ q log q
)

= O
(

2 16σ2 logn(logn−log(8σ2 logn))
)
.

If n ∈ o(DAG) then the Arora-Ge algorithm solves Search-LWE in time complexity

O
(

2ω n log
DAG
n · σ q log q

)
= O

(
2ω n log(8σ2 logn)−ωn logn

)
and memory complexity

O
(

2 2n log
DAG
n · σ q log q

)
= O

(
2 2n log(8σ2 logn)−2n logn

)
.

Corollary 4 ([10]). Let an LWE instance be parameterised by n, q and σ =
√
n.

Then the time complexity of the Arora-Ge algorithm is O
(
2(1+ε)ωn log logn

)
where

ε = 3
log logn .

Albrecht et al. [10] show that the Arora-Ge algorithm can be improved by using

Gröbner basis techniques. As mentioned above, to solve via linearisation as in [25] we

require O
(
nd
)
samples, but Gröbner basis algorithms will work when fewer samples

than this are available at the cost of a more expensive solving step. This approach

requires the assumption that random systems behave like semi-regular sequences, a

justification for which is given in [10]. In particular, in the case that αq =
√
n, we

obtain Theorem 5.

Theorem 5 ([10]). Let (ai, ci) for i ≥ 1 be elements of Znq × Zq sampled according

to Ls,χ with αq =
√
n and let ω denote the linear algebra constant. Then there is

a heuristic algorithm recovering the secret with time complexity O
(
22.35ωn+1.13n

)
,

memory complexity O
(
25.85n

)
and sample complexity m = exp(π4 · n).

4.5 The BKW algorithm

The BKW algorithm, named for its inventors Blum, Kalai and Wasserman [37], was

introduced as an algorithm for solving Learning Parity with Noise (LPN). As noted

by Regev [195], the BKW algorithm can be adapted to solve LWE.
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4.5 The BKW algorithm

The BKW algorithm is parameterised by a and b = n
a , and solves LWE via the SIS

strategy as described in Section 4.2.1. To solve with this strategy, given m samples

(A, c) following Ls,χ, we require short vectors vi in the scaled dual lattice of the

lattice generated by A. The vectors vi are obtained by adding elements from a

tables where each table is used to find collisions on b components of a row of A.

Albrecht et al. [9] gave the first analysis of the BKW algorithm for LWE. In their

variant, the vectors vi are constructed as follows. Given a sample a; that is, a row of

A, the BKW algorithm splits the n components into a blocks each of width b. There

are a stages of the algorithm in which tables are created by searching for collisions

in the appropriate b coefficients of a. In the first stage, after an appropriate number

of samples, we obtain two vectors that agree on a(0), . . . ,a(b−1). The algorithm will

then take these and subtract them producing a row with a(0) = · · · = a(b−1) = 0

which is stored for use in the next stage. The next stage considers a(b), . . . ,a(2b−1),

and so on. This means that the algorithm must maintain a tables of size qb and its

running time is typically dominated by this magnitude.

The vi are of length
√

2a. In the first stage, suppose we find a collision on the first

b components. Adding those vectors to clear the first b components in a produces

a vi candidate of length
√

2 as we are adding two vectors. Moving on to the next

stage, two such vectors are added to clear the next b components, resulting in a vi

candidate of length
√

22, and so on for all a stages.

Albrecht et al. [9] give the following complexity for solving Decision-LWE with the

BKW algorithm. We note that [9] optimistically gives m = ε
exp(−π α2 2a)

, but by the

Chernoff bound we need about m = 1
exp(−π α2 2a)2

samples to distinguish.

Theorem 6 ([9]). Let (ai, ci) be samples following Ls,χ or a uniform distribution

on Znq × Zq, 0 < b ≤ n be a parameter and a = dnb e the addition depth. Then the

expected cost (over the randomness of the oracle generating samples) of the BKW

algorithm to distinguish Ls,χ from random with success probability ε is(
qb − 1

2

)
·
(
a(a− 1)

2
· (n+ 1)− ba(a− 1)

4

)
− b

6

(
qb − 1

2

)(
(a− 1)3 +

3

2
(a− 1)2 +

1

2
(a− 1)

)
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4.5 The BKW algorithm

additions/subtractions in Zq to produce elimination tables, and
1

exp (−π α2 2a)2 ·
(a

2
· (n+ 2)

)
additions/subtractions in Zq to produce samples. Furthermore,

a ·
⌈
qb

2

⌉
+

1

exp (−π α2 2a)2

calls to Ls,χ and storage for(
qb

2

)
· a ·

(
n+ 1− b · a− 1

2

)
elements in Zq are needed.

To pick a, which determines a choice for b, recall from Section 4.2.1 that in order

to distinguish Ls,χ from random using SIS an appropriately short choice for vi is

‖vi‖2 · αq =
√

2a · αq ≤ q, and hence a suitable choice for a is a ≤ log(α−2).

Corollary 5 ([9]). Let a = −2 logα and b = n
a . Then the expected cost of the BKW

algorithm to distinguish Ls,χ from random is(
qb − 1

2

)
·
(
a(a− 1)

2
· (n+ 1)

)
+ poly(n) ≤ qb · a2n+ poly(n)

= O
(
qn/(−2 logα) · (−2 logα)2n

)
= O

(
2n log q/(−2 logα) · (−2 logα)2n

)
operations in Zq. Furthermore, a ·

⌈
qb

2

⌉
+ poly(n) calls to Ls,χ and storage for(

qb

2

)
· a · n elements in Zq are needed.

Specialising Corollary 5 with q = nc and αq =
√
n we obtain the following time

complexity.

Corollary 6 ([9]). Let q = nc, αq =
√
n, a = −2 logα and b = n

a . Then the expected

cost of the BKW algorithm to distinguish Ls,χ from random is(
qb − 1

2

)
·
(
a(a− 1)

2
· (n+ 1)

)
+ poly(n) ≤ qb ·

(
a2n
)

+ poly(n)

= O
(

2n log q/−2 logα · poly(n)
)

= O
(

2
cn logn

(2c−1) logn · poly(n)

)
= 2

n
2−(1/c) · poly(n)

operations in Zq.
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Albrecht et al. [9] also give a variant of BKW that solves Search-LWE. The idea is

that after a number of iterations, each of which clears a subset of the components

of the ai, we are left with a small-dimensional LWE instance with a secret s′ whose

components are a subset of the components of the original secret s. Candidates for

s′ are tested using the log-likelihood ratio, and once the s′ part of the secret s is

recovered, back substitution is used to recover the next subset of s, and so on. This

variant was improved by Duc et al. [94] who use a discrete Fourier transform to

recover a correct subset s′, arriving at the following complexity result.

Theorem 7 ([94]). Let an LWE instance be parameterised by n, α, and q and let a,

b ∈ N be such that a · b = n. Let CFFT be the small constant in the complexity of the

fast Fourier transform computation. Let 0 < ε < 1 be a targeted success probability

and define ε′ = 1−ε
a . For 0 ≤ j ≤ a− 1 let

mj,ε = 8 · b · log
(q
ε

)
·
(
1− α2π

)−2a−j
.

The time complexity to recover the secret s with probability at least ε is c1+c2+c3+c4

where

c1 =
qb − 1

2
·
(

(a− 1)(a− 2)

2
(n+ 1)− b

6
(a(a− 1)(a− 2))

)
is the number of additions in Zq to produce tables,

c2 =
a−1∑
j=0

mj,ε′ ·
a− 1− j

2
(n+ 2)

is the number of additions in Zq to recover s,

c3 = 2

a−1∑
j=0

mj,ε′

+ CFFT · n · qb · log q

is the number of operations in C to prepare and compute the discrete Fourier trans-

forms, and

c4 = (a− 1)(a− 2) · b · q
b − 1

2

is the number of operations in Zq for back substitution. Furthermore we require

(a− 1) q
b−1
2 +m0,ε′ calls to Ls,χ and storage for

qb − 1

2
(a− 1)

(
n+ 1− ba− 2

2

)
+m0,ε

elements in Zq and qb elements in C.
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4.6 Solving Decision-LWE via lattice reduction

A variant called Coded-BKW was proposed by Guo et al. [120], and a similar variant

was proposed concurrently by Kirchner and Fouque [139]. Recall that in standard

BKW, a vector a1 is added or subtracted with a second vector a2 when both a1 and

a2 agree on a certain range of coordinates, so that many coordinates can be cancelled

out at once. This means a smaller LWE instance is produced in a process incurring

minimal noise growth. The process is then iterated until a very small dimensional

instance is left, which can be easily solved. The main idea in [120, 139] is to find

other ways to classify vectors as agreeing, other than having the same values in

many adjacent coordinates. As remarked in [139], this is similar to the BKW variant

of Albrecht et al. [12] known as lazy modulus switching, which we will discuss in

Section 5.3.

In Coded-BKW, vectors are mapped to the lattice codeword that is nearest in Eu-

clidean norm, and vectors that are mapped to the same codeword are cancelled.

This process, known as quantisation, introduces noise, which can be controlled so

that it is not more than the noise that would have been introduced with a standard

BKW procedure. Indeed, the algorithm calls for a certain number of standard BKW

operations followed by a number of Coded-BKW operations.

As observed for example by Albrecht [7], in light of these algorithms we can see

BKW-type algorithms as a general framework: firstly we create a small dimensional

LWE instance via iterations of some quantisation method, then we solve the small

dimensional instance via any preferred method.

4.6 Solving Decision-LWE via lattice reduction

Lattice reduction is another means to find short vectors in the scaled dual lattice,

enabling us to solve LWE via the SIS strategy as described in Section 4.2.1. We

construct this lattice L = {w ∈ Zmq | wA ≡ 0 mod q} from a given A ∈ Zm×nq

as follows. First we compute a basis B for the left kernel of A over Zq, then we

extend it by qI. In more detail, with high probability A is full rank and so B is an

(m − n) ×m matrix. We express B in row echelon form as (Im−n |B′), and hence
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4.6 Solving Decision-LWE via lattice reduction

obtain a basis for L as (
Im−n B′

0 qIn

)
.

The lattice L has dimensionm, rankm and with high probability volume vol (L) = qn

[168].

By our convention lattice reduction will return the shortest nonzero vector it found

as the first vector b0 of a reduced basis, which by definition is a short vector in L,

so that b0 A = 0 mod q. Heuristically, for a good enough output basis all vectors

could be used, as they will all be somewhat short, that is, not too dissimilar in length

from each other.

Lemma 11. Let an LWE instance be parameterised by n, α and q. Any lattice

reduction algorithm achieving log root-Hermite factor

log δ0 =

log2

(
1
α ·
√

ln( 1
ε )
π

)
4n log q

leads to an algorithm distinguishing Ls,χ from uniform with advantage ε.

Proof: In order to distinguish with advantage ε we require ‖v‖2 = 1
α

√
ln( 1

ε )
π by

Corollary 2. By definition the Hermite factor is δm0 =
‖v‖2

vol(L)
1
m

and with high prob-

ability vol (L) = qn so using lattice reduction we can achieve ‖v‖2 = δm0 q
n
m . We

choose the optimal subdimension m =
√

n log q
log δ0

which minimises the quantity δm0 q
n
m .

Rearranging with this value of m, we obtain

log δ0 =

log2

(
1
α ·
√

ln( 1
ε )
π

)
4n log q

as our desired log root-Hermite factor. �

Corollary 7. Let an LWE instance be parameterised by n, α and q where q = nc

for some constant c and αq =
√
n. Any lattice reduction algorithm achieving log

root-Hermite factor

log δ0 =

((
c− 1

2

)
log n+ log

√
ln( 1

ε )
π

)2

4cn log n

can distinguish Ls,χ with advantage ε.

58



4.6 Solving Decision-LWE via lattice reduction

Proof: As in the proof of Lemma 11 with high probability we can obtain a vector of

norm ‖v‖2 = δm0 q
n
m , and we require a vector ‖v‖2 = 1

α

√
ln( 1

ε )
π in order to distinguish

Ls,χ with advantage ε. We therefore require δ0 such that

δm0 q
n
m =

1

α

√
ln
(

1
ε

)
π

δm0 n
cn
m = nc−

1
2

√
ln
(

1
ε

)
π

.

Again we use the optimal subdimension m =
√

n log q
log δ0

=
√

cn logn
log δ0

. Rearranging with

this value of m, we obtain our required log root-Hermite factor as follows:√
cn log n

log δ0
log δ0 +

cn√
cn logn
log δ0

log n =

(
c− 1

2

)
log n+ log

√
ln
(

1
ε

)
π

2cn log n((
c− 1

2

)
log n+ log

√
ln( 1

ε )
π

) =

√
cn log n

log δ0

((
c− 1

2

)
log n+ log

√
ln( 1

ε )
π

)2

4cn log n
= log δ0 .

�

As noted in Section 4.2.1 above, the approach as discussed so far may not be optimal

in terms of running time. Given access to sufficiently many samples m it is usually

faster to run several lattice reductions, each with a small success probability ε, as

opposed to running one very strong lattice reduction with target success probability

close to 1. Namely, we expect to run lattice reduction with success probability ε

about 1
ε2

times to achieve the overall target success probability ε′ ≈ 1. For example,

the LWE estimator commit f13c4a7 with Regev [195] parameters with n = 128 gives

that the lowest overall running time is obtained using ε = 0.003906.

From the discussion above, in order to solve Decision-LWE using lattice reduction,

we must either run a very strong lattice reduction once, or run a somewhat strong

lattice reduction several times. Albrecht [7] argues that it might be possible to amor-

tise the cost of lattice reduction in the latter case using rerandomisation. That is,

it may be sufficient to perform the somewhat strong lattice reduction only once,

and we can obtain the other short vectors, which are also required to distinguish
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4.6 Solving Decision-LWE via lattice reduction

Model Block size k log clock cycles
Lattice rule of thumb k

log k = 4n log q

log2 ( 1
α)

O (k)

Simplified lattice rule of thumb 4n log q

log2 ( 1
α)

O
(

4n log q

log2 ( 1
α)

)
Lindner and Peikert [150] N/A 7.2n log q

log2 ( 1
α)
− 78.9

Albrecht et al. [9] N/A 0.144n2 log2 q

log4 ( 1
α)

+ 4.1

Table 4.1: Time complexity for distinguishing Ls,χ from random with advantage
ε ≈ 1

23 based on lattice reduction estimates from the literature.

successfully, by rerandomising the output basis. This is done as follows: the basis is

rerandomised by multiplication with a sparse unimodular matrix with small entries,

and this rerandomised basis is then is given as input to a cheaper lattice reduction,

such as LLL. The vector vi is then read off as the shortest vector of the basis that is

output from the cheaper lattice reduction. This approach loses statistical indepen-

dence, so requires the heuristic assumption that this issue is negligible. Albrecht [7]

provides experimental evidence that this is a reasonable assumption.

4.6.1 Verifying lattice reduction models

Having established the root-Hermite factor δ0 required to solve an LWE instance via

lattice reduction, we can combine it with estimates of the running time of lattice

reduction algorithms from the literature to estimate the runtime of solving LWE

in this way. In particular, we will show that some lattice reduction estimates in

the literature imply a subexponential algorithm for LWE. Algorithms to solve LWE

in general are expected to be exponential, so we can conclude that these lattice

reduction estimates are inaccurate.

In Tables 4.1 and 4.2 we list estimates for how long it would take lattice reduction

algorithms to achieve the target δ0 for
√

ln( 1
ε )
π = 1, that is, success probability ε ≈ 1

23 .

Considering the right-most column of Table 4.2 it is clear that both the Lindner and

Peikert model [150] as well as the simplified lattice rule of thumb would predict a
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Model Block size k log clock cycles
Lattice rule of thumb k

log k = 4cn logn

((c− 1
2) logn)

2 O (n)

Simplified lattice rule of thumb 4cn logn

((c− 1
2) logn)

2 O
(

4cn logn

((c− 1
2) logn)

2

)
Lindner and Peikert [150] N/A 7.2cn logn

((c− 1
2) logn)

2 − 78.9

Albrecht et al. [9] N/A 0.144c2n2 log2 n

((c− 1
2) logn)

4 + 4.1

Table 4.2: Time complexity for distinguishing Ls,χ from random with advantage
ε ≈ 1

23 in the case that q = nc and α = n
1
2
−c for a constant c based on lattice

reduction estimates from the literature.

subexponential running time for solving Decision-LWE using lattice reduction.

4.7 Algorithms for solving Bounded Distance Decoding

The approach of solving an LWE instance by viewing it as an instance of the Bounded

Distance Decoding (BDD) problem was first suggested by Lindner and Peikert [150].

We describe this approach using Babai’s Nearest Plane algorithm [27], which is the

most basic way of solving BDD. Let there be m samples (A, c) of an LWE instance

parameterised by n, α and q. We perform lattice reduction on the lattice L(AT ) to

obtain a new basis B for this lattice, where the quality of this basis is characterised

as usual by the root-Hermite factor δ0. The basis B and the target vector c are input

to Babai’s Nearest Plane algorithm, and assuming the basis is of sufficient quality,

the output is the LWE error vector e. One can then subtract e from c and use linear

algebra to recover the secret s.

Using Lemma 2, the probability that this approach finds the vector s is given by the

probability that the error vector e lies in the parallelepiped P(B∗). So, it can be

seen that the success probability is determined by the quality of the lattice reduction.

In particular, solving LWE via decoding using Babai’s Nearest Plane recovers the

61



4.7 Algorithms for solving Bounded Distance Decoding

vector s with probability
m−1∏
i=0

erf
(
‖b∗i ‖

√
π

2αq

)
under the assumption that sampling from a discrete Gaussian is approximately the

same as sampling from a continuous Gaussian [150].

Lindner and Peikert [150] suggest an alteration of Babai’s algorithm, designed to

widen the fundamental parallelepiped in the direction of b∗i by a factor of some

integer di > 0, thereby increasing the chance of e falling inside it. This will find

multiple solutions, which can be searched through exhaustively to find the correct

solution. This modifies the success probability to

m−1∏
i=0

erf
(
di · ‖b∗i ‖

√
π

2αq

)
.

Given m, n, α and q as above, let di be chosen such that the success probability is

at least ε. Let tnode be the number of clock cycles it takes to visit one node and let

tNP (δ0, ε) = tnode ·
m−1∏
i=0

di .

Then the time required for a decoding approach to achieve success probability ε can

be determined as

tdec(ε) = min
δ0
{tBKZ(δ0) + tNP (δ0, ε)} .

As noted in Section 4.2.2 we may also opt to repeat the attack several times, each

with a lower advantage.

There is no obvious way to analytically determine the optimal di to achieve a desired

success probability. Lindner and Peikert [150] suggest that the di should be chosen

to maximise min1≤i≤m (di · ‖b∗i ‖). On the one hand, with a more reduced basis,

the values of di can be smaller, so the Nearest Planes algorithm requires less time.

On the other hand, the lattice reduction takes significantly more time to achieve

a smaller δ0. We note that in [150, Figure 4] it appears as though tdec(ε) has not

been optimised. Lindner and Peikert [150] find values for δ0 for which the time of

a decoding approach is less than an equivalent distinguishing approach, but these

values are not necessarily optimal; that is, the lattice reduction step and the decoding

step are not always balanced.
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Liu and Nguyen [152] note that the algorithm of Lindner and Peikert, as well as

Babai’s Nearest Plane, can be viewed as a form of pruned enumeration, but with

a different rule to the pruned enumeration described by Gama et al. [105]. Let v

be a node, t be a target vector and ζi(x) =
〈x,b∗i 〉
||b∗i ||

. The pruning of Gama et al.

keeps nodes with bounded projections whereas the Lindner and Peikert algorithm

keeps nodes with bounded coordinates, in particular |ζi(v − t)| ≤ di||b∗i ||
2 . Liu and

Nguyen note that this can be generalised to arbitrary bounds on coordinates; that is

they suggest |ζi(v − t)| ≤ Ri for some parameters Ri not necessarily dependent on

the norms of the Gram-Schmidt vectors b∗i . Liu and Nguyen implement a variant

of the Lindner and Peikert algorithm in the context of pruning algorithms, using

arbitrary Ri. They also randomise the input basis, allowing them to repeat the

algorithm multiple times, which has the result of increasing both the runtime and

success probability linearly. Since we assume access to as many samples as required,

we do not rely on rerandomisation when estimating complexity. These two factors

result in more flexibility in tuning the parameters, and improved results for solving

BDD.

However, instead of using the enumeration framework as simply a method to improve

the algorithm of Lindner and Peikert [150], Liu and Nguyen [152] go on to directly

apply pruned enumeration to solve BDD. This follows the earlier work of Gama et

al. [105], and uses linear pruning with the bounds Rk =
√

k
mRm. Over the same

parameters used by Lindner and Peikert, this linear pruning is shown to improve on

both the original Nearest Plane algorithm and the Lindner and Peikert variant.

Aono et al. [21] give an alternative method for pruning, which they refer to as band

pruning. A node at depth k is pruned if the projected length is outside the range

[Lk, Rk], where the bounds Lk and Rk can be efficiently computed given a desired

success probability. Herold et al. [128] propose a generalised framework for enu-

meration techniques in the decoding approach, and show that the approaches of

[150, 202, 105] achieve the same running time asymptotically.

The LWE estimator [6] provides an estimate of the cost of the Lindner and Peikert

decoding attack [150], and does not provide an estimate of other variants, such

as [152, 21]. The Lindner and Peikert estimate that tnode = 215.1 clock cycles [150]

is used. For comparison, Gama et al. [105] achieve 0.94 · 107 ≈ 223 enumerations per

63



4.8 Solving LWE via unique Shortest Vector Problem

second on a 1.86 GHz machine, which corresponds to tnode = 27.9 clock cycles. Since

there is no closed formula to determine the optimal di, in the LWE estimator the

values di are increased one by one. The lattice reduction and enumeration steps are

balanced.

4.8 Solving LWE via unique Shortest Vector Problem

Another approach for solving an instance of BDD is by reducing it to an instance of

the γ-unique Shortest Vector Problem (γ-uSVP). Albrecht et al. [13] were the first

to consider the complexity of solving LWE in this way.

To reduce BDD to γ-uSVP the embedding technique of Kannan [136] is used. Recall

that the usual lattice of consideration when solving LWE via the BDD strategy is

L(A) = {Au | u ∈ Znq } ,

the lattice generated by the columns of the matrix A in the LWE instance (A, c).

The idea is to embed L(A) into a higher-dimensional lattice L(B) with γ-uSVP

structure. In particular, B is constructed as

B =

(
Ã c
0 t

)
,

where t = dist(c, L(A)) is the embedding factor and Ã is a basis for the q-ary lattice

spanned by the columns of A. Lyubashevsky and Micciancio [156] show that if

the embedding factor t < λ1(L(A)))
2γ then L(B) contains a γ-unique shortest vector,

c′ = (e,−t). If we can find this vector, we can take the firstm components to recover

e, hence solving the BDD instance.

To solve a γ-uSVP instance, we may reduce the problem to κ-Hermite Shortest Vector

Problem (κ-HSVP). Intuitively, a lattice with uSVP structure has one direction in

which its shortest vector is somewhat shorter than all other directions. A sufficiently

good lattice reduction algorithm, for example, can produce a vector so short it must

be in this special direction. More precisely, Lovász [154] showed that any algorithm

that can solve κ-HSVP, such as a lattice reduction algorithm, can be used linearly

many times to solve approximate SVP with approximation factor κ2. A solution
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to κ2-approximate SVP would be a vector v such that ‖v‖2 ≤ κ2λ1(L). For a

lattice with κ2-uSVP structure, any vector w that is not a shortest vector and that

is independent of the shortest vectors satisfies ‖w‖2 ≥ λ2(L) > κ2λ1(L). So, we

must have v is a multiple of a shortest vector, and hence we have solved γ-uSVP for

γ = κ2. Ling et al. [151] improve on this result and show that, for N the dimension

of the lattice, if κ >
√
N then any algorithm solving κ-HSVP can be used to solve

γ-uSVP for γ ≈
√
Nκ.

The above discussion concerns theoretical results, but we are concerned with using

lattice reduction in practice to solve LWE via uSVP. In particular, there are two

estimates in the literature for the quality of lattice reduction needed to solve LWE

in this way in practice. The more recent estimate is due to Alkim et al. [19], and

the older estimate is due to Gama and Nguyen [104]. In this thesis we use the

latter estimate, following [13, 16], as implemented in commit f13c4a7 of the LWE

estimator [6].

Gama and Nguyen [104] observe that lattice reduction of a quality given by a δ0

such that λ2(L)
λ1(L) > τδm0 is sufficient in order to solve a uSVP instance with some

probability depending on the value τ , which is taken to be a constant. For a success

probability of 0.1, experimental results in [13, 104] show that τ ≤ 0.4.

Albrecht et al. [13] give the following lemma, under the assumption that t = ‖e‖2.

Lemma 12 (Lemma 2 in [13]). Let A ∈ Zn×mq , let αq > 0 and let ε′ > 1. Let

e ∈ Zmq such that each component is drawn from χ and considered mod q. Assuming

the Gaussian heuristic for L(A), and that the rows of A are linearly independent

over Zq, we can create an embedding lattice with λ2
λ1
-gap greater than

min{q, q1− n
m
√

m
2πe}

ε′αq
√
m√

π

with probability greater than 1−
(
ε′ · exp

(
1−(ε′)2

2

))m
.

Proof: By construction, λ1(L(B)) = ‖(e,−t)‖2 and λ2(L(B)) = min{q, λ1(L(A))}.
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We see that

λ1(L(B)) = ‖(e,−t)‖2
= ‖(e,−‖e‖2)‖2

=

√
‖e‖22 + ‖e‖22

=
√

2 ‖e‖2 .

By the Gaussian heuristic for L(A), λ1(L(A)) = vol (L(A))1/m ·
√

m
2πe . Since the

rows of A are linearly independent, vol (L(A)) = qm−n. Hence we can estimate

λ2(L(B)) = min

{
q, q1− n

m

√
m

2πe

}
.

Therefore we can construct an embedding lattice with

λ2(L(B))

λ1(L(B))
=

min
{
q, q1− n

m
√

m
2πe

}
√

2 ‖e‖2
.

Let σ = αq√
2π

be the standard deviation of the error distribution. We can bound the

norm of the error vector as follows [155, Lemma 4.4 (3)]: we have that

‖e‖2 ≤ ε
′ · σ ·

√
m

with probability greater than 1−
(
ε′ − exp

(
1−(ε′)2

2

))m
. Hence we have a gap

λ2(L(B))

λ1(L(B))
≥

min
{
q, q1− n

m
√

m
2πe

}
√

2ε′ · σ ·
√
m

=
min

{
q, q1− n

m
√

m
2πe

}
√

2ε′ · αq√
2π
·
√
m

=
min{q, q1− n

m
√

m
2πe}

ε′αq
√
m√

π

with probability 1−
(
ε′ − exp

(
1−(ε′)2

2

))m
. �

Lemma 12 results in an overly pessimistic estimate for the cost of solving LWE via

reduction to uSVP for two reasons. Firstly, the size of ‖e‖2 is determined via an

upper bound, but we can also estimate its size using the expectation. Secondly, in

practice one would set t = 1 rather than t = ‖e‖2. We typically have τ ≈ 0.3 in this

case [13]. Göpfert [116] provides a more refined estimate.

Lemma 13 ([116]). Let A ∈ Zn×mq , let αq > 0 and let ε′ > 1. Let e ∈ Zmq such

that each component is drawn from χ and considered mod q. Assuming the Gaussian
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heuristic for L(A), and that the rows of A are linearly independent over Zq, we can

create an embedding lattice with λ2/λ1-gap greater than

min
{
q, q1− n

m
√

m
2πe

}
√
m · αq√

2π

.

Proof: By construction, λ1(L(B)) = ‖(e,−t)‖2 and λ2(L(B)) = min{q, λ1(L(A))}.
By the argument given for Lemma 12 we can estimate λ2(L(B)) = min

{
q, q1− n

m
√

m
2πe

}
.

We determine λ1(L(B)) as follows, using t = 1:

λ1(L(B)) = ‖(e,−1)‖2

=

√
‖e‖22 + 1

≈
√
‖e‖22

= ‖e‖2 .

Therefore we can construct an embedding lattice with

λ2(L(B))

λ1(L(B))
=

min
{
q, q1− n

m
√

m
2πe

}
‖e‖2

.

Since e is a vector of dimension m with components chosen from a Gaussian distri-

bution with standard deviation σ = αq√
2π

we can estimate

‖e‖2 =
√
m · σ .

Hence we have a gap of

λ2(L(B))

λ1(L(B))
=

min
{
q, q1− n

m
√

m
2πe

}
√
m · σ

=
min

{
q, q1− n

m
√

m
2πe

}
√
m · αq√

2π

.

�

We note that Lemma 12 and Lemma 13 are the same up to a factor of ε′ ·
√

2 in

the denominator, which comes from the differing estimates of ‖e‖2 and λ1(L(B)).

Using Lemma 13 we can now determine the δ0 required to solve LWE via reduction

to uSVP. Recall that we require a gap of λ2(L(B))
λ1(L(B)) > τδm0 . We have two cases,

depending on the value of min
{
q, q1− n

m
√

m
2πe

}
. In the first case, in which we have

min
{
q, q1− n

m
√

m
2πe

}
= q1− n

m
√

m
2πe , we can state the following lemma.
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Lemma 14. Let an LWE instance be parameterised by n, α and q. Then any lattice

reduction algorithm achieving log root-Hermite factor

log δ0 =
log2 (τα

√
e)

4n log q

can be used to solve LWE via reduction to uSVP for some fixed τ ≤ 1.

Proof: Albrecht et al. [13] show that for a fixed δ0 the optimal subdimension is

m =
√

n log q
log δ0

. From the above discussion we require a δ0 determined by the following:

λ2(L(B))

λ1(L(B))
= τδm0

q1− n
m
√

m
2πe√

m · αq√
2π

= τδm0

−n log q =
n log q

log δ0
log δ0 +

√
n log q

log δ0
log
(
τα
√
e
)
.

Rearranging the above expression gives the required δ0. �

In [16], an analogous argument using Lemma 12 shows that the required log root-

Hermite factor is log δ0 =
log2 (ε′τα

√
2e)

4n log q for some ε′ > 1. This differs from the estimate

given in Lemma 14 by a ε′ ·
√

2 term in the numerator, which corresponds to the

difference between Lemma 12 and Lemma 13.

