Abstract

Eastern Indonesia is the site of intense deformation related to convergence between Australia, Eurasia, the Pacific and the Philippine Sea Plate. Analysis of tectonic geomorphology, drainage patterns, exhumed faults and historical seismicity highlights faults that have been active during the Quaternary (Pleistocene to present day), even if instrumental records suggest some are presently inactive. Of twenty-seven largely onshore fault systems studied, eleven show evidence of a maximal tectonic rate, a further five show evidence of rapid tectonic activity. Three faults indicating slow to minimal tectonic rate nonetheless show indications of Quaternary activity, and may simply have long interseismic periods. Although most studied fault systems are highly segmented, many are linked by narrow (<3 km) step-overs to form one or more long, quasi-continuous segments that are capable of producing M >7.5 earthquakes. Sinistral shear across the soft-linked Yapen and Tarera-Aiduna faults and their continuation into the transpressive Seram fold-thrust belt represents perhaps the most active belt of deformation and hence greatest seismic hazard in the region. However, the Palu-Koro Fault, being long, straight and capable of generating supershear ruptures, is considered to represent the greatest seismic risk of all the faults evaluated in this region in view of important strike-slip strands that appear to traverse the thick Quaternary basin fill below Palu city.
During the last decade several devastating earthquakes occurred on faults around the world that were either poorly understood or not recognised at all. The M_w 6.6 Bam earthquake (Iran) of 26th December 2003 ruptured a section of the Bam Fault that had poor surface expression and had not caused a destructive earthquake for 2000 years (Eshghi & Zare 2003; Fu et al. 2004). The M_w 8.0 Wenchuan earthquake (China) of 12th May 2008 resulted from complex rupture of part of the Lommen Shan tectonic belt (Burchfiel et al. 2008), an area that was previously considered not at risk from large earthquakes (Chen & Hsu 2013). The M_w 7.1 Haiti earthquake of 12th January 2010 occurred on the well known Enriquillo Fault, part of the fault system marking the northern boundary of the Caribbean plate, but which had previously been mapped as having low seismic hazard based on recent seismicity (Stein et al. 2012). The Canterbury earthquake sequence (New Zealand) ruptured the Greendale Fault, which was previously unrecognised because it was buried beneath alluvial sediments (Quigley et al. 2012). The Canterbury sequence culminated in the M_w 6.3 Christchurch earthquake of 22nd February 2011. These events emphasise the need for accurate identification of faults that have been active during the Quaternary and have the potential for modern tectonic activity.

Eastern Indonesia is a region of complex and rapid neotectonics. Convergence between Australia, Eurasia, the Pacific and Philippine Sea plates (e.g. Hamilton 1979; DeMets et al. 1994; Hall 1996, 2012; Bock et al. 2003; Charlton 2010) results in both contraction and extension resulting from subduction hinge rollback, lithospheric delamination and slab break off (e.g. Harris 1992; Spakman & Hall 2010; Hall 2012).

Great uncertainty surrounds the position, tectonic role and modern activity of eastern Indonesia’s many Quaternary faults (e.g. Hamilton 1979; Okal 1999; Bailly et al. 2009; Charlton 2010). New fault systems continue to be identified using both modern geophysical/remote sensing and conventional field techniques (e.g. Stevens et al. 2002; Spencer 2011; Watkinson et al. 2011; Pownall et al. 2013) and it is likely many others remain unknown, with important implications for seismic hazard analysis.

Despite intense seismicity in eastern Indonesia, there have been few catastrophic earthquake disasters in the last one hundred years, compared to other rapidly deforming areas such as China, Iran, Japan and Pakistan (e.g. Holzer & Savage 2013; National Geophysical Data Center / World Data Service). Significant events include the 25th June 1976 M_w 7.1 Papua earthquake, which killed 3,000-6,000 people; the 12th December 1992 M_w 7.8 Flores earthquake, which killed 2,500 people and destroyed 31,800 houses; the 17th February 1996 M_w 8.2 Biak earthquake, which caused a 7 m tsunami and killed at least 100 people (Okal 1999); the 16th November 2008 M_w 7.4 Minahasa earthquake, which killed 6 and displaced 10,000; and the 16th June 2010 M_w 7.0 Yapen earthquake, which killed 17 and destroyed 2,556 houses (National Geophysical Data Center / World Data Service; USGS Earthquake Hazards Program). With increasing urban development and replacement of traditional wooden dwellings with concrete construction, it is likely that damaging earthquakes will become more frequent in the future (e.g. Wyss 2005).

This contribution aims to catalogue Quaternary fault systems onshore eastern Indonesia from Sulawesi to Papua, to provide evidence for Quaternary tectonic activity, and to provide a reconnaissance evaluation of the faults’ seismic hazard.

Method

Definitions and extent of study
This study is concerned with evaluating Quaternary (Pleistocene and Holocene, 2.59 Ma to 0 Ma) fault activity. Quaternary activity lies within the realm of neotectonics, the study of broadly post-Miocene, ‘young’ and still-active tectonic events, whose effects are compatible with modern seismotectonics (Pavlides 1989). It is distinct from palaeoseismology – the study of deformation related to specific past earthquakes (e.g. Michetti et al. 2005). Thus faults that show evidence of Quaternary activity may or may not also show evidence of palaeoseismicity, depending on whether they have recently ruptured the surface, rates of sedimentation and erosion, and whether they are truly ‘active’ in the sense that they have failed during the Holocene. Equally, Quaternary faults may or may not be present in records of instrumental or historic seismicity, dependent on whether they have recently become inactive, have a long interseismic period, or have yielded historic earthquakes in locations where written documentation was not made. Quaternary fault activity is therefore distinct from, but influential to the field of active tectonics, which includes future fault activity that may impact human society (Wallace 1986).

Quaternary fault activity in this study is evaluated by the following criteria: 1) instrumental/historic seismicity and geodetic observations; 2) deformation of Quaternary sediments, often indicated by topographic lineaments that can be linked to an underlying fault; 3) systematic offset of modern streams across a topographic lineament; 4) evidence of structurally-controlled drainage network modification where signs of an earlier arrangement are preserved; 5) geomorphic indices recording relative youthfulness of fault-controlled mountain fronts; 6) evidence of landslips localised to faults.

The study extent is a 2,200 km x 800 km swath of the Indonesian archipelago, centred on the triple junction between Australia, Eurasia, the Pacific and Philippine Sea plates. It includes much of eastern Indonesia from Sulawesi eastwards, except islands of the southern Banda arc. Because of the focus on geomorphic expression the study mainly deals with onshore faults, except where multibeam bathymetry is available.

Datasets

Interpretations of Quaternary fault activity are based on a variety of remote sensing data, field observations by both authors and their students over several years (e.g. Roques 1999; Watkinson 2011; Pownall et al. 2013; Hennig et al. 2014) and published geodetic/geophysical data. Digital elevation models (DEMs) based on Shuttle Radar Topography Mission (SRTM) 3 arc second/90 m resolution and ASTER 30 m resolution data were processed using ERMapper software. These data were also used to extract topographic contours and drainage networks using ArcGIS. Landsat TM and ETM+ scenes composed of 30 m resolution bands 432, 451, 531 and 742 (red-green-blue combinations) were used and where appropriate sharpened with ETM+ band 8 panchromatic 15 m resolution data. Where available, high resolution visible spectrum imagery from Google Earth and Bing Maps (compiled from a variety of sources) and the ESRI World Imagery compilation, which includes 2.5 m SPOT and <1 m DigitalGlobe imagery, was also interpreted.

Multibeam bathymetric data (kindly provided by TGS, who provide global geoscientific data products and services) from parts of the offshore Sorong Fault Zone and Cenderawasih Bay were interpreted in the same way as the DEMs. Multibeam was acquired using a Kongsberg Simrad EM120 Multibeam Echo Sounder using 191 beams at equidistant spacing. Positioning control used a C-Nav Starfire DGPS. During processing, positioning, tidal and calibration corrections were applied, random noise and artefacts were removed, and a terrain model using a 25 m bin size was gridded and exported to ESRI format. Multibeam data were further processed in ERMapper to remove voids.
All data were integrated in ArcGIS together with georeferenced maps from the literature. CMT focal mechanisms are from the International Seismological Centre catalogue, plotted using Mirone software. We consider only earthquakes with a focal depth ≤35 km to avoid contamination from deeper structures that have little surface expression.

Geomorphometric indices

Geomorphometric indices are a valuable tool to rapidly evaluate the relative tectonic rate of surface faults on a reconnaissance scale (Keller 1986). We utilise mountain front sinuosity (S_{mf}) and valley-floor width to valley-height index (V_f) following the method of Bull & McFadden (1977) and Bull (1978). Key parameters are summarised in Table 1. An excellent description of the method and its uncertainties is given in Bull (2007). While conventionally applied to normal faults, geomorphic indices can be used in any setting where there is vertical motion, including regions of transpression and transtension. However, they are of little value in regions of pure strike-slip, and are not applied to pure strike-slip segments in this study.

Mountain front sinuosity is the ratio: $S_{mf} = L_{mf} / L_s$, where L_s is the straight line length of the mountain front, and L_{mf} is the true, or sinuous length along the mountain front following topographic contours at the contact between alluvial fans and the solid geology of the range front (Table 1). This method assumes that a fault-bounded range front will become more sinuous over time in the absence of tectonic activity (e.g. Bull & McFadden 1977; Rockwell et al. 1984). The method is well established for Quaternary fault evaluation in regions of extension (e.g. Ramírez-Herrera 1998), contraction and strike-slip (e.g. Dehbozorgi et al. 2010), transtension (e.g. Silva et al. 2003; Yildirim 2014), combined extension and contraction (Wells et al. 1988) and differential uplift (e.g. Sohoni et al. 1999). Critical uncertainties include interpreter definition of the sinuous mountain front, partly dependent on the quality of the input satellite data, and recognition of discrete mountain front segments. Climate also has an impact on S_{mf} independent of tectonic rate, in a humid environment like eastern Indonesia it is expected that erosion and hence S_{mf} will be higher than in an arid region for a given tectonic rate.

The valley-floor width to valley height index, V_f, measures the ratio between valley floor width and valley depth: $V_f = 2V_{mf} / ((E_{ld} - E_{sc}) - (E_{rd} - E_{sc}))$, where V_{mf} is the valley floor width, E_{ld} and E_{rd} are the topographic elevations of the left and right valley watersheds and E_{sc} is the elevation of the valley floor (Table 1). The method assumes that recently excavated river channels (i.e. those into which a river has incised due to recent uplift) are V-shaped, and become more U-shaped over time (e.g. Bull & McFadden 1977; Rockwell et al. 1984). Like S_{mf}, V_f has been applied in a wide range of tectonic settings (e.g. Wells et al. 1988; Ramírez-Herrera 1998; Yildirim 2014). V_f is sensitive to a number of variables apart from tectonic rate, so we standardised as much as possible: measuring V_f in all cases 1 km upstream from the mountain front; measuring valley width as the width of the river channel visible on the highest resolution satellite imagery available, or the width of the valley to the point where the floor rises 10 m above the minimum elevation in individual transects; measuring only streams that reach the mountain front without joining a higher order stream; and measuring only streams oriented ≥70° from the mountain front. Noise in the V_f signal was reduced by averaging 3-10 separate V_f measurements along each fault segment.

High quality topographic maps are not available for eastern Indonesia, so both S_{mf} and V_f were measured in ArcGIS software using a combination of 30 m ASTER GDEM satellite data and the ESRI World Imagery compilation. This allowed the finest possible resolution of L_s and V_{mf}, which are critical but potentially subjective parameters. High quality satellite imagery may be better for such measurement than conventional maps (Bull 2007).
Schemes for the classification of relative tectonic activity based on a combination of geomorphic indices have been proposed (e.g. Bull & McFadden 1977; Bull 1978, 2007). Here we apply a modified scheme from McCalpin (2009). It uses S_{mf} and V_f to classify relative tectonic activity as follows: $S_{mf} < 1.1$, mean $V_f < 0.15$, maximal activity; S_{mf} from 1.1-1.3, mean $V_f 0.15$, rapid activity; S_{mf} from 1.6-2.3, mean $V_f 1.5$, slow activity; $S_{mf} \geq 2.5$, mean $V_f 1.7-2.5$, minimal activity; S_{mf} from 2.6-4.0, mean $V_f 7.4$, inactive. This classification allows comparison between faults with different relative tectonic rates and corresponding geomorphic expression. Because the indices record undated Quaternary fault activity expressed by geomorphology, the classes also correspond to a Quaternary tectonic rate and not necessarily to a modern tectonic rate comparable to geodetic measurements. It should also be remembered that the schemes were developed using faults in arid areas of the western USA where tectonic landforms are preserved longer than they are in humid areas (e.g. Bull 1978), meaning faults in the tropics will generally be classified as tectonically ‘slower’ than equivalent faults at higher latitudes.

We analysed both S_{mf} and V_f for a total of 111 segments from 24 fault systems across the study area (Fig. 2 a-r, Table 2) and found a good correlation between S_{mf} and V_f (Fig. 3), supporting the reliability of each method. A previous study of geomorphic indices along a segment of the Palu-Koro Fault (Vecchiotti 2008) obtained similar results to those presented here. However, we use these indices only as a simple quantitative means to support other evidence for Quaternary fault activity, and do not classify faults on the basis of these data alone.

Sulawesi

Sulawesi lies at the triple junction between the Australian, Eurasian and Philippine Sea plates (e.g. Hamilton 1979; Silver *et al*. 1983a, b; Hall 1996). North of Sulawesi, the Celebes Sea is being subducted beneath Sulawesi (e.g. Hamilton 1979; Silver *et al*. 1983a). Convergence across the subduction margin increases from 20 ± 4 mm/yr in the east to 54 ± 10 mm/yr in the west, associated with clockwise rotation of about 4°/Ma about a pole close to Manado (Walpersdorf *et al*. 1998; Rangin *et al*. 1999; Stevens *et al*. 1999; Beaudouin *et al*. 2003). Immediately east of Sulawesi’s north ‘arm’, convergence between the Philippine Sea Plate and Sundaland is partly accommodated by the Molucca Sea double subduction and the overlying Sangihe and Halmahera thrusts (e.g. Rangin *et al*. 1999; Hall 2002; Beaudouin *et al*. 2003).

Despite its setting within a collisional orogen, Sulawesi is subject to widespread and young extension. Tomini Bay encloses a deep, enigmatic basin containing up to 10 km of late Cenozoic sediment (Jablonski *et al*. 2007; Pholbud *et al*. 2011). Medium to high-K Pliocene to modern volcanism in the Togian Islands within the bay results from Pliocene to Recent extension (Cottam *et al*. 2011), and onshore metamorphic core complexes are in the process of being exhumed by processes related to crustal thinning (Kavalieris *et al*. 1992; van Leeuwen *et al*. 2007; Spencer 2011).

Active strike-slip (e.g. Bellier *et al*. 2001), with left-lateral slip rates of up to 39 mm/yr (Socquet *et al*. 2006), characterise much of Sulawesi’s onshore Quaternary deformation. Often considered to result from NW-directed collision between the Sula platform and Sulawesi (e.g. Silver *et al*. 1983b; Simandjuntak 1986), modern reconstructions emphasise the process of subduction hinge rollback related to the substantial amounts of oceanic crust that have been and continue to be subducted around Sulawesi (e.g. Spakman & Hall 2010; Hall 2012). The occurrence of Late Miocene to apparently modern N-S-directed continental extension (e.g. Spencer 2011) in a broad region adjacent to the south-directed Celebes Sea subduction means that a rollback mechanism must be considered.
The Palu-Koro Fault (Fig. 4) is the most prominent active fault of Sulawesi, and is of particular importance because it is straddled by Palu city (pop. 340,000). The Palu-Koro Fault appears to pass from the SW corner of the Celebes Sea to a diffuse termination onshore at the northern end of Bone Bay, a distance of 500 km, of which 220 km is onshore.