Corollary 8. Let an LWE instance be parameterised by n, α and q where q = nc

for some constant c and αq =
√
n. Any lattice reduction algorithm achieving log

root-Hermite factor

log δ0 =

((
c− 1

2

)
log n− log (τ

√
e)
)2

4cn log n

can be used to solve LWE for some fixed τ ≤ 1.

In the second case we have min
{
q, q1− n

m
√

m
2πe

}
= q and we can state the following

lemma.

Lemma 15. Let an LWE instance be parameterised by n, α and q. Let W (·) denote

the Lambert W function. Any lattice reduction algorithm achieving log root-Hermite

factor

log δ0 =
1

4n2 ln2 q
·
(
W

(
(−2n ln q) ·

(√
n log q

)
· (τα)2

2π

))2

can be used to solve LWE via reduction to uSVP for some fixed τ ≤ 1.
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Proof: From the above discussion we require a δ0 determined by the following:

τδm0 =
λ2(L(B))

λ1(L(B))

τδm0 =
q√

m · αq√
2π

.

We assume that the optimal subdimension is m =
√

n log q
log δ0

. We therefore require:

δm0
√
m =

√
2π

τα

δ4m
0 m2 =

4π2

(τα)4

4π2

(τα)4
log δ0 = δ

4
√
n log q
log δ0

0 n log q

4n
√

log δ0 log q + log (n log q) = log

(
4π2

(τα)4

)
+ log (log δ0) .

Let x = log δ0. We now solve this for x:

4n
√
x log q + log (n log q) = log

(
4π2

(τα)4

)
+ log x

log
(
q4n
√
x · (n log q)

)
= log

(
x · 4π2

(τα)4

)
e4n
√
x ln q · (n log q) = x · 4π2

(τα)4

(n log q) · (τα)4

4π2
= x · e−4n ln q

√
x .

Setting x = y2, we require:

(n log q) · (τα)4

4π2
= y2 · e(−4n ln q)y(√

n log q
)
· (τα)2

2π
= y · e(−2n ln q)y

(−2n ln q) ·
(√

n log q
)
· (τα)2

2π
= (−2n ln q) · y · e(−2n ln q)y .

Let z = (−2n ln q) · y. We solve for z using the Lambert W function [3]:

z · ez = (−2n ln q) ·
(√

n log q
)
· (τα)2

2π

z = W

(
(−2n ln q) ·

(√
n log q

)
· (τα)2

2π

)
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We trace back through our substitutions to arrive at a value for log δ0:

(−2n ln q) · y = W

(
(−2n ln q) ·

(√
n log q

)
· (τα)2

2π

)
y2 =

1

4n2 ln2 q
·
(
W

(
(−2n ln q) ·

(√
n log q

)
· (τα)2

2π

))2

x =
1

4n2 ln2 q
·
(
W

(
(−2n ln q) ·

(√
n log q

)
· (τα)2

2π

))2

log δ0 =
1

4n2 ln2 q
·
(
W

(
(−2n ln q) ·

(√
n log q

)
· (τα)2

2π

))2

.

�

Alkim et al. [19] propose an alternative success condition for lattice reduction in

solving LWE via reduction to uSVP. For an LWE instance parameterised by n, α, q

and m with standard deviation σ = αq√
2π
, let d = m+n+ 1. The requirement is that

√
k · σ ≤ δ2k−d

0 · vol (L)
1
d .

Albrecht et al. [14] provide experimental evidence that when used to solve LWE via

uSVP, lattice reduction behaves according to the estimate of Alkim et al. [19]. In

particular this implies that for some parameter settings, BKZ with a smaller blocksize

than would be required according to the Gama and Nguyen [104] estimate will be

successful. Hence, a less costly lattice reduction would succeed in solving LWE via

uSVP than predicted as in [104, 13, 16, 116] and security claims justified by this line

of work may be overly optimistic [14]. Since commit e7c9c59, the estimate for the

cost of the uSVP approach in the LWE estimator [6] is implemented according to

the estimate of Alkim et al. [19].
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Chapter 5

Algorithms for solving small vari-
ants of LWE
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In this chapter we turn our attention to algorithms for solving variants of LWE with

unusually small secret or error. We firstly survey algorithms that are applicable in

the case of a small secret. We then focus on the variant of LWE with binary error.

We show that this variant is vulnerable to the Howgrave-Graham attack on NTRU,

known as the hybrid attack, which is a combination of lattice techniques and a Meet-

in-the-Middle approach. We describe other approaches to solving LWE in the case

of binary error, and compare the performance of the hybrid attack with these other

approaches. This chapter is based on material presented in [16, 50, 52].
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5.1 Introduction to LWE with small secrets

In this chapter we consider variants of LWE where the secret is unusually small, which

we call small secret variants. We first make more precise what we mean by a small

secret variant of LWE. In the most general definition of LWE, the secret s is a vector

with components s(i) chosen uniformly at random from Zq. By Lemma 4, an LWE

instance can always be transformed into an instance where the secret components

follow the error distribution, so in general we expect to see components of the secret

s(i) of size at most tαq for some t = ω(
√

log n). For small secret variants, we are

considering a secret with components much smaller than this: for example, bounded

in norm by a small constant.

In particular, we characterise a small secret LWE instance by n, α, q, and ψ, where ψ

is the distribution of s(i). In many applications based on LWE [100, 121, 51, 70], the

secret is chosen such that the s(i) have norm at most 1. This choice is typically for

efficiency or performance reasons. For example, Buchmann et al. [51] are motivated

by lightweight applications for the Internet of Things. Fan and Vercauteren [100]

suggest the use of a small secret as an optimisation in their Fully Homomorphic

Encryption scheme, which improves the noise growth behaviour in the ciphertexts

and may improve performance by enabling a higher depth computation to be homo-

morphically evaluated without having to choose larger parameters.

To improve noise growth behaviour in homomorphic encryption further, in addition

to using a small secret, we could use a sparse secret; that is, a secret with low

Hamming weight. This is done for example in HElib [121, 122, 123] which implements

the BGV scheme [44]. HElib recommends a Hamming weight h = 64 [121], while

the dimension n of the secret is typically at least 103 or 104 in applications (see, for

example, [109]). Sparse secrets have also been considered outside of homomorphic

encryption applications: motivated by practicality, Cheon et al. [67] propose a PKE

scheme based on a variant of LWE where the secret s is sparse but its components

s(i) are not necessarily small in norm.

A prominent example is the variant where the components s(i) are chosen uniformly

from {0, 1}. This variant is termed binary secret [45] and its hardness has been

considered in some detail. It has been shown [45, 166] that an LWE instance with a
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binary secret s and dimension n log q is at least as hard as general LWE in dimension

n. On the other hand, Bai and Galbraith [29] conclude from experiments that

increasing only to dimension n log log n may be sufficient.

Small secret variants of LWE can arise as one of two cases; we consider both in the

remainder of this chapter. In both cases the secret s is small, but in the first case

the error is of a typical size, whereas in the second case the error is also small.

As an example of the the first case, we could consider instances parameterised by n,

α, q, and ψ where αq =
√
n and ψ is the uniform distribution on {−1, 0, 1}. In the

case of a small or sparse secret, modifications can be made to the generic algorithms

for LWE described in Chapter 4. For example, the algorithm of Arora and Ge [25]

can be adapted to the small secret case as follows. A small secret is encoded by

adding equations of the form
k−1∏
i=0

(x− ji)

where k is the cardinality of the support for ψ and ji are the elements of the support.

In Section 5.2 we discuss solving small secret LWE by exhaustive search. In Sec-

tion 5.3 we discuss variants of the BKW algorithm [37] that apply in the case of

a small secret. In Section 5.4 we introduce an algorithm of Bai and Galbraith [29]

that is applicable in the case of a small secret. In Section 5.5 we discuss various

improvements possible when using lattice reduction techniques to solve LWE in the

case of a small or sparse secret, including the work of Albrecht [7]. This part of the

chapter is based on material presented in [16].

As an example of the second case, with very small error, we could consider instances

where the errors are chosen uniformly from a narrow range. Since the distribution

of the secret can be assumed to follow the error distribution, this also leads to a

small secret. Following [50, 52] we focus on the variant of LWE with binary error;

that is, the error is chosen uniformly at random from {0, 1}. We give a thorough

introduction to LWE with binary error in Section 5.6.

Algorithms for solving general LWE instances can be applied in the binary error case.

In addition to algorithms for standard LWE, we may also be able to apply algorithms
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for the Inhomogeneous Short Integer Solution problem [5, 111]. We refer the reader

to Bai et al. [30] for a discussion of these algorithms. In Sections 5.7, 5.8 and 5.9

we discuss respectively the Meet-in-the-Middle algorithm for LWE with binary error,

distinguishing LWE with binary error from uniform via lattice reduction, and solving

LWE with binary error via reduction to uSVP. In Section 5.10 we describe in detail

the hybrid attack for LWE with binary error and in Section 5.11 we compare the

hybrid attack with other approaches.

5.2 Exhaustive search for small secret LWE

In Section 4.3 we saw that an LWE instance parameterised by n, α and q can be

solved by exhaustive search by checking all the vectors within a sphere of radius tαq,

for some parameter t = ω(
√

log n), since tαq is essentially the size of components of

the secret. In the case of a small secret instance, parameterised by n, α, q, and ψ,

we can ignore the exact distribution of ψ and simply exhaustively search over the

support of ψ. For example, the support may be the set {−1, 0, 1}, and so we check

all possible s with s(i) chosen from this set. By the same argument as in Theorem 2,

if we have m LWE samples with s(i) ∈ {−1, 0, 1} then exhaustive search will take

time m · 3n · (2n) = 2n log 3+logn+1+logm.

Using the same argument as in Theorem 3, whatever cost we would expect for exhaus-

tive search, which depends on the support of ψ, by applying a Meet-in-the-Middle

strategy we may achieve essentially the same speed up as we would do in the case

of a general LWE instance. For example, if the components s(i) are selected from

{−1, 0, 1} then a Meet-in-the-Middle strategy will take time O
(
3n/2

)
and require

poly(n) · 3n/2 memory.

As observed by Bai and Galbraith [29] we can combine exhaustive search with other

algorithms to improve the complexity. For example, we may guess r components of

the secret, leaving us with a small secret LWE instance of reduced dimension n− r.
We may then run our favourite algorithm to solve small secret LWE on this lower

dimensional instance, which will be faster. Using this strategy any algorithm dis-

cussed below can be turned into an algorithm that has at most the cost of exhaustive

search.
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5.3 Small secret variants of the BKW algorithm

Several variants of the BKW algorithm [37] are applicable in the small secret case,

such as [12, 120, 139]. All these variants follow the idea of repeated quantisation;

that is, cancelling vectors that are close to each other on some components, then

solving a low dimensional (easy) resulting LWE instance. The algorithms [120, 139],

which apply to general LWE instances and were discussed in Section 4.5, are partic-

ularly effective in the case of small secret. For example, the variant of Kirchner and

Fouque [139] solves LWE with binary secret in subexponential time.

The variant of Albrecht et al. [12] requires small secret instances because the quan-

tisation is achieved through a variant of modulus switching. This is termed lazy

modulus switching ; that is, only modulus switching when necessary. Lazy modu-

lus switching means, for example, searching for collisions mod p but remaining in Zq
when doing arithmetic on the rows. An optional preprocessing step termed unnatural

selection is additionally proposed.

Theorem 8 ([12]). Let an LWE instance be parameterised by n, α, and q and let

b ∈ Z with 1 ≤ b ≤ n. Define a = dnb e and pick a pair (p,m∗), which parameterise

respectively the modulus to be switched to and the unnatural selection. Then BKW

with lazy modulus switching and unnatural selection costs

pb

2

(
a(a− 1)

2
(n+ 1)

)
+ (m+m∗)na

additions in Zq and apb

2 +m+m∗ calls to Ls,χ.

In particular, if q = nc for some small c ≥ 1, αq =
√
n and b = n

logn , recall that

standard BKW has complexity O
(
2cn · n log2 n

)
. Let 0 < d ≤ 1 be a constant. It

is shown in [12] that the complexity of solving is O
(

2
n
(
c+ log d

logn

)
· n log2 n

)
if naive

modulus switching is used, whereas an approach using lazy modulus switching gives

a complexity of O

(
2
n

(
c+

log d− 1
2 log logn

logn

)
· n log2 n

)
.
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5.4 Solving small secret LWE via unique Shortest Vector
Problem

Bai and Galbraith [29] show that for a secret with very small components, such as

a binary secret, we may embed our LWE lattice into a lattice with uSVP structure,

similar to the approach described in Section 4.8 using Kannan embedding. The

target short vector is (s || e || 1), which contains among its components those of s,

in contrast to the target short vector (e || 1) of the Kannan embedding case. This

enables us to take advantage of the smallness of s, which leads to a more efficient

approach.

In particular, the smallness of s as compared with the size of the error is exploited.

If ‖s‖2 � ‖e‖2, we may rescale the lattice into which the instance is embedded,

increasing its volume. This increases the δ0 that is sufficient to solve the instance,

and hence a less expensive lattice reduction is required. In the case s(i) ← {−1, 0, 1},
after an appropriate rescaling, the volume of the lattice is increased by σn, where

σ = αq√
2π

is the standard deviation of the error. In the case s(i) ← {0, 1} the volume is

increased by (2σ)n. Bai and Galbraith observe that, perhaps surprisingly, modulus

switching does not improve their algorithm. This is because modulus switching

results in a smaller rescaling factor.

We now state the cost of Bai and Galbraith’s approach, assuming that the embedding

factor t = ‖e‖2 is used. We note that both Bai and Galbraith [29] and the LWE

estimator [6] use t = 1, as in the Kannan embedding case.

Lemma 16. Let a small secret LWE instance be parameterised by n, α and q with

s(i)
$← {a, . . . , b}. Let ξ = 2/(b−a) and let σ = αq√

2π
. Any lattice reduction algorithm

achieving log root-Hermite factor

log δ0 =

(
log( qσ )− log(2τ

√
πe)
)2 · log( qσ )

n(2 log( qσ )− log ξ)2

solves LWE by reducing BDD to uSVP for some fixed τ ≤ 1 if we have that

(qm(ξσ)n)
1

m+n ·
√
m+ n

2πe
≤ q

where m = m′ − n =
√

n(log q−log σ)
log δ0

− n.
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Proof: We follow the discussion of Bai and Galbraith [29, Section 6.2]. For a secret

sampled from the interval [a, . . . , b], by scaling and rebalancing we can increase the

volume by a factor of (ξσ)n. Assuming that (qm(ξσ)n)
1

m+n

√
m+n
2πe ≤ q, we can

construct a lattice with a gap λ2
λ1

=
(qm(ξσ)n)1/(m+n)

√
m+n
2πe√

2 (m+n)·σ
.

Let m′ = m + n. By the same argument as in Section 4.8 we expect to be able to

solve this uSVP instance when λ2
λ1
≥ τδm′0 . Therefore we require δ0 satisfying:(

qm
′−n (ξσ)n

)( 1
m′ )

√
4πe σ

= τ δm
′

0(
1− n

m′

)
log q +

n

m′
log(ξσ) = m′ log δ0 + log σ + log

(
τ
√

4πe
)

log δ0 =
m′
(
log( qσ )− log

(
τ
√

4πe
))

+ n log(ξ)− n log ( qσ )

(m′)2
.

By [29, Lemma 1] the optimal value of m′ is m′ =
√

n(log q−log σ)
log δ0

. We conclude:

log δ0 =

√
n(log q−log σ)

log δ0

(
log( qσ )− log

(
τ
√

4πe
))

+ n log(ξ)− n log ( qσ )

n(log q−log σ)
log δ0

log δ0 =

(
log
( q
σ

)
− log

(
τ
√

4πe
))2 · log( qσ )

n
(
2 log

( q
σ

)
− log ξ

)2 .

�

For example, specialising Lemma 16 to s(i)
$← {−1, 0, 1} and hence ξ = 1 gives

log δ0 =

(
logατ

√
2e
)2

4n
(

log q − log αq√
2π

) .

5.5 Solving Decision-LWE via lattice reduction for small
or sparse secret

For an LWE instance parameterised by n, α, and q and with a small secret, we may

apply modulus switching and consider the instance mod p where p < q. This allows

for a larger root-Hermite factor δ0 than would be required for an instance parame-

terised by the same n, α, and q and with a secret where s(i) is chosen at random from
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Zq. After modulus switching, the transformed instance has an error that is slightly

larger and its distribution is no longer exactly a discrete Gaussian. Nonetheless,

heuristically, algorithms that solve LWE still solve these LWE-like problem instances

and so we assume that after modulus switching, we have an LWE instance charac-

terised by n,
√

2α and p. So, when we have a small secret we may obtain a speed

up by modulus switching before performing the lattice reduction required for several

approaches for solving LWE. For example, consider the dual attack solving Decision-

LWE by lattice reduction as described in Section 4.6. As with a general secret, we

assume the size of the small vector that we aim to output is ‖v‖2 = 1√
2α
·
√

ln( 1
ε )
π .

Lemma 17. Let a small secret LWE instance be characterised by n, α, q and ψ. Let

p be such that
∥∥∥〈pq · a − ⌊pq · a⌉, s〉∥∥∥2

≈ p
q · ‖e‖2. Any lattice reduction achieving log

root-Hermite factor

log δ0 =

(
log

(
1√
2α
·
√

ln( 1
ε )
π

))2

4n log p

can distinguish the small secret LWE instance from uniform with probability ε.

Proof: Using Lemma 6, after modulus switching the LWE instance is parametrised

by n,
√

2α, p. Applying Lemma 11 with these parameters we obtain the result

claimed. �

Corollary 9. Let a small secret LWE instance be characterised by n, α, q, ψ. Sup-

pose αq =
√
n, q = nc for some small constant c and ψ is such that the standard

deviation of the elements in the secret s is σs. Any lattice reduction achieving log

root-Hermite factor

log δ0 =

(
log

(
1

√
2n

1
2−c
·
√

ln( 1
ε )
π

))2

4n
(

log
(√

π√
6
σs

)
+ c log n

)
can distinguish the small secret LWE instance from uniform with probability ε.

Proof: From Lemma 6 we have p = σs
α

√
2πn
12 = σs

√
2
√
π
√
n√

12α
=
√
π√
6
σsn

c. Applying

Lemma 17 we obtain

log δ0 =

(
log

(
1√
2α
·
√

ln( 1
ε )
π

))2

4n log p
=

(
log

(
1

√
2n

1
2−c
·
√

ln( 1
ε )
π

))2

4n log
(√

π√
6
σsnc

) ,
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from which the result follows. �

Albrecht [7] proposes variants of the distinguishing attack in the case of a small

secret. The idea is that rather than solving LWE via finding a solution to the SIS

problem v ·A ≡ 0 mod q as described in Section 4.2, it is sufficient to find solutions

to

v ·A ≡ x mod q ,

for some small x mod q. In particular we want to find short vectors (w,y) in the

lattice

L = {(v,x) | v ·A ≡ x mod q} .

Given such a (w,y) and an LWE sample (A, c) we hope to distinguish

〈w, c〉 = 〈w,A · s + e〉 = 〈y, s〉+ 〈w, e〉

from uniform. It is clear that we require LWE with a sufficiently small secret s so

that 〈y, s〉 + 〈w, e〉 can be distinguished from uniform, since if a component s(i)

could take any value in Zq then this would not be possible. In many small secret

LWE instances used in practice, we have that ‖s‖2 is much smaller than ‖e‖2. In

that case we can rebalance L using the technique of Bai and Galbraith [29], so the

two summands are approximately equal in size.

Lemma 18 ([7]). Let a small secret LWE instance be parameterised by n, α, q,

and ψ where ψ is the distribution producing secrets s with components s(i) chosen

uniformly at random from {−1, 0, 1}, with the additional guarantee that at most h

components are nonzero. Any lattice reduction achieving log root-Hermite factor

log δ0 =
log
(

2n log2 ε
πα2h

)
8n

can distinguish this small secret LWE instance with advantage ε.

Albrecht [7] also provides a technique that can take advantage of the sparseness of

a secret. Given an LWE instance (A, c) one can always split A into [A0|A1] where

A1 contains the last n′ columns, and try to find a short vector in

L = {v ∈ Zm | v ·A0 ≡ 0 mod q} .

If n′ = 0 then this is simply the distinguishing attack described in Section 4.6. A

short vector v ∈ L produces an LWE sample in dimension n′ with noise the size of
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original noise multiplied by the expectation of the norm of v. If we choose n′ very

small, the new instance will be easy to solve and the overall cost of this approach

will be less than solving the n dimensional instance directly. That is, the cost of

solving the instance in dimension n′ together with the cost of finding a short vector

v is less than solving the instance in dimension n.

If the secret s is also sparse, then it may be possible to choose larger n′, and we

can also accept some probability of failure and repeat if necessary. In particular,

we choose a random permutation to transform A into [A0|A1] and we hope that all

(respectively most of) the secret components corresponding to A1 happen to be zero,

which occurs with some probability. Then we can (respectively with some exhaustive

search component) treat n′ > 0 as if it were n′ = 0. That is, we only need the cost

of lattice reduction in dimension n− n′ (respectively followed by at most the cost of

the exhaustive search) and we can still succeed in dimension n.

5.6 Introduction to LWE with binary error

In the remainder of this chapter we turn our attention to the variant of LWE where

the error is chosen uniformly from {0, 1}. We term this variant LWE with binary

error.

The hardness of LWE with binary error has been considered in some detail and

depends on the number of samples m. It is well known (see for example [92, 166, 10])

that LWE with binary error can be solved in polynomial time using the algorithm

of Arora and Ge [25] when the number of samples is m = Ω
(
n2
)
. Furthermore,

Albrecht et al. [10] show that the problem can be solved in subexponential time if

the attacker has access to m = Ω (n log log n) samples. Kirchner and Fouque [139]

show that the problem can be solved in subexponential time using m = n samples.

On the other hand, Micciancio and Peikert [166, Theorem 1.2] give a reduction from

worst-case lattice problems to LWE with binary error when m = n(1 + Ω (1/ log(n))

and q ≥ nO(1).

Decoding techniques (as described in Section 4.7) can be applied to LWE with binary

error. By Lemma 2 the error vector can be recovered using Babai’s algorithm if and
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only if it lies within P (B∗). It is shown in [50, 52] that the success probability

of decoding using Lindner and Peikert’s variant [150] of Babai’s algorithm can be

estimated as
m∏
i=1

(
1− 2

B(m−1
2 , 1

2)

∫ max(−ri,−1)

−1
(1− t2)

m−3
2 dt

)

where ri = di
δ
−2(i−1)+m
0 q

m−n
m

2
√
m/4

and di is as discussed in Section 4.7.

The algorithm of Albrecht et al. [10], which uses Gröbner basis methods to improve

the algorithm of Arora and Ge [25], can be applied to LWE with binary error. In

particular, Albrecht et al. [10, Theorem 7] show that if there are m = 2n samples

there is an algorithm solving LWE with binary error in time O(n2 · 20.43ωn).

In the following sections we discuss other algorithms that can be used to solving

LWE with binary error, including the hybrid attack [50, 52]. We then conclude the

chapter with a comparison of the hybrid attack with these other approaches.

5.6.1 Modelling LWE with binary error as general LWE

It will sometimes be convenient to model the error distribution in an LWE with

binary error instance as if it were a general LWE instance where the errors come

from some discrete Gaussian distribution of standard deviation σ and centre µ that

very often outputs a 0 or 1 and rarely outputs a different value. From Chapter 4

we can conclude that for most approaches to solve LWE, the complexity depends on

the dimension n and αq, which specifies the size of the errors. That is, most of the

algorithms only make use of the fact that the errors are small, rather than the fact

that they are discrete Gaussian. The fact that the centre of the discrete Gaussian is

0 also does not affect the algorithms. We can therefore argue that it is reasonable

to model a binary error in this way as some discrete Gaussian distribution.

Let X be a distribution on {0, 1}, then X is Bernoulli so that Pr(X = 1) = p and

Pr(X = 0) = 1−p. Its expectation is E [X] = p and its variance is Var[X] = p(1−p).
We model this as a Gaussian Y that has mean p and standard deviation p

1
2 (1− p)

1
2

such that its expectation and variance are the same as for X. If p = 1
2 then X is

the uniform distribution on {0, 1} and in this case we model this error distribution
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as a Gaussian with mean 1
2 and standard deviation σ = 1

2 . Since the standard

deviation of a discrete Gaussian LWE error distribution satisfies σ = αq√
2π
, we obtain

the following heuristic.

Heuristic 3. An n, q-LWE with binary error instance can be modelled by an n, q, α-

LWE instance where α =
√

2π
2q .

5.7 The Meet-in-the-Middle attack for LWE with binary
error

We adapt the analysis in Section 4.3 to determine an upper bound on the complexity

of a Meet-in-the-Middle attack on LWE with binary error. We obtain the analogous

result to Theorem 3.

Theorem 9. Let an LWE instance with binary error be parameterised by n and q.

If there are m+ n samples satisfying m
q <

1
C for some constant C > 1 and(

2

q

)m
·
(

2
n
2 − 1

)
= poly(n) ,

then there is Meet-in-the-Middle algorithm that solves Search-LWE with binary error

with non-negligible probability that runs in time

2
n
2 ·
(
mn+ log

n

2
+
n

2

)
and requires memory n · 2

n
2
−1.

Proof: We apply Lemma 4, which costs n samples, to obtain an LWE instance where

the secret follows the error distribution, so that the secret has elements in {0, 1}.

With each of the remaining m samples (ak, 〈ak, s〉 + ek), we split ak = ak
l ||akr in

half. For every possible first half of the secret si
l, and for each of the m samples ak,

we compute
〈
ak

l, si
l
〉
. Let the output of a guess si

l ∈ {0, 1}n/2 be the vector

usil =
(〈

a0
l, si

l
〉
, . . . ,

〈
am−1

l, si
l
〉)

.

We store a table T whose entries map usil to si
l. In particular, we index si

l by the

log q − 1 most significant bits of usil in T .
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Since the secret follows the error distribution, we expect 2
n
2 candidate secret halves

si
l and for each candidate we must calculatem inner products. Therefore, generating

the table costs m · n · 2
n
2 operations. We need to store 2

n
2 candidates si

l, each of

which has n
2 components, each of which requires 1 bit of space. Hence the memory

requirement is |T | = n
2 · 1 · 2

n
2 .

Once the table is generated and sorted, for each candidate sj
r ∈ {0, 1}n/2 for the

second half of the secret, and for each of the samples ak, we compute ck −〈akr, sjr〉.
Let the output for a guess sj

r be the vector

vsjr = (c0 − 〈a0
r, sj

r〉 , . . . , cm−1 − 〈am−1
r, sj

r〉) .

We take the log q − 1 most significant bits of vsjr and query T . If T returns a value

si
l, we treat si

l || sjr as a candidate secret. By construction, if T is queried for the

guess sj
r and returns si

l, then ‖vsjr − usil‖ ≤ 1 since vsjr and usil agree except for

the least significant bit. If this process returns no candidate secret, we call for more

samples and repeat.

For each guess sj
r, we can query vsjr in

log(|T |) = log
(n

2
· 2

n
2

)
= log

n

2
+
n

2

operations by binary search. Since there are 2
n
2 possible guesses sj

r, the overall cost

of querying is 2
n
2 ·
(
log n

2 + n
2

)
.

Let the kth component of vsr be vsr,k and let the kth component of usl be usl,k. For

the correct secret s = sl || sr, if log q − 1 most significant bits of vsr and usl agree,

then

vsr,k − usl,k = ck − 〈ark, sr〉 −
〈
alk, s

l
〉

= ck − 〈ak, s〉 = ek mod q

for all k. Therefore, if this process returns any candidate secrets si
l || sjr at all, then

with overwhelming probability, one of them will be the correct secret s.

We need to ensure the b = log q − 1 most significant bits of vsr and usl agree. We

denote this requirement as MSBb (vsr) = MSBb
(
usl
)
. For all k, by definition of
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the LWE samples,

ck = 〈ak, s〉+ ek mod q

ck =
〈
ak

l, sl
〉

+ 〈akr, sr〉+ ek mod q

ck − 〈akr, sr〉 =
〈
ak

l, sl
〉

+ ek mod q

vsr,k = usl,k + ek mod q

MSBb (vsr,k) = MSBb
(
usl,k + ek

)
.

Hence, it is sufficient to show that MSBb
(
usl,k + ek

)
= MSBb

(
usl,k

)
for all k.

Since ek ∈ {0, 1}, this holds whenever the inner product
〈
ak

l, sl
〉
takes a value in the

range {0, . . . , q − 2}. In this range, adding ek will not cause a wrap around modulo

q. We would like the probability that the inner product is not in this range to be

small. Since a is uniformly random, so is the inner product
〈
ak

l, sl
〉
. Therefore the

probability that
〈
ak

l, sl
〉
is not in the range {0, . . . , q−2} is 1

q . By the union bound,

the probability that this occurs for any of the m samples is less than or equal to m
q .

We require m such that m
q ≤

1
C for some constant C.

Consider now the probability of a false positive, that is, a wrong candidate secret si
l

being suggested for some candidate sj
r. Since ak is uniformly random, for any si

l,

we have that usil is essentially a random vector where each component takes one of

q values. The probability of a wrong candidate sj
r producing a vsjr matching to a

given usil is the probability of differing by at most 1 on every component. Therefore

the probability of a false positive is
(

2
q

)m
. There are 2

n
2 −1 wrong choices for si

l. We

hence expect to test
(

2
q

)m
·
(

2
n
2 − 1

)
candidates per sj

r and thus have the additional

requirement on m that (
2

q

)m
·
(

2
n
2 − 1

)
= poly(n) .

�
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5.8 Solving Decision-LWE with binary error via lattice reduction

5.8 Solving Decision-LWE with binary error via lattice
reduction

We can solve Decision-LWE with binary error via lattice reduction as in Section 4.6.

For this approach we must find a short vector v in the scaled dual lattice

L = {w ∈ Zmq | wA ≡ 0 mod q} .

We now determine how short such a vector v must be.

Lemma 19. Let an LWE instance with binary error be parameterised by n and q.

Let v ∈ L be a vector of length

‖v‖2 = q ·

√
2 ln

(
1
ε

)
π

.

Then v can distinguish the LWE instance from random with advantage ε.

Proof: Using Heuristic 3 we can model the error distribution as a Gaussian with

mean µ = 1
2 and standard deviation σ = 1

2 . For the standard deviation of an

LWE error distribution we have σ = αq√
2π

and so α2 = 2πσ2

q2
= π

2q2
. By Lemma 10

we can distinguish an LWE instance parameterised by n, α and q with advantage

ε ≈ exp(−π(‖v‖2 · α)2). Assuming equality, we obtain the following requirement on

v to distinguish with advantage ε:

−π(‖v‖2 · α)2 = ln ε

‖v‖2 =
q
√

2 ln
(

1
ε

)
π

.

�

Lemma 20. Let an LWE instance with binary error be parameterised by n and q.

Any lattice reduction algorithm achieving log root-Hermite factor

log δ0 =

(
log (q) + log

(√
2 ln ( 1

ε )
π

))2

4n log (q)

can distinguish the LWE with binary error instance with advantage ε.
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Proof: With high probability the lattice L has rank m and volume qn [168]. By

definition of the Hermite factor we therefore have ‖v‖2 = δm0 q
n
m . By Lemma 19

we require ‖v‖2 = q ·
√

2 ln ( 1
ε )

π to distinguish with advantage ε. We assume that

the number of samples m available is large enough to use the optimal subdimension

m =
√

n log q
log δ0

. In this case the root-Hermite factor we require to distinguish with

advantage ε can be determined as follows:

δm0 q
n
m = q ·

√
2 ln

(
1
ε

)
π

m2 log δ0 + n log q = m

log q + log


√

2 ln
(

1
ε

)
π



log δ =

(
log (q) + log

(√
2 ln ( 1

ε )
π

))2

4n log (q)
.

�

5.9 Solving LWE with binary error via unique Shortest
Vector Problem

We may solve LWE with binary error via Kannan’s embedding technique [136]. The

following analysis is analogous to Section 4.8.

Lemma 21. Let an LWE instance with binary error be parameterised by n and q

and assume that

min

{
q, q1− n

m

√
m

2πe

}
= q1− n

m

√
m

2πe
.

Any lattice reduction algorithm achieving log root-Hermite factor

log δ0 =

(
log q − log

(
τ
√

2πe
))2

4n log q

solves LWE with binary error via reduction to uSVP for some fixed τ ≤ 1.

Proof: Since e is binary and of length m, we must have ‖e‖2 ≤
√
m. Following the

argument in Section 4.8, we can embed the LWE instance into a lattice L with uSVP
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structure such that

λ2(L)

λ1(L)
=

min
{
q, q1− n

m
√

m
2πe

}
‖e‖2

=
q1− n

m
√

m
2πe

‖e‖2
≥
q1− n

m
√

m
2πe√

m
.

On the other hand we require
λ2(L)

λ1(L)
≥ τδm0

and so it is sufficient if
q1− n

m
√

m
2πe√

m
≥ τδm0 .

For a fixed δ0 the optimal subdimension is m =
√

n log q
log δ0

and so we require:

δm0 =
q1− n

m

τ
√

2πe

m2 log δ0 = m(log q − log
(
τ
√

2πe
)

)− n log q

n log q

log δ0
log δ0 =

√
n log q

log δ0

(
log q − log

(
τ
√

2πe
))
− n log q

4n2 log2 q =
n log q

log δ0

(
log q − log

(
τ
√

2πe
))2

log δ0 =

(
log q − log

(
τ
√

2πe
))2

4n log q
.

�

5.10 The hybrid attack for LWE with binary error

In this section we introduce the hybrid attack for LWE with binary error as presented

in [50, 52]. This is a modification to the LWE setting of the hybrid lattice reduction

and Meet-in-the-Middle attack of Howgrave-Graham [133] on NTRU [131]. We note

that in a subsequent work, Göpfert et al. [117] present a generalised quantum version

of the hybrid attack for LWE, in which it is no longer a requirement that the errors

are binary. We do not discuss this subsequent work further and in particular, we

assume that the errors are chosen uniformly at random in {0, 1}.

Howgrave-Graham gave the first theoretical analysis of the hybrid attack, and the

analysis was improved firstly by Hirschhorn et al. [130] and then in [50, 52]. In
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a subsequent work, Wunderer [214] identifies issues with, and refines, the analysis

in [50, 52]. In light of this, in Section 5.11 we improve the comparison given in [50, 52]

of the hybrid attack with other approaches for solving LWE with binary error.

It is assumed in [50, 52] that the LWE with binary error instance is in normal form;

that is, the secret follows the error distribution. The later work of Wunderer [214]

removes this requirement on the secret by using a different lattice. We follow [50, 52]

and assume that the components of the secret are chosen uniformly at random in

{0, 1}.

The hybrid attack on LWE with binary error as presented in [50, 52] builds on

an idea of Bai and Galbraith [29], which is mentioned in Section 5.2. The idea is

to guess the first r components of the secret vector and apply a lattice attack on

the remaining problem. Howgrave-Graham’s algorithm [133] involves a Meet-in-the-

Middle component to speed up this guessing.

The hybrid attack is summarised as Algorithm 1 and proceeds as follows. Let

(A, c = As̃ + e mod q)

with A ∈ Zm×nq , c ∈ Zmq , s̃ ∈ {0, 1}n and e ∈ {0, 1}m be an LWE instance with

binary error e and binary secret s̃. To obtain a smaller error vector we subtract the

vector 1
2 ·1 from c. This yields a new LWE instance (A, c′ = As̃ +e′ mod q), where

c′ = c − 1
2 · 1 and e′ = e − 1

2 · 1. In particular, we expect the original error vector e

to have m
2 nonzero entries e(i) = 1 so its expected norm is

√
m√
2
. The new error vector

e′ has m nonzero entries e′(i) each of which satisfies ‖e′(i)‖ = 1
2 , so ‖e

′‖2 =
√
m
2 .

For r ∈ {1, . . . , n − 1}, let v ∈ {0, 1}r, s ∈ {0, 1}n−r be such that s̃ =

(
v
s

)
; and

let A1 ∈ Zm×rq and A2 ∈ Zm×(n−r)
q be such that A = (A1|A2). We can rewrite the

LWE instance (A, c′) as

c′ = (A1|A2)

(
v
s

)
+ e′ = A1v + A2s + e′ mod q .

The main idea of the hybrid attack is to guess v and solve the remaining LWE

instance (A2, c̃ = c′ − A1v = A2s + e′ mod q), which has binary secret s and

error e′ ∈ {−1
2 ,

1
2}
m. The newly obtained LWE instance is solved using a decoding
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approach in the lattice Λq(A2), as discussed in Section 4.7. To briefly recall, since

c̃ = A2s + qw + e′ for some vector w ∈ Zm and e′ is small, c̃ is close to the lattice

vector A2s + qw ∈ Λq(A2). Hence we can hope to find e′ by, for example, running

Babai’s Nearest Plane algorithm [27] in combination with a sufficient lattice basis

reduction as a precomputation. Recall (Section 2.2) that we denote by NPB(t) the

output of Babai’s Nearest Plane on input a basis B and a target vector t. If the

basis is clear from the context, we omit it from the notation and write NP(t).

The quality of the basis obtained from the precomputation is, as usual, characterised

by the root-Hermite factor δ0. Running a stronger lattice reduction algorithm would

mean more time is taken for the precomputation but the quality of the basis B of

the lattice Λq(A2) would increase and hence the running time of the hybrid attack

would decrease. The value δ0 therefore determines the trade-off between the runtime

of the precomputation and the actual hybrid attack, and should be optimised.

As well as optimising the choice of δ0 we need to optimise r, the guessing dimension.

On the one hand, increasing r increases the complexity of guessing part, since more

entries of the secret have to be guessed. On the other hand, increasing r increases the

determinant of the lattice, making the decoding part of the attack easier. Since there

are only finitely many choices for r, the optimal choice can be found numerically:

for each r, calculate the optimal δ0 that minimises the runtime; then choose the r

such that the overall runtime is minimised.

The guessing of v is sped up by a Meet-in-the-Middle approach; that is, by guessing

binary vectors v1 ∈ {0, 1}r and v2 ∈ {0, 1}r such that v = v1 + v2. In order for

this to make sense, we need to ensure two things. Firstly, we note that without

performing a Meet-in-the-Middle improvement to the guessing step, and assuming a

sufficiently good input basis B, we have

NPB(c̃) = NPB(c′ −A1v) = e′ .

We therefore need that

NPB(c′ −A1v) = NPB(−A1v1) + NPB(c′ −A1v2)

holds for v = v1 + v2. Secondly, we need ensure that we store guesses v1 in such a

way that we can recognise pairs v1 and v2 for which the above holds.
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Algorithm 1: The hybrid attack as presented in [50, 52].
Input: q, r ∈ Z

A = (A1|A2), where A1 ∈ Zm×rq ,A2 ∈ Zm×(n−r)
q

c ∈ Zmq
B, a lattice basis of Λq(A2)

1 calculate c = br/4e;
2 calculate c′ = c −

(
1
2

)
· 1;

3 while true do
4 guess a binary vector v1 ∈ {0, 1}r with c 1s ;
5 calculate x1 = −NPB(−A1v1) ∈ Rm ;
6 calculate x2 = NPB(c′ −A1v1) ∈ Rm ;
7 store v1 in all the boxes addressed by A(r)

x1 ∪ A
(r)
x2 ;

8 for all v2 6= v1 in all the boxes addressed by A(r)
x1 ∪ A

(r)
x2 do

9 Set v = v1 + v2 and calculate x =
(

1
2

)
· 1 + NPB(c′ −A1v) ∈ Rm;

10 if x ∈ {0, 1}m and ∃ s̃ ∈ {0, 1}n : c = As̃ + x mod q then
11 return x;

Let t1 = −A1v1 and t2 = c′ −A1v2. Then we can restate the first requirement as

NPB(t1) + NPB(t2) = NPB(t1 + t2) = e′;

that is,

NPB(t2)− e′ = −NPB(t1) .

Let also x1 = −NPB(t1) and x2 = NPB(t2). Then we see that x1 = x2 − e′; that

is, x1 and x2 differ by ±1
2 on each component since e′ ∈ {−1

2 ,
1
2}
m.

To satisfy the second requirement in Algorithm 1 we store a guess v1 in hash boxes

addressed according to x1 and x2 as specified in Definition 18.

Definition 18. Let m ∈ N. For a vector x ∈ Rm the set A(m)
x ⊂ {0, 1}m is defined

as

A(m)
x =

{
z ∈ {0, 1}m

∣∣∣∣ z(i) = 1 for all i ∈ {1, . . . ,m} with x(i) > −1/2 , and
z(i) = 0 for all i ∈ {1, . . . ,m} with x(i) < −1/2

}
.

We now give the intuition for this definition, showing that pairs v1 and v2 will be

recognised. For x1 obtained during Algorithm 1, the set A(m)
x1 consists of the sign

vector of x1, where 1 represents a nonnegative sign and 0 represents a negative sign.

For x2 obtained during Algorithm 1, the set A(m)
x2 captures all the possible sign
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5.10 The hybrid attack for LWE with binary error

vectors of x2 plus a vector in {−1
2 ,

1
2}
m. Hence since x1 = x2 − e′, valid pairs will

collide in at least one box. The above discussion proves Lemma 22.

Lemma 22. Let c′ = c −
(

1
2

)
· 1 and e′ = e −

(
1
2

)
· 1. Assume that v1 and v2

are guessed in separate loop iterations of Algorithm 1 and satisfy v1 + v2 = v. Let

t1 = −A1v1 and t2 = c′ −A1v2 and assume NP(t1) + NP(t2) = NP(t1 + t2) = e′

holds. Then v1 and v2 collide in at least one box chosen during Algorithm 1 and

Algorithm 1 outputs the error vector e of the given LWE instance.

We prove an equivalent requirement to NP(t1) + NP(t2) = NP(t1 + t2), which was

an assumption in Lemma 22. We will need the following definition.

Definition 19. Let m ∈ N. A vector x ∈ Zm is called y-admissible for some vector

y ∈ Zm if NP(x) = NP(x− y) + y.

The output of NP on input x is a vector e such that x−e is a lattice point. Intuitively,

Definition 19 captures this is the same lattice point for input x and input x − y.

We can see this as follows. Let NP(x) = e1 and let x − e1 = z1 ∈ L. Let also

NP(x− y) = e2 and let x− y − e2 = z2 ∈ L. If x is y-admissible then:

NP(x) = y + NP(x− y)

−NP(x) = −y −NP(x− y)

x−NP(x) = x− y −NP(x− y)

x− e1 = x− y − e2

z1 = z2 .

Lemma 23. Let t1 ∈ Rm, t2 ∈ Rm be two arbitrary target vectors. Then the following

are equivalent.

(i) NP(t1) + NP(t2) = NP(t1 + t2).

(ii) t1 is NP(t1 + t2)-admissible.

(iii) t2 is NP(t1 + t2)-admissible.

Proof: By symmetry it suffices to show (i) if and only if (ii). We can write

y = NP(t1 + t2) = NP(t)
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5.10 The hybrid attack for LWE with binary error

where t is defined as t = t1 + t2. Then (ii) is equivalent to the statement that t1 is

y-admissible, which by definition means NP(t1) = NP(t1 − y) + y.

For all x ∈ Rm and for all z ∈ L, we have NP(x) = NP(x − z). By definition,

t− y = t−NP(t) ∈ L. So,

NP(t1 − y) = NP(t1 − y − (t− y)) = NP(t1 − y − t + y) = NP(t1 − t) .

Therefore we have

NP(t1 − y) = NP(t1 − t) = NP(t1 − (t1 + t2)) = NP(−t2) = −NP(t2) ,

where the last equality is by symmetry. Using the above argument, we can conclude

that (i) if and only if (ii) from the following:

NP(t1) + NP(t2) = NP(t1 + t2)

NP(t1) + NP(t2) = y

NP(t1)− y = −NP(t2)

NP(t1)− y = NP(t1 − y)

NP(t1) = NP(t1 − y) + y .

�

We omit the remainder of the analysis of the hybrid attack given in [50, 52] but

present in Theorem 10 the main result of that work. Theorem 10 gives the probability

that Algorithm 1 terminates and its running time in the case that it does.

Theorem 10. Let c ∈ N and let r = 4c. Let (A, c) be an LWE instance with binary

error, where A = (A1|A2) for A1
$← Zm×rq and A2

$← Zm×(n−r)
q . Let B be a

basis of Λq(A2) of quality given by root-Hermite factor δ0. Let q, r, A, c, B be the

input to Algorithm 1. Then, if Algorithm 1 terminates, it finds a valid binary error

vector of the LWE with binary error instance (A, c). The probability that Algorithm 1

terminates is

p0 = 2−r
(
r
2c

) m∏
i=1

(
1− 2

B(m−1
2 , 1

2)

∫ max(−ri,−1)

−1
(1− t2)

m−3
2 dt

)
,

where B(·, ·) denotes the Euler beta function [182] and

ri =
δ
−2(i−1)+m
0 q

m−n+r
m

2
√
m/4

.
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with binary error

If Algorithm 1 terminates, the expected number of operations is

216

(
r
c

)(
p

(
2c
c

))−1/2

,

where

p =
m∏
i=1

(
1− 1

riB(m−1
2 , 1

2)
J(ri,m)

)
,

and

J(ri,m) =


∫ ri−1
−ri−1

∫ z+ri
−1 (1− y2)

m−3
2 dydz

+
∫ −ri
ri−1

∫ z+ri
z−ri (1− y2)

m−3
2 dydz for ri < 1

2∫ −ri
−ri−1

∫ z+ri
−1 (1− y2)

m−3
2 dydz for ri ≥ 1

2 .

The value p referred to in Theorem 10 is the probability that −A1v1 is e′-admissible

for an appropriate guess v1. Howgrave-Graham [133] determines the probability p

using experiments. A mathematical calculation of p is presented by Hirschhorn et

al. [130], but this requires an additional assumption. The probability p is calculated

analytically in [50, 52] without requiring this additional assumption.

Wunderer [214] identifies two issues with the analysis in [50, 52]. The first is that the

runtime of lattice basis reduction is estimated according to Lindner and Peikert [150].

As we discussed in Section 4.6.1, Lindner and Peikert’s estimate is inaccurate as it

implies a subexponential algorithm for solving LWE. Wunderer’s second argument is

that Heuristic 2 needs to be modified for q-ary lattices, if the lattice reduction used

as preprocessing is not sufficiently strong. Since BKZ 2.0 with blocksize 60 can now

be easily run on a laptop [88], this issue can be reasonably ignored.

5.11 Comparison of the hybrid attack with other algo-
rithms for LWE with binary error

In this section we compare the hybrid attack with other algorithms for solving LWE

with binary error. This updates and extends the comparison presented in [50] and

is also based on the subsequent work of Wunderer [214].

In Chapter 4 we saw that some algorithms for (general) LWE require a large number

of samples m to be available in order to succeed. In the case of LWE with binary
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with binary error

n q Hybrid attack Hybrid attack usvp dual
(overestimate) (underestimate)

128 256 47.9 26.1 58.2 53.5
160 256 58.6 35.2 74.3 60.0
192 256 65.8 44.8 91.2 73.1
224 256 75.3 54.4 109.0 86.8
256 256 85.4 64.1 127.0 101.0
288 256 94.4 79.3 145.8 115.8

Table 5.1: Comparison of approaches for solving LWE with binary error using at
most m = 2n samples. The bit hardness of the hybrid attack, reduction to uSVP
and a distinguishing attack are given.

error, we saw in Section 5.6 that once the number of samples is at least quadratic in

n, the problem can be solved in polynomial time. Furthermore, with slightly more

than linearly many samples, such asm = O(n log logn), the algorithm given in [10] is

subexponential. Therefore, it is argued in [50, 52] that it is not reasonable to deploy

a scheme whose hardness is based on LWE with binary error if the attacker would

have access to more than linearly many samples. In the analysis below, we assume

the attacker has access to linearly many samples; we fix m = 2n for concreteness.

We note that since Kirchner and Fouque [139] showed that LWE with binary error

can be solved in subexponential time using only m = n samples this may itself not

be a reasonable assumption.

We now compare the hybrid attack with alternative approaches for solving LWE with

binary error. As mentioned in Section 5.10, the comparison in [50, 52] uses Lindner

and Peikert [150] to estimate the cost of lattice reduction, which is inaccurate. We

will estimate lattice reduction differently; we specify how below.

We compare the hybrid attack with distinguishing via lattice reduction, as described

in Section 5.8; and reduction to uSVP, as described in Section 5.9. Following [50, 52]

we do not consider Arora and Ge, Meet-in-the-Middle or BKW variants. We also omit

from consideration a decoding approach analogous to that described in Section 4.7.

This was considered in detail in [50, 52] but we were unable to update the code used

to generate the estimate for the cost of this approach. The results of the comparison

are presented in Table 5.1.

To estimate the cost of the hybrid attack we update the work of Wunderer [215]. In
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with binary error

particular, Wunderer gives both an overestimate and an underestimate of the cost of

the hybrid attack, using the following methodology for the cost of lattice reduction.

Given a target δ0 specifying the quality of lattice reduction, the minimal necessary

blocksize k is determined using Chen’s thesis [64]. For the underestimate, it is

assumed that one round of BKZ with blocksize k is sufficient. For the overestimate,

the BKZ 2.0 simulator [65] is used to determine the number of rounds needed. It is

assumed that the SVP oracle is implemented as enumeration.

For our hybrid attack estimates, we take a slightly different approach. We again

determine the minimal necessary blocksize k, given the δ0, using Chen’s thesis [64].

For the underestimate, we assume that lattice reduction costs one call to the SVP

oracle and the SVP oracle is implemented as sieving, as in Alkim et al. [19]. For

the overestimate, we assume the cost of lattice reduction is the same as is given in

commit f13c4a7 of the LWE estimator [6]. In particular we assume that there are 8n

calls to the SVP oracle when calling BKZ in dimension n with blocksize k, and that

the SVP oracle is implemented using sieving as in Becker et al. [33].

For both the distinguishing approach, and reduction to uSVP, we also need to es-

timate the cost of lattice reduction. To obtain estimates for these approaches, we

again assume lattice reduction costs the same as that given in commit f13c4a7 of the

LWE estimator.

Since we fix m = 2n samples, it is possible that we do not have enough samples

to use the optimal subdimension m =
√

n log q
log δ0

when estimating the uSVP or dis-

tinguishing approaches. To determine whether or not we have enough samples, we

firstly calculate δ0 assuming we have as many samples as we need for the optimal

subdimension, as specified in Lemma 21 and Lemma 20 respectively. Then we check

that the corresponding m is indeed less than or equal to 2n. If so, we use the run-

time estimate for that δ0. If not, we take m = 2n and derive the corresponding
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root-Hermite factor, and use the runtime estimate for that δ0. For uSVP we obtain:

q1− n
m

√
2πe

= τδm0

q1− n
2n

√
2πe

= τδ2n
0

δ0 =

( √
q

τ
√

2πe

) 1
2n

.

For distinguishing we obtain:

δm0 q
n
m = q

√
2 ln

(
1
ε

)
π

δ2n
0 q

n
2n = q

√
2 ln

(
1
ε

)
π

δ0 =


√

2q ln
(

1
ε

)
π


1
2n

.

In Figure 5.1 we compare the cost of the hybrid attack with the best performing

other algorithm, according to Table 5.1. For reference we also give the estimates for

the cost of the hybrid attack for these parameters as given in [50]. It can be seen

that the hybrid attack performs favourably compared with other approaches, and

outperforms the best other approach for sufficiently large n.

We can alternatively compare the hybrid attack with other algorithms using the

LWE estimator [6] directly. This also allows us to compare the cost of the hybrid

attack with a decoding approach. We have done so using commit f13c4a7 of the

LWE estimator and the results are given in Table 5.2 and Table 5.3.

The LWE estimator expects a discrete Gaussian error distribution, rather than a

uniform binary error distribution, as we have here. In order to use the LWE estimator

we need to appropriately model the error distribution as a discrete Gaussian. We

do so using Heuristic 3 so that α =
√

2π
2q . We use the limited sample functionality

implemented by Bindel et al. [36] and call the LWE estimator with m = 2n samples.

Binary secrets are not currently supported, so we cannot indicate directly to the

LWE estimator that there is a binary secret. However, ternary secrets, where the

s(i) are uniformly chosen from {−1, 0, 1}, are supported, and there is an option to

specify the number of nonzero components h of the secret.
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Figure 5.1: Estimates of solving LWE with binary error instances with m = 2n
samples and modulus q = 256 using the hybrid attack and the best other algorithm.

In Table 5.2 we call the LWE estimator without giving any information about the

secret, whereas in Table 5.3 we model the binary secret as a ternary secret with

h = n
2 . This gives a secret that has the same number of nonzero components as

the binary secret, and the components of the secret have the same norm as a binary

secret. The column labelled dec in Table 5.3 was obtained by fixing the success

probability to be 0.99, reflecting the behaviour of the LWE estimator in the later

commit 6f25340. In commit f13c4a7, the decoding approach for sparse small secret

was not well supported.

When analysing Table 5.3, we caution that the LWE estimator interprets a choice

of h as the declaration of a sparse secret. It would then assume, for example, that

the best performing distinguishing attack via lattice reduction is Albrecht’s variant

for small and sparse secret [7], whereas this may not be the case for a uniform

binary secret. Similar assumptions are made in the case of the decoding and uSVP

approaches.

Since we would expect a sparse secret instance to be easier to solve than a dense

secret, in practice it may be harder to solve the LWE with binary error instances than

it would appear from the results in Table 5.3. In contrast, it is likely that it in practice

is easier to solve the LWE with binary error instances than it would appear from
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n q Hybrid attack Hybrid attack dec usvp dual
(over) (under)

128 256 47.9 26.1 52.1 48.2 71.4
160 256 58.6 35.2 61.8 64.0 78.0
192 256 65.8 44.8 73.2 67.5 91.3
224 256 75.3 54.4 85.1 78.8 99.3
256 256 85.4 64.1 97.4 90.4 100.8
288 256 94.4 79.3 109.9 102.2 111.6

Table 5.2: Comparison of attacks on LWE with binary error obtained from the
LWE estimator [16, 6] using m = 2n samples and error distribution characterised by
α =
√

2π/2q.

n q Hybrid attack Hybrid attack dec usvp dual
(over) (under)

128 256 47.9 26.1 45.4 53.2 56.0
160 256 58.6 35.2 60.1 64.7 65.8
192 256 65.8 44.8 62.0 74.4 76.9
224 256 75.3 54.4 71.4 85.0 87.9
256 256 85.4 64.1 81.2 96.5 99.0
288 256 94.4 79.3 91.2 108.3 109.9

Table 5.3: Comparison of attacks on LWE with binary error obtained from the
LWE estimator [16, 6] using m = 2n samples, error distribution characterised by
α =
√

2π/2q, and ternary secret with h = n/2.

Table 5.2, which assumes a general secret, rather than a small secret. Assuming that

the decoding, uSVP and dual approaches cost somewhere in between the values given

in Tables 5.2 and 5.3, we see that the hybrid attack performs favourably compared

to the other approaches.
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Chapter 6

Ring Learning with Errors
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This chapter considers the Ring Learning with Errors problem. Most of this chapter

is background material following the presentation in [173], which in turn follows

Lyubashevsky et al. [157, 158, 159, 160]. We also clarify a result due to Ducas and

Durmus [95]: this is based on joint (unpublished) work with Cid and Murphy.

The Ring Learning with Errors (Ring-LWE) problem, introduced by Lyubashevsky

et al. [157], is a generalisation of the Learning with Errors problem from the ring of

integers to other rings. Specifically, the problem is defined in the ring of integers R

of a number field K. In applications, R is typically the mth cyclotomic ring, and

very often m is chosen as a power of 2.

In practice, Ring-LWE is often preferred to LWE for efficiency reasons. For example,

key sizes in LWE are typically quadratic in the dimension n whereas in Ring-LWE

they are linear [196]. The homomorphic encryption scheme [100] that we will consider

in Chapter 7, as well as several others [47, 44, 160], are based on Ring-LWE. The

hardness of Ring-LWE is the assumption used in a wealth of other applications

besides homomorphic encryption [187], such as Attribute-based Encryption [84] and
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obfuscation [87]. A popular application, considered in [15, 19, 40, 186, 90, 89, 150],

is Ring-LWE based key exchange.

In Section 6.4 we discuss the hardness of Ring-LWE and related problems on ideal

lattices. There is a reduction from presumed hard problems on ideal lattices to Ring-

LWE [157, 189], assuming an appropriate error distribution is chosen. We therefore

discuss various methods proposed in the literature to ensure the error distribution

is chosen appropriately in Section 6.5. One such proposal is due to Ducas and

Durmus [95] and we revisit their result [95, Theorem 5] in Section 6.6.

6.1 Algebraic background

Rings of integers of number fields. The minimal polynomial f of an algebraic

number β is the unique irreducible monic polynomial with rational coefficients of

smallest degree d such that f(β) = 0 and whose leading coefficient is 1. A number

field K = Q(β) ∼= Q[x]/(f(x)) is an extension of Q formed by adjoining β. Its ring of

integers R = OK is the ring of all elements of K that are roots of a monic polynomial

with coefficients in Z. Each root βk of f defines an embedding σk : K → C. The

canonical embedding

σ : Q(β)→ Cd

is the direct sum of these embeddings, so that σ(z) = (σk(z))k∈{1,...,d}.

The ring of integers R embeds under σ as a lattice. The conjugate dual of this lattice

corresponds to the embedding of the dual fractional ideal :

R∨ = {a ∈ K | Tr(aR) ⊂ Z} .

We denote by (R∨)k the space of products of k elements of R∨:(
R∨
)k

=
{
s1 . . . sk | s1, . . . , sk ∈ R∨

}
.

Definition 20 ([158]). Let R be the ring of integers of a number field K. Let q ≥ 2

be an integer modulus. Let R∨ be the dual fractional ideal of R. Let Rq = R/qR and

R∨q = R∨/qR∨. Let KR = K ⊗Q R.
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Let χ be a distribution over KR. Let s ∈ R∨q be a secret. A sample from the Ring-

LWE distribution As,χ over Rq×KR/qR
∨ is generated by choosing a← Rq uniformly

at random, choosing e← χ and outputting

(a, b = (a · s)/q + e mod qR∨) .

Let Ψ be a family of distributions over KR. The Search Ring-LWE problem is defined

as follows: given access to arbitrarily many independent samples from As,χ for some

arbitrary s ∈ R∨q and χ ∈ Ψ, find s.

Let Υ be a distribution over a family of error distributions, each over KR. The

average-case Decision Ring-LWE problem is to distinguish with non-negligible advan-

tage between arbitrarily many independent samples from As,χ for a random choice

of (s, χ) ← U
(
R∨q
)
× Υ, and the same number of uniformly random samples from

Rq ×KR/qR
∨.

Cyclotomic rings. Let ζm be a primitive mth root of unity. Its minimal polyno-

mial is the mth cyclotomic polynomial Φm(x). The number field Q(ζm) is the mth

cyclotomic field and its ring of integers is R = Z [ζm] ∼= Z [x] /(Φm(x)). The roots of

Φm(x) are ζim for i ∈ Z∗m, so there are n = ϕ(m) of them. Therefore Q(ζm) has n

embeddings given by σk(y) = y(ζkm) for k ∈ Z∗m. The dual fractional ideal of Z [ζm]

is Z [ζm]∨ = 1
Φ′m(ζm)Z [ζm].

The canonical embedding induces a geometry on K with `2-norm ‖ · ‖2 and `∞-norm

‖ · ‖∞ given by the element’s respective norm under σ: that is,

‖a‖2 = ‖σ(a)‖2

and

‖a‖∞ = ‖σ(a)‖∞ .

Prime cyclotomic rings. If m is a prime we have n = ϕ(m) = m− 1 and

Φm(x) = xn + · · ·+ x+ 1 .
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The ring embeddings σk are defined by ζm 7→ ζkm for 1 ≤ k ≤ n. Define t such that

t−1 = m−1(1− ζm) ,

then R∨ = 〈t−1〉 and (R∨)k =
{
t−kr1 . . . rk | r1, . . . , rk ∈ R

}
. For m ≥ 3 a prime we

let n′ = 1
2n = 1

2(m− 1).

Power-of-two cyclotomic rings. For m = 2k+1 for some k we have n = 2k and

Φm(x) = xn + 1. In this case R is an exact scaling of R∨ [95]. In particular, we have
m
2 R
∨ = R.

Bases. We now specify various Z-bases of K, R and R∨ in the case when m is

prime. More general definitions can be found in Lyubashevsky et al. [160].