The fault’s tectonic role is disputed: sinistral shear along a joint Palu-Koro-Matano Fault system has been thought to accommodate clockwise rotation and northward movement of a rigid eastern Sulawesi block driven by collision of the Banggai-Sula block in the east (e.g. Hamilton 1979; Silver et al. 1983b; Beaudouin et al. 2003). However, it is significant that the Palu-Koro Fault and the North Sulawesi Trench respectively form the western and northern limits of a region of late Cenozoic extreme continental extension that includes deep sedimentary basins (e.g. Jablonski et al. 2007; Pholbud et al. 2011), exhumation of the mid-lower crust in metamorphic core complex – like settings (e.g. van Leeuwen et al. 2007; Watkinson 2011), exhumed low-angle normal faults (Cottam et al. 2011). These features can be associated with the overriding plate above a retreating subduction hinge, particularly in the early stages of continent-continent collision (Royden 1993). The orientation and kinematics of the Palu-Koro Fault are compatible with an interpretation that it is passively bounding a region of lithospheric extension driven by northward rollback in the Celebes Sea, although it is unclear whether there is a hard linkage between the fault and the trench.

That the fault is an active zone of high strain is not disputed. Geodetic measurements suggest a 39 mm/yr sinistral slip rate together with 11-14 mm/yr of extension (Socquet et al. 2006), consistent with a 35 ± 8 mm/yr strike-slip rate determined from displaced alluvial fans of 11,000 ± 2300 years age (Bellier et al. 2001).

There is palaeoseismic evidence for three M\textsubscript{w} 6.8-8.0 earthquakes during the last 2000 years, suggesting a recurrence interval of about 700 years (Beaudouin 1998; Bellier et al. 1998). However, even allowing for 10 m slip per M\textsubscript{w} 6.8-8.0 event, the resultant 30 m total displacement in 2000 years is less than the 54-86 m predicted from Holocene slip rates (Bellier et al. 2001). While those authors propose that the deficit is accommodated by aseismic creep, it is equally possible that large, undetected earthquakes occurred on unobserved fault strands, and the total recurrence interval for all Palu-Koro Fault strands is significantly less than 700 years. Socquet et al. (2006) propose 4 parallel strands across a zone about 50 km wide, locked at depths between 0 and 5 km.

Records of historical seismicity in Sulawesi are poor. Damaging earthquakes occurred along the Palu-Koro Fault in 1905, 1907, 1909, 1927, 1934, 1968 (M\textsubscript{s} ~ 6.7), 1985 and 1993 (M\textsubscript{s} ~ 5.7) (Katili 1970; Hamilton 1979; Beaudouin 1998) but little detail is known. Large earthquakes close to the fault zone occurred in 1996 (M\textsubscript{w} 7.7) and 1998 (M\textsubscript{w} 6.6 and 6.0), the former caused a 2-4 m high tsunami in the Toli Toli region (Pelinovsky et al. 1997). However, these earthquakes originated offshore, did not lay clearly on the active Palu-Koro Fault, and none had a focal mechanism that indicated left-lateral slip along the Palu-Koro trend.

The Palu-Koro Fault has the clearest geomorphological expression of any of Eastern Indonesia’s faults. It occupies a steep sided narrow valley along much of its path through central Sulawesi, before branching into the Palu valley, up to 15 km wide (Fig. 5a). Two prominent scarps bound the valley, and form the base of mountains which rise to over 2.3 km elevation. The western scarp is highly linear, particularly the remarkable central segments around 15 km south of Palu city. Mountain front
sinuosity values are consistently low at 1.08 to 1.09, indicating maximal tectonic activity, increasing to 1.28 to 1.56 at the northern and southern ends of the valley, indicating rapid to moderate tectonic activity (Fig. 5a). Valley floor curvature is generally correspondingly tight, with an average V_f of 0.24 along the western scarp.

Features such as prominent triangular facets, hanging valleys and steep-sided, deeply incised streams are also focused along the central western basin-bounding segment (Fig. 5b). These landforms support dominantly rapid normal faulting along the basin margin faults. Wine glass canyons in particular indicate that the tectonic subsidence/uplift rate is faster than erosion. Lateral offset of alluvial fans and rivers across the mountain front have been observed, notably in the northern and southern segments of the fault system (e.g. Hamilton 1979; Bellier et al. 2006).

A 5° releasing bend/step-over is required to link the southern segments of the Palu-Koro Fault, where it emerges from its narrow valley at Pakuli, with the northern segments NW of Palu city. In analogue models and other non-linear strike-slip faults, such releasing geometries are often associated with well defined oblique-normal sidewall faults and a cross-basin fault system with more subtle surface expression that accommodates most of the strike-slip strain (e.g. Mann et al. 1995, 2007; Wu et al. 2009) (Fig. 6a inset).

Analysis of Palu River channels since 2003 from satellite imagery and the pattern of older filled oxbow lakes on the valley floor indicates that long reaches of the river rarely deviate from a linear path directly along strike from the strike-slip fault where it enters the Palu valley in the south (Fig. 6a,b). Many meanders have a square aspect with linear longitudinal segments parallel to the projected fault (Fig. 6c). In the south of the valley a linear braided reach is similarly parallel to the projected fault, and individual braid channels are anomalously linear (Fig. 6d). Palu-Koro Fault strands cutting an alluvial fan and offsetting its incised drainage directly along strike to the south confirm that the river is structurally controlled. It is more reasonable to project this southern fault strand directly north across the basin than it is to consider strike-slip strain transferring immediately to the western sidewall fault between Pakuli and Bolongga, particularly as geomorphic indices in that region indicate a relatively low tectonic rate (Fig. 5a).

Thus we propose that much of the Palu-Koro Fault strike-slip strain through the Palu valley is not accommodated on the prominent sidewall faults, but on a cross-basin fault system that is obscured by fluvial deposits during interseismic periods (as it is now) (Figs. 5a & 6a). The sidewall faults are largely an extensional partition, explaining the lateral slip deficit across them, noted by Bellier et al. (2001). Confinement of the Palu river meander belts within the strike-slip cross-basin fault system may be due to development of a subtle graben, or to changes in permeability, cementation or compaction in the Quaternary valley fill resulting from penetration by strike-slip strands.

The valley’s eastern sidewall fault is generally much more segmented and strongly eroded than in the west with gentle slopes and irregular mountain fronts (Fig. 6a). South of the intersection with the Sapu valley fault system, S_{mf} values are 1.19-1.59 and V_f averages of 0.55 indicate rapid to moderate tectonic activity. North of the Sapu valley intersection, S_{mf} is 2.30 and average V_f is 0.80, indicating slow tectonic activity.

Further south along the Palu-Koro Fault the Gimpu basin exists at a small releasing step-over, and the Leboni basin occupies a releasing bend near the faults southern termination (Fig. 4). The Palu-Koro Fault bounding these flat-topped Quaternary basins has S_{mf} values of 1.11 and 1.12 respectively, and similarly low V_f, 0.56 and 0.89, indicating rapid to moderate tectonic activity.
Sapu valley fault system

A complex NW-SE trending fault system 75 km long cuts across crystalline basement between Palu valley and the Tokorondo Mountains in the east (Fig. 4). The fault system is dominated by a double bend – a releasing bend forming the intermontane Sapu valley (~600 m elevation), and a restraining bend associated with uplift at the head of the valley (Fig. 5a). Both bends are consistent with an overall left-lateral shear sense for the fault system. Anecdotal reports from residents of the valley (various, pers. comm. 2009) suggest that earthquakes are frequent and well known, though there is little instrumental seismicity and no record of historical earthquakes.

Sapu valley is an irregular rhomboidal basin bounded by normal faults trending NNW-SSE and E-W (Fig. 7a). Many of the faults are arcuate, convex into the basin. Their range front slopes are generally gentle, but S_{mf} values of 1.09 to 1.45 and average V_{T} is 0.40 suggest rapid to moderate tectonic activity (Fig. 7b). A conspicuous feature of the basin floor is the strong confinement of river channels to narrow linear meander belts (Fig. 7b), as discussed above for the Palu River. Both modern and abandoned channels have linear meander belt margins and square longitudinal sections parallel to the projected trace of the fault system through the valley, implying fault penetration through the Quaternary basin fill (Fig. 7c, d). In the same way as for the Palu valley, this evidence supports a cross-basin fault system that accommodates most of the strike-slip strain, while the prominent sidewall faults are dominantly extensional structures. The cross-basin fault system is buried by fluvial sediments, but coseismic subsidence, or changes in permeability, cementation or compaction caused by periodic surface rupture through the Quaternary basin fill continue to influence meander patterns.

At the head of the valley the entire fault system curves to a more NNW-SSE trend – a restraining geometry under sinistral shear. A broad oversized valley in the west is presently at 700 m elevation (Fig. 7a), i.e. 100 m above the modern Sapu valley floor. Exhumed brittle SW-dipping reverse-sinistral faults in mica schists along the uplifted valley support long-lived uplift at this restraining bend (Fig. 7e, f). At the foot of the westernmost oblique-reverse fault, S_{mf} is 1.08, suggesting maximal tectonic activity (Fig. 5a).

Drainage networks extracted from SRTM data show that there is presently a drainage divide separating the Salo Wuno and Salo Sapu catchments basins in the position of the thrust-related uplift and oversized valley (Fig. 5a). Water presently exits Sapu valley via a narrow, steep-sided gorge (Fig. 7a). The extreme steepness and geomorphic immaturity of that gorge suggests that it has recently captured the Sapu valley drainage, perhaps in response to tectonic uplift of its former well established route to the NW via Salo Wuno. It is likely that for some time after uplift in the NW, Sapu valley was internally drained and may have contained an intermontane lake similar to Lake Lindu to the south (Fig. 4), explaining the flat base of Sapu valley.

In summary, four lines of evidence suggest the Sapu valley fault system has been active during the Quaternary: a) control of modern river meander belts by a cross-basin fault system that traverses the Quaternary basin fill; b) youthful geomorphic expression of the Salo Sapu gorge where it has apparently recently captured the Salo Sapu in response to tectonic uplift in the NW; c) rapid to moderate tectonic activity along the transtensional segment sidewall faults, indicated by geomorphic indices; d) maximal tectonic activity along the transpressional segment’s reverse faults implicated in uplifting the oversized palaeo-valley in the east, indicated by geomorphic indices.
Matano Fault

The Matano Fault passes from southern central Sulawesi through the island’s SE arm to Tolo Bay (Fig. 4). It is typically shown to mark the southern edge of the Sula Block, linking to the Palu-Koro Fault to the west and the North Sulawesi Trench to the north (e.g. Hamilton 1979; Rangin et al. 1999).

A hard linkage between either the Lawanopo or Matano and Palu-Koro faults is a requirement of many rigid-block models for Sulawesi (e.g. Bellier et al. 2006; Socquet et al. 2006). However, Silver et al. (1983b) noted that the nature of the connection was not known. Modern satellite imagery shows a highly segmented and discontinuous westernmost Matano Fault curving towards the Palu-Koro Fault, but the two structures remain largely isolated either side of the Gunung Balease massif (Fig. 4).

In the east, the Matano Fault passes into the northern Banda Sea. Some workers link it to the Tolo Thrust (sometimes referred to as the Hamilton Thrust or the East Sulawesi Trench) (Fig. 1), an ESE-verging thrust zone NE of Buton. Silver et al. (1983b) suggest that the Matano and Palu-Koro faults act as a trench-trench transform between the north Sulawesi subduction and the Tolo Thrust. This thrust has been considered to accommodate convergence between the Makassar block and the Banda Sea block (e.g. Socquet et al. 2006). However, recent work suggests that the Tolo thrust is a gravity-driven feature at the foot of a series of slumps (Rudyawan et al. 2011), rather than a tectonic block-bounding structure (e.g. Silver et al. 1983b; Rangin et al. 1999).

Geological offsets (e.g. Ahmad 1975) and stream offsets (e.g. Hamilton 1979) across the Matano Fault confirm that it is a left-lateral structure and that it has been active during the Quaternary (Bellier et al. 2006). Laterally offset streams are routinely used to assess the shear sense and Quaternary activity of strike-slip faults, usually in arid environments (e.g. Sieh & Jahns 1984), but also in humid, forested environments (e.g. Lacassin et al. 1998; Wang et al. 2014). Nonetheless, such observations must be interpreted cautiously, as stream offset may result from stream diversion along a fault and capture by another downstream reach, as well as by genuine tectonic displacement of a single stream (Wallace 1990). There have been no studies to use such offsets to evaluate Quaternary slip rates along the Matano Fault.

The Matano Fault is highly segmented, and lacks a single through-going strand (Fig. 8a). Several linear basins (e.g. Pansu, Matano and Mahalona) lie within or adjacent to the fault zone, often at step-overs between strands. Each basin is 4-6 km wide and 20-30 km long. The Matano basin hosts Lake Matano, which at 590 m deep (Haffner et al. 2001), is the deepest lake in Indonesia and the 10th deepest in the world. A fault passing from the northern margin of the Pansu Basin is very prominent as it cuts through ultramafic rocks in the SW corner of Lake Matano, just south of Desa Matano (Fig. 8a). The fault then steps to the left to another very prominent fault in the NW of the lake, from where it passes across the Mahalona Basin’s northern margin. Rapid subsidence in the lake and earthquake focal mechanisms recording E-W extension close to the lake likely result from this releasing geometry (McCaffrey & Sutardjo 1982). Two major pop-ups associated with uplift, thrusting and exhumation of metamorphics and serpentinite at restraining bends occur east of the Mahalona Basin and west of the Pansu basin (Fig. 8a).

A number of consistent left-lateral stream offsets and evidence of stream capture across two fault strands west of Pansu Basin (Fig. 8b) and steep-sided, narrow fault valleys (Fig. 8c), suggest youthful fault activity. Geomorphic indices of oblique basin-bounding faults range from S_{nf}: 1.06-1.28, average V_f: 0.69 (Pansu Basin); S_{nf}: 1.02-1.17, average V_f: 0.78 (Matano Basin); S_{nf}: 1.19, V_f: 0.45 (Mahalona Basin); to S_{nf}: 1.08-1.9, average V_f: 0.51 (eastern termination splay), and indicate mostly rapid to moderate tectonic activity.
On 15th February 2011 a shallow focus M_w 6.1 earthquake near the western end of Lake Matano (NEIC) had a focal mechanism consistent with left-lateral slip along the Matano Fault. The earthquake caused damage to concrete walls and buildings, including a newly-built hospital in the Mahalona valley (Fig. 8d). The earthquake’s location suggests that the prominent fault segment that links the NE corner of Lake Matano with the Mahalona Basin failed (Fig. 8e). ‘Surface cracks’ were reported by locals at the eastern end of the basin, and though we visited the area in October 2011, a surface rupture could not be located. Close to the lake, very high resolution satellite imagery recently made available (Bing Maps) shows three clear lineaments cutting across boggy ground and low-lying forest (Fig. 8f) along strike from a Matano Fault strand that offsets drainage to the left. While it is not possible to confirm that they represent the 2011 surface rupture, these lineaments appear to be tectonic in origin and are clearly very young. Linking these lineaments with the reported surface cracks in the east, along a topographically clearly defined fault strand, yields a postulated surface rupture length of > 39 km, which is longer than expected for a M_w 6.1 earthquake from empirical relationships (Wells & Coppersmith 1994).

Lawanopo Fault and Lake Towuti

The Lawanopo Fault (Fig. 4) consists of several straight NW-trending fault segments that cross Sulawesi’s SE arm south of the Matano Fault. The Lawanopo Fault is used in preference to the Matano Fault by Socquet et al. (2006) as the southern margin of the ‘East Sula Block’. However, discontinuous and eroded fault traces along strands of the Lawanopo Fault system suggest that it has been mostly inactive during the Quaternary (Bellier et al. 2006; Natawidjaja & Daryono 2014). Nonetheless, recent earthquakes close to Kendari may indicate that at least some strands of the Lawanopo Fault system remain active. An M_w 7.5 earthquake in the Banda Sea 170 km SE of Kendari on 19th October 2001 had a strike-slip focal mechanism, and may have originated on the projected offshore trace of the Lawanopo Fault (Yeats 2010).