Definition 21 ([160]). The Powerful basis −→p of K = Q(ζm) and R = Z [ζm] is{
ζ0
m, ζ

1
m, . . . , ζ

n−1
m

}
.

Definition 22 ([160]). The Decoding basis
−→
d of R∨ is{

1
m(ζ0

m − ζnm), 1
m(ζ1

m − ζnm), . . . , 1
m(ζn−1

m − ζnm)
}
.

Definition 23 ([160]). The Scaled Decoding basis of (R∨)k is

m−(k−1)−→d =
{

1
mk

(ζ0
m − ζnm), 1

mk
(ζ1
m − ζnm), . . . , 1

mk
(ζn−1
m − ζnm)

}
.

6.2 The space H

The canonical embedding σ : Q(β) → Cd is the direct sum of the ring embeddings

σ1, . . . , σd. The ring embeddings σ1, . . . , σd occur in complex conjugate pairs with

σk = σm−k. Therefore σ maps into a subset of Cd, which is denoted

H = {a ∈ Cd | a(j) = a(m−j) ∀j ∈ {1, . . . , d}} .

102



6.2 The space H

Bases for H. Let I be the identity matrix and J the matrix obtained when the

columns of I are reversed. In Definitions 25 and 26 we give two bases for H in the

case that K is the mth cyclotomic field for m a prime, so that n = ϕ(m) = m− 1.

We note that these bases can be defined more generally. The I-basis is the standard

basis of H, expressing elements as a complex vector. The T -basis, given by the

columns of the conjugate pair matrix T, expresses an element of H as a real vector.

Definition 24 ([160]). The conjugate pair matrix T is given by

T =
1√
2



1 0 . . . 0 0 . . . 0 i
0 1 . . . 0 0 . . . i 0
...

...
. . .

...
...

...
...

0 0 . . . 1 i . . . 0 0
0 0 . . . 1 −i . . . 0 0
...

...
...

...
. . .

...
...

0 1 . . . 0 0 . . . −i 0
1 0 . . . 0 0 . . . 0 −i


=

1√
2

(
I iJ
J −iI

)
.

Lemma 24 ([160]). The conjugate pair matrix T is a unitary matrix with

T−1 = T† =
1√
2

(
I J

−iJ iI

)
.

Let v be a vector representing an element in the I-basis for H. Since T is unitary,

we have ‖Tv‖2 = ‖v‖2; that is, the element has the same norm when represented in

the T -basis. Expressing elements of H as vectors in the T -basis therefore gives an

isomorphism between H and Rn as an inner product space [160].

Definition 25. Let m be prime. The I-basis for H is given by the columns of the

n × n identity matrix I, that is to say by standard basis vectors. In particular the

I-basis expresses an element in H as a vector of n′ conjugate pairs.

Definition 26. Let m be prime. The T -basis for H is given by the columns of the

conjugate pair matrix

T =
1√
2

(
In′ iJn′

Jn′ −iIn′

)
.

Embeddings of sums and products. The canonical embedding under σ of a sum

in the cyclotomic number field gives a componentwise addition in H when elements
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in H are expressed as vectors in any basis. Similarly, the canonical embedding under

σ gives a componentwise multiplication when expressing the elements in H as vectors

in the I-basis. We denote this componentwise multiplication as the �-product in H,

and we have:

σ(aa′) = (σ1(aa′), . . . , σn(aa′))T

= (σ1(a)σ1(a′), . . . , σn(a)σn(a′))T

= (σ1(a), . . . , σn(a))T � (σ1(a′), . . . , σn(a′))T

= σ(a)� σ(a′) .

The canonical embedding of a product under σ gives other forms of product for the

corresponding vectors expressing elements of H when other bases are used. When

using the T -basis, the appropriate notion of a product of two elements of H, which

are expressed as real vectors, is given by Definition 27. We define this multiplication

as the ⊗-product.

Definition 27. The ⊗-product of two real vectors u = (u11, u12, . . . , un′1, un′2)T

and v = (v11, v12, . . . , vn′1, vn′2)T of length n = 2n′ is

u⊗ v =


u11

u12
...

un′1
un′2

⊗


v11

v12
...

vn′1
vn′2

 = T† (Tu�Tv) = 2−
1
2


u11v11 − u12v12

u11v12 + u12v11
...

un′1vn′1 − un′2vn′2
un′1vn′2 + un′2vn′1

 .

6.3 Discretisation

Discretisation, in the context of Ring-LWE applications, is a process where a point

in H is rounded to a nearby point in a lattice coset. Such a discretisation process

usually involves randomisation, so gives rise to a random variable on the elements

of the coset. In this section we describe the coordinate-wise randomised rounding

method of discretisation [160, Section 2.4.2, first bullet point]. This section is based

on [173, Section 5], and proofs for all results can be found there.

In Definition 28 we define the univariate Reduction random variable. This is a

translation of the Bernoulli random variable [118], and so we can give its immediate
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6.4 Hardness of Ring-LWE

basic properties in Lemma 25. In particular we need to consider the multivariate

generalisation of a Reduction random variable given by Definition 29.

Definition 28. If Bern denotes the Bernoulli distribution, then the univariate Re-

duction distribution

Red(a) = Bern(dae − a)− (dae − a)

is the discrete probability distribution defined for parameter a ∈ R as taking the values

1 + a− dae with probability dae − a and a− dae with probability 1− (dae − a).

Lemma 25. If R0 ∼ Red(a) is a (univariate) Reduction random variable for param-

eter a ∈ R, then R0 satisifies (i) |R0| ≤ 1, (ii) E [R0] = 0, (iii) Var[R0] ≤ 1
4 and (iv)

a−R0 ∈ {bac, dae} ⊂ Z.

Definition 29. A random variable R = (R1, . . . , Rl)
T has a multivariate Reduction

distribution R ∼ Red(a) on Rl for parameter a = (a1, . . . , al)
T ∈ Rl if its components

Rj ∼ Red(aj) for j = 1, . . . , l are independent univariate Reduction random variables.

We are now able to specify the coordinate-wise randomised rounding discretisation

method and show this discretisation method is valid ; that is, independent of the

chosen coset representative.

Definition 30. Suppose B is a (column) basis matrix for the n-dimensional lattice

Λ in H. The coordinate-wise randomised rounding discretisation bXeBΛ+c of the

random variable X to the lattice coset Λ + c with respect to the basis matrix B is

then defined by the conditional random variable(
bXeBΛ+c

∣∣X = x
)

= bxeBΛ+c = x + BQx,c

where Qx,c ∼ Red
(
B−1(c− x)

)
.

Lemma 26. The coordinate-wise randomised rounding discretisation bxeBΛ+c is a

random variable on the lattice coset Λ + c and is valid.

6.4 Hardness of Ring-LWE

As for the LWE problem, the Ring-LWE problem is related to well-studied lattice

problems that are believed to be hard [189, 45, 158, 160, 185, 194]. Most notably
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for cryptographic applications, Lyubashevsky et al. [157, 158] give a reduction from

approximate SIVP on ideal lattices to Decision Ring-LWE when K is a cyclotomic

number field. Recently, a much more general result, giving a reduction from worst-

case lattice problems to Decision Ring-LWE for any number field, was presented by

Peikert et al. [189]. If Decision Ring-LWE is hard, then a Ring-LWE sample looks

pseudorandom. Hence we may argue, for example, indistinguishability of ciphertexts

from random if the ciphertext is formed by masking the message with a Ring-LWE

sample, as proposed by Lindner and Peikert [150].

Theorem 11 ([158]). If K is a cyclotomic number field with ring of integers R,

then there is a polynomial time quantum reduction from approximate SIVP on ideal

lattices in K to Decision Ring-LWE in R given a fixed number of samples, where the

error distribution is a fixed spherical Gaussian over H.

Theorem 11 is based on two results. The first is a quantum reduction from a par-

ticular hard lattice problem to Search Ring-LWE in a ring of integers R of some

number field K [158, Theorem 4.1]. The second specialises to the case of rings of

integers of cyclotomic fields, giving a reduction from Search Ring-LWE to Decision

Ring-LWE [158, Theorem 5.1]. This reduction from Search Ring-LWE to Decision

Ring-LWE was generalised by Eisenträger et al. [97] to all rings of integers R of

number fields K such that K is Galois and q splits completely in R. In turn, this

reduction was further generalised by Chen et al. [62], who removed the requirement

on q. A reduction from a particular hard lattice problem to Decision Ring-LWE for

q of arbitrary shape had previously been given by Langlois and Stehlé [147].

The existence of a reduction, such as Theorem 11, from standard problems on ideal

lattices gives more confidence that Ring-LWE is hard, since it shows that Ring-LWE

is at least as hard as a well-studied problem on ideal lattices that is believed to be

hard. However, there are at least two reasons why we might still be cautious. Firstly,

as Chatterjee et al. [57] argue, the reduction may not be tight and hence it is unclear

whether the concrete security assurance this would provide is meaningful. Secondly,

the hardness of a problem on ideal lattices may be different than its analogue on

general lattices: for example, the GapSVP problem is easy on ideal lattices [196].

Another example is the line of work [53, 79] which showed that finding short vectors in

principal ideal lattices is potentially easier than for general lattices. Cramer et al. [80]

generalised these results to show that worst-case approximate SVP on ideal lattices
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with approximation factor γ = exp(Õ(
√
n)) can be solved in quantum polynomial

time, whereas for a general lattice we would expect to reach γ = exp(Θ̃(n)).

Cramer et al. [80] stress that while Ring-LWE is at least as hard as approximate SVP

on ideal lattices, it is not known to be equivalent, and hence their work should not

currently impact on Ring-LWE-based schemes. Nonetheless, the inherent structure

in the Ring-LWE setting has been seen by some as worrisome and rings with less

structure have been proposed, for example by Bernstein et al. [35], as an alternative.

The use of Module-LWE [147] as an alternative hardness assumption has been pro-

posed [80], although Albrecht and Deo [11] showed that Module-LWE and Ring-LWE

are polynomial-time equivalent.

On the other hand, we can consider Ring-LWE variants for which there is no longer

a reduction from presumed hard problems on ideal lattices. Indeed in practice, some

schemes based on Ring-LWE use an error distribution that may be too narrow for a

reduction to apply. For example, the reductions would require an error distribution

characterised by αq = ω(
√

log n), where the standard deviation σ = αq√
2π
. That

is, αq is a function of n when the reduction holds. In contrast, in homomorphic

encryption applications such as [121, 110, 58] we typically have αq = 8; that is, αq

is a constant. A number of works have given attacks on Ring-LWE variants when

the underlying number field, error distribution, or modulus is of various special

forms [56, 55, 62, 63, 97, 99].

6.5 Error distributions

Recall that in the hardness results for Ring-LWE in Section 6.4, in order for the

reduction from ideal lattice problems to hold, we need to choose error polynomials

ei from a distribution which when embedded under the canonical embedding σ is a

spherical Gaussian inH. So, we would sample the errors from a spherical Gaussian in

H, then map them back using σ−1 to elements in K; indeed, strictly speaking [160],

to elements in K ⊗Q R.

A much more convenient, and arguably more natural, way to choose an error polyno-

mial is such that each coefficient is chosen independently from a spherical Gaussian.
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This gives rise to so-called Polynomial-LWE [210, 157, 47].

Definition 31 ([210, 157, 47]). Let f(x) be a monic irreducible polynomial in Z [x] of

degree n. Let R = Z [x] /(f(x)) and Rq = Zq [x] /(f(x)). Let s ∈ Rq be a secret. Let

ai ∈ Rq be chosen uniformly. Let ei be chosen from the discrete Gaussian distribution

on R centred at 0 and with standard deviation σ, spherical with respect to the power

basis. Let ci = ais+ ei.

Decision Polynomial-LWE is the problem of deciding whether pairs (ai, ci) ∈ Rq×Rq
are sampled according to the above or are uniformly random.

Search Polynomial-LWE is the problem of recovering s given arbitrarily many samples

of the form (ai, ci) = (ai, ais+ ei).

The coefficient embedding map gives another map from K to Rn, sending the error

polynomial ei = ei,0 + ei,1x + · · · + ei,n−1x
n−1 to the vector (ei,0, ei,1, . . . , ei,n−1).

The coefficient embedding and canonical embedding are related to one another by

a linear transformation of Rn and in the case of the mth cyclotomic for m a power

of 2, this transformation is an isometry [95, 160]. This means that for a power-of-2

m, a spherical Gaussian distribution in the canonical embedding corresponds to a

spherical distribution in the coefficient embedding, or equivalently, Polynomial-LWE

and Ring-LWE are equivalent for power-of-2 cyclotomics. Hence we can choose the

error polynomials in this more natural way and retain the hardness reduction. This

is a key reason why in applications, designers of cryptosystems based on Ring-LWE

favour the power-of-2 cyclotomic case, as in, for example, [47, 209, 216, 40]. This

choice can also provide efficiency in implementations [160].

Ducas and Durmus [95] propose an alternative way to sample the errors more con-

veniently. They show that for any cyclotomic field K we can equally simply sample

an error polynomial coefficient-wise in an appropriate extension of K according to a

spherical Gaussian and perform a modular reduction to obtain an error in K, which

is distributed as an elliptical Gaussian. When considered under σ, the errors retain

the appropriate spherical Gaussian distribution in H. We revisit a key result of

Ducas and Durmus in Section 6.6 below.

Another variant, used by Peikert et al. [20, 188, 81, 82] and equivalent to Ring-LWE,

is tweaked Ring-LWE. In this variant a tweak factor t ∈ R such that tR∨ = R is used.

The secret s′ is such that s′ = t · s, where s is a standard Ring-LWE secret, and
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the errors ei are chosen from a tweaked error distribution tψ, where ψ is a spherical

Gaussian as required in standard Ring-LWE.

6.6 The variant of Ducas and Durmus

In this section we review a result of Ducas and Durmus [95]. The work [95] is

motivated by the fact that Ring-LWE can be complicated to implement for a cy-

clotomic ring when m is not a power of 2, since in such a setting the Ring-LWE

definition in [157] involves R∨. Ducas and Durmus show that for any cyclotomic

polynomial Φm(x), it is possible to avoid this requirement and always work in the

ring R = Z [x] /(Φm(x)). In particular, their main result [95, Theorem 2] states the

analogue of Theorem 11; that is, for cyclotomic rings there is a quantum reduction

from approximate SVP on ideal lattices to a variant of Decision Ring-LWE, in which

we must distinguish k samples (ai, ais + ei) ∈ Rq × Rq from k uniformly random

samples, where ai, s
$←− Rq and the ei are chosen in a certain extension ring and then

reduced modulo Φm(x).

The extension ring of Q [x] /(Φm(x)) is Q [x] /(Θm(x)), where Θm(x) is the polyno-

mial that is xm − 1 if m is odd, and xm/2 + 1 if m is even. A key component in

the proof of the main result [95, Theorem 2] is the result [95, Theorem 5] showing

that if the errors are chosen in Q [x] /(Θm(x)) in an appropriate way, this implies an

appropriate spherical error distribution in H as required for hardness. However, the

proof of [95, Theorem 5] contains a small error, although the statement is correct.

Furthermore the notation used in [95] is sometimes non-standard. We revisit the

proof of [95, Theorem 5], slightly altering the presentation, and show how the error

can be corrected.

We begin by giving the relationships between the spaces Rϕ(m) ∼= H, Q [x] /(Θm(x))

and Q [x] /(Φm(x)). These are summarised in Figure 6.1. The map

β : Q [x] /(Θm(x))→ Q [x] /(Φm(x))

given by x 7→ x mod Φm(x) is reduction modulo Φm. The map

σ : Q [x] /(Φm(x))→ H
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Q [x] /(Θm(x))

Rϕ(m) Q [x] /(Φm(x))

�
�

�
�
�	

@
@
@
@
@R
-

�
T−1 ◦ σ

σ−1 ◦T

T−1 ◦ σ ◦ β β : x 7→ x mod Φm

Figure 6.1: [95, Figure 1]. Mappings between different spaces.

is the canonical embedding of the number field Q [x] /(Φm(x)). We view H in the

T -basis so that the map from H to Rϕ(m) is given by the matrix T as specified in

Definition 24. Let γ : Z [x] /(Θm(x)) → H ⊆ Cϕ(m) be the linear map from the

power basis of Z [x] /(Θm(x)) to the canonical basis of Cϕ(m); that is, the basis that

extends the I-basis of H. Then γ is the composition map σ ◦ β, as implied, though

not explicitly stated, in [95]. Let G be the ϕ(m)×m′ matrix representing γ. Then

T−1 ◦G gives the map from Z [x] /(Θm(x)) to Rϕ(m).

Following the notation of [95], we let ψs be the spherical Gaussian with mean 0 and

standard deviation s over R and ψds be the spherical Gaussian over Rd where each

component is chosen independently from ψs. We let m′ = m if m is odd and m′ = m
2

if m is even.

We now describe the change in our presentation compared to [95]. Ducas and Durmus

[95] give the mapping from H to Rϕ(m) by the matrix TDD = 1√
2

(
I iI
I −iI

)
,

whereas we give this mapping by the matrix T. The ordering of components of σ

does not seem consistent when using the matrix TDD. For example, when m = 5

the matrix TDD corresponds to the conjugates in the order (σ1, σ2, σ4, σ3) whereas

by definition, σ considers the canonical order (σ1, σ2, σ3, σ4). Using the conjugate

pair matrix T and the T -basis for H enables us to always use the canonical order

for σ.

We now discuss and correct the proof presented by Ducas and Durmus of their

result [95, Theorem 5]. We begin by presenting the theorem as stated in [95].

Theorem 12 ([95]). Let v ∈ Q [x] /(Θm(x)) be a random variable distributed as ψm′s
in the power basis. Then the distribution of (T−1

DD ◦ σ ◦ β)(v), seen in the I-basis of
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H, is the spherical Gaussian ψϕ(m)

s
√
m′
.

Define the matrix EDD as EDD = T−1
DD ·G. The matrix EDD represents the embed-

ding directly from Q [X] /(Θm(x)) to Rϕ(m). Let Iϕ(m) be the ϕ(m)×ϕ(m) identity

matrix.

The stated proof requires the following three claims:

(i) G ·GT = m′Iϕ(m)

(ii) T−1
DD is Hermitian

(iii) EDD = EDD, or, equivalently, EDD is real.

Claim (ii) does not specify the property of TDD that we would require. In particular,

the claim that T−1
DD is Hermitian would mean (T−1

DD)T = T−1
DD. However, as we will

see below, the desired relation is of the form (T−1
DD)T = TDD.

In light of our change to the matrix T, and noting the issue with the stated proof,

we now restate and prove [95, Theorem 5].

Theorem 13 ([95]). Let v ∈ Q [x] /(Θm(x)) be a random variable distributed as ψm′s
in the power basis. Then the distribution of (T−1 ◦ σ ◦ β)(v), seen in the I-basis of

H, is the spherical Gaussian ψϕ(m)

s
√
m′
.

Proof: We follow the framework of the proof stated in [95]. Define the matrices

T, G as above and define the matrix representing the embedding directly from

Q [x] /(Θm(x)) to Rϕ(m) as E = T−1 ·G.

Suppose the following claims are true:

(i) G ·GT = m′ · Iϕ(m),

(ii) (T−1)T = T,

(iii) E = E.
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In this case, the following argument holds:

E ·ET = E ·ET

= T−1 ·G · (T−1 ·G)T

= T−1 ·G ·GT · (T−1)T

= T−1 ·G ·GT ·T

= T−1 ·m′ · Iϕ(m) ·T

= m′ · Iϕ(m) ,

giving the required result.

Claim (i) and Claim (iii) hold directly as in [95] For Claim (ii), recall T = 1√
2

(
I iJ
J −iI

)
.

Therefore

T−1 =
1√
2

(
I J
−iJ iI

)
(T−1)T =

1√
2

(
I −iJ
J iI

)
(T−1)T =

1√
2

(
I iJ
J −iI

)
as required. �

6.6.1 The case m is an odd prime

In this section, we consider the case that m is an odd prime, as an extended example.

We firstly establish notation in this case, and give details of matrices representing

each of the maps between the various spaces. We then give more detail on the proof

of claim (i), which was required in the proof given in the previous section of the

result of Ducas and Durmus [95, Theorem 5]. We conclude with an alternative proof

of [95, Theorem 5] restricted to the case that m is an odd prime.

In the case m is an odd prime, we have ϕ(m) = m− 1 and Φm(x) = xm−1 + . . .+ 1.

The extension ring is Q [x] /(Θm(x)), where Θm(x) = xm − 1. Let m1 = m− 1 and

m2 = 1
2m1 = 1

2(m−1). Let I1 be the m1×m1 identity matrix, let J1 be the m1×m1

matrix with 1s on the reverse diagonal and 0 elsewhere, and let K1 be the m1 ×m1

matrix with every entry 1.
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Q [x] /(Θm(x))

Rm−1 H Q [x] /(Φm(x))
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T A−1

T−1AB B

Figure 6.2: Mappings between spaces for m an odd prime.

In Figure 6.2 we give a version of Figure 6.1 where the canonical embedding into

H and the isomorphism into Rm−1, using the T -basis, are decoupled. All maps

are given by matrices with respect to specific bases, which we now define. We

regard Q [x] /(Θm(x)) as a vector space over Q with basis {1, x, . . . , xm−1} and

Q [x] /(Φm(x)) as a vector space over Q with basis {x, . . . , xm−1}. We can obviously

extend these rational vector spaces to real or complex vector spaces in a natural way

and use the same bases. We use the I-basis for H and the standard basis for Rm−1.

The mapping β from Q [x] /(Θm(x)) to Q [x] /(Φm(x)) is a straightforward modular

reduction in which 1 is mapped to −(x+ . . . xm−1). This is realised with respect to

the bases given above by the (m− 1)×m matrix B = (−1 |I1 ), where 1 is a column

vector of 1s. Let ζm be a primitive mth root of unity. Then the canonical embedding

σ is realised by the symmetric m1 × m1 matrix A = (Ajk), where Ajk = ζjkm for

1 ≤ j, k ≤ m− 1. The (m− 1)×m matrix E = T−1AB represents the map denoted

T−1 ◦ γ = T−1 ◦ σ ◦ β.

Claim (i) in the proof of [95, Theorem 5]. We now show that Claim (i) in

the proof of [95, Theorem 5] holds in the case that m is an odd prime. That is,

we prove that GGT = mI, based on the argument as given in [95]. Recall that G

is a matrix denoting the composition map γ = σ ◦ β so in this case we may write

G = AB as a matrix representing this map for our chosen bases. We see that

G = A (−1 |I1 ) = (1 |A), so we have

GGT =


1 ζm . . . ζm−1

m

1 (ζ2
m) . . . (ζ2

m)m−1

...
...

1 ζ2
m . . . (ζm

2
)m−1

1 ζm . . . (ζm)m−1




1 1 . . . 1

ζm
(
ζm
)2

. . . ζm

(ζm)2 (ζm
2
)2 . . . ζ2

m
...

...
...

(ζm)m−1 (ζ2
m)m−1 . . . ζm−1

m

 .
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The ith row of G contains the root ζim raised to all powers j for 1 ≤ j ≤ m− 1. This

leads to a permutation of the roots, so each row contains all the mth roots of unity

in some order. A list of all roots is still a list of all roots after conjugation, so the

columns of GT similarly contain all roots.

Consider the (i, j)th element of GGT . This is equal to

1 + ζimζm
j

+ (ζimζm
j
)2 + · · ·+ (ζimζm

j
)m−1 =

{
m [i = j]
0 [i 6= j]

.

When i = j we have 1 + (ζmζm)i + ((ζmζm)i)2 + · · · + ((ζmζm)i)m−1. A root of

unity multiplied by its conjugate is 1, so the (i, i)th element of GGT is equal to

1 + · · ·+ 1 = m. When i 6= j consider each summand. The value ζimζm
j is equal to

a particular mth root of unity not equal to 1, and in each summand it is raised to a

different power in 1, 2, . . .m− 1. The resulting expression is a geometric progression

and hence the sum is (
ζimζm

j
)m
− 1

ζimζm
j − 1

= 0 .

This shows that GGT = mI when m is an odd prime.

Analysis of the map given by the matrix T−1AB on spherical Gaussians.

By the result of Ducas and Durmus [95, Theorem 5], the matrix T−1AB represents

a real-valued map that sends a spherical Gaussian in Q [x] /(Θm(x)) of standard

deviation s to a spherical Gaussian in Rm−1 of standard deviation s
√
m′ = s

√
m,

since for odd m we have m′ = m. In this section we consider the effect of the map

given by T−1AB on a spherical Gaussian in more detail.

We first consider the effect of the map represented by the matrix B = (−1|I1) on a

spherical Gaussian.

Lemma 27. Let I1 be the m1 ×m1 identity matrix, let B = (−1|I1), and let K1 be

the m1 ×m1 matrix with every entry 1. Then BBT = I1 + K1.

Proof: By direct computation we see that

BBT = (−1|I1)

(
−1T

I1

)
=

 2 1
. . .

1 2

 = I1 + K1 .
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�

If X ∼ Nm(0, ρ2I0) is spherically symmetric zero-mean real-valued m-dimensional

normal random variable with component variance ρ2, then mapping this under β, we

see BX ∼ Nm1(0, ρ2BBT ). By diagonalising BBT , which has eigenvalues m (with

multiplicity 1) and 1 (with multiplicity m− 2), we see that a spherically symmetric

error distribution in Q [x] /(Θm(x)) gives an error distribution in Q [x] /(Φm(x)) that

is highly elliptical.

We conclude with an alternative proof of [95, Theorem 5] in the case that m is an

odd prime. In order to do so, we require the following lemmas.

Lemma 28. Let A be the symmetric m1 ×m1 matrix A = (Ajk), where Ajk = ζjkm

for 1 ≤ j, k ≤ m−1, let I1 be the m1×m1 identity matrix and let K1 be the m1×m1

matrix with every entry 1. Then AA = mI1 −K1.

Proof: Considering each entry of AA, we see that

(
AA

)
jk

=
m−1∑
l=1

AjlAlk =
m−1∑
l=1

ζjlmζ
−lk
m =

m−1∑
l=1

ζ l(j−k)
m =

{
m− 1 [j = k]
−1 [j 6= k].

�

Lemma 29. Let A be the symmetric m1 ×m1 matrix A = (Ajk), where Ajk = ζjkm

for 1 ≤ j, k ≤ m − 1, let J1 be the m1 ×m1 matrix with 1s on the reverse diagonal

and 0 elsewhere, and let K1 be the m1×m1 matrix with every entry 1. Then AA =

mJ1 −K1.

Proof: Considering each entry of AA, we see that

(AA)jk =
m−1∑
l=1

AjlAlk =
m−1∑
l=1

ζjlmζ
lk
m =

m−1∑
l=1

ζ l(j+k)
m =

{
m− 1 [j = m− k]
−1 [j 6= m− k].

�

Lemma 30. Let A be the symmetric m1 ×m1 matrix A = (Ajk), where Ajk = ζjkm

for 1 ≤ j, k ≤ m − 1, and let K1 be the m1 ×m1 matrix with every entry 1. Then

AK1 = −K1.
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Proof: Considering each entry of AK1, we see that

(AK1)jk =
m−1∑
l=1

Ajl(K1)lk =
m−1∑
l=1

Ajl · 1 =
m−1∑
l=1

ζjlm = −1 .

�

Lemma 31. Let A be the symmetric m1 ×m1 matrix A = (Ajk), where Ajk = ζjkm

for 1 ≤ j, k ≤ m − 1, and let K1 be the m1 ×m1 matrix with every entry 1. Then

−K1A = K1.

Proof: Using Lemma 30, and the fact that A and K1 are symmetric, we obtain

AK1 = −K1

(AK1)T = −KT
1

K1A = −K1 ,

from which the result follows. �

Lemma 32. Let A be the symmetric m1 ×m1 matrix A = (Ajk), where Ajk = ζjkm

for 1 ≤ j, k ≤ m − 1, and let K1 be the m1 ×m1 matrix with every entry 1. Then

−K1A = K1.

Proof: Using Lemma 30, the fact that K1 is real, and the fact that A and K1 are

symmetric, we obtain

AK1 = −K1

AK1 = −K1

(A ·K1)T = (−K1)T ,

from which the result follows. �

Lemma 33. Let J1 be the m1 ×m1 matrix with 1s on the reverse diagonal and 0

elsewhere and let T be the m1 ×m1 matrix of Definition 26. Then J1T = T.

Proof: The jth row of J1 has entries (J1)j,l = 1 for l = m−j and (J1)j,l = 0 otherwise.

So, when multiplying any m1 ×m1 matrix M on the left by J1, the entries in the

product are given by:

(J1M)jk =
m−1∑
l=1

(J1)jlMlk = Mm−j,k .
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So J1 reflects the rows of M about a line at the midpoint of the matrix.

Let I2 and J2 be the m2 × m2 versions of I1 and J1 respectively. By definition

T = 1√
2

(
I2 iJ2

J2 −iI2

)
and its inverse is T−1 = 1√

2

(
I2 J2

−iJ2 iI2

)
. By Claim 2 in

the proof of [95, Theorem 5],

T = (T−1)T =
1√
2

(
I2 −iJ2

J2 iI2

)
.

So the reflection J1T is given by

J1T =
1√
2

(
I2 iJ2

J2 −iI2

)
= T .

�

We can now restate and give another proof of the result of Ducas and Durmus [95,

Theorem 5] in the case that m is an odd prime.

Theorem 14 ([95]). Let T, A and B be as defined above. Then the matrix T−1AB

represents a real-valued map sending a spherical Gaussian of standard deviation s in

Q [x] /(Θm(x)) to a spherical Gaussian of standard deviation s
√
m′ = s

√
m in Rm−1.

Proof: Recall that T−1 mapsH considered as a subset of Cm−1 to Rm−1 considered as

a subset of Cm−1. Consider Q [x] /(Θm(x)) also as a subset of a complex space. Let Z

be a spherically symmetric real-valued m-dimensional normal random variable with

component variance s2 and mean 0, and let I0 denote them×m identity matrix. Then

Z can be expressed as a complex normal random variable by Z ∼ CNm(0, s2I0, s
2I0),

where both the covariance matrix E
[
ZZ

T
]
and the relation matrix E

[
ZZT

]
are s2I0.
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The complex normal random variable Y = T−1ABZ has covariance matrix

E
[
Y Y

T
]

= s2T−1AB
(
T−1AB

)T
= s2T−1A(BBT )A

(
T−1

)T
= s2T−1A(I1 + K1)AT

= s2T−1(AI1A + AK1A)T

= s2T−1(AA + AK1A)T

= s2T−1(mI1 −K1 + (AK1)A)T

= s2T−1(mI1 −K1 −K1A)T

= s2T−1(mI1 −K1 + K1)T

= s2T−1(mI1)T ,

where to obtain the second line we used Lemma 27, to obtain the fifth line we used

Lemma 28, to obtain the sixth line we used Lemma 30 and to obtain the seventh

line we used Lemma 32.