Like the Matano Fault, the Lawanopo Fault is highly segmented and there is no through-going strand at the surface (Fig. 4). Mountain front sinuosity values on the few segments associated with adjacent basins range from 1.21 to 1.75, and valley depth/width ratios average 0.55-0.83, indicating moderate to slow tectonic activity.

Lake Towuti, the largest of the Malili Lakes, occupies an intermontane basin at 318 m elevation and has a maximum water depth of 203 m (Haffner et al. 2001). The basin lies in the wedge between the Matano and Lawanopo faults, and is itself cut by linear fault strands that internally deform the wedge (Fig. 4). Two prominent curvilinear faults lie along the south and east of the lake (Fig. 8a). The closest, trending NE-SW and downthrown to the NW, forms the linear eastern lake boundary, and is marked by a number of fans prograding into the lake. Its high mountain front sinuosity (2.04) and valley depth/width ratios (1.22) suggest slow tectonic activity. However, a large earthquake along this >25 km long structure could cause a substantial tsunami or seiche in the lake. The second fault, to the east, is longer still (>55 km) and highly continuous. It intersects the Lawanopo Fault at a small angle, and may directly transfer slip away from that structure. Mountain front sinuosity ranges from 1.03-1.15, suggesting maximal to rapid tectonic activity, though valley floors are rather rounded (V_f average is 0.49). Lake Towuti would rapidly fill with sediment if it were not actively subsiding, therefore the bounding normal faults must be considered to be active during the Quaternary.
Kolaka Fault

The Kolaka Fault (Simandjuntak *et al.* 1984, 1994; Surono 1994) (Fig. 9a) lies along the southern margin of the Mengkoka mountains, and is sub-parallel to the Lawanopo Fault to its north. It is equivalent to the Mendoke Fault of Bellier *et al.* (2006). Hamilton (1979) interpreted the fault as a SW-dipping thrust, Bellier *et al.* (2006) considered the fault as a pre-Early Pleistocene strike-slip continuation of the Palu-Koro Fault, but there is little evidence to support either hypothesis. One strand of the Kolaka Fault is sealed by 4.4 ± 0.2 Ma dacites, potentially placing a limit on the timing of faulting (White *et al.* 2014).

The fault is composed of several NE-SW-trending gently arcuate segments up to 45 km long in map view. Along Bone Bay coast and at Kolaka town the downthrown side is to the south, the easternmost segment is downthrown to the north (Fig. 9a). The polarity shift occurs across a 10 km wide relay straddling the Anggowala mountains. The orientation of these two apparently normal fault systems is kinematically consistent with sinistral slip along the overall Kolaka trend.

Geomorphic indices are highest closest to Kolaka town, where S_{mf} values of 1.22 to 1.30 and V_f values of 0.23-1.68 suggest that there is rapid to slow active dip-slip across the fault, which has clear surface expression and is marked by triangular facets (Fig. 9c). Along strike to the NW a series of linear valleys and low ridges near Lasusua may be a continuation of the Kolaka Fault (Fig. 9b). An absence of fault scarps or clearly displaced features makes fault activity hard to evaluate, but meander confinement within a linear graben across the Lasusua alluvial plain and asymmetric subsidence highlighted by the river’s proximity to the bounding fault suggests recent fault activity (Fig. 9d).

Faults downthrown to the WSW at the western end of the Kolaka Fault have very low S_{mf} and V_f values (1.05, 1.25 respectively), deeply incised streams and well developed triangular facets, suggesting Quaternary dip-slip. These faults face into Bone Bay and may be related to basin-bounding extensional structures accommodating subsidence in the bay (Camplin & Hall 2014).

Balantak Fault

A prominent ENE-trending linear structure, the Balantak Fault lies at the eastern end of Sulawesi’s east arm and separates the Batui thrust system in the south from mountainous highlands in the north (Fig. 10a). It has been considered to be part of the Batui thrust system (Silver *et al.* 1983b) but its remarkably straight outcrop, field observations (Simandjuntak 1986) and along-strike alternation between local uplift and subsidence suggest that it is a steep, possibly strike-slip fault.

Onshore, where the fault bends gently to the right, small apparently Quaternary basins are developed (Fig. 10b). Where the fault bends gently to the left there is uplift. Both observations are kinematically compatible with a dextral shear sense. One of the zones of Quaternary subsidence is shown in Fig. 10c. A basin-bounding fault at a small clockwise angle from the regional Balantak Fault trend is crossed by streams that show no systematic offset, suggesting dominant dip-slip. To the north, a prominent lineament crosses the basin, expressed by lines of vegetation and slightly darker (moister?) soil. This lineament’s parallelism with the Balantak Fault to the east and its negligible topographic relief suggests it is the through-going strike-slip fault strand. Although stream avulsion across the flat-topped basin is too dynamic to preserve meaningful offsets, the clear expression of the fault in the young sediments suggests the Balantak Fault has been active during the Quaternary.

The Balantak Fault’s termination system offshore to the east of Poh Head is composed of left-stepping segments separated by folds and thrusts (Fig. 10d). Contraction between left-stepping main segments,
an apparently antithetic sinistral fault, and the orientation of folds and thrusts are all kinematically compatible with dextral shear along the Balantak Fault (Watkinson et al. 2011). Earthquakes located onshore and west of Poh Head also suggest right lateral and reverse slip parallel to the Balantak Fault (Fig. 10a). However, a swarm of offshore earthquakes between Peleng and Taliabu to the east have focal mechanisms which support sinistral slip along the Balantak trend. This apparent contradiction is discussed in Watkinson et al. (2011). Here we conclude that the geologic and geomorphic evidence supports long-term Quaternary dextral slip. Further work is required to understand the significance of a small number of contradictory seismological signals in the area.

The Balantak Fault is almost continuous for 54 km from Balantak town in the east to Poh Bay in the west, where it likely continues just offshore for another >30 km. Extending to include the dextral fault system offshore to the SE makes the fault up to 250 km long. The onshore fault scarp has exceptionally low S_{mf} values, from 1.04 to 1.22 (Fig. 10b), with correspondingly low average V_f values of 0.36, suggesting maximal to moderate tectonic activity.

Gorontalo Fault

The Gorontalo Fault (Katili 1973) (Fig. 11a), has been considered to be one of the major block-bounding structures of Sulawesi (e.g. Socquet et al. 2006; Molnar & Dayem 2010). Geodetic modelling suggests 11 mm/yr dextral slip rate and 10 km locking depth; however, as observation points are widely spaced, it remains possible that GPS data record rotation of the entire north arm of the island rather than discrete slip across a fault (Socquet et al. 2006). There is little modern shallow seismicity in the Gorontalo area, suggesting that the fault is inactive or remains locked (Fig. 11a). The fault is composed of several branching segments, including major ~30 km long segments south and north of Gorontalo city (Fig. 11b). Limboto lake lies in the 7 km wide step-over between these two segments, indicating local transtension. The fault is expressed by highly eroded scarps passing along the Tomini Bay coast and bounding the Gorontalo/Limboto depression. Geomorphic indices suggest that the segments experience slow to minimal tectonic activity, with S_{mf} values ranging from 1.83 to 2.36 and an average V_f of 1.28. Though there is considerable human development within the Gorontalo/Limboto depression which may obscure neotectonic activity, there appears little evidence of deformation within the Quaternary sediment fill, except for the presence of Limboto lake subsidence at the releasing step-over.

Western Tomini Bay bounding faults

A series of faults along the margin of Tomini Bay show evidence of recent activity. The faults are arcuate and generally mark the boundary between mountainous ground along Sulawesi’s narrow ‘neck’ and Tomini Bay, which is up to 2 km deep and contains a sedimentary succession up to 10 km thick (Jablonski et al. 2007; Pholbud et al. 2011). Extension and mantle decompression across the bay is associated with Plio-Pleistocene volcanism in the Togian Islands and possibly with modern volcanism at Una Una volcano (Cottam et al. 2011) supporting recent extensional faulting and lithospheric thinning both on and offshore (Pholbud et al. 2011). The northernmost bounding fault bounds the 2.5 km high Molino Metamorphic Complex (Fig. 11c), a suite of quartzofeldspathic mica schists and gneisses that may be an exhumed metamorphic core complex (van Leeuwen et al. 2007). The faults dip north and south on the north and south sides of the complex respectively, and have crystalline basement in their footwalls. The southern segment has a curvilinear trace more than 75 km long, with extremely low S_{mf} values (1.05) and well-developed
triangular facets at the end of V-shaped valleys with V_t values of 0.33-0.64 within an uplifted footwall block. On this basis, combined with no evidence of strike-slip, it is interpreted as a normal fault.

Further SW, Tomini Bay bounding faults are crossed by a number of fan deltas prograding into the bay which are surprisingly short (<3 km), given the potential upstream sediment source, suggesting rapid and recent hangingwall subsidence (Fig. 11d, e). Segments further south along the ‘neck’ have higher S_{mf} values (1.66) and fan delta lobe length increases to over 10 km, suggesting less significant recent subsidence (Fig. 11f).

At the southern end of the neck, a NE-dipping fault system, including the Tambarama Fault (Pholbud et al. 2011) forms an apparently continuous arcuate trace at Parigi (Fig. 4), marking the boundary between the Palu Metamorphic Complex onshore (van Leeuwen & Muhardjo 2005) and Tomini Bay subsidence offshore. S_{mf} values are generally high (2.77 to 3.25), though a short northern segment is less sinuous at 1.32. A well-developed apron of fan deltas extends 6 km from the mountain front.

Maluku and North Maluku

Maluku and North Maluku are composed of numerous islands affected by disparate neotectonic processes. In the north, Halmahera (Fig. 1) and the Sangihe Arc are involved in the active collision of two accretionary complexes above the subducted Molucca Sea slab, where the Sangihe forearc is being thrust eastwards over the Halmahera forearc (e.g. Silver & Moore 1978; Hamilton 1979; Hall 1987; Hall et al. 1995). The entire system accommodates 80 mm/yr of the 105 mm/yr Philippine Sea Plate-Sundaland convergence (Rangin et al. 1999). Splays of the left-lateral Sorong Fault pass through and to the south of Halmahera and Bacan, where there is abundant modern seismicity (e.g. Ali & Hall 1995; Hall et al. 1995) (Fig. 1).

South of Bacan, islands with Australian continental basement such as the Banggai-Sula Islands and Obi, are bounded by strands of the Sorong Fault and were for a long time considered to have been translated from New Guinea along a 1900 km long Sorong Fault passing from northern Papua New Guinea towards Sulawesi (e.g. Visser & Hermes 1962; Audley-Charles et al. 1972; Hamilton 1979; Silver & Smith 1983; Pigram et al. 1985; Garrard et al. 1988; Hutchinson 1989). New interpretations, based on evidence of extreme crustal extension and mantle exhumation, mantle tomography and geodynamic models (e.g. Spakman & Hall 2010; Spencer 2011; Hall 2011; Pownall et al. 2014), suggest that those islands, together with others along the northern Banda Arc such as Buru and Seram, were part of a continental spur that was fragmented during Miocene-Pliocene times by Banda Sea rollback-driven lower crustal delamination.

Quaternary extension in Maluku appears to be as important as it is in Sulawesi, despite a collisional overall tectonic setting. Young metamorphic core complexes exhumed in Seram (Pownall et al. 2013) and possibly Buru (Roques 1999) are associated with low angle and steep normal faults. A significant component of the seismic moment release in Maluku is by normal and strike-slip earthquakes, alongside important thrusting in the Molucca Sea and north Seram (e.g. Rangin et al. 1999). Finally, sinistral transpression through Seram accommodates Australia-Pacific convergence and links into the Tarera-Aiduna Fault of West Papua (e.g. Rangin et al. 1999; Stevens et al. 2002; Teas et al. 2009).

Banggai-Sula Islands

The Banggai-Sula Islands (Fig. 10a) occupy a fragment of continental crust of Australian affinity that has collided with the east arm of Sulawesi (e.g. Audley-Charles et al. 1972; Hamilton 1979; Pigram et
al. 1985; Garrard et al. 1988). The South Sula-Sorong Fault was interpreted by Hamilton (1979) to follow the break in slope south of Taliabu and pass between Mangole and Sanana. North of the Banggai-Sula Islands the North Sula-Sorong Fault (e.g. Hamilton 1979; Norvick 1979; Silver et al. 1983b; Sukamto & Simundjuntak 1983), previously considered to pass from the Bird’s Head, past Obi, and along the north margin of the Banggai-Sula Islands towards Sulawesi’s east arm, cannot be detected in new geophysical data and must lie below the Molucca Sea collision complex to the north (Ferdian et al. 2010; Watkinson et al. 2011).

Despite the density of deformation in the area, immediately north of the Banggai-Sula margin there is very little shallow seismicity (Engdahl et al. 1998; Rangin et al. 1999; Beaudouin et al. 2003), indicating that there are few active structures, that deformation is largely aseismic, or that the main faults have interseismic periods which exceed instrumental records. This is a marked contrast to the abundant shallow seismicity associated with the Molucca Sea collisional zone further north. However, a number of focal mechanisms north and south of the islands indicate that there is some residual left-lateral slip on E-W to NW-SE trending faults (Fig. 10a).

Mangole Island appears to be bordered along its north and south sides by several linear E-W trending normal faults, indicated by straight traces and well-developed triangular facets (Fig. 12a, b). Mountain front sinuosity values range from 1.11 to 1.57, and V_f is from 0.44-0.55 suggesting that some of the structures have been active during the Quaternary. Sanana Island, topographically orthogonal to Mangole, is bounded by NNW-SSE trending faults that can be traced offshore in multibeam bathymetry. The most prominent fault, on the east coast, forms a well defined scarp over 20 km long, dipping and down-thrown to the east, making it likely to be a normal fault (Fig. 12c). Triangular facets, hanging valleys, deeply incised streams (Fig. 12d) and an absence of subaerial prograding fan delta tops wider than about 400 m suggest rapid recent eastward subsidence along the fault, supported by S_{mf} values of 1.27 to 1.34.

Taliabu Island (Fig. 10a) is cut by a number of E-W and N-S trending Quaternary faults. North-south trending faults in the west have particularly fresh geomorphic expression. A north coast bedding-parallel dip-slope dips 6° into the Molucca Sea (Fig. 13a). Offshore to the north a planar detachment surface 34 km wide exactly corresponds to the Taliabu dip-slope onshore, and represents a submarine slope failure (Watkinson et al. 2011). Both onshore and offshore slopes appear to be part of a single large glide surface of a mega-debris slide that translated much of north Taliabu at least 37 km north into the Molucca Sea, likely causing a significant tsunami.

The north Taliabu dip-slope is truncated by several prominent E-W trending faults that dip steeply north. Geomorphic expression is very fresh (Fig. 13b) – footwall crests are only slightly eroded, in most cases drainage runs parallel to fault scarps and has not cut across them, except for a few prominent high order streams. The faults displace the dip-slope, and so must post-date the mega-debris slide. Though we have no absolute constraint on the timing of the slide, reef build-ups are conspicuously poorly-developed along the section of coast at the foot of the dip-slope, but are extensive along the coast and small islands either side. The slide must have happened recently enough that corals have been unable to fully recolonise the new coastline, suggesting that the post-slide normal faults are late Quaternary and likely still active.

Sorong Fault from Obi to Waigeo

Westward splaying segments of the Sorong Fault emanate from the western Bird’s Head and pass close to the islands of Salawati, Misool, Obi, Bacan, south Halmahera, and Waigeo (e.g. Katili 1975; Hamilton 1979; Ali & Hall 1995) (Fig. 1). Though there is debate about whether the Sorong Fault
onshore West Papua is tectonically active (discussed below in *Sorong Fault in West Papua*), at the
alatitude of Obi there is 19 ± 8 mm/yr left lateral displacement between Ternate and the Bird’s Head
that may be accommodated by one or more strands of the Sorong Fault (Bock *et al.* 2003). Seismicity
is limited in the islands immediately west of the Bird’s Head, but intense seismicity occurs around
Obi, Baca and south Halmahera (Rangin *et al.* 1999), which may be where sinistral strain is
transferred from Seram into the Molucca Sea.