The complex normal random variable Y = T−1ABZ has relation matrix

E
[
Y Y T

]
= s2T−1AB

(
T−1AB

)T
= s2T−1A(BBT )A

(
T−1

)T
= s2T−1A(I1 + K1)AT

= s2T−1(AI1A + AK1A)T

= s2T−1(AA + AK1A)T

= s2T−1(mJ1 −K1 + (AK1)A)T

= s2T−1(mJ1 −K1 + (−K1A))T

= s2T−1(mJ1 −K1 + K1)T

= s2T−1m(J1T)

= s2T−1mT ,

where we again used Lemma 27 to obtain the second line and Lemma 30 for the

sixth line; and we used Lemma 29 to obtain the fifth line, Lemma 31 to obtain the

seventh line, and Lemma 33 to obtain the ninth line.

Thus we have Y = T−1ABZ ∼ CNm1(0,ms2I1,ms
2I1) is a complex normal random

variable with identical covariance matrix and relation matrix which implies it is real-

valued. In particular it is a zero-mean spherically symmetric real-valued random

variable with component variance ms2, from which the result follows. �
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Homomorphic Encryption
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This chapter considers Ring-LWE-based Fully Homomorphic Encryption schemes.

We consider the choice of parameters for both security and correctness in this set-

ting. We focus on SEAL [93, 146, 58, 59, 60], a somewhat homomorphic encryption

library developed by Microsoft Research that implements the FV scheme of Fan and

Vercauteren [100]. This chapter is based on material presented in [146, 58, 59, 60].

7.1 Introduction to FHE

Several encryption schemes have the property that we can perform certain operations

on ciphertexts, without having access to the secret key, and have these operations
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translate meaningfully to operations on the underlying plaintexts. For example,

when we multiply two ElGamal [98] ciphertexts, we obtain a ciphertext encrypting

the product of the underlying plaintexts. As a second example, when we multiply

two Paillier [184] ciphertexts, we obtain a ciphertext encrypting the sum of the

underlying plaintexts.

Suppose an encryption scheme could be augmented with a homomorphic addition

operation that when applied to two input ciphertexts would produce an output ci-

phertext encrypting the sum of the underlying plaintexts of the input ciphertexts.

Suppose this same scheme could also be augmented with a homomorphic multiplica-

tion operation that when applied to two input ciphertexts would produce an output

ciphertext encrypting the product of the underlying plaintexts of the input cipher-

texts. This scheme would then enable arbitrary computation on encrypted data.

Constructing such a fully homomorphic encryption scheme was a longstanding open

problem since its proposal by Rivest et al. [198] in 1978. It was resolved in 2009 in

Gentry’s seminal work [107].

Homomorphic encryption enables a range of applications [174], which are typically

described in the client-server model. Homomorphic encryption allows a computa-

tionally weak client to outsource computation on their data to a powerful untrusted

server. The client encrypts their data and passes it to the server, along with a de-

scription of the computation they wish to perform. The server operates on the data

homomorphically without access to the secret key, and produces an output cipher-

text that is sent back to the client. The client decrypts this ciphertext to determine

the result of the computation. Since the server only sees an encryption of the data

and never has access to the secret key, the client can be assured that the server does

not learn anything about their data, or indeed the output of the computation.

Gentry’s original scheme [107] begins by specifying a somewhat homomorphic encryp-

tion scheme, in which ciphertexts have a noise, which grows during homomorphic

operations. Gentry then shows how to transform a somewhat homomorphic encryp-

tion scheme into a fully homomorphic encryption scheme using a technique known as

bootstrapping. A large number of somewhat homomorphic cryptosystems have since

been proposed in the literature, for example [41, 42, 44, 48, 47, 100, 112, 153, 212].

Several of these [42, 44, 47, 100] are based on Ring-LWE.
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In the remainder of this thesis we turn our attention to parameter selection in Ring-

LWE-based homomorphic encryption. We focus on the FV scheme of Fan and Ver-

cauteren [100], as implemented in SEAL [93] since version 2.0 [146, 58, 60]. We

describe this scheme in Section 7.1.1.

Ring-LWE-based FHE is particularly interesting from the perspective of selecting

parameters for security as certain attacks may be more effective in this setting.

For example, Albrecht [7] showed his improvements to the standard distinguishing

attack are very effective on the homomorphic encryption implementations HElib [121]

and SEAL v2.0 [146]. We discuss security of Ring-LWE-based FHE schemes in

Section 7.2.

A key issue in Ring-LWE based FHE is appropriate encoding (and corresponding

decoding) of raw data into the plaintext space, which is typically a polynomial ring.

The choice of plaintext space and encoder can affect the performance of the scheme

dramatically. We discuss encoding in detail in Section 7.3.

In homomorphic encryption the setting of parameters to ensure correctness is cru-

cial, due to the presence of noise in ciphertexts. The noise is typically small in a

fresh ciphertext, and grows as homomorphic evaluation operations are performed.

If the noise grows too large, then decryption fails, so a good understanding of the

noise growth behaviour of a homomorphic encryption scheme is essential to choose

appropriate parameters to ensure correctness. In schemes based on LWE and Ring-

LWE, this typically means choosing a very large q coupled with very narrow error

distributions, which is unusual and is another reason why studying the security is so

interesting. We study the noise growth behaviour in SEAL in Section 7.4 respectively.

We conclude by focussing in Sections 7.5 and 7.6 on parameter selection in SEAL

for security, performance and correctness.

7.1.1 SEAL: Implementing the FV scheme

In this section we introduce SEAL, a homomorphic encryption library developed by

Microsoft Research. In application settings such as bioinformatics, the potential user
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of homomorphic encryption is not necessarily an expert in cryptography. SEAL aims

to be accessible to this audience by providing a well-engineered and well-documented

homomorphic encryption library that would be equally easy to use both by experts

in cryptography and by those with little or no cryptographic background. SEAL was

first described by Dowlin et al. [93] and the current version at the time of writing is

SEAL v2.2 [60]. Since SEAL v2.0 [146] the underlying encryption scheme has been

the FV scheme of Fan and Vercauteren [100]. Previously the underlying encryption

scheme was YASHE, which was proposed by Bos et al. [41].

A number of other homomorphic encryption libraries exist, such as HElib [121, 122,

123], PALISADE [2], cuHE [85], TFHE [73] and HEAAN [69]. Homomorphic en-

cryption is implemented as an example application in the lattice library Λ ◦ λ [83].

Among these homomorphic encryption libraries, PALISADE is the only one that also

implements the FV scheme.

Other implementations of FV can be found. For example, an implementation of

FV in R is given by Aslett et al. [26]. FV-NFLlib [1] implements FV on top of

the ideal lattice library NFLlib [163]. Bajard et al. [31] propose a variant of FV

with adaptations to the homomorphic multiplication and decryption operations to

enable a Chinese Remainder Theorem representation of ciphertexts. They provide

an implementation, which is also based on NFLlib, and show that their variant is

faster than FV-NFLlib.

Among the most comparable projects to SEAL is the C++ library HElib, which

implements the BGV scheme [44]. The FV scheme and the BGV scheme are both

based on variants of Ring-LWE. Comparing the respective implementations of BGV

as in HElib and of FV as in SEAL would be a very interesting research direction,

but appears challenging. Many of the challenges relate to appropriate parameter

selection: on the security side, we want to ensure the underlying Ring-LWE instance

is similar; and at the same time we want to pick optimal parameters for performance.

We also want to ensure that we are able to correctly decrypt the output of the

homomorphic evaluation operation being computed.

Table 7.1 lists the parameters that the user in SEAL can select, as well as other

related parameters. For many parameters, default choices are provided for which
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Parameter Description Name in SEAL
(if applicable)

q Modulus in the ciphertext space coeff_modulus
(coefficient modulus)

t Modulus in the plaintext space plain_modulus
(plaintext modulus)

n A power of 2

xn + 1 The polynomial modulus poly_modulus
that specifies the ring R

R The ring Z[x]/(xn + 1)

Ra The ring Za[x]/(xn + 1),
that is, the ring R but with
coefficients reduced modulo a

w A base into which ciphertext
elements are decomposed
during relinearization

logw decomposition_bit_count

` There are `+ 1 = blogw qc+ 1
elements in each component
of each evaluation key

δ Expansion factor in the ring R
(δ ≤ n)

∆ Quotient on division of q by t,
that is, bq/tc

rt(q) Remainder on division of q by t,
that is, q = ∆t+ rt(q) for
0 ≤ rt(q) < t

χ Error distribution (a truncated
discrete Gaussian distribution)

σ Standard deviation of χ noise_standard_deviation

B Bound on the distribution χ noise_max_deviation

Table 7.1: Parameters in SEAL.
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performance is expected to be good. We discuss this in detail in Section 7.5. On

the other hand, the documentation available for HElib [121, 122, 123] does not make

clear how to select optimal parameters for performance, so it is difficult to assure

that a performance comparison with SEAL is fair.

A related issue is that the parameters that the user is required to select in SEAL,

and those that have a default value, are different to those in HElib. It is unclear

whether it is more reasonable to keep the default choices, which may have been

chosen for good performance; or to alter them, for example to choose parameters

that imply similar underlying Ring-LWE instances. For example, the default secret

key distribution in HElib is sparse by default [121], whereas this is not the case in

SEAL. This sparseness potentially enables more attacks, so could be seen as worse

for security. At the same time, the sparseness reduces noise growth and hence may

enable more homomorphic evaluation operations to be performed, so could be seen

as better for performance. We discuss the noise growth behaviour in SEAL in detail

in Section 7.4.

Costache and Smart [76] give a theoretical comparison of the FV, BGV, and YASHE

schemes as well as the LTV scheme [153, 91]. Several works compare two or more

different homomorphic encryption schemes for their suitability for a specific task.

For example, Lepoint and Naehrig [149] compare the use of FV and YASHE for the

homomorphic evaluation of SIMON [32]. Kim and Lauter [138] compare the use of

BGV and YASHE for computations on genomic data.

To the best of our knowledge, there are no works that compare two or more different

implementations of the same homomorphic encryption scheme, for a specific task or

otherwise. Such a comparison would be an interesting direction for future work. We

would expect that, for example, a comparison between SEAL and FV-NFLlib would

be challenging for similar reasons as discussed above for a comparison between SEAL

and HElib, such as ensuring that the choice of parameters gives optimal performance

for both implementations.
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7.1.1.1 The FV Scheme

We now give the definition of the FV scheme as originally presented by Fan and

Vercauteren [100] and in the following subsection we describe how SEAL implements

a slightly more general version of FV. The parameters n, t, q, w and ` are as described

in Table 7.1.

In FV the plaintext space is Rt = Zt[x]/(xn + 1), that is, polynomials of degree less

than n with coefficients modulo t. Ciphertexts in FV are pairs of polynomials in

Rq = Zq[x]/(xn + 1). We denote an FV ciphertext ct = (ct[0], ct[1]). In FV, the

secret key is sampled from the space R2 = {0, 1}[x]/(xn + 1).

Let λ be the security parameter. Let w be a base, and let `+1 = blogw qc+1 denote

the number of terms in the decomposition into base w of an integer in base q. We

will decompose polynomials in Rq into base-w components coefficient-wise, resulting

in `+ 1 polynomials.

The FV scheme contains the following algorithms, described below: SecretKeyGen,

PublicKeyGen, EvaluationKeyGen, Encrypt, Decrypt, Add, and Multiply.

• SecretKeyGen(λ): Sample s $← R2 and output

sk = s .

• PublicKeyGen(sk): Set s = sk, sample a $← Rq and e← χ. Output

pk = ([−(as+ e)]q, a) .

• EvaluationKeyGen(sk, w): for i ∈ {0, . . . , `}, sample ai
$← Rq and ei ← χ.

Output

evk =
(
[−(ais+ ei) + wis2]q, ai

)
.

• Encrypt(pk,m): For the message m ∈ Rt. Let pk = (p0, p1), sample u $← R2

and e1, e2 ← χ. Output

ct = ([∆m+ p0u+ e1]q, [p1u+ e2]q) .

125



7.1 Introduction to FHE

• Decrypt(sk, ct): Set s = sk. Let ct[0] = c0 and ct[1] = c1. Output[⌊
t

q
[c0 + c1s]q

⌉]
t

.

• Add(ct0, ct1): Output

(ct0[0] + ct1[0], ct0[1] + ct1[1]) .

• Multiply(ct0, ct1): Compute

c0 =

[⌊
t

q
ct0[0]ct1[0]

⌉]
q

,

c1 =

[⌊
t

q
(ct0[0]ct1[1] + ct0[1]ct1[0])

⌉]
q

,

c2 =

[⌊
t

q
ct0[1]ct1[1]

⌉]
q

.

Let evk[i][0] = [−(ais + ei) + wis2]q and evk[i][1] = ai. Express c2 in base w

as c2 =
∑`

i=0 c
(i)
2 wi. Set

c′0 = c0 +
∑̀
i=0

evk[i][0]c
(i)
2 ,

c′1 = c1 +
∑̀
i=0

evk[i][1]c
(i)
2 .

Output

(c′0, c
′
1) .

7.1.1.2 How SEAL differs from FV

Some operations in SEAL are done slightly differently, or in slightly more generality,

than in textbook FV. In this section we discuss these differences in detail.

Plaintext space and ciphertext space. Plaintext elements in SEAL are polyno-

mials in Rt, just as in textbook FV. Ciphertexts in SEAL are formed of polynomials

in Rq. In FV ciphertexts are formed of a pair of polynomials, so we say the ci-

phertext has size 2. In SEAL a ciphertext of any size greater than or equal 2 can

be valid. Note that because we consider well-formed ciphertexts of arbitrary length
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valid, we automatically lose the compactness property of homomorphic encryption.

Roughly speaking, compactness states that the decryption circuit should not depend

on ciphertexts, or on the function being evaluated [24].

Key Distribution. In textbook FV the secret key is a polynomial sampled uni-

formly from R2 so it is a polynomial with coefficients in {0, 1}. In SEAL the secret

key is sampled uniformly from R3 so it is a polynomial with coefficients in {−1, 0, 1}.

Decryption. A SEAL ciphertext ct = (c0, . . . , ck) is decrypted by computing[⌊
t

q
[ct(s)]q

⌉]
t

=

[⌊
t

q

[
c0 + · · ·+ cks

k
]
q

⌉]
t

.

In textbook FV, decryption of a ciphertext ct = (c0, c1) involves computing c0 +c1s.

To make clear the generalisation of FV in SEAL it is convenient to think of each

ciphertext component as corresponding to a particular power of the secret key s, so

that the ci term is associated with si for 0 ≤ i ≤ k, as can be seen in the decryption

description. This generalises the situation in textbook FV, where the c0 term is

associated with s0 = 1 and the c1 term is associated with s1.

Multiplication. The Multiply function in FV has two steps: the first step com-

putes the intermediate object (c0, c1, c2), and the second step uses the evaluation

key to transform this into an output ciphertext (c′0, c
′
1). Such a transformation is

called relinearization. In fact, the intermediate object (c0, c1, c2) can be decrypted

using the generalised decryption formula above. Hence, the relinearization step is

not necessary for correctness of homomorphic multiplication and (c0, c1, c2) is a valid

ciphertext in SEAL. Nonetheless, (c0, c1, c2) is not a valid ciphertext in FV because

it is of size 3, and so relinearization is necessary in FV to obtain a valid ciphertext

(c′0, c
′
1) of size 2.

In SEAL, the two steps are decoupled. The Multiply function implements the first

step and outputs the intermediate ciphertext. The function Relinearize imple-

ments the second step and outputs a ciphertext of smaller size encrypting the same

underlying plaintext.
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Indeed SEAL allows a generalised version of the first step of multiplication so even

larger ciphertexts can be produced. In particular, let ct1 = (c0, c1, . . . , cj) and

ct2 = (d0, d1, . . . , dk) be two SEAL ciphertexts of sizes j + 1 and k+ 1, respectively.

Let the ciphertext ctmult output by Multiply(ct1, ct2), which is of size j + k + 1,

be denoted ctmult = (C0, C1, . . . , Cj+k). The polynomials Cm ∈ Rq are computed as

Cm =

[⌊
t

q

( ∑
r+s=m

crds

)⌉]
q

.

Relinearization. The goal of relinearization in FV is to decrease the size of the

ciphertext back to 2 after it has been increased by multiplication. Since ciphertexts in

SEAL are allowed to grow arbitrarily in size, and it is possible to decrypt a ciphertext

of any size at least 2, the relinearization operation is generalised accordingly. In

particular, the function Relinearize in SEAL takes an input ciphertext of any size k,

and appropriate evaluation keys, and outputs a ciphertext of size j where 2 ≤ j < k.

The output ciphertext encrypts the same message as the input ciphertext, but can

be decrypted using a smaller degree decryption function.

We give an intuition of the relinearization process in FV (the second step of the

multiplication operation) and explain how it is generalised in SEAL. Suppose we

have a size 3 ciphertext (c0, c1, c2) that we want to convert into a size 2 ciphertext

(c′0, c
′
1) that decrypts to the same result. Suppose we are also given a candidate

evaluation key pair evk =
(
[−(as+ e) + s2]q, a

)
, where a $← Rq, and e ← χ. Now

set c′0 = c0 +evk[0]c2, c′1 = c1 +evk[1]c2, and define the output to be the pair (c′0, c
′
1).

Interpreting this as a size 2 ciphertext and decrypting it yields

c′0 + c′1s = c0 + (−(as+ e) + s2)c2 + c1s+ ac2s = c0 + c1s+ c2s
2 − ec2 .

This is almost what is needed, that is to say c0 + c1s + c2s
2, except for the extra

additive term ec2. This can be considered as the noise incurred in relinearization: as

with any homomorphic evaluation operation, the relinearization process adds noise.

Unfortunately, since c2 has coefficients up to size q, the noise added may be extremely

large and thus we would expect decryption to fail.

Instead we use the classical solution of writing c2 in terms of some smaller base

w (see for example [48, 44, 42, 100]) as c2 =
∑`

i=0 c
(i)
2 wi. Instead of having just
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one evaluation key pair as above, suppose we have ` + 1 such pairs constructed as

in Section 7.1.1.1. Then we can show that setting c′0 and c′1 as in Section 7.1.1.1

successfully replaces the large additive term that appeared in the naive approach

above with a term of size linear in w.

This same idea can be generalised to relinearizing a ciphertext of any size k + 1

to size k ≥ 2, as long as a generalised set of evaluation keys is generated in the

EvaluationKeyGen(sk, w) function. Namely, suppose we have a set of evaluation

keys evk2 (corresponding to s2), evk3 (corresponding to s3) and so on up to evkk
(corresponding to sk), each generated as in Section 7.1.1.1. Then relinearization

reduces the ciphertext (c0, c1, . . . , ck) in size by one, producing (c′0, c
′
1, . . . , c

′
k−1),

where

c′0 = c0 +
∑̀
i=0

evkk[i][0]c
(i)
k ,

c′1 = c1 +
∑̀
i=0

evkk[i][1]c
(i)
k ,

and c′j = cj for 2 ≤ j ≤ k−1. This process is then iterated as many times as desired.

Addition. We also need to generalise addition to be able to operate on ciphertexts

of any size and this is implemented with the function Add. Suppose we have two

SEAL ciphertexts ct1 = (c0, . . . , cj) and ct2 = (d0, . . . dk), encrypting plaintexts m1

and m2, respectively. Suppose without loss of generality that j ≤ k. Then

ctadd = ([c0 + d0]q, . . . , [cj + dj ]q, dj+1, . . . , dk)

encrypts [m1 +m2]t.

Other operations. SEAL implements various other homomorphic operations for

the user’s convenience. The function Sub implements subtraction, which is entirely

analogous to addition. Suppose ct1 = (c0, . . . , cj) and ct2 = (d0, . . . dk) encrypt

plaintexts m1 and m2, respectively. Suppose without loss of generality that j ≥ k.

Then

ctadd = ([c0 − d0]q, . . . , [ck − dk]q, cj+1, . . . , ck)

encrypts [m1 −m2]t.
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7.2 Security of Ring-LWE based FHE schemes

There is also a Negate function that takes as input a ciphertext ct = (c0, c1, . . . , ck)

encrypting a message m and outputs a ciphertext ctneg encrypting [−m]t. This is

obtained by simply negating each component ci for 0 ≤ i ≤ k, so

ctneg = (−c0,−c1, . . . ,−ck) .

Some applications of homomorphic encryption involve working with data that does

not need to be protected. For example, when wishing to homomorphically compute

a weighted average of some encrypted data, the weights themselves may be pub-

lic values. The functions AddPlain and MultiplyPlain give the user flexibility in

such scenarios as they can be used to improve performance over first encrypting the

plaintext and then performing the usual homomorphic addition or multiplication.

For example, a MultiplyPlain operation incurs much less noise to the ciphertext

than the usual Multiply.

Given as input a ciphertext ct = (c0, c1, . . . , ck) encrypting a plaintext polynomial

m and an unencrypted plaintext polynomial maddp, the function AddPlain outputs a

ciphertext ctaddp encrypting [m+maddp]t. To form this ciphertext, we multiplymaddp

by ∆ and add this to the c0 part of ct. That is, ctaddp = (c0 + ∆maddp, c1, . . . , ck).

Similarly the function MultiplyPlain takes as input a ciphertext ct = (c0, c1, . . . , ck)

encrypting a plaintext polynomialm and an unencrypted plaintext polynomialmmultp

and outputs a ciphertext ctmultp encrypting [m ·mmultp]t. This is obtained by mul-

tiplying each component ci in the ciphertext by mmultp for 0 ≤ i ≤ k; that is,

ctmultp = (mmultp · c0,mmultp · c1, . . . ,mmultp · ck).

7.2 Security of Ring-LWE based FHE schemes

The d-sample Decision Ring-LWE problem asks an adversary to distinguish whether

a set of d samples was chosen according to a Ring-LWE distribution or uniformly

at random. This reflects the situation in practice where an attacker would not nec-

essarily have unlimited access to an oracle generating samples. It has been shown

that solving the d-sample Decision Ring-LWE problem is equally as hard as solving

the (d − 1)-sample Decision Ring-LWE problem with the secret s instead sampled
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7.2 Security of Ring-LWE based FHE schemes

from the error distribution [159]. Furthermore, in the case of LWE (not Ring-LWE),

it is possible to argue [114] that the problem is equally as hard even if s is sam-

pled from almost any narrow distribution with enough entropy, such as the uniform

distribution on R2 or R3.

It can be shown that the FV scheme is IND-CPA secure [115] if Decision Ring-

LWE with binary secret is hard. For brevity we omit formal definitions of notions

of security, and refer the reader to [34]. Roughly speaking, for a scheme that is

IND-CPA secure, a ciphertext reveals nothing about the underlying plaintext to an

adversary who is given only the ciphertext and the corresponding public key. This is

exactly the property that we desire in the FHE setting, where we as the client wish to

outsource computation on our encrypted data to an untrusted server, in such a way

that the server cannot learn our data. A notion such as IND-CCA2 security [193],

while stronger, would not make sense in this context, since FHE ciphertexts are

malleable by design.

The FV scheme is an augmented version of an encryption scheme due to Lyuba-

shevsky et al. [157] and inherits its IND-CPA security from that scheme [100]. In

turn, SEAL inherits its IND-CPA security from FV.

We now sketch the security argument in the case of FV. The FV public key is

of the form (p0, p1) = (−(as + e), a), which is exactly a small secret Ring-LWE

sample, so the FV public key is indistinguishable from uniform assuming the hardness

of the 1-sample small secret variant of Decision Ring-LWE, and we can say the

first component p0 looks pseudorandom. Now consider the first element of a fresh

ciphertext pair, which is of the form ∆m + p0u + e1. This is formed of a term ∆m

depending deterministically on the message and a masking term p0u+ e1. Consider

the masking term: u is chosen from the Ring-LWE secret distribution, e1 is from the

Ring-LWE error distribution, and by the above argument, p0 looks pseudorandom.

So this the masking term is indistinguishable from a term of the form a1u+e1 where

a1 is uniformly random, which is exactly a small secret Ring-LWE sample. Thus the

first element of a ciphertext pair is a message term masked by something that looks

pseudorandom if Decision Ring-LWE is hard, and hence itself looks pseudorandom.

The second element of a ciphertext pair has the form au + e2 where a is uniformly

random, u is the same as before and e2 is from the Ring-LWE error distribution so
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7.2 Security of Ring-LWE based FHE schemes

n q α usvp dec dual
2048 260 − 214 + 1 8.0/q 125.9 127.4 118.8
4096 2116 − 218 + 1 8.0/q 127.5 125.5 121.7
8192 2226 − 226 + 1 8.0/q 130.0 126.3 124.1
16384 2435 − 233 + 1 8.0/q 135.3 130.7 130.2
32768 2889 − 254 − 253 − 252 + 1 8.0/q 132.8 127.6 127.4

Table 7.2: Default pairs (n, q) in SEAL v2.2 and estimated log of cost of attacks
according to commit f13c4a7 of the LWE estimator called with small secret and
m = 2n samples.

this is exactly a small secret Ring-LWE sample, and hence also looks pseudorandom if

small secret Decision Ring-LWE is hard. We conclude that the entire FV ciphertext is

indistinguishable from random assuming the hardness of the 3-sample Decision Ring-

LWE problem, or rather the hardness of the 2-sample small secret variant described

above, and the assumed uniformity of the public key.

The above argument omits the fact that we also need to make a weak circular security

assumption [100]. Observe that the evaluation keys, which must be made public so

that relinearization can be performed, are essentially maskings of powers of the secret

key. Indeed, we can think of the evaluation keys as an encryption of (some power of)

the secret key under the secret key itself. Unfortunately, it is not possible to argue

the uniformity of the evaluation key based on a Decision Ring-LWE assumption, so

we must make the extra assumption that the encryption scheme is secure even when

the adversary has access to all of the evaluation keys that may exist.

In order to try to pick parameters in Ring-LWE-based schemes (FHE or otherwise)

that we hope are sufficiently secure, we can choose parameters such that the un-

derlying Ring-LWE instance should be hard to solve according to known attacks.

Each Ring-LWE sample can be used to extract n LWE samples. To the best of

our knowledge, the most powerful attacks against d-sample Ring-LWE all work by

instead attacking the nd-sample LWE problem. When estimating the security of

a particular set of Ring-LWE parameters we therefore estimate the security of the

induced set of LWE parameters. To illustrate this, in Table 7.2 we estimate security

of the SEAL default parameters using commit f13c4a7 of the LWE estimator [6].

In FHE schemes based on Ring-LWE, q is typically very large, to enable several

homomorphic evaluation operations to be performed before the noise grows too large.
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7.3 Encoding in Ring-LWE based FHE schemes

An interesting question is to ask how large q can be before security is lost. The

hardness of LWE with q that is exponential in n has been considered in a number of

works [185, 45, 145]. Laine and Lauter [145] prove that when q is exponential in n,

Babai’s Nearest Plane algorithm with LLL as precomputation is sufficient to solve

LWE. They implement their attack and observe that performance is better in practice

than their proof would suggest. For example, they report that the secret key of an

LWE instance with n = 350, q = 252 and αq = 8 was recovered in approximately 4

days. For comparison, dual attack the same instance would take approximately 228

operations according to the LWE estimator (commit f13c4a7).

Bonnoron and Fontaine [38] ran similar experiments to [145]. They use a decoding

approach following [152], using enumeration, in a lattice obtained from an embedding

similar to that described by Bai and Galbraith [29]. A basis for the embedding is

constructed directly, then is reduced using LLL or BKZ with a small block size, such

as 20, and then the enumeration is performed. It is observed that Babai’s Nearest

Plane is sufficient for the enumeration step in the experiments, and it is argued that

this is because the error norm is so small compared to q. The authors conclude that

specialised variants of attacks on LWE could be more effective than generic ones in

the case of LWE-based FHE, where the error distribution is typically narrow and q

is typically large, and call for more research in this area.

7.3 Encoding in Ring-LWE based FHE schemes

In Ring-LWE-based FHE, plaintext elements are very often polynomials in Rt =

Zt[x]/(xn + 1) for an integer modulus t. A polynomial plaintext modulus x − b for

an integer b is considered for example by Chen et al. [61] in the context of the FV

scheme [100], but in this thesis we always use an integer plaintext modulus t.

Homomorphic operations on ciphertexts are reflected on the plaintext side as corre-

sponding (multiplication and addition) operations in the ring Rt. In typical appli-

cations of homomorphic encryption, the user would want to perform computations

not on polynomials but rather on data in the form of integers or rational numbers.

The solution is a suitable encoding map, converting the user’s inputs to polynomials

in Rt; and a corresponding decoding map, converting the resulting plaintext back
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7.3 Encoding in Ring-LWE based FHE schemes

into an integer or rational number. In order for the operations on ciphertexts to re-

flect the operations on the inputs, the encoding and decoding maps need to respect

addition and multiplication.

Encoding is a highly non-trivial task that has been considered in a number of

works [174, 93, 78, 69, 68, 77]. Clearly since Rt is finite, we can only hope to encode

and decode a finite subset of integers. If the subset is large enough, then this would

be sufficient in principle. However, there is still a problem, because no non-trivial

finite subset of Z is closed under additions and multiplications, so we have to settle

for something that does not respect an arbitrary number of homomorphic operations.

Therefore one must be aware of the type of encoding that is used, and perform only

operations such that the underlying plaintexts throughout the computation remain

possible to decode.

Perhaps the simplest possible encoder is the scalar encoder. Given an integer a,

we simply encode a as the constant polynomial a ∈ Rt. Obviously we can only

encode integers modulo t in this manner. Decoding amounts to reading the constant

coefficient of the polynomial and interpreting that as an integer. The problem is

that as soon as the underlying plaintext polynomial (constant) wraps around t at

any point during the computation, we are no longer doing integer arithmetic, but

rather modulo t arithmetic, and decoding might yield an unexpected result. This

means that a large t must be chosen, which can be undesirable for noise growth.

The scalar encoder would typically not be used in practice, since it is wasteful in the

sense that only one coefficient of a huge polynomial is used to encode and encrypt a

small integer. Other encoders, such as the ones we describe below, are more efficient

in the sense that many coefficients are used to encode each integer. This means that

the size of each nonzero coefficient is smaller than in the scalar encoder case, and

hence a smaller t can be chosen. Another method to encode data efficiently is so-

called batching [205, 43]. This technique, widely used in applications [108, 110, 86,

113], packs many integers into a single plaintext polynomial. The integers are each

encoded into a plaintext slot and are subsequently operated on in a Single Instruction

Multiple Data (SIMD) manner.

SEAL implements a family of encoders for encoding integers, parameterised by an
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integer base β ≥ 2. The case β = 2 corresponds to a binary encoding. The binary

encoder encodes an integer a in the range [−(2n− 1), 2n− 1] as follows. It forms the

binary expansion of |a|, say an−1 . . . a1a0, and outputs the polynomial

sign(a) ·
(
an−1x

n−1 + . . .+ a1x+ a0

)
.

Decoding amounts to evaluating a plaintext polynomial at x = 2. When β is set to

some integer larger than 2, instead of a binary expansion a balanced base-β expansion

is used [93]. Decoding is performed by evaluating a plaintext polynomial at x = β.

Note that with β = 3 the integer encoder provides encodings with equally small

norm as with β = 2, but with a more compact representation, as it does not waste

space in repeating the sign for each non-zero coefficient. Larger β provide even more

compact representations, but at the cost of increased coefficients. In most common

applications taking β = 2 or 3 is a good choice, and there is little difference between

these two. Recently, Cheon et al. [68] showed that using a Non-Adjacent Form

encoding [197] can be more efficient than a binary encoding or a balanced base-3

encoding.

There are two prominent methods to encode rational numbers. Each has similar

performance and limitations, but the methods are not equivalent [59]. One way

is to simply scale all rational numbers to integers, encode them using an integer

encoder as described above, and record the scaling factor in the clear as a part of

the ciphertext. We then need to keep track of the scaling during computations,

which results in some inefficiency. As an alternative, SEAL implements a family

of fractional encoders [93], where such bookkeeping is not required. This family of

encoders is again parameterised by a base β ≥ 2, the function of which is exactly

the same as in the integer case.

Example 1. We encode the rational number 5.8125 using a fractional encoder with

base β = 2 and polynomial modulus n. We first express it as a binary expansion

5.8125 = 22 + 20 + 2−1 + 2−2 + 2−4 .

The integer part is encoded as usual with the integer binary encoder, obtaining the

polynomial x2 + 1. For the fractional part, we add n to each exponent, and convert

it into a polynomial by changing the base 2 into the variable x. Finally, we flip the

signs of each of the terms, in this case obtaining −xn−1−xn−2−xn−4. The encoding

of the fractional part is then added to the encoding of the integer part, to obtain the

polynomial −xn−1 − xn−2 − xn−4 + x2 + 1.
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In Example 1, we were fortunate that the rational number 5.8125 had a finite binary

expansion. Often, the rational number we wish to encode does not have a finite base-

β expansion. In this case we allocate some number nf of the topmost coefficients

of the plaintext polynomial coefficients to correspond to the (truncated) fractional

part, and reserve the lowest ni coefficients for the integer part. Homomorphic mul-

tiplication will cause the fractional parts of the underlying plaintext polynomials to

expand down towards the integer part, and the integer part to expand up towards

the fractional part. The decoding process interprets the lowest ni coefficients as the

integer part, and all remaining n−ni coefficients as belonging to the fractional part,

so if the two parts become mixed, decoding will fail.

7.4 Noise growth in SEAL

In this section we give a thorough discussion of the noise growth behaviour of SEAL.

This section is based on, and extends, material presented in [146, 58, 60]. We consider

both the inherent noise and the invariant noise, which we now define.

Definition 32. Let ct = (c0, c1, . . . , ck) be a ciphertext encrypting the message m ∈
Rt. Its inherent noise is the unique polynomial vinh ∈ R with smallest infinity norm

such that, for some integer coefficient polynomial a,

ct(s) = c0 + c1s+ · · ·+ cks
k = ∆m+ vinh + aq .

Definition 33. Let ct = (c0, c1, . . . , ck) be a ciphertext encrypting the messagem ∈ Rt.
Its invariant noise v is the polynomial with the smallest infinity norm such that, for

some integer coefficient polynomial a,

t

q
ct(s) =

t

q

(
c0 + c1s+ · · ·+ cks

k
)

= m+ v + at .

The two definitions are related in the following way.

Lemma 34. Let ct be a ciphertext encrypting the message m ∈ Rt. The invariant

noise v and the inherent noise vinh are related as

v =
t

q
vinh −

rt(q)

q
m .
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Proof: By definition of inherent noise,
t

q
ct(s) =

t

q

(
c0 + c1s+ · · ·+ cks

k
)

=
t

q
(∆m+ vinh + aq)

=
q − rt(q)

q
m+

t

q
vinh + at ,

from which the result follows by definition of invariant noise. �

Once the (invariant or inherent) noise in a ciphertext becomes too large, the cipher-

text becomes impossible to decrypt even with the correct secret key. We now state

a bound on the inherent noise such that a ciphertext decrypts correctly.

Lemma 35. A SEAL ciphertext ct encrypting a message m can be correctly de-

crypted as long as the inherent noise satisfies ‖vinh‖ < q
2t −

t
2 .

Proof: Consider a ciphertext ct = (c0, c1, . . . , ck) encrypting the message m under a

secret key s. By definition of inherent noise, for some integer coefficient polynomial

a, we have c0 + c1s+ · · ·+ cks
k = ∆m+ vinh + aq. The decryption function outputs

m′ =

[⌊
t

q

[
c0 + c1s+ · · ·+ cks

k
]
q

⌉]
t

=

[⌊
t

q
[∆m+ vinh + aq]q

⌉]
t

=

[⌊
t

q

(
∆m+ vinh + a′q

)⌉]
t

=

[⌊
t

q
(∆m+ vinh) + a′t

⌉]
t

=

[⌊
t

q
(∆m+ vinh)

⌉
+ a′t

]
t

=

[⌊
t

q
(∆m+ vinh)

⌉]
t

=

[⌊
q − rt(q)

q
m+

t

q
vinh

⌉]
t

=

[⌊
m− rt(q)

q
m+

t

q
vinh

⌉]
t

,

where a′ is an integer coefficient polynomial accounting for the reduction modulo q

in line 2. This means that m′ = m in Rt as long as the terms − rt(q)
q m + t

qvinh are

removed by the rounding. In other words, it suffices that∥∥∥∥−rt(q)q m+
t

q
vinh

∥∥∥∥ < 1

2
.
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If ‖vinh‖ < q
2t −

t
2 then∥∥∥∥−rt(q)q m+

t

q
vinh

∥∥∥∥ ≤ ∥∥∥∥−rt(q)q m

∥∥∥∥+

∥∥∥∥ tq vinh
∥∥∥∥

≤ rt(q)

q
‖m‖+

t

q
‖vinh‖

<
t

q
· t

2
+
t

q

(
q

2t
− t

2

)
≤ t2

2q
+

1

2
− t2

2q

=
1

2
.

�

It is stated in [58, 100] is that the bound ‖vinh‖ < ∆
2 is sufficient for correct de-

cryption. A detailed proof of this claim was not given in [100]. In [58], the proof

only shows that it suffices to require ‖vinh‖ < q
2t − t. It is subsequently shown that

q
2t − t <

∆
2 , from which the bound ‖vinh‖ < ∆

2 is incorrectly concluded. We note

that the requirement ‖vinh‖ < q
2t − t is obtained using the bound ‖m‖ < t. Using

‖m‖ < t
2 , the same bound ‖vinh‖ < q

2t −
t
2 as in Lemma 35 would be obtained.

Note that q
2t −

t
2 = q−t2

2t < q−t
2t ≤

q−rt(q)
2t = ∆

2 . Therefore proving the bound

‖vinh‖ ≤ ∆
2 would be stronger than the maximal inherent noise bound proved in

Lemma 35. Using the same argument as Lemma 35 and the bound ‖vinh‖ < ∆
2 , we

can only show ∥∥∥∥−rt(q)q m+
t

q
vinh

∥∥∥∥ ≤ rt(q)

q
‖m‖+

t

q
‖vinh‖

≤ t

q
· t

2
+
t

q
· ∆

2

=
t2

2q
+
q − rt(q)

2q

=
1

2
+
t2 − rt(q)

2q
.

Since t2−rt(q)
2q > t2−t

2q > 0 this does not show that the rounding error is necessarily

bounded above by 1
2 .

In the proof of Lemma 35 the goal was to bound the inherent noise such that the

rounding procedure in decryption returns a message equal to m modulo t. If the
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inherent noise is too large, there will be a rounding error and hence decryption

failure. The invariant noise v captures this intuition, since v is exactly the term that

is rounded away in the decryption process. We see this in Lemma 36.

Lemma 36. A SEAL ciphertext ct encrypting a message m can be correctly de-

crypted if the invariant noise v satisfies ‖v‖ < 1
2 .

Proof: Let ct = (c0, c1, . . . , ck). By definition of invariant noise, for some polynomial

a with integer coefficients, we have t
q

(
c0 + c1s+ · · ·+ cks

k
)

= m+ v+ at. For some

polynomial A with integer coefficients, the decryption function computes:

em′ =

[⌊
t

q

[
c0 + c1s+ · · ·+ cks

k
]
q

⌉]
t

=

[⌊
t

q

(
c0 + c1s+ · · ·+ cks

k +Aq
)⌉]

t

=

[⌊
t

q

(
c0 + c1s+ · · ·+ cks

k
)

+At

⌉]
t

=

[⌊
t

q

(
c0 + c1s+ · · ·+ cks

k
)⌉

+At

]
t

=

[⌊
t

q

(
c0 + c1s+ · · ·+ cks

k
)⌉]

t

= [bm+ v + ate]t
= [m+ bve]t .

Hence m′ = m modulo t if v is removed by the rounding. Therefore decryption is

successful if ‖v‖ < 1
2 . �

The invariant noise in a fresh ciphertext is typically an extremely small fraction,

which grows to at most 1
2 as homomorphic evaluation operations are performed.

Such small fractions could be difficult to work with. Moreover, in practice it is more

convenient to talk about how much invariant noise we have left, the invariant noise

budget, until decryption will fail. For example, this enables us to determine if we

expect to be able to perform another homomorphic multiplication.

Definition 34. Let v be the invariant noise of a ciphertext ct. Then the invariant

noise budget of ct is − log2(2‖v‖).

Lemma 37. A SEAL ciphertext ct encrypting a message m can be correctly de-

crypted if the invariant noise budget of ct is positive.
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As we have seen, if the noise in a ciphertext grows too large then it will not decrypt

correctly. It therefore is essential to understand the noise growth behaviour of ci-

phertexts under homomorphic evaluation operations in order to choose parameters

to ensure correctness. In the following subsections we will provide detailed bounds

for the inherent and invariant noise growth behaviour for various homomorphic eval-

uation operations possible in SEAL. Some of the inherent noise bounds involve rt(q),

the remainder of the coefficient modulus q on division by the plaintext modulus t.

Since 0 ≤ rt(q) < t, in the worst case this is equal to t−1 (where t may typically be 6

or 8 bits in size). However in practice the parameters q and t are often chosen so that

rt(q) = 1, and so the inherent noise growth will be smaller than the bounds would

suggest. We use the worst case bound for rt(q) to highlight the difference between

noise growth behaviour when comparing the inherent noise and the invariant noise.

However, in the derivations of the noise bounds it should be clear where the rt(q)

terms have been upper bounded by t and so we could produce tighter estimates for

the inherent noise growth behaviour if we knew the parameters would be such that

rt(q) was very small.

7.4.1 Inherent noise growth analysis

In this subsection we analyse the inherent noise growth behaviour for the various

homomorphic evaluation operations that can be performed in SEAL. We begin with

bounding the initial inherent noise in a fresh ciphertext.

Lemma 38 ([100]). Let ct = (c0, c1) be a fresh encryption of a message m ∈ Rt.
The inherent noise vinh in ct satisfies

‖vinh‖ ≤ B(1 + 2δ) .

Proof: Let ct = (c0, c1) be a fresh encryption of m under the public key pk =

(p0, p1) = ([−(as+ e)]q, a). Then, for some integer coefficient polynomials k0, k1, k2,

c0 + c1s = ∆m+ p0u+ e1 + k0q + p1us+ e2s+ k1qs

= ∆m+ (−as− e+ k2q)u+ e1 + aus+ e2s+ k0q + k1qs

= ∆m− asu− eu+ e1 + aus+ e2s+ q(k0 + k1s+ k2u)

= ∆m− eu+ e1 + e2s+ q(k0 + k1s+ k2u) ,
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so the inherent noise is

vinh = e1 − e · u+ e2 · s .

To bound ‖vinh‖, we use the fact that the error polynomials sampled from χ have

coefficients bounded by B, and that ‖s‖ = ‖u‖ = 1. Then

‖vinh‖ ≤ B(1 + 2δ) .

�

Next we consider the inherent noise growth in a homomorphic addition operation.

Lemma 39. Let ct1 = (c0, c1, . . . , cj) and ct2 = (d0, d1, . . . , dk) be two ciphertexts

encrypting m1,m2 ∈ Rt, and having inherent noises v1inh , v2inh, respectively. Then

the inherent noise vaddinh in their sum ctadd satisfies

‖vaddinh‖ ≤ t+ ‖v1inh‖+ ‖v2inh‖ .

Proof: By definition of homomorphic addition, ctadd encrypts [m1 + m2]t. Let

[m1 + m2]t = m1 + m2 + a0t for some integer coefficient polynomial a0. Note that

‖m1‖ < t/2 and ‖m2‖ < t/2 so ‖m1 +m2‖ ≤ ‖m1‖+ ‖m2‖ ≤ t. Therefore ‖a0‖ ≤ 1.

Suppose without loss of generality that max (j, k) = j, so that

ctadd = (c0 + d0, . . . , ck + dk, ck+1, . . . cj) .

By definition of inherent noise in ct1 and ct2, we have

ct1(s) = ∆m1 + v1inh + a1q ,

ct2(s) = ∆m2 + v2inh + a2q ,
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for some polynomials a1, a2 with integer coefficients, so

ctadd(s) = (c0 + d0) + (c1 + d1)s+ · · ·+ cjs
j

= c0 + c1 · s+ . . . cj · sj + d0 + d1 · s+ · · ·+ dk · sk

= ct1(s) + ct2(s)

= ∆m1 + v1inh + a1q + ∆m2 + v2inh + a2q

= ∆(m1 +m2) + v1inh + v2inh + (a1 + a2)q

= ∆([m1 +m2]t − a0t) + v1inh + v2inh + (a1 + a2)q

= ∆[m1 +m2]t − a0∆t+ v1inh + v2inh + (a1 + a2)q

= ∆[m1 +m2]t − a0(q − rt(q)) + v1inh + v2inh + (a1 + a2)q

= ∆[m1 +m2]t + a0 · rt(q) + v1inh + v2inh + (a1 + a2 − a0)q .

Thus the inherent noise vaddinh = a0 ·rt(q)+v1inh+v2inh . We can bound this inherent

noise as follows:

‖vaddinh‖ = ‖a0 · rt(q) + v1inh + v2inh‖

≤ ‖a0‖ · rt(q) + ‖v1inh‖+ ‖v2inh‖

≤ rt(q) + ‖v1inh‖+ ‖v2inh‖

≤ t+ ‖v1inh‖+ ‖v2inh‖ .

�

Next we consider the inherent noise growth in homomorphic multiplication.

Lemma 40. Let ct1 = (x0, . . . , xj1) be a ciphertext of size j1 + 1 encrypting m1

with inherent noise v1inh, and let ct2 = (y0, . . . , yj2) be a ciphertext of size j2 + 1

encrypting m2 with inherent noise v2inh . Let J = j1 + j2. Then the inherent noise

vmultinh in the product ctmult satisfies the following bound:

vmultinh ≤
δJ+1 − 1

2(δ − 1)
+
t2δ(δj2+1 + δj1+1 − 2)

4(δ − 1)
+

2δt2 + t

2
− 3δt3

4q

+

(
δt+

δt(δj2+1 − 1)

2(δ − 1)
+
δt2

2q

)
‖V1‖+

(
δt+

δt(δj1+1 − 1)

2(δ − 1)
+
δt2

2q

)
‖V2‖

+

(
3δt

q

)
‖V1‖ · ‖V2‖ .

Proof: By definition of homomorphic multiplication the output ciphertext ctmult =

(c0, . . . cJ) is of size J + 1 and, for 0 ≤ i ≤ J , ci is such that for some polynomials εi
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with coefficients in
(
−1

2 ,
1
2

]
, and for some polynomials Ai with integer coefficients:

ci =

[⌊
t

q

( ∑
k+l=i

xkyl

)⌉]
q

=

⌊
t

q

( ∑
k+l=i

xkyl

)⌉
+Aiq

=
t

q

( ∑
k+l=i

xkyl

)
+ εi +Aiq .

For some polynomial b with integer coefficients, [m1m2]t = m1m2 + bt. We can

bound ‖b‖ as follows:

‖b‖ =
1

t
‖[m1m2]t −m1m2‖

≤ 1

t
(‖[m1m2]t‖+ ‖m1m2‖)

≤ 1

t

(
t

2
+ δ · ‖m1‖ · ‖m2‖

)
≤ 1

t

(
t

2
+ δ · t

2
· t

2

)
=

1

2
+
δt

4
.

By definition of inherent noise in ct1 and ct2, we have for some polynomials a1, a2

with integer coefficients:

ct1(s) = ∆m1 + v1inh + a1q

ct2(s) = ∆m2 + v2inh + a2q .

For the remainder of the proof, we denote by V1 the inherent noise v1inh of ct1 and

similarly we denote by V2 the inherent noise v2inh of ct2.

By writing ai = 1
q (cti(s)−∆mi − Vi) and recalling that ‖s‖ ≤ 1 we can bound ‖ai‖
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as follows:

‖ai‖ =

∥∥∥∥1

q
(cti(s)−∆mi − Vi)

∥∥∥∥
≤ 1

q
(‖cti(s)‖+ ∆‖mi‖+ ‖Vi‖)

=
1

q
‖cti(s)‖+

∆

q
‖mi‖+

1

q
‖Vi‖

≤ 1

q
‖c0 + c1s+ · · ·+ cjis

ji‖+
∆t

2q
+

1

q
‖Vi‖

≤ 1

q

(
‖c0‖+ δ · ‖c1‖ · ‖s‖+ · · ·+ δji · ‖cji‖ · ‖s‖ji

)
+
q − rt(q)

2q
+

1

q
‖Vi‖

≤ 1

q

(q
2

+ δ · q
2
· 1 + · · ·+ δji · q

2
· 1
)

+
1

2
− rt(q)

2q
+

1

q
‖Vi‖

=
1

2
·
(
1 + δ + · · ·+ δji

)
+

1

2
− rt(q)

2q
+

1

q
‖Vi‖

=
1

2
· δ

ji+1 − 1

δ − 1
+

1

2
− rt(q)

2q
+

1

q
‖Vi‖ .

We will also need the bound:∥∥∥∥∥
J∑
i=0

εis
i

∥∥∥∥∥ = ‖ε0 + ε1s+ ε2s
2 + · · ·+ εJs

J‖

≤ ‖ε0‖+ ‖ε1s‖+ ‖ε2s2‖+ · · ·+ ‖εJsJ‖

≤ ‖ε0‖+ δ‖ε1‖ · ‖s‖+ δ2‖ε2‖‖s‖2 + · · ·+ δJ‖εJ‖‖s‖J

≤ 1

2
+ δ · 1

2
· 1 + δ2 · 1

2
· 1 + · · ·+ δJ · 1

2
· 1

=
1

2

(
1 + δ + δ2 + · · ·+ δJ

)
=

1

2
· δ

J+1 − 1

δ − 1
.

We can determine the inherent noise vmultinh in ctmult as follows:

ctmult(s) =

(
t

q
(x0y0) + ε0 +A0q

)
+ · · ·+

(
t

q
(xj1yj2) + εJ +AJq

)
sJ

=
t

q

J∑
i=0

( ∑
k+l=i

xkyl

)
si +

J∑
i=0

εis
i + q

J∑
i=0

Ais
i

=
t

q
(ct1(s) · ct2(s)) +

J∑
i=0

εis
i + q

J∑
i=0

Ais
i

=
t

q
(∆m1 + V1 + a1q)(∆m2 + V2 + a2q) +

J∑
i=0

εis
i + q

J∑
i=0

Ais
i
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=
t

q

(
∆2m1m2 + ∆m2V1 + ∆m1V2 + V1V2

)
+ ta1V2 + ta2V1

+ ∆t ·m1a2 + ∆t ·m2a1 +
J∑
i=0

εis
i + q

(
J∑
i=0

Ais
i + ta1a2

)

=
∆t

q
·∆m1m2 +

∆t

q
m2V1 +

∆t

q
m1V2 +

t

q
V1V2 + ta1V2 + ta2V1

+ ∆t ·m1a2 + ∆t ·m2a1 +
J∑
i=0

εis
i + q

(
J∑
i=0

Ais
i + ta1a2

)

=
q − rt(q)

q
·∆m1m2 +

q − rt(q)
q

m2V1 +
q − rt(q)

q
m1V2 +

t

q
V1V2 + ta1V2

+ ta2V1 + (q − rt(q)) · (m1a2 +m2a1) +

J∑
i=0

εis
i + q

(
J∑
i=0

Ais
i + ta1a2

)

= ∆m1m2 −
∆ · rt(q)

q
m1m2 +m2V1 −

rt(q)

q
m2V1 +m1V2 −

rt(q)

q
m1V2

+
t

q
V1V2 + ta1V2 + ta2V1 − rt(q)m1a2 − rt(q)m2a1 +

J∑
i=0

εis
i

+ q

(
J∑
i=0

Ais
i + ta1a2 +m1a2 +m2a2

)

= ∆[m1m2]t −∆(bt)− ∆ · rt(q)
q

m1m2 +m2V1 −
rt(q)

q
m2V1 +m1V2

− rt(q)

q
m1V2 +

t

q
V1V2 + ta1V2 + ta2V1 − rt(q)m1a2 − rt(q)m2a1

+

J∑
i=0

εis
i + q

(
J∑
i=0

Ais
i + ta1a2 +m1a2 +m2a2

)

= ∆[m1m2]t − b(q − rt(q))−
∆ · rt(q)

q
m1m2 +m2V1 −

rt(q)

q
m2V1

+m1V2 −
rt(q)

q
m1V2 +

t

q
V1V2 + ta1V2 + ta2V1 − rt(q)m1a2

− rt(q)m2a1 +
J∑
i=0

εis
i + q

(
J∑
i=0

Ais
i + ta1a2 +m1a2 +m2a2

)

= ∆[m1m2]t + rt(q) · b−
∆ · rt(q)

q
m1m2 +m2V1 −

rt(q)

q
m2V1 +m1V2

− rt(q)

q
m1V2 +

t

q
V1V2 + ta1V2 + ta2V1 − rt(q)m1a2 − rt(q)m2a1

+
J∑
i=0

εis
i + q

(
J∑
i=0

Ais
i + ta1a2 +m1a2 +m2a2 − b

)
.
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So the inherent noise vmultinh is given by

vmultinh = rt(q) · b−
∆ · rt(q)

q
m1m2 +m2V1 −

rt(q)

q
m2V1 +m1V2 −

rt(q)

q
m1V2

+
t

q
V1V2 + ta1V2 + ta2V1 − rt(q)m1a2 − rt(q)m2a1 +

J∑
i=0

εis
i .

We can bound this inherent noise as follows:

‖vmultinh‖ ≤ rt(q) ‖b‖+
∆ · rt(q)

q
‖m1m2‖+ ‖m2V1‖+

rt(q)

q
‖m2V1‖+ ‖m1V2‖

+
rt(q)

q
‖m1V2‖+

t

q
‖V1V2‖+ t ‖a1V2‖+ t ‖a2V1‖+ rt(q) ‖m1a2‖

+ rt(q) ‖m2a1‖+

∥∥∥∥∥
J∑
i=0

εis
i

∥∥∥∥∥
≤ rt(q) ‖b‖+

∆ · rt(q) · δ
q

‖m1‖ · ‖m2‖+ δ ‖m2‖ · ‖V1‖

+
rt(q) · δ

q
‖m2‖ · ‖V1‖+ δ ‖m1‖ · ‖V2‖+

rt(q) · δ
q
‖m1‖ · ‖V2‖

+
δt

q
‖V1‖ · ‖V2‖+ δt ‖a1‖‖V2‖+ δt ‖a2‖ · ‖V1‖

+ δ · rt(q) ‖m1‖ · ‖a2‖+ δ · rt(q) ‖m2‖ · ‖a1‖+

∥∥∥∥∥
J∑
i=0

εis
i

∥∥∥∥∥
≤ rt(q) ‖b‖+

∆ · rt(q) · δ · t2

4q
+
δt

2
‖V1‖+

rt(q) · δt
2q

· ‖V1‖+
δt

2
· ‖V2‖

+
rt(q) · δt

2q
· ‖V2‖+

δt

q
‖V1‖ · ‖V2‖+ δt ‖a1‖‖V2‖+ δt ‖a2‖ · ‖V1‖

+
δt · rt(q)

2
· ‖a2‖+

δt · rt(q)
2

‖a1‖+

∥∥∥∥∥
J∑
i=0

εis
i

∥∥∥∥∥
≤ rt(q)

(
1

2
+
δt

4

)
+

∆ · rt(q) · δ · t2

4q
+
δt

2
‖V1‖+

rt(q) · δt
2q

· ‖V1‖

+
δt

2
· ‖V2‖+

rt(q) · δt
2q

· ‖V2‖+
δt

q
‖V1‖ · ‖V2‖

+ δt · ‖V2‖
(
δj1+1 − 1

2(δ − 1)
+

1

2
− rt(q)

2q
+

1

q
‖V1‖

)
+ δt · ‖V1‖

(
δj2+1 − 1

2(δ − 1)
+

1

2
− rt(q)

2q
+

1

q
‖V2‖

)
+
δt · rt(q)

2
·
(
δj2+1 − 1

2(δ − 1)
+

1

2
− rt(q)

2q
+

1

q
‖V2‖

)
+
δt · rt(q)

2

(
δj1+1 − 1

2(δ − 1)
+

1

2
− rt(q)

2q
+

1

q
‖V1‖

)
+
δJ+1 − 1

2(δ − 1)

≤ rt(q)

2
+
δt · rt(q)

4
+

∆ · rt(q) · δ · t2

4q
+
δt

2
‖V1‖+

rt(q) · δt
2q

· ‖V1‖
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+
δt

2
· ‖V2‖+

rt(q) · δt
2q

· ‖V2‖+
δt

q
‖V1‖ · ‖V2‖

+

(
t(δj1+2 − 1)

2(δ − 1)
+
δt

2
− δt · rt(q)

2q

)
‖V2‖+

δt

q
‖V1‖ · ‖V2‖

+

(
t(δj2+2 − 1)

2(δ − 1)
+
δt

2
− δt · rt(q)

2q

)
‖V1‖+

δt

q
‖V2‖ · ‖v1‖

+
δt · rt(q)

2
·
(
δj2+1 − 1

2(δ − 1)
+

1

2
− rt(q)

2q

)
+
δt · rt(q)

2q
‖V2‖

+
δt · rt(q)

2

(
δj1+1 − 1

2(δ − 1)
+

1

2
− rt(q)

2q

)
+
δt · rt(q)

2q
‖V1‖+

δJ+1 − 1

2(δ − 1)

=
rt(q)

2
+
δt · rt(q)

4
+

∆ · rt(q) · δ · t2

4q
+
δJ+1 − 1

2(δ − 1)

+
δt · rt(q)

2
·
(
δj2+1 − 1

2(δ − 1)
+

1

2
− rt(q)

2q
+
δj1+1 − 1

2(δ − 1)
+

1

2
− rt(q)

2q

)
+

(
δt

2
+
rt(q) · δt

2q
+
t(δj2+2 − 1)

2(δ − 1)
+
δt

2
− δt · rt(q)

2q
+
δt · rt(q)

2q

)
‖V1‖

+

(
δt

2
+
rt(q) · δt

2q
+
t(δj1+2 − 1)

2(δ − 1)
+
δt

2
− δt · rt(q)

2q
+
δt · rt(q)

2q

)
‖V2‖

+

(
δt

q
+
δt

q
+
δt

q

)
‖V1‖ · ‖V2‖

=
(3δt+ 2) · rt(q)

4
+
rt(q) · δ · t(∆t− 2rt(q))

4q

+
δt · rt(q) · (δj2+1 + δj1+1 − 2)

4(δ − 1)
+
δJ+1 − 1

2(δ − 1)

+

(
δt+

δt(δj2+1 − 1)

2(δ − 1)
+
δt · rt(q)

2q

)
‖V1‖

+

(
δt+

δt(δj1+1 − 1)

2(δ − 1)
+
δt · rt(q)

2q

)
‖V2‖

+

(
3δt

q

)
‖V1‖ · ‖V2‖

=
(3δt+ 2) · rt(q)

4
+
rt(q) · δ · t(q − 3rt(q))

4q

+
δt · rt(q) · (δj2+1 + δj1+1 − 2)

4(δ − 1)
+
δJ+1 − 1

2(δ − 1)

+

(
δt+

δt(δj2+1 − 1)

2(δ − 1)
+
δt · rt(q)

2q

)
‖V1‖

+

(
δt+

δt(δj1+1 − 1)

2(δ − 1)
+
δt · rt(q)

2q

)
‖V2‖

+

(
3δt

q

)
‖V1‖ · ‖V2‖
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=
δJ+1 − 1

2(δ − 1)
+
δt · rt(q) · (δj2+1 + δj1+1 − 2)

4(δ − 1)
+

(2δt+ 1) · rt(q)
2

− 3δt · (rt(q))2

4q
+

(
δt+

δt(δj2+1 − 1)

2(δ − 1)
+
δt · rt(q)

2q

)
‖V1‖

+

(
δt+

δt(δj1+1 − 1)

2(δ − 1)
+
δt · rt(q)

2q

)
‖V2‖+

(
3δt

q

)
‖V1‖ · ‖V2‖

≤ δJ+1 − 1

2(δ − 1)
+
t2δ(δj2+1 + δj1+1 − 2)

4(δ − 1)
+

2δt2 + t

2
− 3δt3

4q

+

(
δt+

δt(δj2+1 − 1)

2(δ − 1)
+
δt2

2q

)
‖V1‖+

(
δt+

δt(δj1+1 − 1)

2(δ − 1)
+
δt2

2q

)
‖V2‖

+

(
3δt

q

)
‖V1‖ · ‖V2‖ .