Seram fold and thrust belt

Between northern Seram and the Bird’s Head is a broad zone of transpression linked to convergence
between Australia and the Pacific plate (Fig. 1). A deep bathymetric trough, the Seram Trough, lies
150 km north of Seram island, and curves around the Banda Sea, linking to the Timor Trough and
ultimately the Java Trench. The Seram Trough has been interpreted as a subduction trench (e.g.
Hamilton 1979), a foredeep ahead of a fold and thrust belt (e.g. Audley-Charles 1986), and a hinge
zone marking the northern limit of delaminated and subducted lower continental crust (Spakman &
Hall 2010).

Convergence across the Seram Trough is presently 20 mm/yr (Rangin *et al.* 1999; Stevens *et al.* 2002)
and is associated with intense seismicity generated by shallow thrust faulting (McCaffrey 1989;
Engdahl *et al.* 1998) mainly concentrated along the northern edge of Seram (Fig. 14a), and entirely in
the western part of the fold belt (Teas *et al.* 2009).

Seram is centred on a belt of high mountains (>3 km elevation), which include tracts of continental
metamorphics, ultramafic rocks and Earth’s youngest exposed ultra-high temperature granulites,
exhumed since 16 Ma (Pownall *et al.* 2014). Plio-Pleistocene Wahai and Fufa formations onlap the
elevated pre-Pliocene succession forming low plains along the northern coast (Pairault *et al.* 2003),
and are themselves overlain by modern alluvial and reef deposits. Within these plains there is
evidence of active contraction.

On the north coast of Seram, onshore fold growth affects modern drainage, suggesting that the folds
have been active during the Quaternary (Fig. 15a). Three large rivers draining the northern slopes of
the Kobipoto Mountains are deflected from a linear route to the coast by two sets of segmented E-W
to NW-SE trending hills. Progressive migration of the rivers away from the hill tips is recorded by a
trail of abandoned and filled river channels left behind the deflected river, expressed by oxbow shaped
fields and areas of vegetation (Fig. 15b, c). Larger hills, like that in the centre of Fig. 15a, cause more
deflection than smaller folds, like that in the east which only deflects Wai (*stream*) Kobi slightly. In
all cases the abandoned channels are located upslope of the modern river, suggesting that progressive
uplift is forcing river avulsion. This tendency for the hills to grow symmetrically from a central axis,
their elongate morphology and their asymmetry (steep northern slopes, shallow southern slopes)
supports the interpretation that they are the surface expression of shallow, north-vergent fault
propagation folds above south-dipping thrusts (Fig. 15d).

Abandoned meander channels and point bars on the coastal plain in the central part of Fig. 15d are not
associated with any obvious modern river, but seem to originate at the foot of the central frontal
thrust. Abandoned remnants of a comparably large river can also be observed in an uplifted valley
immediately to the south, and directly north of a fourth major north flowing river, which presently
abruptly curves around the eastern tip of the fault before joining Wai Musi. It is interpreted that the
abandoned channels here represent a river which flowed directly north before the fold developed. An
uplifted valley across the mid-point of the fold shows that the river attempted to down-cut as the fold
grew, but was ultimately thwarted by a high uplift rate, and swung east to be captured by Wai Musi.

Deep lateral incision by the captured river into the back limb of the fold (Fig. 15b), suggests that the fold growth, and presumably underlying thrust activity, is ongoing.

A series of abandoned channels east of Wai Musi, the easternmost of which link to Wai Kobi, indicates that river itself may previously have been a tributary to Wai Kobi, before being deflected to the west and ultimately cut off from the trunk stream, presumably by uplift above the eastern frontal thrust.

Such evidence of recent hangingwall uplift and tectonic folding, together with the low relief of the range front, leads to the conclusion that the faults are youthful low-angle south to SW-dipping thrusts, supported by focal mechanisms along the north coast (Fig. 14a). Uplifted coastal terraces in the foreland of the onshore thrusts and a conspicuously wide coastal plain (Fig. 15d) suggest additional young uplift north of the onshore thrusts, perhaps in response to a third set of active faults just offshore. This is consistent with modern thrust activity within the broad fold and thrust belt offshore (e.g. Engdahl et al. 1998; Teas et al. 2009) and a 1629 mega-thrust earthquake likely originating in the Seram Trough (Liu & Harris 2013).

Kawa Fault

The Kawa Fault (Pownall et al. 2013) lies in the prominent ESE-WNW-trending deep linear valley that passes through central Seram (Fig. 14a), occupied by the Kawa River. The fault broadly separates upper-greenschist to mid-amphibolite facies Tehoru Formation rocks in the south from generally higher grade metamorphics of the Saku and Taunusa complexes in the north (Gemeraad 1946; Tjokrosapoetro et al. 1993; Pownall et al. 2013). The Kawa Fault coincides with the position of strongly mylonitic garnet-bearing Tehoru Formation schists with a steeply-dipping foliation considered by Linthout et al. (1991) to record dextral shear, but now recognised to have been intensely folded and possibly originating in a low-angle normal fault, resulting in complexly re-orientated kinematic indicators (Pownall et al. 2013).

A brittle fault zone up to 2 km wide (Pownall et al. 2013) overprints the mylonitic rocks and controls the modern topography (Fig. 16a, b). Fault strands are generally parallel to mylonitic foliation, and contain abundant serpentinite slivers and smears. Mid-way along the fault is a prominent right-step associated with uplift and a major drainage divide, pointing to local transpression due to left-lateral slip. Stream offsets measured from Landsat and Google Earth imagery along the fault (Fig. 16a) range from 66 to 605 m of left lateral offset (22 measurements) to 62 to 334 m of right lateral offset (5 measurements). Most measurements have high uncertainty, increased by Seram’s extremely humid climate and thick forest cover. Nonetheless, some measurements, for example 268 m and 253 m left lateral offset (e.g. Fig. 16c), are considered robust because: a) they lie on fault segments that are well defined (narrow linear valleys with other independent evidence of a fault origin such as triangular facets, steps/bends with corresponding uplift/subsidence appropriate to river offset sense); b) there is no evidence of stream capture; and c) upstream and downstream valleys have a similar geomorphic character. A left-lateral shutter ridge displacement and a NW-SE-trending fold within the Kawa River delta (Fig. 16a) support recent sinistral shear. A few earthquakes close to the western end of the fault yield CMT solutions suggesting dextral slip along NW-SE-trending planes, while one close to the westernmost splay indicates sinistral slip (Fig. 14a).

The fault zone splays as it enters Taluti Bay in the east (Fig. 16a). Splay strands are associated with well-developed triangular facets that record Quaternary normal faulting (Fig. 16d). The two major
splays have low S_{nf} values: 1.10 in the north and 1.33 in the south, and an average V_f of 0.27,
indicating rapid to moderate tectonic activity. The Kawa river flows hard against the southern splay
suggesting active subsidence along that segment, despite its higher S_{nf} indicating slower tectonic
activity than in the north. However, the river’s position may also be influenced by landslips, debris
flows and anticline growth in the northern part of its valley. In the west the fault splays north of
Elaputih Bay, attaining a total onshore length of 90 km, or 120 km including a possible splay fault
along the north coast of Taluti Bay (Fig. 14a).

Although the fault zone is thickly forested, numerous landslip scars can be recognised along the fault,
indicating recent seismicity (Fig. 16a). Additionally, the eastern termination is characterised by a
series of discontinuous tilted blocks suggestive of slope failure along the southern margin of the
Manusela Mountains (Fig. 16a). A M 7.8 earthquake in 1899 triggered landslides that caused a 12 m
high local tsunami at Tehoru (www.ngdc.noaa.gov; Brune et al. 2010), though it is unclear whether
the source was the Kawa Fault or a more distant earthquake. However, all evidence points to the
Kawa Fault being active during the Quaternary and capable of generating large earthquakes.

Other active faults of Seram

Along strike from the Kawa Fault on the east side of Taluti Bay, a fault zone occupies the valleys of
Wai Masumang and Wai Bobol, and is here termed the Bobol Fault (Fig. 14a). It is highly segmented,
though with a total onshore length of 100 km and possible along-strike continuity with the Kawa
Fault, it is a significant structure. Four large basins are developed along its length, each bounded by
ESE-WNW to SE-NW trending normal faults. Mountain front sinuosity along these structures ranges
from 1.26 in the central section to 1.99 in the west, and average V_f is 1.66, indicating moderate to
slow tectonic activity. There are a number of stream offsets both across the basin bounding faults and
across parallel faults in adjacent mountains (Fig. 16c). Convincing displacements are all left-lateral,
and range from 310 m to 2.06 km (Fig. 16f). Most strike-slip fault segments within the fault zone are
parallel to the Kawa Fault, and the two fault systems appear to be tectonically related and part of a
broader zone of active left-lateral shear linking to the Tarera-Aiduna Fault in West Papua.

The southern margin of Seram is locally formed by linear mountain fronts flanked by narrow fan
deltas not more than 1 km wide. The mountain fronts’ steep, linear aspect, high topographic relief,
and topographic lineaments that cross the fans parallel to the mountain front (Fig. 14b) suggests that
the mountain front is defined by Quaternary normal faults. However, the coastal range is rather deeply
eroded, with S_{nf} values of 1.84 to 2.08 and average V_f of 1.62, indicating slow tectonic activity.

Earthquake focal mechanisms towards the west of the coastal fault system in the region of Elaputih
Bay support shallow focus, broadly south-directed steep normal faulting (Fig. 14a).

A number of other small suspected normal fault systems occur around the SW coast of Seram,
including those bounding the Ambon islands. One fault along the northern coast of Hitu (Fig. 14a) is
particularly steep and straight, with a S_{nf} of 1.16 and well developed triangular facets along its 16 km
long trace. A NE-SW trending lineament that passes through Ambon city marks the southern coast of
Ambon Bay (Fig. 14c) and is associated with a zone of fault breccia and foliated gouge several metres
thick (Fig. 14d). A M7.6 earthquake occurred on 8th October 1950 close to the south coast of Ambon
(Bath & Duda 1979), though it is unlikely that such an event could have been caused by the relatively
short, dominantly normal faults visible onshore.
Buru

Buru consists of a presumed Palaeozoic continental metamorphic basement flanked by a Mesozoic sedimentary succession (Tjokrosapoetro et al. 1993), both of which are likely continuous with similar units in Seram (e.g. Pigram & Panggabean 1984; Linthout et al. 1989). Young K-Ar ages of 4-5 Ma (Linthout et al. 1989) and an apatite fission track central age of 2.5 ± 0.5 Ma suggest late Neogene exhumation, possibly accommodated by low angle normal faults (Roques 1999) as similarly postulated for western Seram (Pownall et al. 2013).

Intense shallow seismicity associated with Seram terminates abruptly in Manipa Strait, east of Buru (Fig. 17a). A broad belt of earthquakes in Manipa Strait possess CMT solutions indicating either NNE-SSW dextral events or WNW-ESE sinistral events, including a 14th March 2006 M_w 6.7 earthquake 25 km offshore. Most earthquakes have a component of reverse slip, others are pure thrust earthquakes with a NW-SE trend.

Most of Buru’s sparse population lives in the NE of the island, including the major town, Namlea. A 5-10 km wide system of NW-SE trending faults cuts through the town, across Kayeli Bay, and defines the coastline (Fig. 17b). The faults are expressed in remote sensing data by linear hills and sag ponds at releasing right step-overs, notably at Jikumerasa (Fig. 17c). Fault strands that cut through basement metamorphic rocks and alluvial fans show consistent stream offsets, and pass directly into Quaternary alluvium and control modern river channels (Fig. 17d). Stream offsets of up to 85 m across individual strands are mostly right-lateral, where they are left lateral there is clear evidence for stream capture. Variation in offset sense and amount is to be expected - streams are dynamic and are not passively offset like pre-kinematic geologic markers. The process of offset, beheading and capture, leading to stream offsets of zero or opposite to the fault’s shear sense, is well documented and widely observable in active faults worldwide (e.g. Wallace 1968; Sieh & Jahns 1984; Huang 1993; Walker & Allen 2012). All these features imply Quaternary NW-SE trending dextral fault activity in NE Buru, despite the apparent discordance with the few earthquake focal mechanisms recorded.

A broad fault zone 65 km long almost bisects Buru from the NE to SW (Figs. 17a & 18a). Identified as left lateral on early geological maps (e.g. Tjokrosapoetro et al. 1981), little else is known about the fault zone, here termed Rana Fault. Danau (lake) Rana, in the centre of Buru, occupies an intermontane basin within a right step-over between two segments of the Rana Fault, suggesting that the fault is dextral. West of Wadule, Wa (river) Geren is abruptly diverted 90° from a broad oversized valley that would have taken it to the coast in the NE of the island, into a narrow and steep sided canyon (Fig. 18a) that links with Wa Apu and empties into Kayeli Bay further south (Fig. 17a). This pronounced capture of a northern drainage basin by a relatively minor tributary of Wa Apu appears to have been triggered by uplift at a left bend in the Rana Fault immediately east of the capture point (Fig. 18a), again suggesting Quaternary dextral shear.

Upstream of the Wa Geren stream capture, the Rana Fault has exceptionally fresh geomorphic expression (Fig. 18b, c), with pronounced triangular facets and very low S_{mf} values, from 1.01 to 1.18 along the southern valley slope and a correspondingly low average V_f of 0.25, all suggesting maximal to rapid tectonic rate. There are a number of beheaded and offset streams along the southern valley slope, though there is no consistent tectonic lateral offset. In two places, the axial river has migrated systematically eastwards, leaving behind abandoned channels uplifted up to 10 m above the modern river channel (Fig. 18c). The uplift defines a pair of low amplitude right-stepping en-echelon periclines, consistent with Quaternary right-lateral shear. There is abundant evidence of re-vegetated landslip scars in the surrounding hills close to the fault.
A ~10 m high scarp along the base of alluvial fans in the valley, visible in high resolution
DigitalGlobe satellite imagery from Google Earth, has the appearance of a normal fault surface
rupture (Fig. 18d, e). The valley is relatively thinly vegetated and the scarp, discontinuous over ~7.5
km, is well preserved. Though in places it is parallel to the modern river valley, the linear scarp also
crosses higher ground, proving that it is not simply an erosional feature. By analogy with proven
historical earthquake surface ruptures with similar topographic expression, for example the 1857 Lone
Pine earthquake (Beanland & Clark 1994) and the 1609 Hongyazi earthquake (Xu et al. 2010), the
Buru scarp may have formed during the last few hundred years. The entire 10 m throw could have
developed during a single M7.5 earthquake according to empirical relationships (Wells &
Coppersmith 1994), or during a number of smaller events, similar to the Star Valley Fault at Afton,
Wyoming, where an 11 m high scarp formed during three late Quaternary earthquakes (Piety et al.
1992) – perhaps a more likely scenario given the relatively short length of the Rana Fault.

Elsewhere in Buru other steep normal faults’ geomorphic expression suggests rapid to moderate
tectonic activity. Faults associated with the Rana Lake basin have S_{nf} values of 1.33 to 1.49 (Fig. 2j).
Short fault segments in the SE of the island have S_{nf} values of 1.23 and 1.44, while those on the
extreme east coast are more eroded, with S_{nf} values of 1.99 and 2.14 (Fig. 2k), indicating that they
have been less active during the Quaternary.

Papua and West Papua

Oblique convergence at an angle of ~60° between Australia and the Pacific is accommodated across
Papua and West Papua in a complex zone of strain partitioning between shortening and left-lateral
shear (e.g. Abers & McCaffrey 1988; McCaffrey 1996). West of about 138°E shortening is largely
accommodated on a variety of structures in the New Guinea Trench and Manokwari Trough, in the
Mamberamo fold-thrust belt, and in the central Highlands to the south (e.g. Milsom et al. 1992;
Puntodewo et al. 1994; Stevens et al. 2002). The largest earthquake to occur in eastern Indonesia
since 1938 was the tsunamigenic 17th February 1996 Mw 8.2 Biak earthquake, which was also the
largest thrust event worldwide since 1977 (Henry & Das 2002) and may have been associated with the
1979 M7.9 Yapen earthquake (Okal 1999).

Left-lateral strain of up to 80 mm/yr resulting from oblique Australia-Pacific convergence is
accommodated across a 300 km wide zone of sinistral shear (Stevens et al. 2002) focused on the
Yapen Fault system in the north, and stepping across Cenderawasih Bay to the Tarera-Aiduna Fault
system in the south, largely bypassing the antecedent Sorong Fault in West Papua (e.g. Puntodewo et
al. 1994; McCaffrey 1996; Stevens et al. 2002; Bock et al. 2003). Left-lateral shear is passed from the
Tarera-Aiduna Fault westwards into Maluku via the highly transpressive Seram fold-thrust belt (Teas
et al. 2009).

As in Sulawesi, Maluku and North Maluku, extension is important within the overall convergent
orogen. Cenderawasih Bay and the adjacent Waipoga Basin contain thick sediment piles (e.g. Dow &
Sukamto 1984; Pubellier et al. 1999; Charlton 2010), and metamorphic core complex exhumation at
the Wandamen Peninsula (e.g. Bailly et al. 2009) indicates extreme lithospheric stretching. While
extension may be related to processes within the wide left-lateral shear zone (Stevens et al. 2002),
lessons from Sulawesi suggest that far-field subduction-related mechanisms may also be significant.
The Sorong Fault in West Papua is marked by a 15 km wide zone of pronounced linear ridges and valleys trending ENE from northern Salawati, through Sorong city and into the deep valley cutting across the northernmost mainland towards Manokwari in the east (Fig. 19a). Hamilton (1979) questioned whether this structure was significant in post-Miocene tectonics, pointing out that parts of it were covered by post-Miocene strata, and it is now generally considered to be inactive (e.g. Puntodewo et al. 1994; Decker et al. 2009; Charlton 2010).

There is little significant seismicity along much of the fault and geodetic measurements suggest that both sides of the fault are broadly moving together and with the Pacific (e.g. Puntodewo et al. 1994; Stevens et al. 2002), with slight residual left-lateral motion between Sorong and Fakfak GPS stations possibly accommodated on the Sorong Fault or the Koor Fault to the north (Bock et al. 2003).

However, the Sorong GPS station is south of important strands of the Sorong Fault, which lie offshore to the north, coming onshore at Mega, and the station is certainly south of the Koor Fault, leaving substantial uncertainty in the amount of present-day left-lateral strain accommodated across this zone.

April 1937 M 6.9 and April 1944 M 7.2 and 7.4 earthquakes relocated by Okal (1999) were located on the onshore Sorong Fault 50-100 km west of Manokwari, and had focal mechanisms indicating left-lateral shear. Apparent right lateral motion between Sorong and Biak GPS stations, taken to lie on opposite sides of the Sorong Fault (Puntodewo et al. 1994) is complicated by other structures such as the Ransiki and Yapen Faults, which also lie between the stations.

Numerous convincing left-lateral stream offsets of up to 300 m are documented in the central part of the fault valley (Dow & Sukamto 1984) (Fig. 20a). Similar sized displacements of Wallace Creek crossing the San Andreas Fault have been dated to 13,259 years (Sieh & Jahns 1984). It is unclear how long such offsets can be preserved in the landscape of an environment like West Papua, but it is unlikely they are pre-Quaternary. Given that few such offsets are preserved in the more obviously active faults of eastern Indonesia such as the Palu-Koro and Matano faults, the Sorong Fault examples must reflect relatively recent and significant strike-slip. Mountain front sinuosity along those segments of the fault associated with vertical motions is also conspicuously low, ranging from 1.16 to 1.17 along segments NNE of Sorong city; to 1.14 along the central section where Dow and Sukamto (1984) measured displaced streams, and where triangular facets and shutter ridges are well developed.

In the east S_{nf} values of 1.20 and 1.33 also suggest active tectonics. Faults adjacent to flat-topped Quaternary basins associated with Sorong Fault releasing geometries are interpreted to be dominantly normal faults (Fig. 20a), and these structures have generally higher S_{nf} values, including 1.60, 1.61, 1.74 and 2.79. Average V_f for all these fault segments is 1.15, consistent with moderate to slow tectonic activity.

The Koor Fault is an E-W trending structure 20-30 km north of the Sorong Fault (Fig. 19a), which lies within a boundary zone between the oceanic Pacific plate and continental crust in the south (Dow & Sukamto 1984). The NNW-trending Ransiki Fault (Fig. 19a) has been viewed as a dextral shear zone linking the easternmost Sorong Fault and the Yapen Fault (e.g. Robinson & Ratman 1978; Milsom et al. 1992; Charlton 2010).

Like the Sorong Fault in West Papua, both the Koor and Ransiki faults have been considered to be inactive (e.g. Hamilton 1979; Puntodewo et al. 1994). However, a shallow M 7.6 earthquake on 10th October 2002 at the southern end of the Ransiki Fault (Fig. 19b) had a focal mechanism and aftershock distribution consistent with dextral slip along the Ransiki Fault (NEIC); though the
possibility of sinistral slip along a NE-SW trending splay of the Yapen Fault cannot be excluded. Topographic and bathymetric data from the intersection (Fig. 19b) could be interpreted to show the two structures curving gently into each other, leading to the possibility of contraction in the Ransiki area.

Mountain front sinuosity measured along two splays of the southern Ransiki Fault yields values of 2.64 for a clearly inactive ~N-S trending southwestern strand, and 1.06 for the linear fault bounding the southern margin of Ransiki delta (Figs. 2p and 19b). The very low S_{mf} and the asymmetric position of the Ransiki River close to the fault scarp (Fig. 20b) support recent extensional activity along the fault. A 2 m high coseismic surface rupture formed close to the fault scarp during the 2002 earthquake, and was associated with subsidence of the delta that flooded a low-lying church (D. Gold, pers. comm. 2013), visible in satellite imagery to be coincident with a large region of flooded forest (Fig. 20c).

Yapen Fault

The Yapen Fault (Fig. 21a) is a highly linear E-W trending structure that crosses the 320 km wide northern Cenderawasih Bay, and is similar in character to the Sorong Fault in West Papua (e.g. Hamilton 1979; Dow & Sukamto 1984). In the east, the Yapen Fault vanishes into the Mamberamo delta (Fig. 21a), where it forms a subtle linear valley delineated by active mud volcanoes (Dow & Sukamto 1984) and may dissipate into the Mamberamo fold-thrust belt (Puntodewo et al. 1994). In the west the Yapen Fault has an unclear termination, variously interpreted as being dextrally offset from the Sorong Fault along the Ransiki Fault (Puntodewo et al. 1994; Charlton 2010), linking/terminating against the Ransiki Fault (Milsom et al. 1992) and being unconnected to inactive Ransiki/onshore Sorong faults, but transferring strain south to the Wandamen fault system (Bailly et al. 2009).

Geodetic measurements indicate a fast left-lateral slip rate of 46 ± 12 mm/yr across the Yapen Fault (Bock et al. 2003), expressed by intense seismicity and focal mechanisms indicating left-lateral slip along E-W trending subvertical planes (e.g. Okal 1999; Stevens et al. 2002). The 12th September 1979 M 7.9 tsunami-generating earthquake on the south coast of Yapen island (Fig. 21a) was associated with sinistral slip along a ESE-WNW trending plane focused at a depth of 5 km and likely to have caused 2 m of displacement (Okal 1999).

The Randaway Fault zone (Dow & Hartono 1982) is a set of NW-SE trending faults onshore Yapen that link to strands of the Yapen Fault in the north (Fig. 21b). Interpreted as post Plio-Pleistocene normal faults, they have previously been used to support a period of right-lateral shear along the Yapen Fault zone (Charlton 2010). However, we see no geomorphic evidence of significant normal faulting along the Randaway trend – instead a small linear basin and lake near the northern tip of the Randaway Fault lies at a left step-over, and a deeply incised stream is offset to the left by almost 1 km – both evidence of Quaternary sinistral shear (Fig. 21b).

Although the north coast of Yapen is remarkably straight and clearly fault controlled, the main fault mostly lies just offshore to the north, meaning that geomorphic indices could not be usefully measured along the Yapen Fault. Multibeam bathymetry east of the island shows the Yapen Fault expressed by a straight, narrow lineament marked by pressure ridges and parallel to a prominent set of curvilinear normal faults (Fig. 21c). Splays of the fault curving to the WSW delimit at least two rhomboidal pull-apart basins. At the western limit of the multibeam data a splay appears to enter a third pull-apart basin which is associated with a prominent N-S trending sidewall fault. It is significant that this structure is parallel to and 60 km north of the Wandamen Peninsula – perhaps
support for southward transfer of sinistral shear from the Yapen Fault via a region of E-W extension
as proposed by Bailly et al. (2009).

Mamberamo fold-thrust belt

The Mamberamo fold-thrust belt (Fig. 21a) likely accommodates some Australia-Pacific shortening in
eastern Papua, and lies north of the highland thrust belt of central New Guinea (e.g. Dow & Sukamto
1984). Unlike the complex oblique convergence and strain partitioning further west, the belt contains
relatively simple NW-trending active structures oriented normal to convergence (McCaffrey 1996).
Despite intense and widespread seismicity, less than 15 mm/yr of shortening occurs across the
Mamberamo belt, leaving much of the remaining 45 mm/yr Australia-Pacific convergence and 100
mm/yr of left lateral motion to offshore structures to the north and the Highlands thrust belt to the
south (Puntodewo et al. 1994; McCaffrey 1996; Bock et al. 2003) (Fig. 1).

Wandamen Peninsula faults

The Wandamen Peninsula projects into Cenderawasih Bay from the eastern edge of the Lengguru fold
belt, and is bounded on east and west sides by N-S trending faults (Fig. 22). We refer here specifically
to these faults, not to the Wandamen Fault Zone of Dow & Sukamto (1984) that connects the Sorong
Fault with the Tarera-Aiduna Fault system via the Ransiki Fault.

The peninsula is considered to represent the exhumed internal zone of the Lengguru fold belt, and is
composed of an amphibolite-eclogite grade metamorphic dome rising to over 2 km elevation
(Robinson et al. 1990; Bailly et al. 2009; Charlton 2010) that may be a metamorphic core complex
(e.g. Hill et al. 2002). Seismicity and GPS vectors either side of Cenderawasih Bay (Stevens et al.
2002) suggest active extension accommodated on N-S trending structures close to the Wandamen
Peninsula, which may connect to the western releasing termination array of the Yapen Fault in the
north (Fig. 21c).

Normal faults bounding the peninsula are expressed by curvilinear en echelon segments up to 20 km
long trending N-S to NNW-SSE. These make up the east and west detachment systems of Bailly et al.
(2009). Triangular facets, hanging valleys and V-shaped valleys are common and indicate rapid
tectonic activity (Fig. 22b). Two tiers of hanging valleys on the eastern fault system’s eroded scarp
are defined by changes in valley width or orientation at common elevations along the scarp. They
likely record variation in tectonic rate or climate during exhumation of the fault surface. Mountain
front sinuosity values of four segments on the east side are uniform at 1.25, 1.28 and 1.29, with one
more eroded segment of 1.72. Fan deltas are well developed at relays between the fault segments,
notably at Goni, and another smaller delta 21 km further north (Fig. 22a). As well as localising
sediment transport, the relays are likely to be sites of active displacement minima, allowing subaerial
delta progradation on the hangingwall.

On the west of the peninsula S_{mf} values range from 1.05 to 1.43, indicating maximal to rapid tectonic
activity. A 21 km long section of the western fault system passing through Wasior shows evidence of
recent normal faulting (Fig. 22c). Upper modern fan deltas are abruptly terminated by a linear scarp,
above which are narrow truncated palaeofans. Rivers vertically incised into footwall palaeofans show
little evidence of lateral erosion, and small landslides are localised along the over-steepened scarp.
The scarp is marked by a linear change in topography, lines of vegetation, and frequently an abrupt
change from meandering rivers upstream to anatomising rivers downstream of the scarp. A southern
continuation of the Wandamen fault system bounds the eastern margin of the Wasimi delta, and has
an S_{mf} value of 2.33, indicating slow to minimal tectonic activity.
Other circum-Cenderawasih Bay structures

The locus of active Australia-Pacific left-lateral strain partitioning shifts from the Yapen Fault system to the Tarera-Aiduna fault system across Cenderawasih Bay, defining a 300 km wide shear zone that involves a complex array of Quaternary faults within the two bounding strike-slip zones (e.g. Stevens et al. 2002; Bock et al. 2003). Along the eastern margin of Cenderawasih Bay, the NE-trending Lowlands Fault Zone (bounding the Waipoga Trough of Visser & Hermes (1962)) and the Paniai Fault Zone are associated with thrust and left-lateral strike-slip earthquakes (Fig. 23), offset drainage and high fault scarps, indicating modern tectonic activity (Pubellier et al. 1999; Stevens et al. 2002).

The faults have a soft linkage with the Tarera-Aiduna Fault system in the south, and splays curve into parallelism with the Yapen Fault and Mamberamo fold-thrust belt in the north.

The Lengguru fold belt (Visser & Hermes 1962) lies SW of Cenderawasih Bay and the Wandamen Peninsula, east of Bintuni Bay and the Bomberai Peninsula, and is bounded by the Tarera-Aiduna Fault system in the south (Fig. 23). Compressional deformation terminated during the Pleistocene (Decker et al. 2009), and the belt is presently largely inactive, except for a few earthquakes related to gravitational collapse (Bailly et al. 2009), often with a left-lateral component related to residual Tarera-Aiduna strain.

Tarera-Aiduna Fault

The Tarera-Aiduna Fault (Visser & Hermes 1962) is an E-W trending left-lateral shear zone that forms the southern boundary of the Lengguru fold belt, and passes offshore to the west, north of the Aru Trough (Fig. 23). The Tarera-Aiduna Fault sensu stricto is part of a wide system of faults that pass, via a diffuse zone of sinistral transpression, into the Seram fold-thrust belt in the west (Teas et al. 2009). The fault system is at least 130 km long onshore (Fig. 24), expressed by straight lineaments clearly visible on satellite imagery (Hamilton 1979) and a set of en-echelon folds (Katili 1986).

Including possible soft linkage to Seram via sinistral transpression within the Seram fold-thrust belt, imaged in multibeam bathymetric data (Teas et al. 2009), the whole fault system may be over 700 km long. Geodetic measurements show high relative motion between the Birds Head north of the Tarera-Aiduna Fault, and GPS stations south of the fault, for example at Aru and Timika (Bock et al. 2003). Earthquake focal mechanisms showing sinistral slip along E-W trending vertical planes (e.g. Seno & Kaplan 1988) suggest that the motion onshore is seismic and occurs along a broad zone (Fig. 23). West of the Bomberai peninsula seismicity is largely absent, suggesting either a wide zone of aseismic deformation linking the Tarera-Aiduna Fault with the Seram sinistral transpression (Teas et al. 2009), a region of seismic deformation with recurrence times longer than the instrumental record, or no structural connection between the two regions.

The onshore Tarera-Aiduna Fault has geomorphic expression typical of a major strike-slip fault zone (Fig. 24a). In the west it passes across a low-lying mangrove plain with minimal topographic relief. It is possible to trace several fault strands from linear features revealed by abandoned river channels and coastline segments (Fig. 24b). Its central section is expressed by a series of linear ridges of moderate relief bounding a wide rhomboidal basin (Fig. 24c), across which the captured Aru River passes into the Uruma River in the south. The river is abruptly deflected as it crosses two prominent fault strands, with 65-75 m left-lateral displacement, which may reflect recent Tarera-Aiduna Fault slip (Fig. 24d, e), although this offset is rather speculative.

An asymmetric graben developed at the eastern termination of the Tarera-Aiduna Fault is bounded by NE-SW trending normal faults (Fig. 24f). Rivers pressed hard against the NW-dipping bounding faults and a SE-dipping set of antithetic faults indicate active subsidence. The easternmost Tarera-
Aiduna Fault itself has a significant dip-slip component, forming the northern margin of an 800 m high ridge. The Tarera-Aiduna Fault and the eastern bounding normal fault have S_{mf} values of 1.08 and 1.21 respectively, indicating that they are both active. Bounding faults along the northern margin of the rhomboidal basin, including segments which correspond to Hamilton’s (1979) Aria River Fault, have S_{mf} values of 1.63, 1.91 and >4.00, pointing to slow to inactive tectonics.