�

Next we consider the inherent noise growth in a relinearization operation.

Lemma 41. Let ct be a ciphertext of size M + 1 encrypting m, and having inherent

noise vinh. Let ctrelin of size N + 1 be the ciphertext encrypting m, obtained by the

relinearization of ct, where 2 ≤ N + 1 < M + 1. Then, the inherent noise vrelininh
in ctrelin is given by

vrelininh = vinh −
M−N−1∑
j=0

∑̀
i=0

eM−j,ic
(i)
M−j ,

and can be bounded as

‖vrelininh‖ ≤ ‖vinh‖+ (M −N)(`+ 1)δBw .

Proof: The relinearization of a ciphertext from size M + 1 to size N + 1, where

2 ≤ N + 1 < M + 1, consists of M − N one-step relinearizations. In each step,

the current ciphertext (c0, c1, . . . , ck) is transformed to an intermediate ciphertext

ct′ = (c′0, c
′
1, . . . , c

′
k−1) using the appropriate evaluation key

evkk = [([−(ak,is+ ek,i) + wisk]q, ak,i) : i = 0, . . . , `] .

In the following step, ct′ becomes the current ciphertext, and so on until the inter-

mediate ciphertext produced is of size N + 1, at which point it is output as ctrelin.

By definition of the inherent noise in the input ciphertext we have for some integer

coefficient polynomial a:

ct(s) = c0 + c1s+ · · ·+ cMs
M = ∆m+ vinh + aq .
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The input ciphertext is ct = (c0, c1, . . . , cM ), and after the first one-step relineariza-

tion, the intermediate ciphertext is ct′ = (c′0, c
′
1, . . . , c

′
M−1), where

c′0 = c0 +
∑̀
i=0

evkM [i][0]c
(i)
M , c′1 = c1 +

∑̀
i=0

evkM [i][1]c
(i)
M ,

and c′j = cj for 2 ≤ j ≤M − 1. So, for some polynomials ai with integer coefficients,

where 0 ≤ i ≤ `+ 1:

ct′(s) =
(
c′0 + c′1s+ . . .+ c′M−1s

M−1
)

= c0 +
∑̀
i=0

evkM [i][0]c
(i)
M +

(
c1 +

∑̀
i=0

evkM [i][1]c
(i)
M

)
s+ . . .+ cM−1s

M−1

=
∑̀
i=0

evkM [i][0]c
(i)
M + s

∑̀
i=0

evkM [i][1]c
(i)
M + c0 + c1s+ . . .+ cM−1s

M−1

= −
∑̀
i=0

eM,ic
(i)
M +

∑̀
i=0

aiqc
(i)
M + sM

∑̀
i=0

wic
(i)
M + c0 + c1s+ . . .+ cM−1s

M−1

= −
∑̀
i=0

eM,ic
(i)
M +

∑̀
i=0

aiqc
(i)
M + sMcM + c0 + c1s+ . . .+ cM−1s

M−1

= −
∑̀
i=0

eM,ic
(i)
M + c0 + c1s+ . . .+ cM−1s

M−1 + sMcM + q
∑̀
i=0

aic
(i)
M

= −
∑̀
i=0

eM,ic
(i)
M + ∆m+ vinh + aq + q

∑̀
i=0

aic
(i)
M

= ∆m+ vinh −
∑̀
i=0

eM,ic
(i)
M + q

(
a+

∑̀
i=0

aic
(i)
M

)
.

Hence, the noise grows by an additive factor −
∑`

i=0 eM,ic
(i)
M in a one-step relineariza-

tion. Iterating this process, we find the noise after relinearization:

vrelininh = vinh −
M−N−1∑
j=0

∑̀
i=0

eM−j,ic
(i)
M−j .

We can bound ‖vrelininh‖ as follows:

‖vrelininh‖ ≤ ‖vinh‖+
M−N−1∑
j=0

∑̀
i=0

∥∥∥eM−j,ic(i)
M−j

∥∥∥
≤ ‖vinh‖+ (M −N)(`+ 1)δBw .

�

Next we consider the inherent noise growth in a plain multiplication operation.

149



7.4 Noise growth in SEAL

Lemma 42. Let ct be a ciphertext encrypting m1 with inherent noise vinh and let

m2 be a plaintext. Let ctmultp denote the ciphertext obtained by plain multiplication

of ct with m2. Then the inherent noise vmultpinh in ctmultp is bounded as follows:

‖vmultpinh‖ ≤
t

2
+
δt2

4
+
δt

2
‖vinh‖ .

Proof: By definition of plain multiplication, ctmultp = (m2c0,m2c1, . . . ,m2ck). For

some polynomial b with integer coefficients, [m1m2]t = m1m2 + bt. We can then

bound ‖b‖ as follows:

‖b‖ =
1

t
‖[m1m2]t −m1m2‖

≤ 1

t
(‖[m1m2]t‖+ ‖m1m2‖)

≤ 1

t

(
t

2
+ δ · ‖m1‖‖m2‖

)
=

1

2
+
δ

2
‖m2‖ .

We have for some polynomial a with integer coefficients:

ctmultp(s) = c0m2 + c1m2s+ · · ·+ ckm2s
k

= m2ct(s)

= ∆m1m2 +m2vinh +m2aq

= ∆[m1m2]t − (∆t)b+m2vinh +m2aq

= ∆[m1m2]t + rt(q)b+m2vinh + (m2a− b)q .

Hence the inherent noise is

vmultpinh = rt(q) · b+m2 · vinh .

Thus we can bound this inherent noise as follows:

‖vmultpinh‖ = ‖rt(q) · b+m2 · vinh‖

≤ rt(q)
(

1

2
+
δ

2
‖m2‖

)
+ δ · ‖m2‖ · ‖vinh‖

≤ t

2
+
δt

2
‖m2‖+ δ · ‖m2‖ · ‖vinh‖

≤ t

2
+
δt2

4
+
δt

2
‖vinh‖ .

�

Next we consider the inherent noise growth in a plain addition operation.
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Lemma 43. Let ct = (c0, c1, . . . , ck) be a ciphertext encrypting m1 with inherent

noise vinh and m2 be a plaintext. Then the result ctaddp of plain addition of ct and

m2 has inherent noise vaddpinh such that

‖vaddpinh‖ ≤ ‖vinh‖+ t .

Proof: By definition of plain addition ctaddp = (c0 + ∆m2, c1, . . . , ck). By definition

of inherent noise, ct(s) = ∆m1 + vinh +aq for some integer coefficient polynomial a.

Let [m1 +m2]t = m1 +m2 + bt for some integer coefficient polynomial b. Note that

‖m1‖ < t/2 and ‖m2‖ < t/2 so ‖m1 +m2‖ ≤ ‖m1‖+ ‖m2‖ ≤ t. Therefore ‖b‖ ≤ 1,

and

ctaddp(s) = c0 + ∆m2 + c1s+ · · ·+ cks
k

= ∆m2 + ∆m1 + vinh + aq

= ∆([m1 +m2]t − bt) + vinh + aq

= ∆[m1 +m2]t − (q − rt(q))b+ vinh + aq

= ∆[m1 +m2]t + rt(q) · b+ vinh + (a− b)q .

So the inherent noise vaddpinh = rt(q) · b + vinh. We can then bound this inherent

noise as follows:

‖vaddpinh‖ ≤ ‖vinh‖+ rt(q) · ‖b‖ ≤ ‖vinh‖+ t .

�

Next we consider the inherent noise growth in a homomorphic negation operation.

Lemma 44. Let ct be a ciphertext encrypting m with inherent noise vinh and ctneg

be its negation. The inherent noise vneginh in ctneginh satisfies

‖vneginh‖ ≤ ‖vinh‖+ t .

Proof: If ct = (c0, c1, . . . , ck) then its negation ctneg = (−c0,−c1, . . . ,−ck). Note

that since ‖m‖ < t/2 we have [−m]t = −m+ bt for ‖b‖ ≤ 1. Thus for some integer
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7.4 Noise growth in SEAL

coefficient polynomial a:

ctneg(s) = −(c0, c1, . . . , ck)

= −(∆m+ vinh + aq)

= ∆([−m]t − bt)− vinh − aq

= ∆[−m]t − (q − rt(q))b− vinh − aq

= ∆[−m]t + rt(q) · b− vinh − (b+ a)q .

Hence the noise vneginh = rt(q) · b− vinh and can be bounded as

‖vneginh‖ = ‖rt(q) · b− vinh‖

≤ rt(q) · ‖b‖+ ‖vinh‖

≤ t+ ‖vinh‖ .

�

Finally, we consider the inherent noise growth in a homomorphic subtraction.

Lemma 45. Let ct1 = (c0, c1, . . . , cj) and ct2 = (d0, d1, . . . , dk) be two ciphertexts

encrypting m1,m2 ∈ Rt, and having inherent noises v1inh , v2inh, respectively. Then

the inherent noise vsubinh in the ciphertext ctsub obtained as the result of homomor-

phic subtraction satisfies

‖vsubinh‖ ≤ t+ ‖v1inh‖+ ‖v2inh‖ .

Proof: By definition of homomorphic subtraction, ctsub encrypts [m1 − m2]t. Let

[m1 −m2]t = m1 −m2 + a0t for some integer coefficient polynomial a0. Note that

‖m1‖ < t/2 and ‖m2‖ < t/2 so ‖m1 −m2‖ ≤ ‖m1‖+ ‖ −m2‖ = ‖m1‖+ ‖m2‖ ≤ t.

Therefore ‖a0‖ ≤ 1.

Suppose without loss of generality that max (j, k) = j, so that

ctsub = (c0 − d0, . . . , ck − dk, ck+1, . . . cj) .

By definition of inherent noise in ct1 and ct2, we have

ct1(s) = ∆m1 + v1inh + a1q ,

ct2(s) = ∆m2 + v2inh + a2q ,
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for some polynomials a1, a2 with integer coefficients, so

ctsub(s) = (c0 − d0) + (c1 − d1)s+ · · ·+ cjs
j

= ct1(s)− ct2(s)

= ∆m1 + v1inh + a1q − (∆m2 + v2inh + a2q)

= ∆([m1 −m2]t − a0t) + v1inh − v2inh + (a1 − a2)q

= ∆[m1 −m2]t − (q − rt(q))a0 + v1inh − v2inh + (a1 − a2)q

= ∆[m1 −m2]t + rt(q) · a0 + v1inh − v2inh + (a1 − a2 − a0)q .

We conclude that the inherent noise vsubinh = rt(q) ·a0 +v1inh +v2inh . We can bound

this inherent noise as follows:

‖vsubinh‖ = ‖rt(q) · a0 + v1inh + v2inh‖

≤ rt(q) · ‖a0‖+ ‖v1inh‖+ ‖v2inh‖

≤ t+ ‖v1inh‖+ ‖v2inh‖ .

�

7.4.2 Invariant noise growth analysis

In this subsection we analyse the invariant noise growth behaviour for the various

homomorphic evaluation operations that can be performed in SEAL. We begin with

bounding the initial invariant noise in a fresh ciphertext.

Lemma 46. Let ct = (c0, c1) be a fresh encryption of a message m ∈ Rt. The

invariant noise v in ct satisfies

‖v‖ ≤ t

q
‖m‖+

tB

q
(2δ + 1) .

Proof: Let ct = (c0, c1) be a fresh encryption of m under the public key pk =
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(p0, p1) = ([−(as+ e)]q, a). Then, for some integer coefficient polynomials k0, k1, k,

t

q
(c0 + c1s) =

t

q
(∆m+ p0u+ e0 + k0q + p1us+ e1s+ k1qs)

=
q − rt(q)

q
m+

t

q
(p0u+ e1 + p1us+ e2s) + t(k1 + k2s)

= m+
t

q

(
−rt(q)m

t
+ p0u+ e0 + p1us+ e1s

)
+ t(k0 + k1s)

= m+
t

q

(
−rt(q)
t

m− eu+ e1 + e2s

)
+ t(k0 + k1s+ ku) ,

so the invariant noise is

v =
t

q

(
−rt(q)
t

m− eu+ e1 + e2s

)
.

To bound ‖v‖, we use the fact that the error polynomials sampled from χ have

coefficients bounded by B, and that ‖s‖ = ‖u‖ = 1. Then

‖v‖ =

∥∥∥∥ tq
(
−rt(q)
t

m− eu+ e1 + e2s

)∥∥∥∥
≤ rt(q)

q
‖m‖+

t

q
(δ‖e‖‖u‖+ ‖e1‖+ δ‖e2‖‖s‖)

≤ t

q
‖m‖+

tB

q
(2δ + 1) .

�

Next we consider the invariant noise growth in a homomorphic addition operation.

Lemma 47. Let ct1 = (c0, c1, . . . , cj) and ct2 = (d0, d1, . . . , dk) be two ciphertexts

encrypting m1,m2 ∈ Rt, and having noises v1, v2, respectively. Then the noise vadd
in their sum ctadd is vadd = v1 + v2, and satisfies

‖vadd‖ ≤ ‖v1‖+ ‖v2‖ .

Proof: By definition of homomorphic addition, ctadd encrypts [m1 + m2]t. Let

[m1 + m2]t = m1 + m2 + a0t for some integer coefficient polynomial a0. Suppose

without loss of generality that max (j, k) = j, so that

ctadd = (c0 + d0, . . . , ck + dk, ck+1, . . . cj) .
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By definition of invariant noise in ct1 and ct2, we have

t

q
ct1(s) = m1 + v1 + a1t ,

t

q
ct2(s) = m2 + v2 + a2t ,

for some polynomials a1, a2 with integer coefficients. Thus:

t

q
ctadd(s) =

t

q

(
(c0 + d0) + (c1 + d1)s+ · · ·+ cjs

j
)

=
t

q
ct1(s) +

t

q
ct2(s)

= [m1 +m2]t + v1 + v2 + (a1 + a2 − a0)t ,

so the noise is vadd = v1 + v2, and ‖vadd‖ = ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖. �

Next we consider the invariant noise growth in homomorphic multiplication.

Lemma 48. Let ct1 = (x0, . . . , xj1) be a ciphertext of size j1 + 1 encrypting m1

with noise v1, and let ct2 = (y0, . . . , yj2) be a ciphertext of size j2 + 1 encrypting m2

with noise v2. Then the invariant noise vmult in their product ctmult satisfies the

following bound:

‖vmult‖ ≤
[
δt+

(
δt

2
· δ

j2+1 − 1

δ − 1

)]
‖v1‖+

[
δt+

(
δt

2
· δ

j1+1 − 1

δ − 1

)]
‖v2‖

+ 3δ · ‖v1‖ · ‖v2‖+
t(δJ+1 − 1)

2q(δ − 1)
.

Proof: By the definition of homomorphic multiplication the product ciphertext

ctmult = (c0, . . . cJ) is of size J + 1 where J = j1 + j2 and, for 0 ≤ i ≤ J , ci is

such that for some polynomials εi with coefficients in
(
−1

2 ,
1
2

]
, and for some polyno-

mials Ai with integer coefficients,

ci =

[⌊
t

q

( ∑
k+l=i

xkyl

)⌉]
q

=

⌊
t

q

( ∑
k+l=i

xkyl

)⌉
+Aiq =

t

q

( ∑
k+l=i

xkyl

)
+ εi +Aiq .

For some polynomial b with integer coefficients, [m1m2]t = m1m2 + bt. By definition

of invariant noise in ct1 and ct2, we have for some polynomials a1, a2 with integer

coefficients,

t

q
ct1(s) = m1 + v1 + a1t

t

q
ct2(s) = m2 + v2 + a2t .
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We write ait = t
qcti(s)−mi − vi and using ‖s‖ ≤ 1 we note that:

‖ait‖ =

∥∥∥∥ tqcti(s)−mi − vi
∥∥∥∥

≤ t

q
‖cti(s)‖+ ‖mi‖+ ‖vi‖

≤ t

q

(
‖c0‖+ δ · ‖c1‖ · ‖s‖+ · · ·+ δji · ‖cji‖ · ‖s‖ji

)
+ ‖mi‖+ ‖vi‖

≤ t

q

(q
2

+ δ · q
2
· 1 + · · ·+ δji · q

2
· 1
)

+ ‖mi‖+ ‖vi‖

=
t

2
· δ

ji+1 − 1

δ − 1
+ ‖mi‖+ ‖vi‖ .

We can also bound:∥∥∥∥∥
J∑
i=0

εis
i

∥∥∥∥∥ = ‖ε0 + ε1s+ ε2s
2 + · · ·+ εJs

J‖

≤ ‖ε0‖+ δ‖ε1‖ · ‖s‖+ δ2‖ε2‖‖s‖2 + · · ·+ δJ‖εJ‖‖s‖J

≤ 1

2
+ δ · 1

2
· 1 + δ2 · 1

2
· 1 + · · ·+ δJ · 1

2
· 1

=
1

2
· δ

J+1 − 1

δ − 1
.

We can determine the invariant noise vmult in ctmult as follows:

t

q
ctmult(s) =

t

q
(c0, . . . , cJ)(s)

=
t

q

[
t

q

J∑
i=0

( ∑
k+l=i

xkyl

)
si +

J∑
i=0

εis
i

]
+

(
J∑
i=0

Ais
i

)
t

=
t

q
· t
q

[
J∑
i=0

( ∑
k+l=i

xkyl

)
si

]
+
t

q

J∑
i=0

εis
i +

(
J∑
i=0

Ais
i

)
t

=
t

q
ct1(s) · t

q
ct2(s) +

t

q

J∑
i=0

εis
i +

(
J∑
i=0

Ais
i

)
t

= (m1 + v1 + a1t)(m2 + v2 + a2t) +
t

q

J∑
i=0

εis
i +

(
J∑
i=0

Ais
i

)
t

= [m1m2]t +m1v2 +m2v1 + v1v2 + v1a2t+ v2a1t+
t

q

J∑
i=0

εis
i

+

(
m1a2 +m2a1 + a1a2t+

J∑
i=0

Ais
i − b

)
t .
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Thus the invariant noise is given by

vmult = m1v2 +m2v1 + v1v2 + v1a2t+ v2a1t+
t

q

j1+j2∑
i=0

εis
i .

We can now bound the invariant noise as follows:

‖vmult‖ =

∥∥∥∥∥m1v2 +m2v1 + v1v2 + v1a2t+ v2a1t+
t

q

J∑
i=0

εis
i

∥∥∥∥∥
≤ ‖m1v2‖+ ‖m2v1‖+ ‖v1v2‖+ ‖v1a2t‖+ ‖v2a1t‖+

t

q

∥∥∥∥∥
J∑
i=0

εis
i

∥∥∥∥∥
≤ δ · t

2
· ‖v2‖+ δ · t

2
· ‖v1‖+ δ · ‖v1‖ · ‖v2‖

+ δ · ‖v1‖ ·
(
t

2
· δ

j2+1 − 1

δ − 1
+ ‖m2‖+ ‖v2‖

)
+ δ · ‖v2‖ ·

(
t

2
· δ

j1+1 − 1

δ − 1
+ ‖m1‖+ ‖v1‖

)
+
t

q
· 1

2
· δ

J+1 − 1

δ − 1

≤ δ · t
2
· ‖v2‖+ δ · t

2
· ‖v1‖+ δ · ‖v1‖ · ‖v2‖+

t

q
· 1

2
· δ

J+1 − 1

δ − 1

+ δ · ‖v1‖ ·
(
t

2
· δ

j2+1 − 1

δ − 1

)
+ δ · ‖v1‖ · ‖m2‖+ δ · ‖v1‖ · ‖v2‖

+ δ · ‖v2‖ ·
(
t

2
· δ

j1+1 − 1

δ − 1

)
+ δ · ‖v2‖ · ‖m1‖+ δ · ‖v2‖ · ‖v1‖

≤
[
δt+

(
δt

2
· δ

j2+1 − 1

δ − 1

)]
‖v1‖+

[
δt+

(
δt

2
· δ

j1+1 − 1

δ − 1

)]
‖v2‖

+ 3δ · ‖v1‖ · ‖v2‖+
t(δJ+1 − 1)

2q(δ − 1)
.

�

Next we consider the invariant noise growth in a relinearization operation.

Lemma 49. Let ct be a ciphertext of size M + 1 encrypting m, and having noise v.

Let ctrelin of size N+1 be the ciphertext encrypting m, obtained by the relinearization

of ct, where 2 ≤ N + 1 < M + 1. Then, the noise vrelin in ctrelin is given by

vrelin = v − t

q

M−N−1∑
j=0

∑̀
i=0

e(M−j),ic
(i)
M−j ,

and can be bounded as

‖vrelin‖ ≤ ‖v‖+
t

q
(M −N)δB(`+ 1)w .
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Proof: The relinearization of a ciphertext from size M + 1 to size N + 1, where

2 ≤ N + 1 < M + 1, consists of M − N one-step relinearizations. In each step,

the current ciphertext (c0, c1, . . . , ck) is transformed to an intermediate ciphertext

ct′ = (c′0, c
′
1, . . . , c

′
k−1) using the appropriate evaluation key

evkk = [([−(ak,is+ ek,i) + wisk]q, ak,i) : i = 0, . . . , `] .

In the following step, ct′ becomes the current ciphertext, and so on until the inter-

mediate ciphertext produced is of size N + 1, at which point it is output as ctrelin.

By definition of the invariant noise in the input ciphertext, we have for some integer

coefficient polynomial a`+1,

t

q
ct(s) =

t

q

(
c0 + c1s+ · · ·+ cMs

M
)

= m+ v + a`+1t .

The input ciphertext is ct = (c0, c1, . . . , cM ), and after the first one-step relineariza-

tion, the intermediate ciphertext is ct′ = (c′0, c
′
1, . . . , c

′
M−1), where

c′0 = c0 +
∑̀
i=0

evkM [i][0]c
(i)
M , c′1 = c1 +

∑̀
i=0

evkM [i][1]c
(i)
M ,

and c′j = cj for 2 ≤ j ≤M − 1. So, for some polynomials ai with integer coefficients,

where 0 ≤ i ≤ `+ 1,

t

q
ct′(s) =

t

q

(
c′0 + c′1s+ . . .+ c′M−1s

M−1
)

=
t

q

[
c0 +

∑̀
i=0

evkM [i][0]c
(i)
M +

(
c1 +

∑̀
i=0

evkM [i][1]c
(i)
M

)
s+ . . .+ cM−1s

M−1

]

=
t

q

(∑̀
i=0

evkM [i][0]c
(i)
M + s

∑̀
i=0

evkM [i][1]c
(i)
M

)
+
t

q

(
c0 + c1s+ . . .+ cM−1s

M−1
)

=
t

q

(
−
∑̀
i=0

eM,ic
(i)
M +

∑̀
i=0

aiqc
(i)
M + sM

∑̀
i=0

wic
(i)
M

)
+
t

q

(
c0 + c1s+ . . .+ cM−1s

M−1
)

=
t

q

(
−
∑̀
i=0

eM,ic
(i)
M +

∑̀
i=0

aiqc
(i)
M

)
+
t

q
sMcM +

t

q

(
c0 + c1s+ . . .+ cM−1s

M−1
)

= − t
q

∑̀
i=0

eM,ic
(i)
M +

t

q

(
c0 + c1s+ . . .+ cM−1s

M−1 + cMs
M
)

+ t
∑̀
i=0

aic
(i)
M

= m+ v − t

q

∑̀
i=0

eM,ic
(i)
M +

(
a`+1 +

∑̀
i=0

aic
(i)
M

)
t .
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Hence, the noise grows by an additive factor − t
q

∑`
i=0 eM,ic

(i)
M in a one-step relin-

earization. Iterating this process, we find the noise after relinearization:

vrelin = v − t

q

M−N−1∑
j=0

∑̀
i=0

eM−j,ic
(i)
M−j .

We can then bound ‖vrelin‖ as follows:

‖vrelin‖ =

∥∥∥∥∥∥v − t

q

M−N−1∑
j=0

∑̀
i=0

eM−j,ic
(i)
M−j

∥∥∥∥∥∥
≤ ‖v‖+

t

q

M−N−1∑
j=0

∑̀
i=0

∥∥∥eM−j,ic(i)
M−j

∥∥∥
≤ ‖v‖+

t

q
(`+ 1)(M −N)δBw .

�

Next we consider the invariant noise growth in a plain multiplication operation.

Lemma 50. Let ct be a ciphertext encrypting m1 with invariant noise v, and let

m2 be a plaintext polynomial. Let ctmultp denote the ciphertext obtained by plain

multiplication of ct with m2. Then the invariant noise in ctmultp is vmultp = m2v,

and we have the bound

‖vpmult‖ ≤
δt

2
‖v‖ .

Proof: By definition the ciphertext ctmultp = (m2c0, . . . ,m2ck). For some polyno-

mial b with integer coefficients, [m1m2]t = m1m2 + bt. Hence for some polynomial a

with integer coefficients:

t

q
ctmultp(s) =

t

q

(
m2c0 +m2c1s+ · · ·+m2cks

k
)

= m2
t

q
ct(s)

= m2(m1 + v + at)

= [m1m2]t +m2v + (m2a− b)t .

Hence the invariant noise is vmultp = m2v and we have:

‖vmultp‖ = ‖m2v‖ ≤ δ · ‖m2‖ · ‖v‖ ,

from which the claimed bound follows. �

159



7.4 Noise growth in SEAL

Next we consider the invariant noise growth in a plain addition operation.

Lemma 51. Let ct be a ciphertext encrypting m1 with invariant noise v, and let m2

be a plaintext polynomial. Let ctaddp denote the ciphertext obtained by plain addition

of ct with m2. Then the invariant noise vaddp in ctaddp can be bounded as

‖vpadd‖ ≤ ‖v‖+
t2

q
.

Proof: By definition of plain addition we have ctaddp = (c0 + ∆m2, c1, . . . , ck). For

some polynomial b with integer coefficients, [m1 + m2]t = m1 + m2 + bt. Hence for

some polynomial a with integer coefficients:

t

q
ctaddp(s) =

t

q

(
c0 + ∆m2 + c1s+ · · ·+ cks

k
)

=
∆t

q
m2 +

t

q
ct(s)

=
q − rt(q)

q
m2 +m1 + v + at

= [m1 +m2]t + v − rt(q)

q
m2 + (a− b)t

Hence the noise is vaddp = v − rt(q)
q m2 and this can be bounded as:

‖vaddp‖ ≤ ‖v‖+
rt(q)

q
‖m2‖

≤ ‖v‖+
rt(q) · t

q

≤ ‖v‖+
t2

q
.

�

Next we consider the invariant noise growth in a homomorphic negation operation.

Lemma 52. Let ct be a ciphertext encrypting m with invariant noise v and ctneg

be its negation. The invariant noise vneg in ctneg is given by vneg = −v and we have

‖vneg‖ = ‖v‖ .

Proof: If ct = (c0, c1, . . . , ck) then its negation ctneg = (−c0,−c1, . . . ,−ck). Note

that since ‖m‖ < t/2 we have [−m]t = −m + bt for ‖b‖ ≤ 1. So for some integer
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coefficient polynomial a:

t

q
ctneg(s) =

t

q
(−(c0, c1, . . . , ck))

= − t
q
ct(s)

= −m− v − at

= [−m]t − v − (b+ a)t

Hence the noise vneg in ctneg is −v and ‖vneg‖ = ‖v‖. �

Finally, we consider the invariant noise growth in a homomorphic subtraction.

Lemma 53. Let ct1 = (c0, c1, . . . , cj) and ct2 = (d0, d1, . . . , dk) be two ciphertexts

encrypting m1, m2 and having invariant noises v1, v2 respectively. The invariant

noise vsub in their difference ctsub is given by vsub = v1 − v2 and is bounded as

‖vsub‖ ≤ ‖v1‖+ ‖v2‖.

Proof: By definition of homomorphic subtraction, ctsub encrypts [m1 − m2]t. Let

[m1 − m2]t = m1 − m2 + a0t for some integer coefficient polynomial a0. Suppose

without loss of generality that max (j, k) = j, so that

ctsub = (c0 − d0, . . . , ck − dk, ck+1, . . . cj) .

By definition of invariant noise in ct1 and ct2, we have

t

q
ct1(s) = m1 + v1 + a1t ,

t

q
ct2(s) = m2 + v2 + a2t ,

for some polynomials a1, a2 with integer coefficients. Thus:

t

q
ctsub(s) =

t

q

(
(c0 − d0) + (c1 − d1)s+ · · ·+ cjs

j
)

=
t

q
ct1(s)− t

q
ct2(s)

= [m1 −m2]t + v1 − v2 + (a1 − a2 + a0)t ,

so the invariant noise is vsub = v1 − v2, and is bounded as

‖vsub‖ = ‖v1 − v2‖ ≤ ‖v1‖+ ‖v2‖ .

�
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7.4.3 Discussion

In Table 7.3 we summarise the inherent and invariant noise bounds presented in

the previous subsections. We have seen that many of the bounds involve the ring

expansion factor δ. In general δ can be bounded as δ ≤ n and so the strictest

noise bounds should use δ = n. However, in certain situations we can estimate

more accurately the value of δ and obtain tighter upper bounds on the noise growth

behaviour. For example, we typically do not know the underlying plaintexts of the

inputs of homomorphic evaluation operations. However, when performing a plain

multiplication, we know the plaintext m2 that forms part of the product, and in

particular we know the number N of nonzero coefficients it has and its norm ‖m2‖.
Although at worst N = n, in some cases N is much less than n, for example if the

plaintext is the binary encoding of a small integer. The inherent noise vmultpinh in

the output of a plain multiplication of a ciphertext with inherent noise vinh and a

plaintext m2 contains a term m2 ·vinh, and similarly the invariant noise vmultp in the

output of a plain multiplication of a ciphertext with invariant noise v and a plaintext

m2 is vmultp = m2 · v. In both cases when considering the noise growth we need to

bound a term ‖m2 · v‖. Since m2 has N nonzero coefficients, the maximal coefficient

of m2 · v is at worst formed of N cross terms each of size equal to the maximal

coefficient of m2 multiplied by the maximal coefficient of v. So we can estimate that

the expansion factor δ when multiplying by the particular element m2 is at most N .

This means we can bound ‖m2 · v‖ ≤ N · ‖m2‖ · ‖v‖ and so we estimate δ = N .