Discussion

Challenges

Identification of Quaternary/modern fault activity in eastern Indonesia has historically proven difficult (e.g. Hamilton 1979; Dow & Sukamto 1984; Puntodewo et al. 1994; Socquet et al. 2006; Bailly et al. 2009; Teas et al. 2009). In part this is because eastern Indonesia cannot be well described in terms of rigid plate tectonics, involving instead diffuse boundaries and boundary linkages, lithospheric strength heterogeneity and lower crustal flow (Hall 2011). All the fault zones in the region that are relatively well-constrained by geodetic data display strain gradients that can be explained in terms of multiple fault strands, distributed deformation, or elastic strain surrounding a locked fault (e.g. Walpersdorf et al. 1998; Rangin et al. 1999; Stevens et al. 2002; Bock et al. 2003; Socquet et al. 2006). Poor historical earthquake records and few palaeoseismic data mean that it is difficult to distinguish between these options, and so attention is naturally focused on geomorphologically prominent faults and lineaments or structures with instrumentally recorded seismicity. Faults or segments of fault systems with recurrence intervals greater than the short period of instrumental or even historical seismic records inevitably remain undocumented.

Additional challenges to Quaternary fault identification include thick forest over most of the islands (e.g. Pubellier et al. 1999), the abundance of important structures located entirely offshore and not readily available for study (e.g. Silver et al. 1983b; Henry & Das 2002; Teas et al. 2009; Liu & Harris 2013), rapid erosion of tectonic landforms in the humid environment, rapid burial of coseismic features by high sediment flux (e.g. Suggate & Hall 2003), and the high density of active and inactive structures within a large region (e.g. Puntodewo et al. 1994; Stevens et al. 2002).

Of 27 fault systems described here, none can be confidently described as inactive during the Quaternary. Eleven show evidence of ‘maximal’ tectonic activity according to the classification summarised in McCalpin (2009), and a further five show evidence of ‘rapid’ tectonic activity (Table 3). It is important to note that Quaternary faults discussed here are not exhaustive – there are numerous other active faults in the region, and major offshore seismic sources such as the Molucca Sea collision complex, the Banda Sea and Molucca Sea subducted slabs, and ongoing subduction of the Celebes Sea (e.g. Cardwell & Isacks 1978; Silver & Moore 1978; Cardwell et al. 1980; Silver et al. 1983a; Engdahl et al. 1998) that also need to be taken into account in any hazard analysis.

Quaternary fault geometry and earthquakes

The largest earthquakes in eastern Indonesia have been thrust and mega-thrust events, including those of the Seram Trough (1629, M >8.5), the Banda Sea (1938, M >8.0) and Biak (1996, M = 8.2) (e.g. Wichmann 1918; Henry & Das 2002; Okal & Reymond 2003; Liu & Harris 2013). But many major historical earthquakes in the studied region have occurred on strike-slip faults, including the Sorong Fault (1944, M 7.5), the Yapen Fault (1979, M 7.9) the Ransiki Fault (2002, M 7.6) and perhaps the Kawa Fault (1899, M 7.8) (e.g. Okal 1999; Brune et al. 2010; NEIC). Sixteen of the studied faults are dominantly strike-slip, an additional five may have a substantial strike-slip component (Table 3).
Often being long, straight, geometrically simple and subvertical, strike-slip faults are capable of generating large, shallow and damaging earthquakes; for example the 1906 M 7.7 San Francisco earthquake (e.g. Wald et al. 1993), the 2001 Mw 7.8 Kunlun Shan earthquake (e.g. Lin et al. 2003), and the 2002 Mw 7.9 Denali earthquake (e.g. Haeussler et al. 2004).

A critical barrier to lateral rupture propagation and hence earthquake magnitude even on straight strike-slip faults is the presence of discontinuities, or step-overs (e.g. Segal & Pollard 1980; Sibson 1985; Barka & Cadinsky-Cade 1988). The majority of historical strike-slip earthquake ruptures are arrested by step-overs wider than 3-5 km (Lettis et al. 2002; Wesnousky 2006). For example, the 1999 Mw 7.1 Düzce earthquake ruptured a 40 km segment of the North Anatolian Fault (Aydin & Kalafat 2002) and terminated in the >4 km wide Eften releasing bend in the west and the 4-5 km wide Bakacak releasing step-over in the east (Duman et al. 2005). Straight, continuous faults are therefore capable of generating larger earthquakes than curved or segmented faults, of generating ruptures that penetrate below the seismogenic layer (King & Wesnousky 2007) and of sustained supershear rupture propagation, causing enhanced ground motions (Robinson et al. 2010). Eastern Indonesia’s major strike-slip faults show a variety of levels of segmentation, which may be viewed as an indication of their structural maturity, with high cumulative displacements empirically known to remove fault zone complexities (e.g. Wesnousky 1988; Stirling et al. 1996; King & Wesnousky 2007). Other properties such as block rotation and pre-existing weaknesses may complicate this simple relationship.

The Matano Fault is an example of a structurally immature fault zone. Its onshore length of 195 km is punctuated by three major basins, each one 4-6 km wide, and two major restraining bends. The resultant maximum potential rupture length is 90 km (Table 3). Empirical rupture length-magnitude relationships (Wells & Coppersmith 1994) suggest a potential M 7.4 earthquake for such a rupture length. Uncertainties in this estimate include the unknown ability of a rupture to bypass the relatively gentle restraining bend east of the Mahalona basin, the possibility of a through-going strike-slip fault at seismogenic depths below Lake Matano, the effect on fault strength of widespread serpentinite smears along the fault zone, and the unknown length to which the fault continues offshore to the east.

The Sorong Fault in West Papua, part of the fault system at the southern end of the Philippine Sea Plate, is a much more established fault zone with a long history of slip (e.g. Ali & Hall 1995), reflected in an apparent absence of step-overs >1 km and a continuous, straight onshore length of 420 km equating to a potential M >8.0 earthquake if the entire linked system failed. The Mw 7.9 Yapen earthquake of 1979 ruptured an unknown length of the potentially 420 km long quasi-continuous Yapen Fault (Okal 1999) showing that such a scenario is possible. Despite evidence that most left-lateral strain is focused south of the Sorong Fault in West Papua, a conservative slip-rate estimate of 2 mm/yr could accumulate 2 m elastic displacement across the northern Bird’s Head (similar to the 1979 Yapen earthquake release (Okal 1999)) in 1000 years. Even if all of this occurred west of the 1937 and 1944 earthquakes, and assuming complete stress release during those events, the remaining ~200 km western portion of the fault could still generate a M >7.7 earthquake.

The apparently very young and highly segmented Tarera-Aiduna fault zone and structures in the near-offshore Seram fold-thrust belt (Teas et al. 2009) and onshore Seram (Kawa and Bobol faults), could be part of a single soft-linked fault system, and seem to partition much of the present-day left-lateral motion between Australia and the Bird’s Head. This fault system may thus be taking over the Pre-Pleistocene role of the Sorong Fault. Although there is no through-going fault on the scale of the Sorong Fault yet, the individual components of the Tarera-Aiduna Fault and left-lateral faults in Seram are each capable of generating M >7 earthquakes, and geomorphic observations suggest that they have all been active during the Quaternary, even if some segments (e.g. Bobol Fault) lack...
instrumental seismicity records. A major uncertainty in assessing the Tarera-Aiduna Fault system is
the type and degree of linkage along its segments. The longest segment onshore with geomorphic
evidence for rapid activity is 60 km long, and may be traced, via an abrupt releasing bend 3 km wide,
another 30 km to the east. Assuming rupture is not terminated by the bend, a M 7.4 earthquake is
possible on this 90 km long segment. It is reasonable to assume the fault passes some distance
offshore before the next terminating step-over, so the maximum magnitude is likely to be larger.

Similarly, maximum potential magnitudes for observed quasi-continuous segments of the Kawa and
Bobol faults of southern Seram are 7.5 and 7.4 respectively, but a continuous rupture linking across
Taluti Bay could achieve a length of 240 km and an earthquake magnitude of 7.8. The 1899 M 7.8
event which caused slope failure north of Tehoru and a tsunami around Taluti Bay could have
originated from such a rupture.

Previously the Palu valley has been considered to represent a pull-apart basin between two strands of
the Palu-Koro Fault (Bellier et al. 2001, 2006; Beaudouin et al. 2003; Socquet et al. 2006). The width
between the two strands would be about 6 km, ample to terminate earthquake rupture, limiting the
maximum length and magnitude of Palu-Koro Fault earthquakes to the segments north and south of
Palu valley. However, the possibility of a continuous, buried cross-basin fault system within the Palu
valley as proposed here has significant implications for seismic hazard assessment in the densely
populated valley. A continuous cross-basin fault within the Palu valley, as seen in analogue models
(e.g. Wu et al. 2009) and natural strike-slip basins (e.g. Clonard Basin, Haiti (Mann et al. 1995))
means the Palu-Koro Fault may be straighter and more continuous than previously suggested, and
palaeoseismic trenches across the border faults may not record major historic strike-slip earthquakes.
The postulated buried and locked section alone is 50 km long, thus capable of generating a M 7.0
earthquake. The total onshore length of the Palu-Koro Fault between Leboni valley and Palu city,
lacking step-overs wider than 1 km and bends greater than 5°, is 135 km. As such, the Palu-Koro
Fault must qualify as a ‘fault superhighway’, potentially capable of sustained supershear rupture
speeds (Robinson et al. 2010) and earthquakes up to M 7.6.

Other smaller structures which are geologically less significant because they are either not associated
with instrumental seismicity (e.g. Sapu valley fault system), have very low geomorphic tectonic
activity indices (e.g. Gorontalo Fault), or are composed of short and discontinuous fault segments
(e.g. Namlea fault system) are of particular importance from a hazard analysis perspective because of
their proximity to large population centres with little to no earthquake resistance. Similarly, structures
such as the Kolaka Fault, which has its most geomorphologically youthful segment bounding steep
uplifted topography immediately adjacent to Kolaka town, may also be associated with secondary
seismic hazards such as landslides. Large earthquakes along many of the faults, particularly the Palu-
Koro, Matano and Balantak faults and the Molino, Towuti and Wandamen Peninsula boundary faults,
may also trigger local tsunami, as has been already demonstrated in Palu and Taluti bays (e.g.
Prasetya et al. 2001; Brune et al. 2010).

Conclusions

Neotectonic deformation in eastern Indonesia is rarely focused on discrete shear zones bounding rigid
blocks as it is often interpreted to be. The pattern of seismicity and the broad distribution of
Quaternary faults suggests continuum mechanics more closely approximates the region than rigid
microplates (e.g. Thatcher 1995). All of the studied faults show geomorphic evidence of Quaternary
tectonic activity, even in areas where high strain rates are not inferred from geodetic measurements (e.g. Buru, south Seram, northern West Papua).

The zone of left-lateral deformation that includes the Yapen Fault, the Tarera-Aiduna Fault and strike-slip associated with the Seram fold-thrust belt is perhaps the most active on/near-shore fault system of eastern Indonesia as recorded by instrumental seismicity and geodetics. However, in terms of seismic risk, the Palu-Koro Fault is considered to be the most significant structure due to its proximity to Palu city, the possibility of a cross-basin fault system close to the city, the fault’s unpredictability due to its poorly known seismic history, and its potential to cause large shallow focus supershear earthquakes. Additional factors increasing Palu-Koro Fault risk include the possibility of liquefaction in the deep Quaternary sedimentary basin on which Palu city is built, and the low-lying city’s vulnerability to tsunami travelling down narrow Palu Bay.

The Sorong Fault in West Papua should be viewed as the wildcard of eastern Indonesian active tectonics. Though GPS measurements appear to show little sinistral strike-slip motion, or even a degree of dextral slip, station locations in Sorong and Biak cannot resolve Sorong-Yapen-Ransiki fault complexity and may omit shear to the north. Convincing left-lateral stream offsets and low mountain front sinuosity values show that the fault has been active during the Quaternary. A dearth of seismicity, rather than indicating that the fault is benign, may instead indicate that it is locked and accumulating elastic strain. Magnitude 6.9, 7.2 and 7.4 earthquakes in 1937 and 1944, located on the fault west of Manokwari, prove that the fault is capable of generating large earthquakes. The Sorong Fault’s contribution to the seismic hazard of West Papua should not be underestimated, particularly given its proximity to large towns such as Sorong and Manokwari.

There is great potential for palaeoseismic study of some of the faults discussed in this study to confirm Quaternary activity and to provide more detailed answers to questions about seismic hazards, particularly characteristic earthquake sizes and recurrence intervals. It is recommended that trenching work is carried out across possible surface ruptures identified along the Matano, Balantak, Rana, Ransiki and Wandamen Peninsula faults. Geophysical studies to image shallow fault strands in the Quaternary sedimentary fill of several strike-slip basins, including the Palu, Sapu and Mahalona valleys, would help to confirm the existence of cross-basin strike-slip fault systems that may pose a previously unrecognised seismic hazard.

Acknowledgements

We are grateful to TGS (www.tgs.com) who provided the multibeam data, to John Decker, Phil Teas and the crew of the Shakti dive boat for support and valuable discussions during Banda Sea fieldwork. Alfend Rudyawan, Dave Gold, Ferry Yulian, Ega Abang Surya Nugraha, Jonathan Pownall and Benjamin Sapiie are thanked for their assistance and contributions to the ideas discussed here. Two anonymous reviewers are thanked for detailed and constructive reviews which considerably improved the final manuscript. Recent fieldwork was funded by the SE Asia Research Group, Royal Holloway University of London.

References

Quaternary fault activity in eastern Indonesia

WATKINSON & HALL Quaternary fault activity in eastern Indonesia

Hall, R. 2012. Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570, 1-41.

Katili, J. A. 1975. Volcanism And Plate Tectonics in the Indonesian Island Arcs. Tectonophysics, 26, 165-188.

Liu, Z. Y.-C. & Harris, R. A. 2013. Discovery of possible mega-thrust earthquake along the Seram Trough from records of 1629 tsunami in eastern Indonesian region. Natural Hazards, 72, 1311-1328.

Quaternary fault activity in eastern Indonesia

1510 VAN LEEUWEN, T., ALLEN, C.M., KADARUSMAN, A., ELBURG, M., PALIN, J.M., MUHARDJO &
1511 SUWIJANTO. 2007. Petrologic, isotopic, and radiometric age constraints on the origin and
tectonic history of the Malino Metamorphic Complex, NW Sulawesi, Indonesia. Journal of
Asian Earth Sciences, 29, 751-777.

1514 VECCHIOTTI, F. 2008. Calculating geomorphic indices in SE Asia using a SRTM derived DEM: a
worked example from West Sulawesi, Indonesia. In: MICHEL, U., CIVCO, D. L., EHLERS, M.
& KAUFMAN, H. J. (eds.) Remote Sensing for Environmental Monitoring, GIS Applications
and Geology VIII, SPIE Proceedings, 7110, doi: 10.1117/12.800240

Guinea. Verhandelingen Koninklijk Nederlands Geologisch en Mijnbouwkundig
Genootschap, Geologische Serie, 265 pp.

1523 WALKER, F. & ALLEN, M. B. 2012. Offset rivers, drainage spacing and the record of strike-slip
faulting: The Kuh Bahan Fault, Iran. Tectonophysics, 530–531, 251–263.

1525 WALLACE, R. E. 1968. Notes on stream channels offset by the San Andreas fault, southern Coast
Ranges, California. In: DICKINSON, W. & GRANTZ, A. (eds.) Conference on Geologic
Problems of San Andreas Fault System. Proceedings: Stanford University Publications in the
Geological Sciences, 11, 6-21.

D.C., Studies in Geophysics. 266 pp.

Fault (Sulawesi) by GPS. Geophysical Research Letters, 25, 2313-2316.