From Table 7.3 we conclude that the invariant noise is both more natural, and more

convenient to use, than the inherent noise. For example, we can see that the invariant

noise growth bounds have fewer terms and hence are simpler than their inherent noise

analogues. This can be explained because the definition of inherent noise does not

capture all parts of the ciphertext that could cause rounding error. As we saw in the

proof of Lemma 35, what we need to bound to ensure correctness is
∥∥∥− rt(q)

t m+ vinh

∥∥∥.
This is the critical quantity used by Costache and Smart [76]. The inherent noise does

not take into account the − rt(q)
t m term in the critical quantity. In turn, this term

introduces additional cross terms in multiplication and plain multiplication which

explain why these inherent noise bounds especially are more complicated than their

invariant noise analogues. From Table 7.3 it is clear which terms in the inherent

noise bounds correspond with a term in the analogous invariant noise bound and
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Inherent noise bound Invariant noise bound

Initial B(1 + 2δ) t
q‖m‖+ t

qB(1 + 2δ)

Addition ‖v1inh‖+ ‖v2inh‖+ t ‖v1‖+ ‖v2‖

Multiplication + δJ+1−1
2(δ−1)

t(δJ+1−1)
2q(δ−1)

+
(
δt+ δt(δj2+1−1)

2(δ−1) + δt2

2q

)
‖v1inh‖ +

(
δt+ δt(δj2+1−1)

2(δ−1)

)
‖v1‖

+
(
δt+ δt(δj1+1−1)

2(δ−1) + δt2

2q

)
‖v2inh‖ +

(
δt+ δt(δj1+1−1)

2(δ−1)

)
‖v2‖

+
(

3δt
q

)
‖v1inh‖ · ‖v2inh‖ +3δ · ‖v1‖ · ‖v2‖

2δt2+t
2 − 3δt3

4q + t2δ(δj2+1+δj1+1−2)
4(δ−1)

Relinearization ‖vinh‖+ (M −N)(`+ 1)δBw ‖v‖+ t
q (M −N)(`+ 1)δBw

Multiply plain δt
2 ‖vinh‖+ t

2 + δt2

4
δt
2 ‖v‖

Add plain ‖vinh‖+ t ‖v‖+ t2

q

Negation ‖vinh‖+ t ‖v‖

Subtraction ‖v1inh‖+ ‖v2inh‖+ t ‖v1‖+ ‖v2‖

Table 7.3: Summary of bounds for the growth of invariant and inherent noise in
ciphertexts after various homomorphic operations in SEAL.

which are extra terms arising from this − rt(q)
t m term. In all cases, except for the

initial noise in a fresh ciphertext, these extra terms are found in the inherent noise

bounds rather than the invariant noise bounds.

By definition the invariant noise captures all parts of the ciphertext that could cause

rounding error. This can also be seen from the fact that the critical quantity is a

scaling of the invariant noise (see Lemma 34). We believe this makes the invariant

noise a very intuitive definition of noise. This intuition carries into the noise bounds.

For example, the invariant noise after addition is bounded by the sum of the input

noises, and the invariant noise after negation is the negation of the input noise.
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7.4.4 Heuristic noise growth estimates

The strict upper bounds for the noise growth presented in Sections 7.4.1 and 7.4.2

result in poor practical estimates. Indeed, to implement noise growth estimates

to enable automatic parameter selection functionality in SEAL 2.0 and SEAL v2.1

average-case heuristic inherent noise growth estimates were used. In this section we

give a heuristic noise growth analysis, similar to that implemented in SEAL v2.2,

using the invariant noise. These heuristic noise bounds are analogous to the estimates

presented by Costache and Smart [76] using the critical quantity and are derived in

the same way.

The heuristic upper bounds are obtained by using the canonical embedding norm

‖·‖can, as used in [76, 110, 108], instead of the usual infinity norm ‖ · ‖ as used in

Sections 7.4.1 and 7.4.2. The canonical embedding norm of an element a ∈ K is

defined to be the infinity norm of the canonical embedding of a, so ‖a‖can = ‖σ(a)‖.
We will use the following properties of the canonical embedding norm. For any

polynomial a we have ‖a‖ ≤ ‖a‖can ≤ ‖a‖1 and for any polynomials a, b we have

‖ab‖can ≤ ‖a‖can ‖b‖can. Since the usual infinity norm is always bounded from above

by the canonical norm, and we require ‖v‖ < 1
2 for correctness, it suffices to ensure

that ‖v‖can ≤ 1
2 .

A polynomial e drawn from the SEAL error distribution, which has standard devi-

ation σ, is such the canonical embedding of e has standard deviation σe = σ
√
n. A

polynomial s drawn from the SEAL secret key distribution is such that the canonical

embedding of s has standard deviation σs =
√

2
3n. A polynomial c(i) distributed

uniformly in [−w
2 ,

w
2 ] is such that the canonical embedding of c(i) has standard de-

viation σc(i) = w
√
n√

12
and similarly a polynomial c distributed uniformly in [− q

2 ,
q
2 ] is

such that the canonical embedding of c has standard deviation σc = q
√
n√

12
. A poly-

nomial ε distributed uniformly in [−1
2 ,

1
2 ] is such that the canonical embedding of ε

has standard deviation σε =
√
n√
12
.

Following Costache and Smart [76] we use the following estimates: ‖a‖can ≤ 6σa and

‖ab‖can ≤ 16σa σb and ‖abc‖can ≤ 40σa σb σc. This is sufficient to present the bounds

below, but multiplication is not presented for ciphertexts of size larger than 2 as this

would require bounding the canonical norm of a product of four or more polynomials.
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We could easily produce a similar bound to those presented in [76] for the canonical

norm of the product of four elements in terms of the standard deviations of the four

elements (and so on), and generalise the multiplication heuristic accordingly.

We first give a heuristic bound for the initial invariant noise in a fresh ciphertext.

Lemma 54. Let ct be a fresh encryption of a message m ∈ Rt. Let Nm be an upper

bound on the number of nonzero terms in the polynomial m. With high probability,

the invariant noise v in ct satisfies

‖v‖can ≤ rt(q)

q
·Nm · ‖m‖+

t

q
· 2σ

(
16
√

2√
3
n+ 3

√
n

)
.

Proof: By Lemma 46, the invariant noise in a fresh ciphertext is

v =
t

q

(
−rt(q)
t

m− eu+ e1 + e2s

)
.

So we can bound:

‖v‖can ≤ rt(q)

q
‖m‖can +

t

q
‖eu+ e1 + e2s‖can

≤ rt(q)

q
‖m‖1 +

t

q
(‖eu‖can + ‖e1‖can + ‖e2s‖can)

≤ rt(q)

q
·Nm · ‖m‖+

t

q

(
16 · σ

√
n ·
√

2√
3

√
n+ 6σ

√
n+ 16 · σ

√
n ·
√

2√
3

√
n

)

≤ rt(q)

q
·Nm · ‖m‖+

t

q
· 2σ

(
16
√

2√
3
n+ 3

√
n

)
.

�

Next we give a bound for the invariant noise in homomorphic addition.

Lemma 55. Let ct1 and ct2 be two ciphertexts encrypting m1,m2 ∈ Rt, and having

invariant noises v1, v2, respectively. Then the invariant noise vadd in their sum ctadd
satisfies ‖vadd‖can ≤ ‖v1‖can + ‖v2‖can.

Proof: By Lemma 47 the invariant noise vadd = v1 + v2. Hence

‖vadd‖can = ‖v1 + v2‖can ≤ ‖v1‖can + ‖v2‖can .

�
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Next we give a heuristic bound for the invariant noise in homomorphic multiplication.

Lemma 56. Let ct1 be a ciphertext of size 2 encrypting m1 with invariant noise v1,

and let ct2 be a ciphertext of size 2 encrypting m2 with invariant noise v2. Let Nm1

and Nm2 be upper bounds on the number of nonzero terms in the polynomials m1

and m2, respectively. Then with high probability, the invariant noise vmult in the

product ctmult satisfies the following bound:

‖vmult‖can ≤ 3 ‖v1‖can ‖v2‖can +
2t
√
n

q
√

12

(
3 +

8
√

2√
3

√
n+

40

3
n

)
(

2Nm2‖m2‖+
2t
√
n√

12

(
3 +

8
√

2√
3

√
n+

40

3
n

))
‖v1‖can(

2Nm1‖m1‖+
2t
√
n√

12

(
3 +

8
√

2√
3

√
n+

40

3
n

))
‖v2‖can

Proof: By definition of invariant noise in the input ciphertexts we have:

‖ait‖can =

∥∥∥∥ tqcti(s)−mi − vi
∥∥∥∥can

≤ t

q
‖cti(s)‖can + ‖mi‖can + ‖vi‖can .

We can bound ‖cti(s)‖can as follows:

‖cti(s)‖can =
∥∥ci,0 + ci,1s+ ci,2s

2
∥∥can

≤ ‖ci,0‖can + ‖ci,1s‖can +
∥∥ci,2s2

∥∥can

≤ 6 · q
√
n√

12
+ 16 · q

√
n√

12
·
√

2

3
n+ 40 · q

√
n√

12
·
√

2

3
n ·
√

2

3
n

=
2q
√
n√

12

(
3 +

8
√

2√
3

√
n+

40

3
n

)
.

We can bound
∥∥∥∑2

i=0 εis
i
∥∥∥can

as follows:∥∥∥∥∥
2∑
i=0

εis
i

∥∥∥∥∥
can

≤ ‖ε0‖can + ‖ε1 · s‖can + ‖ε2 · s · s‖can

≤ 6 ·
√
n√
12

+ 16 ·
√
n√
12
·
√

2

3
n+ 40 ·

√
n√
12
·
√

2

3
n ·
√

2

3
n

=
2
√
n√

12

(
3 +

8
√

2√
3

√
n+

40

3
n

)
.
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By Lemma 48 the invariant noise is given by:

‖vmult‖can =

∥∥∥∥∥m1v2 +m2v1 + v1v2 + v1a2t+ v2a1t+
t

q

2∑
i=0

εis
i

∥∥∥∥∥
can

≤ ‖m1v2‖can + ‖m2v1‖can + ‖v1v2‖can + ‖v1a2t‖can + ‖v2a1t‖can

+
t

q

∥∥∥∥∥
2∑
i=0

εis
i

∥∥∥∥∥
can

≤ ‖m1‖1 ‖v2‖can + ‖m2‖1 ‖v1‖can + ‖v1‖can ‖v2‖can

+ ‖v1‖can (
t

q

∥∥c0 + c1s+ · · ·+ cj2s
j2
∥∥can

+ ‖m2‖can + ‖v2‖can)

+ ‖v2‖can (
t

q

∥∥c0 + c1s+ · · ·+ cj1s
j1
∥∥can

+ ‖m1‖can + ‖v1‖can)

+
t

q

∥∥∥∥∥
2∑
i=0

εis
i

∥∥∥∥∥
can

≤ 2Nm1‖m1‖ ‖v2‖can + 2Nm2‖m2‖ ‖v1‖can + 3 ‖v1‖can ‖v2‖can

+
2t
√
n√

12

(
3 +

8
√

2√
3

√
n+

40

3
n

)
‖v1‖can

+
2t
√
n√

12

(
3 +

8
√

2√
3

√
n+

40

3
n

)
‖v2‖can

+
2t
√
n

q
√

12

(
3 +

8
√

2√
3

√
n+

40

3
n

)
.

�

Next we give a heuristic bound for the invariant noise in a relinearization operation.

Lemma 57. Let ct be a ciphertext of size M+1 encrypting m, and having invariant

noise v. Let ctrelin of size N + 1 be the ciphertext obtained by the relinearization

of ct, where 2 ≤ N + 1 < M + 1. Then with high probability, the invariant noise

vrelin in ctrelin can be bounded as

‖vrelin‖can ≤ ‖v‖can +
t

q
(M −N)(`+ 1)

8√
3
σ nw .

Proof: By Lemma 49 the invariant noise is given by

vrelin = v − t

q

M−N−1∑
j=0

∑̀
i=0

e(M−j),ic
(i)
M−j .
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Thus we have:

‖vrelin‖can =

∥∥∥∥∥∥v +
t

q

M−N∑
j=0

∑̀
i=0

−e(M−j),ic
(i)
M−j

∥∥∥∥∥∥
can

≤ ‖v‖can +
t

q

M−N∑
j=0

∑̀
i=0

∥∥∥−e(M−j),ic
(i)
M−j

∥∥∥can

= ‖v‖can +
t

q
(M −N)(`+ 1)

∥∥∥e(M−j),ic
(i)
M−j

∥∥∥can

≤ ‖v‖can +
t

q
(M −N)(`+ 1) · 16 · σ

√
n · w

√
n√

12
.

�

Next we give a heuristic bound for the invariant noise in plain multiplication.

Lemma 58. Let ct be a ciphertext encrypting m1 with invariant noise v, and let

m2 be a plaintext polynomial. Let Nm2 be an upper bound on the number of nonzero

terms in the polynomial m2. Let ctmultp denote the ciphertext obtained by plain

multiplication of ct with m2. Then the invariant noise vmultp in ctmultp can be

bounded as

‖vmultp‖can ≤ Nm2 · ‖m2‖ · ‖v‖can .

Proof: By Lemma 50 we have vmultp = m2 · v. Therefore we can bound

‖vmultp‖can = ‖m2 · v‖can

≤ ‖m2‖can · ‖v‖can

≤ ‖m2‖1 · ‖v‖
can

≤ Nm2 · ‖m2‖ · ‖v‖can .

�

Finally, we give a heuristic bound for the invariant noise in plain addition.

Lemma 59. Let ct be a ciphertext encrypting m1 with invariant noise v, and let m2

be a plaintext polynomial. Let ctaddp denote the ciphertext obtained by plain addition

of ct with m2. Then the invariant noise vaddp in ctaddp can be bounded as

‖vaddp‖can ≤ ‖v‖can +
rt(q)

q
·Nm2 · ‖m2‖ .
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Proof: By Lemma 51 we have the invariant noise vaddp = v − rt(q)
q m2. Therefore we

can bound:

‖vaddp‖can =

∥∥∥∥v − rt(q)

q
m2

∥∥∥∥can

≤ ‖v‖can +
rt(q)

q
‖m2‖can

≤ ‖v‖can +
rt(q)

q
‖m2‖1

≤ ‖v‖can +
rt(q)

q
·Nm2 · ‖m2‖ .

�

7.5 Parameter selection in SEAL

In Table 7.1 we saw that the user in SEAL must specify certain encryption pa-

rameters. These parameters are: poly_modulus, a polynomial xn + 1 specifying

the ring R; coeff_modulus, an integer q specifying the modulus in the ciphertext

space; plain_modulus, an integer t specifying the modulus in the plaintext space;

noise_standard_deviation and noise_max_deviation, which specify the error dis-

tribution via its standard deviation σ and a bound B on the maximum size of the

error; and decomposition_bit_count, the logarithm logw of the base w used in

relinearization.

The choice of encryption parameters can significantly affect the performance, ca-

pabilities, and security of the encryption scheme. Some choices of parameters may

be insecure, give poor performance, yield ciphertexts that will not work with any

homomorphic operations, or a combination of all of these. In this section we will

describe the parameters n, q and t and their impact on performance, and justify

the choice of the default parameters. We defer a discussion of the decomposition bit

count, and the related parameters ` and w, to Section 7.6. In order to assist the

user in choosing parameters for a specific computation, SEAL provides an automatic

parameter selection module. This is described in Section 7.5.1.
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n q Estimated security upper bound
(log of cost of best attack)

2048 260 − 214 + 1 118.8
4096 2116 − 218 + 1 121.7
8192 2226 − 226 + 1 124.1
16384 2435 − 233 + 1 130.2
32768 2889 − 254 − 253 − 252 + 1 127.4

Table 7.4: Default pairs (n, q) in SEAL v2.2 and an upper bound of their estimated
security, expressed as a log of the estimated cost of the the best attack according to
commit f13c4a7 of the LWE estimator. (See also Table 7.2.)

Default values. Some of the encryption parameters, namely σ and B, are optional

in the sense that if the user does not specify a value they will automatically be set

to default values σ = 3.19 and B = 6σ. The choice of σ means that αq ≈ 8.

Although the parameters q and xn+1, which implicitly specifies n, must be manually

chosen by the user, a recommended q is provided for typical values of n. These default

(n, q) pairs are given in Table 7.4.

Choosing the polynomial modulus. The polynomial modulus (poly_modulus)

must be a polynomial of the form xn + 1, where n is a power of 2. This is both for

security and performance reasons. The benefit of using a larger n is that it allows

for a larger q to be used without decreasing the security level. This in turn increases

the maximal inherent noise and initial invariant noise budget, and thus allows for

larger t to be used, which can be beneficial for encoding. The drawback of using a

larger n is that it will significantly decrease performance.

Choosing the coefficient modulus. Suppose the polynomial modulus is held

fixed. Then the choice of the coefficient modulus q affects two things: the noise

budget in a freshly encrypted ciphertext and the security. A larger q means a larger

initial noise budget but lower security.

In principle we can take q to be any integer that is not so large that the resulting

Ring-LWE instance parameterised by n, q, and σ is insecure. However, there are

special forms of q that can provide a huge performance benefit. If q is of the form
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2A − B, where B is an integer of small absolute value, then modular reduction

modulo q can be sped up, yielding overall better performance. If 2n | (q − 1), the

Number Theoretic Transform (NTT) [75] for polynomial multiplications can be used,

resulting in huge performance benefits. In particular SEAL uses Harvey’s algorithm

for NTT [125], which additionally requires that 4q ≤ β, where β = 264dlog(q)/64e is

the word size of q. The reason for this is due to the modification to the butterfly

operation suggested by Harvey [125], which could cause a wrap around modulo q if q

is chosen to be any closer to the word boundary. The default choices of q in Table 7.4

are prime numbers that satisfy all of these guidelines.

Choosing the plaintext modulus. In principle, the plaintext modulus t can be

any integer. However, it must be chosen large enough such that decoding works cor-

rectly: the coefficients in the underlying plaintext grow in size during homomorphic

operations, and if they wrap around modulo t then decoding may fail. The degree of

the underlying plaintext polynomial will also grow during homomorphic operations,

so we must also ensure n is large enough. Costache et al. [78] give detailed bounds

for n and t such that decoding will succeed.

We have seen that t must be chosen sufficiently large. However, the larger t is, the

faster we would expect invariant and inherent noise to grow in certain operations,

especially homomorphic multiplication (see Table 7.3). Furthermore, the inherent

noise growth in certain operations also depends on the remainder rt(q) of q on division

by t, which could be as large as t in general. Suppose the choice of q is fixed, then

we can choose t to ensure rt(q) is a small value, which means inherent noise growth

behaviour is improved. For example if t is such that t | (q − 1) then rt(q) = 1.

If batching is used, the requirements on t are different. Firstly, t must be chosen

large enough to ensure that the values in each slot do not wrap modulo t. We should

also choose t to be a prime such that t = 1 mod 2n, as this provides the maximal

number of plaintext slots.
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7.5.1 Automatic parameter selection in SEAL

We now describe the automatic parameter selection module in SEAL, which suggests

appropriate parameter choices to the user. The user describes the computation they

wish to obtain parameters for, and gives information on the plaintext polynomials:

namely, the number of nonzero coefficients and a bound on the size of the nonzero

coefficients. The tool simulates both the growth of the noise using heuristic estimates

similar to those described in Section 7.4.4, and the growth of the coefficients in the

underlying plaintext polynomials. It then tries to find optimal parameters that will

support this computation in the following way. It begins by setting σ and B as the

default values. Then, it chooses t as the smallest power of 2 such that the coefficients

in the underlying plaintext should not wrap modulo t. Next, it chooses n and q from

the default pairs as the smallest pair such that there is enough room for the expected

noise growth. For this (n, q) pair, a suitable value for the decomposition bit count is

searched for (finding such a value will be discussed in Section 7.6). If no such value

is found, then the next (n, q) pair is tried, and so on.

7.6 When to relinearize in SEAL

In this section, we discuss the relinearization operation in SEAL. Unlike in FV,

relinearization is not performed by default and so ciphertext sizes grow after multi-

plication operations. Indeed, in SEAL the relinearization operation is very general.

A ciphertext of any size k ≥ 2 can be relinearized down to any size j where 2 ≤ j ≤ k
and relinearization need not occur immediately after a multiplication (as in FV), but

rather can be performed at any time. It is natural to ask when or if it makes sense

to relinearize a large ciphertext to some smaller size, and this is what we will discuss

in Section 7.6.1. In general the optimal answer is not clear and will depend on the

specific overall homomorphic evaluation operation we wish to perform. Relineariza-

tion affects both overall noise growth and the choice of the parameters ` and w. We

will discuss its impact on both in Section 7.6.2.
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7.6.1 Effect of relinearization on overall noise growth

Clearly, in itself, the relinearization operation introduces noise. However, a lack of

relinearization can also cause larger noise. As can be seen from Table 7.3, the noise

growth in a multiplication operation depends on the sizes of the ciphertexts input to

the operation: the larger the input ciphertexts, the larger the noise bound. Therefore,

relinearizing one or both of the input ciphertexts before performing a multiplication

could result in the output ciphertext of the multiplication having less noise than

would be the case if neither input is relinearized, even though the relinearization

process would add noise. There is also a performance benefit when performing re-

linearization in advance of a subsequent multiplication: the multiplication of two

large ciphertexts involves computing many cross terms, so will be slower than the

multiplication of two smaller ciphertexts.

It is important to note that relinearization increases the (inherent or invariant) noise

only by an additive factor, whereas multiplication increases the noise also by a mul-

tiplicative factor. Therefore, after sufficiently many multiplications have been per-

formed, the additive increase in the noise from a relinearization can be insignificant

compared to the noise already present in the ciphertext before relinearization. In

this case it would only be beneficial to relinearize due to the smaller noise increase

in any subsequent multiplications.

On the other hand, relinearizing after the very first multiplication is typically not

an optimal strategy due to the additive factor being significantly larger than the

noise that would result from a multiplication of two fresh ciphertexts. Subsequent

multiplications will then build more noise on top of the (relatively large) additive

factor that came from relinearization. In SEAL v2.2 [60] an example is provided

illustrating that performing relinearization too early can reduce the invariant noise

budget in the final result. This code is reproduced in Appendix A. Four plaintexts

are encrypted to form fresh ciphertexts c1, c2, c3, c4 that each have a noise budget

of approximately 97 bits. The ciphertexts are multiplied together as (c1 · c2) · (c3 · c4)

and we explore the effect of intermediate relinearization on the noise budget. We can

either relinearize one or both of the ciphertexts (c1 · c2) and (c3 · c4) before they are

finally multiplied to form the end result, or we can perform no relinearization. When

no relinearization is performed, the resulting ciphertext (c1 · c2) · (c3 · c4) has a noise
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budget of around 51 bits. However, after relinearization the intermediate ciphertext

(c1 · c2) has a noise budget of around 40 bits, and when the relinearization of (c1 · c2)

is multiplied with the relinearization of (c3 · c4) the result has a noise budget of only

around 19 bits.

7.6.2 Choosing relinearization parameters

Both the computational cost of the relinearization operation and the computational

cost of evaluation key generation depend on the size of the evaluation key, which

depends on the parameters w and `. Since the evaluation keys are only used in

relinearization, the cost of their generation can also be thought of as a computational

cost of relinearization (although this can be amortised). The inherent and invariant

noise growth in relinearization also depends on w and ` (see Lemmas 41 and 49). We

now discuss the choice of these parameters. Note that computational cost of, and

noise growth in, relinearization are the only things affected by the choice of w and `,

and hence if a user does not intend to perform relinearization then they do not need

to worry about selecting an appropriate w or `.

The number of terms in the decomposition into base w of a ciphertext element,

and hence the number of pairs of ring elements in each evaluation key, is given by

` + 1 = blogw(q)c + 1. Thus, the choice of ` is entirely determined by the choice

of w (assuming q has been chosen). Typically, ` is a small integer greater than or

equal to 2. In a computation involving relinearization, it cannot be the case that

` = 1, which would occur for example when w = q. This would imply the size of

an element in the decomposition of a ciphertext component could be as large as the

ciphertext component itself, and so its norm could be anything up to q. It is therefore

likely that the noise growth from a relinearization operation with these parameters

would exceed the maximal noise bound, so decryption would fail. So, we must have

` ≥ 2. However, as ` increases, w gets smaller, and the size of the evaluation keys

grows bigger. When the other parameters are fixed this makes relinearization and

evaluation key generation slower. Therefore we would want to keep ` as small as

possible.

Although we would desire a small `, it may be the case that ` must be somewhat
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larger than 2 in order for decryption to succeed for a given n. This motivates the

question of whether it is better to use a candidate ring of dimension n and a given `

or to choose the next larger ring and use a smaller ` such as ` = 2. In the automatic

parameter selection module in SEAL, this is addressed as follows. For a given choice

of n, the parameter ` ≥ 2 is chosen to be the smallest value such that decryption of

the output ciphertext is expected to succeed. However, if no ` ≤ 10 can be found,

then the next larger n is tried, and so on. It is important to note that since ` depends

on the homomorphic evaluation operation we wish to perform (some choices may not

lead to successful decryption), this choice of upper bound ` ≤ 10 may not be optimal

in all cases. Determining whether or not there is always an optimal choice for ` is

an interesting direction for future work.
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Appendix A

SEAL code used in Section 7.6

void example_re l inear i zat ion_part1 ( )
{

cout << "Example : e a r l y r e l i n e a r i z a t i o n e f f e c t on no i s e . " << endl ;

// Set up encryp t ion parameters
EncryptionParameters parms ;
parms . set_poly_modulus ( "1x^4096 + 1" ) ;
parms . set_coeff_modulus (

ChooserEvaluator : : default_parameter_options ( ) . at ( 4 0 9 6 ) ) ;
parms . set_plain_modulus (1 << 8 ) ;
parms . set_decomposition_bit_count ( 5 8 ) ;

// Va l ida t e the parameters
parms . v a l i d a t e ( ) ;

// Generate keys
KeyGenerator generato r ( parms ) ;
genera to r . generate ( 1 ) ;
Ciphertext public_key = generato r . public_key ( ) ;
P l a in t ex t secret_key = generator . secret_key ( ) ;
EvaluationKeys evaluat ion_keys = generato r . evaluat ion_keys ( ) ;

// Encrypt p l a i n t e x t s to genera te the four f r e s h c i p h e r t e x t s
Pla in t ex t p l a in1 ( "5" ) ;
P l a in t ex t p l a in2 ( "6" ) ;
P l a in t ex t p l a in3 ( "7" ) ;
P l a in t ex t p l a in4 ( "8" ) ;
Encryptor encryptor ( parms , public_key ) ;
Ciphertext enc1 = encryptor . encrypt ( p l a in1 ) ;
Ciphertext enc2 = encryptor . encrypt ( p l a in2 ) ;
Ciphertext enc3 = encryptor . encrypt ( p l a in3 ) ;
Ciphertext enc4 = encryptor . encrypt ( p l a in4 ) ;

// We need a Decryptor to be a b l e to measure the i n va r i an t no i se
Decryptor decryptor ( parms , secret_key ) ;

// What are the no i se budge t s ?
cout << "Noise budgets in the four f r e s h c i ph e r t e x t s : "

<< decryptor . invar iant_noise_budget ( enc1 ) << " b i t s , "
<< decryptor . invar iant_noise_budget ( enc2 ) << " b i t s , "
<< decryptor . invar iant_noise_budget ( enc3 ) << " b i t s , "
<< decryptor . invar iant_noise_budget ( enc4 ) << " b i t s "
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<< endl ;

// Construct an Eva luator
Evaluator eva lua to r ( parms , evaluat ion_keys ) ;

// Perform f i r s t par t o f computation
Ciphertext enc_prod1 = eva luato r . mul t ip ly ( enc1 , enc2 ) ;
Ciphertext enc_prod2 = eva luato r . mul t ip ly ( enc3 , enc4 ) ;

// F i r s t compute the r e s u l t wi th no r e l i n e a r i z a t i o n
cout << endl ;
cout << "Path 1 : No r e l i n e a r i z a t i o n " << endl ;

// Compute product o f a l l f our
cout << "Computing r e s u l t as enc_prod1∗enc_prod2 . . . " << endl ;
Ciphertext enc_res = eva luato r . mul t ip ly ( enc_prod1 , enc_prod2 ) ;

// Now enc_res has s i z e 5
cout << " S i z e o f enc_res : " << enc_res . s i z e ( ) << endl ;

// How much no i se budget are we l e f t wi th ?
int nb_norel in = decryptor . invar iant_noise_budget ( enc_res ) ;
cout << "Noise budget in enc_resu l t : " << nb_norel in

<< " b i t s " << endl ;

// Now compute the r e s u l t wi th r e l i n e a r i z a t i o n
cout << endl ;
cout << "Path 2 : With r e l i n e a r i z a t i o n " << endl ;

// In termed ia te r e l i n e a r i z a t i o n o f enc_prod1 and enc_prod2
cout << " Re l i n e a r i z i n g enc_prod1 and enc_prod2 to s i z e 2 . . . "

<< endl ;
Ciphertext enc_relin_prod1 = eva luato r . r e l i n e a r i z e ( enc_prod1 ) ;
Ciphertext enc_relin_prod2 = eva luato r . r e l i n e a r i z e ( enc_prod2 ) ;

// What i s the no i se budge t a f t e r in t e rmed ia t e r e l i n e a r i z a t i o n ?
cout << "Noise budgets in enc_relin_prod1 : "

<< decryptor . invar iant_noise_budget ( enc_relin_prod1 )
<< " b i t s , and in enc_relin_prod2 : "
<< decryptor . invar iant_noise_budget ( enc_relin_prod2 )
<< " b i t s " << endl ;

// Now mu l t i p l y the r e l i n e a r i z e d produc t s t o g e t h e r
cout << "Computing enc_res as enc_relin_prod1∗ enc_relin_prod2 . . . "

<< endl ;
enc_res = eva luato r . mul t ip ly ( enc_relin_prod1 , enc_relin_prod2 ) ;

// Now enc_res has s i z e 3
cout << " S i z e o f enc_res : " << enc_res . s i z e ( ) << endl ;

// How much no i se budget are we l e f t wi th ?
int nb_rel in = decryptor . invar iant_noise_budget ( enc_res ) ;
cout << "Noise budget in enc_res : " << nb_rel in

<< " b i t s " << endl ;

}
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