1535 WANG, Y., SIEH, K., SOETHURA TUN, LAI, K.-Y. & THAN MYINT. 2014. Active tectonics and
earthquake potential of the Myanmar region. Journal of Geophysical Research: Solid Earth,

COTTAM, M. A. & WILSON, M. E. J. (eds.) The SE Asian Gateway: History and Tectonics of
176.

SE Asian Gateway: History and Tectonics of the Australia–Asia Collision. Geological

length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological
Society of America. 84, 974-1002.

Figure and table captions

Table 1: Summary of geomorphic indices used in mountain front analysis, modified after Wells *et al.* (1988). Both indices after Bull & McFadden (1977) and Bull (1978).

Table 2: Summary of measurements of mountain front sinuosity and average valley width/height ratio for analysed fault segments.

Table 3: Summary of observations made from Quaternary faults in eastern Indonesia, with hypothetical earthquake magnitudes, styles and tsunami risk.

Fig. 1: Map of eastern Indonesia showing upper-crustal structures that show geomorphic evidence of Quaternary tectonic activity, seismicity (1973-2014, focal depths <35 km). CB Cenderawasih Bay; KF Kolaka Fault; GF Gorontalo Fault; KF Koor Fault; LF Lawanopo Fault; MF Matano Fault; MFTB Mamberamo fold-thrust belt; MMC Molino metamorphic complex; NSS North Sulawesi Subduction; PKF Palu-Koro Fault; RS Ransiki Fault; SF Sorong Fault; SFTB Seram fold-thrust belt; TAF Tarera-Aiduna Fault; YF Yapen Fault. Locations of figures as indicated.

Fig. 2: Maps showing fault segments analysed for geomorphic indices. Index map at top. Bold lines are the sinuous mountain front trace (Lmf) used in mountain front sinuosity calculations. Basemap is a 90 m SRTM digital elevation model. All maps (a-r) drawn to same scale. Fault segment codes correspond to codes used in Table 2.

Fig. 3: Graph of mountain front sinuosity (Smf) versus valley-floor width to valley-height index (Vf) for studied faults. Grey boxes indicate tectonic activity rates, after McCalpin (2009), with average Vf marked by the darker grey bar. BK: Balantak Fault; BV: Bada Valley faults; BB: Bobol Fault; EB: East Buru faults; GO: Gorontalo Fault; KA: Kawa Fault; KD: Kendari faults; KO: Kolaka Fault; LW:
Lawanopo Fault; MA: Matano Fault; ML: Malino boundary faults; MN: Mangole faults; PA: Parigi faults; PK: Palu-Koro Fault; PO: Poso faults; RA: Rana Fault; SN: Sanana faults; SV: Sapu Valley faults; SG: Sorong Fault; TE: Southern Seram faults; TO: Towuti faults.

Fig. 4: Central Sulawesi overview digital elevation model (SRTM), CMT catalogue earthquakes <35 km depth and structures that show geomorphic evidence of Quaternary tectonic activity. Rivers marked in white. Illumination from NE. Location shown in Fig. 1.

Fig. 5: a.) The Palu and Sapu valleys showing structures that show geomorphic evidence of Quaternary tectonic activity, plus topography and drainage. Mountain front sinuosity values in bold italics. For location see Fig. 4. Major drainage basins for Salo Sapu and Salo Wuno are marked, separated by uplift at the western end of the Sapu valley fault system. b) View of the Palu-Koro fault scarp from the Palu valley, showing geomorphic evidence of Quaternary tectonic activity.

Fig. 6: Evidence of a cross-basin fault system within the Palu valley Quaternary fill. a) Overview ASTER digital elevation model draped with ESRI imagery layer. Illumination from NW. Palu river channels traced from 6 separate images from 2003 to 2015. Inset shows fault pattern developed in an analogue model of a releasing bend, modified after Wu et al. (2009), reflected and rotated to mimic the Palu valley. Sidewall faults and cross-basin fault system are highlighted in the model and on the satellite imagery. b, c) Laterally confined meander belts, interpreted as representing minor subsidence within the cross-basin fault system. d) Laterally confined river channels directly along strike from a Palu-Koro Fault strand seen to offset alluvial fans in the south of the valley.

Fig. 7: Details of the Sapu valley fault system. a) ESRI imagery of the Sapu and central Palu valleys showing major structural and geomorphic features, particularly the releasing-restraining double bend and re-routing of axial drainage from the NW valley to the Salo Sapu gorge. b) Detail of the Sapu valley showing drainage and highlighting fault control of the axial river. Location shown on Fig. 5a. c, d) Laterally confined meander belts and lineaments, interpreted as representing minor subsidence within the cross-basin fault system. e) Lineated slickenside surface from an exhumed fault core within the Sapu restraining bend. Location shown in Fig. 7a. f) Lower hemisphere stereographic projection of fault planes (great circles) and slickenside lineations (points) from the fault shown in Fig. 7e.

Fig. 8: Details of the Matano Fault. a) Map of the Matano Fault, Lake Towuti and the northern part of the Lawanopo Fault. Basemap is ASTER digital elevation model draped with ESRI imagery. Location shown in Fig. 4. b) Systematic stream offsets along strands of the Matano Fault west of the Pansu Basin. c) Deep, steep-sided valley marking the westernmost Matano Fault NE of Gunung Balease. d) Hospital in the Mahalona valley damaged during the 15th February 2011 Mw 6.1 earthquake. e) Detail of the eastern Matano and Mahalona valleys, showing features related to the 2011 earthquake, and inferred surface rupture extent. ASTER basemap. f) Imagery from Bing Maps showing strong topographic lineaments in low ground in the NE corner of Lake Matano, inferred to represent recent (2011?) surface ruptures. Location shown in Fig. 8e.

Fig. 9: Details of the Kolaka Fault. a) Overview map of the main Kolaka Fault segments. Basemap is ASTER digital elevation model draped with ESRI imagery. Location shown in Fig. 1. b) Straight segment of the Kolaka Fault associated with linear ridges and valleys. c) Linear fault-bounded mountain front and triangular facets indicating Quaternary fault activity at Kolaka town. d) Asymmetric axial drainage at a splaying fault segment near the western fault termination, indicating Quaternary subsidence along the bounding fault system.
Fig. 10: a) East arm of Sulawesi and Banggai-Sula Islands digital elevation model (SRTM), multibeam bathymetry, CMT catalogue earthquakes <35 km depth and structures that show geomorphic evidence of Quaternary tectonic activity. After Watkinson et al. (2011). Location shown in Fig. 1. b) Subsidence and uplift associated with releasing and restraining segments of the onshore Balantak Fault. ASTER digital elevation model basemap. c) Detail of bounding fault system of a Balantak Fault releasing segment, showing a north-dipping normal fault and sub-parallel lineament in agricultural land, inferred to represent a through-going strike-slip strand. ESRI imagery basemap. d) Detail of the offshore Balantak Fault expressed in multibeam imagery (illumination from NW) showing evidence of dextral shear.

Fig. 11: a) North arm of Sulawesi digital elevation model (SRTM), CMT catalogue earthquakes <35 km depth and structures that show geomorphic evidence of Quaternary tectonic activity. Rivers marked in white. Location shown in Fig. 1. b) Detail of the onshore Gorontalo Fault and associated basins. ASTER digital elevation model draped with ESRI imagery layer. c) Fault system bounding the Malino metamorphic complex showing remarkably straight and steep mountain front and well developed triangular facets. d) Overview of fan deltas prograding into western Tomini Bay across the bounding fault system. e) Narrow fan delta clearly cut by the basin bounding fault, indicating rapid subsidence. f) Wide fan delta further south indicating a slower rate of hanging wall subsidence.

Fig. 12: Details of Quaternary faults in the Banggai-Sula islands. For locations see Fig. 10a. a) Part of the linear normal fault system bounding the southern margin of Mangole island. Google Earth image. b) Triangular facets along the north coast of Mangole island. Oblique view in Google Earth. c) Fault control along the eastern coast of Sanana island. Image from Google Earth (greyscale inverted for clarity). d) Detail of the Sanana fault, showing the extremely linear mountain front, narrow V-shaped valleys and triangular facets.

Fig. 13: a) Mega-debris slide and post-collapse normal faults, north coast of Taliabu. Basemap is SRTM topography onshore and multibeam bathymetry offshore. Location shown in Fig. 10a. b.) Oblique perspective view from Google Earth of one of the normal faults on the north slope of Taliabu. White arrows mark fault tips. View to the west. Field of view is approximately 1 km in foreground. View location and direction indicated by red arrow in Fig. 13a.

Fig. 14: a) Seram digital elevation model (SRTM), CMT catalogue earthquakes <35 km depth and structures that show geomorphic evidence of Quaternary tectonic activity. Rivers marked in white. Offshore structures from Teas et al. (2009). Location shown in Fig. 1. b) Normal faults along the south coast of Seram, marked by linear mountain front and a prominent lineament crossing a narrow fan delta. c) Possible Quaternary fault SW of Ambon, marked by a lineament that crosses volcanic hills and Quaternary drift. d) Example of foliated gouge from a thick fault zone located where the lineament illustrated in Fig. 14c reaches the coast. Pen is 14 cm long.

Fig. 15: Evidence of Quaternary thrusting along the north coast of Seram. a) ESRI image showing a number of NE-flowing rivers flowing around linear elevated and forested regions. Location shown in Fig. 14a. b, c) Migrating rivers marked by filled channels and oxbow lakes, and incision into uplifting regions. Google Earth imagery. d) Interpretation of Fig. 15a. Thick arrows indicate progressive migration of river channels, short arrows show coastline regression. Abandoned channels at points A, B and C are interpreted to represent the previous route of a river that previously entered the sea at D north of a meander plain at C, but was cut off by thrust hangingwall uplift at B, and was forced to divert east from point A to join Wai Musi, leaving previous channels abandoned. Other rivers show
lateral migration away from the growing tips of thrusts in response to hangingwall fold growth. See text for further details.

Fig. 16: Strike-slip faults of southern Seram. a) Overview map of the Kawa Fault zone showing Quaternary fault strands, rivers, river offsets (in metres) and landslips. Left-lateral offsets in black, right lateral offsets in grey. See Fig. 14a for location. b) ESRI image of the Kawa Fault zone highlighting its clear geomorphic expression and thick forest cover. c) Representative stream offset across the main Kawa Fault strand, image from Google Earth. d) View into the Kawa Fault from the Wai Kawa delta, showing the linear mountain front and triangular facets developed along the northern strand of the Taluti Bay splay. e) Overview map of the Bobol Fault zone showing Quaternary fault strands, rivers and left-lateral river offsets (in metres). Bold italic numbers are Smf. See Fig. 14a for location. f) Representative stream offset across the main Kawa Fault strand, also showing fault control of river channels. ESRI imagery.

Fig. 17: Quaternary fault features in Buru. a) Digital elevation model (SRTM), CMT catalogue earthquakes <35 km depth and structures that show geomorphic evidence of Quaternary tectonic activity. Rivers marked in white. Location shown in Fig. 1. b) Overview of topographic lineaments passing through Namlea and NE Buru. ESRI imagery. c) Detail showing possible sag pond developed at the releasing step-over between right-stepping fault segments. d) Evidence of strike-slip faulting along the Namlea lineament trend. Lineaments pass from basement rock through Quaternary drift, and are associated with systematic right-lateral stream offsets.

Fig. 18: Rana Fault, central Buru. a) Overview of the Rana Fault, ASTER GDEM basemap. Rivers marked in white, with white arrows showing the flow direction of major rivers discussed in the text. Location shown in Fig. 17a. b) ESRI image of the central part of the Rana Fault. c) Interpretation of the image in b, showing evidence of Quaternary fault activity. d) Possible fault scarp along the foot of triangular facets marking the Rana Fault. e) Detail of the possible fault scarp, showing steep dip, fresh geomorphic expression and straight trace. d & e are oblique views from Google Earth.

Fig. 19: a) Bird’s Head (West Papua) digital elevation model (SRTM), multibeam bathymetry, CMT catalogue earthquakes <35 km depth and structures that show evidence of Quaternary tectonic activity. Rivers marked in white. Location shown in Fig. 1. Offshore structures north of the Koor Fault from Milsom et al. (1992). b.) Detail of the intersection between the Ransiki and Yapen faults, south of Manokwari. Eastern limit of image is to the east of the main map. SRTM onshore, multibeam bathymetry offshore.

Fig. 20: Evidence of Quaternary fault activity in the Bird’s Head. a) Section of the onshore Sorong Fault showing a basin-bounding normal fault in the north, and two strike-slip fault strands offsetting streams to the left in the south. Location shown in Fig. 19a. b) Ransiki delta at the southern end of the Ransiki Fault, showing prominent western normal fault. Location shown in Fig. 19b. c) Region of coseismic subsidence showing flooded forest and buildings adjacent to the western normal fault.

Fig. 21: Northern Papua and Cenderawasih Bay digital elevation model (SRTM), multibeam bathymetry, CMT catalogue earthquakes <35 km depth and structures that show geomorphic evidence of Quaternary tectonic activity. Rivers marked in white. Location shown in Fig. 1. b) Expression of the Yapen and Randaway faults along the northern coast of Pulau Yapen, showing evidence for Quaternary sinistral slip along the Randaway Fault. Inset shows the topography and major structures of Yapen. ESRI imagery. c) Multibeam bathymetry detail showing the Yapen Fault to the west of Pulau Yapen, southern strands appear to transfer to N-S extension via a series of pull-apart basins.
Fig. 22: Evidence of Wandamen Peninsula Quaternary fault activity. a) Overview digital elevation model (SRTM) showing bounding normal faults. Location shown in Fig. 21a. b) Pronounced triangular facets and hanging valleys along the eastern bounding fault system. ESRI Imagery. c) Inferred Quaternary fault trace across the top of alluvial fans crossing the western fault system.

Fig. 23: Southern West Papua and Cenderawasih Bay digital elevation model (SRTM), multibeam bathymetry, CMT catalogue earthquakes <35 km depth and structures that show geomorphic evidence of Quaternary tectonic activity. Rivers marked in white. Location shown in Fig. 1. Offshore structures from Teas et al. (2009).

Fig. 24: a.) Map of the onshore Tarera-Aiduna Fault, showing structures that show geomorphic evidence of Quaternary tectonic activity. Bold italic numbers are Smf. Location shown in Fig. 23. b.) Detail from greyscale Landsat TM 432 image, showing linear confinement of abandoned River Aru channels, indicating strike-slip strands across the plain. c.) Major strand of the Tarera-Aiduna Fault bounding a steep-sided ridge and rhomboidal basin. d & e) Possible river offset across the Tarera-Aiduna Fault. f) Termination extensional fault array developed at the eastern end of the main Tarera-Aiduna fault strand. d, e & f from ESRI imagery.
Fig. 2 (PAGE 1)
Fig. 3
Fig. 5

Buried cross-basin strike-slip fault system

Palu city
Palu Valley
Salo Palu

Salo Wuno catchment
Salo Sapu catchment

Active faults:
- Thrust fault
- Normal fault
- Strike-slip
- Unknown

Other faults & lineaments

Fig. 7b

Hanging valley
Wine glass canyon
Bent canyon stem

Mylonitic amphibolite schists in footwall
Fig. 6

- Palu Valley
- Sapu Valley
- Cross-basin fault system?
- Sidewall faults
- Laterally confined meander belt
- Stream offsets
- Alluvial fan
- Laterally confined terraces
Salo Sapu

1.09

1.28

1.13

1.45

2 km

Restraining bend thrusts

Salo Sapu gorge

Fault planes

Slickenside lineations

Oversized valley

Lineaments in basin fill

Transport direction

Fault breccia

Slickenside lineations

Palu-Koro Fault

Lineaments in basin fill
Fig. 8
Eroded footwall asymmetric basin subsidence.

Kota Kolaka Modern undeformed fan. Topographic offset?

Linear mountain front triangular facets.

Bone Bay Lasusua.

Mengkoka Mountains.

Fig. 9
Fig. 13
Fig. 14

Fig. 15a
A
B
C
D
Tanjung Sariputih
Tanjung Samal
Wai Musi
Wai Kobi
Wai Sariputih
Coastline
retreat
0-25
26-50
51-75
76-100
101-125
126-150
151-175
176-200
Elevation (m)

Hanging wall uplift and erosion
Lateral incision
River migration
Abandoned meanders

Hanging wall uplift and erosion

H/W anticline
Abandoned meanders
River migration
Uplifted valley
Lateral incision

Wai Sariputih
Abandoned meanders
River migration

Coastline retreat

Seram fold & thrust belt
Fig. 16
Kaku Karmedin

Wadule

Fude Siul

Danau Rana

Rana Fault

1.01

1.18

Triangular facets

Steep-sided canyon

River capture

Oversized valley

Beheaded river

Possible scarp/surface rupture?

Possible scarp/surface rupture?

Upthrown block

Downthrown block

Fig. 18
Active faults:
- Normal fault
- Strike-slip
- Unknown

Other faults & lineaments

Fig. 19

Fig. 20a

Fig. 20b

M7.6 10th Oct 2002
Fig. 20
Fig. 22

Modern fan delta
Negligible scarp modification by river
Highly linear fault scarp ahead of mountain front
Hanging valley
Palaeofan upper surface
Modern fan delta
Slope failure on over-steepened scarp

Cenderawasih Bay
Wandamen Peninsula
Wasior
Wandamen Bay
Wasimi delta
Goni

Valley tier 1
Triangular facet
Valley tier 2

~200 m elev. ~350 m elev. ~80 m elev.

Pronounced fault scarp
Highly linear fault scarp

10-20 m high scarp

Goni Wasimi delta
Fig. 22
Fig. 23
Fig. 24
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Derivation</th>
<th>Measurement</th>
<th>Purpose</th>
<th>Potential difficulties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smf</td>
<td>Sinuosity of topographic mountain fronts</td>
<td>Lmf / Ls</td>
<td>Lmf / Ls = Ls - Lmf</td>
<td>Define the degree of topographic modification of mountain front from the position of possible controlling structures</td>
<td>- Define actual topographic junction - Define discrete mountain front segments</td>
</tr>
<tr>
<td>Vfw</td>
<td>Valley floor width to valley height index</td>
<td>(\frac{2Vfw}{(Eld - Esc)})</td>
<td>(\frac{2Vfw}{(Erd - Esc)})</td>
<td>Define the ratio of the valley floor width to the mean height of two adjacent divides, measured at given locations along a stream channel within the range block</td>
<td>- Resolution of satellite imagery in defining Vfw and divide elevations - Need to minimise variations in stream size (length area) - Effect of change in lithology</td>
</tr>
</tbody>
</table>

Table 1
Table 2. Summary of measurements of mountain front sinuosity and average valley width/height ratio for analysed fault segments

<table>
<thead>
<tr>
<th>Fault</th>
<th>Seg.</th>
<th>Lm_1</th>
<th>Lm_2</th>
<th>Sm_1</th>
<th>Vf Av</th>
<th>Fig. X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malino Boundary ML1</td>
<td>45.16</td>
<td>27.17</td>
<td>1.66</td>
<td>1.01</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Malino Boundary ML2</td>
<td>52.00</td>
<td>49.60</td>
<td>1.05</td>
<td>0.33</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Malino Boundary ML3</td>
<td>28.79</td>
<td>27.53</td>
<td>1.05</td>
<td>0.64</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Malino Boundary ML4</td>
<td>22.99</td>
<td>16.08</td>
<td>1.43</td>
<td>0.29</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Malino Boundary ML5</td>
<td>38.22</td>
<td>33.86</td>
<td>1.13</td>
<td>0.22</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Malino Boundary ML6</td>
<td>27.41</td>
<td>17.27</td>
<td>1.59</td>
<td>0.29</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Average:</td>
<td>1.32</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gorontalo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO1</td>
<td>33.24</td>
<td>16.37</td>
<td>2.03</td>
<td>0.88</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>GO2</td>
<td>39.29</td>
<td>16.64</td>
<td>2.36</td>
<td>1.27</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>GO3</td>
<td>12.03</td>
<td>6.58</td>
<td>1.83</td>
<td>1.69</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Average:</td>
<td>2.07</td>
<td>1.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palu-Koro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK0</td>
<td>16.94</td>
<td>10.99</td>
<td>1.54</td>
<td>0.31</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>PK1</td>
<td>8.94</td>
<td>6.60</td>
<td>1.35</td>
<td>0.22</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>PK2</td>
<td>10.48</td>
<td>9.64</td>
<td>1.09</td>
<td>0.29</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>PK3</td>
<td>7.24</td>
<td>6.69</td>
<td>1.08</td>
<td>0.21</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>PK4</td>
<td>4.33</td>
<td>3.99</td>
<td>1.09</td>
<td>0.19</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>PK5</td>
<td>9.43</td>
<td>7.90</td>
<td>1.19</td>
<td>0.99</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>PK6</td>
<td>11.02</td>
<td>6.91</td>
<td>1.59</td>
<td>0.35</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>PK7</td>
<td>7.15</td>
<td>6.44</td>
<td>1.11</td>
<td>0.56</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>PK8</td>
<td>10.78</td>
<td>9.61</td>
<td>1.12</td>
<td>0.89</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>PK9</td>
<td>9.72</td>
<td>6.22</td>
<td>1.56</td>
<td>0.20</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>PK10</td>
<td>16.34</td>
<td>12.80</td>
<td>1.28</td>
<td>1.10</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>PK11</td>
<td>27.15</td>
<td>19.02</td>
<td>1.43</td>
<td>0.32</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>PK12</td>
<td>64.23</td>
<td>27.88</td>
<td>2.30</td>
<td>0.80</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>Average:</td>
<td>1.36</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bada Valley</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV1</td>
<td>5.97</td>
<td>5.73</td>
<td>1.04</td>
<td>0.57</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>BV2</td>
<td>10.09</td>
<td>9.47</td>
<td>1.07</td>
<td>0.36</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>BV3</td>
<td>13.27</td>
<td>9.30</td>
<td>1.43</td>
<td>0.73</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Average:</td>
<td>1.18</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poso area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO1</td>
<td>18.15</td>
<td>13.74</td>
<td>1.32</td>
<td>0.29</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Average:</td>
<td>1.32</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balantak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BK1</td>
<td>13.02</td>
<td>11.80</td>
<td>1.10</td>
<td>0.25</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>BK2</td>
<td>6.85</td>
<td>6.59</td>
<td>1.04</td>
<td>0.47</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>BK3</td>
<td>5.16</td>
<td>4.24</td>
<td>1.22</td>
<td>N/A</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>Average:</td>
<td>1.12</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fault</th>
<th>Seg.</th>
<th>Lm_1</th>
<th>Lm_2</th>
<th>Sm_1</th>
<th>Vf Av</th>
<th>Fig. X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolaka KO1</td>
<td>8.79</td>
<td>8.38</td>
<td>1.05</td>
<td>1.25</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>Kolaka KO2</td>
<td>52.12</td>
<td>33.80</td>
<td>1.54</td>
<td>1.12</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>Kolaka KO3</td>
<td>10.07</td>
<td>8.24</td>
<td>1.22</td>
<td>1.68</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>Kolaka KO4</td>
<td>10.25</td>
<td>7.91</td>
<td>1.30</td>
<td>0.23</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>Kolaka KO5</td>
<td>49.44</td>
<td>30.21</td>
<td>1.64</td>
<td>1.19</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>Average:</td>
<td>1.35</td>
<td>1.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mangole MN1</td>
<td>7.07</td>
<td>6.33</td>
<td>1.12</td>
<td>0.49</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>Mangole MN2</td>
<td>9.64</td>
<td>6.60</td>
<td>1.46</td>
<td>0.49</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>Mangole MN3</td>
<td>18.96</td>
<td>12.08</td>
<td>1.57</td>
<td>0.55</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>Mangole MN4</td>
<td>4.56</td>
<td>3.86</td>
<td>1.18</td>
<td>N/A</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>Sanana SN1</td>
<td>2.45</td>
<td>1.93</td>
<td>1.27</td>
<td>0.44</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>Average:</td>
<td>1.32</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Seram TE1</td>
<td>42.32</td>
<td>23.05</td>
<td>1.84</td>
<td>1.88</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>Average:</td>
<td>1.96</td>
<td>1.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kawa KA1</td>
<td>27.55</td>
<td>20.75</td>
<td>1.33</td>
<td>0.28</td>
<td>j</td>
<td></td>
</tr>
<tr>
<td>Average:</td>
<td>1.21</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bobol ES1</td>
<td>14.59</td>
<td>11.61</td>
<td>1.26</td>
<td>1.57</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Average:</td>
<td>1.76</td>
<td>1.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorong SG1</td>
<td>33.89</td>
<td>28.77</td>
<td>1.18</td>
<td>1.15</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Average:</td>
<td>1.12</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Lm_1, Lm_2, Sm_1, Vf Av, and Fig. X represent the values of parameters measured for each segment.
<table>
<thead>
<tr>
<th>Location</th>
<th>Code</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pansu area</td>
<td>PU1</td>
<td>15.06</td>
<td>11.78</td>
<td>1.28</td>
<td>1.12</td>
</tr>
<tr>
<td>Pansu area</td>
<td>PU2</td>
<td>9.21</td>
<td>8.66</td>
<td>1.06</td>
<td>0.25</td>
</tr>
<tr>
<td>Matano</td>
<td>MA1</td>
<td>12.54</td>
<td>10.57</td>
<td>1.19</td>
<td>0.45</td>
</tr>
<tr>
<td>Matano</td>
<td>MA2</td>
<td>12.56</td>
<td>11.63</td>
<td>1.08</td>
<td>0.23</td>
</tr>
<tr>
<td>Matano</td>
<td>MA3</td>
<td>23.51</td>
<td>12.35</td>
<td>1.90</td>
<td>0.79</td>
</tr>
<tr>
<td>Matano</td>
<td>MA4</td>
<td>12.34</td>
<td>10.52</td>
<td>1.17</td>
<td>0.72</td>
</tr>
<tr>
<td>Matano</td>
<td>MA5</td>
<td>8.46</td>
<td>8.31</td>
<td>1.02</td>
<td>0.84</td>
</tr>
<tr>
<td>Average:</td>
<td></td>
<td>1.60</td>
<td>1.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matano</td>
<td>MA6</td>
<td>12.56</td>
<td>11.63</td>
<td>1.08</td>
<td>0.23</td>
</tr>
<tr>
<td>Matano</td>
<td>MA7</td>
<td>23.51</td>
<td>12.35</td>
<td>1.90</td>
<td>0.79</td>
</tr>
<tr>
<td>Matano</td>
<td>MA8</td>
<td>12.34</td>
<td>10.52</td>
<td>1.17</td>
<td>0.72</td>
</tr>
<tr>
<td>Matano</td>
<td>MA9</td>
<td>8.46</td>
<td>8.31</td>
<td>1.02</td>
<td>0.84</td>
</tr>
<tr>
<td>Average:</td>
<td></td>
<td>1.60</td>
<td>1.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kendari</td>
<td>KD1</td>
<td>24.61</td>
<td>14.03</td>
<td>1.75</td>
<td>0.52</td>
</tr>
<tr>
<td>Kendari</td>
<td>KD2</td>
<td>24.62</td>
<td>20.42</td>
<td>1.21</td>
<td>0.58</td>
</tr>
<tr>
<td>Average:</td>
<td></td>
<td>1.48</td>
<td>0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lawanopo</td>
<td>LW1</td>
<td>43.13</td>
<td>28.29</td>
<td>1.52</td>
<td>0.83</td>
</tr>
<tr>
<td>Average:</td>
<td></td>
<td>1.52</td>
<td>0.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Towuti bounding</td>
<td>TO1</td>
<td>27.98</td>
<td>24.39</td>
<td>1.15</td>
<td>0.41</td>
</tr>
<tr>
<td>Towuti bounding</td>
<td>TO2</td>
<td>9.58</td>
<td>9.30</td>
<td>1.03</td>
<td>0.56</td>
</tr>
<tr>
<td>Towuti bounding</td>
<td>TO3</td>
<td>51.16</td>
<td>25.10</td>
<td>2.04</td>
<td>1.22</td>
</tr>
<tr>
<td>Average:</td>
<td></td>
<td>1.41</td>
<td>0.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorong</td>
<td>SG15</td>
<td>11.44</td>
<td>7.61</td>
<td>1.50</td>
<td>0.49</td>
</tr>
<tr>
<td>Ransiki</td>
<td>RS1</td>
<td>18.83</td>
<td>17.71</td>
<td>1.06</td>
<td>N/A</td>
</tr>
<tr>
<td>Ransiki</td>
<td>RS2</td>
<td>31.31</td>
<td>11.87</td>
<td>2.64</td>
<td>N/A</td>
</tr>
<tr>
<td>Average:</td>
<td></td>
<td>1.60</td>
<td>1.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wandaman bound</td>
<td>WM1</td>
<td>17.22</td>
<td>13.76</td>
<td>1.25</td>
<td>N/A</td>
</tr>
<tr>
<td>Wandaman bound</td>
<td>WM2</td>
<td>15.55</td>
<td>12.08</td>
<td>1.29</td>
<td>N/A</td>
</tr>
<tr>
<td>Wandaman bound</td>
<td>WM3</td>
<td>23.73</td>
<td>18.57</td>
<td>1.28</td>
<td>N/A</td>
</tr>
<tr>
<td>Wandaman bound</td>
<td>WM4</td>
<td>11.58</td>
<td>6.74</td>
<td>1.92</td>
<td>N/A</td>
</tr>
<tr>
<td>Wandaman bound</td>
<td>WM5</td>
<td>19.75</td>
<td>13.83</td>
<td>1.43</td>
<td>N/A</td>
</tr>
<tr>
<td>Wandaman bound</td>
<td>WM6</td>
<td>9.84</td>
<td>9.33</td>
<td>1.05</td>
<td>N/A</td>
</tr>
<tr>
<td>Wandaman bound</td>
<td>WM7</td>
<td>9.99</td>
<td>7.80</td>
<td>1.28</td>
<td>N/A</td>
</tr>
<tr>
<td>Wandaman bound</td>
<td>WM8</td>
<td>45.67</td>
<td>19.61</td>
<td>2.33</td>
<td>N/A</td>
</tr>
<tr>
<td>Average:</td>
<td></td>
<td>1.85</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tarera-Aiduna</td>
<td>TA1</td>
<td>6.11</td>
<td>5.05</td>
<td>1.21</td>
<td>N/A</td>
</tr>
<tr>
<td>Tarera-Aiduna</td>
<td>TA2</td>
<td>20.74</td>
<td>19.19</td>
<td>1.08</td>
<td>N/A</td>
</tr>
<tr>
<td>Tarera-Aiduna</td>
<td>TA3</td>
<td>32.26</td>
<td>19.75</td>
<td>1.63</td>
<td>N/A</td>
</tr>
<tr>
<td>Tarera-Aiduna</td>
<td>TA4</td>
<td>38.83</td>
<td>8.48</td>
<td>4.58</td>
<td>N/A</td>
</tr>
<tr>
<td>Tarera-Aiduna</td>
<td>TA5</td>
<td>35.31</td>
<td>18.46</td>
<td>1.91</td>
<td>N/A</td>
</tr>
<tr>
<td>Average:</td>
<td></td>
<td>2.08</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Straight line length of the mountain front.
2. Sinuous length of the mountain front.
3. Mountain front sinuosity (Smf = Lmf / Ls).
4. Average valley floor width to valley depth ratio (Vf = 2Vfw / (Eld – Esc) – (Erd – Esc), where Vfw is the valley floor width, Eld and Erd are the topographic elevations of the left and right valley watersheds and Esc is the elevation of the valley floor).
5. Location of sinuosity segment on Figure X.
<table>
<thead>
<tr>
<th>Fault</th>
<th>Typical segment length (km)</th>
<th>Maximum observed total length (km)</th>
<th>Step-over / relay width (km)</th>
<th>Potential rupture length (km)</th>
<th>Attributable seismicity</th>
<th>Notable historical events</th>
<th>Smf range</th>
<th>Vf range</th>
<th>Tectonic activity class</th>
<th>Potential earthquake magnitude</th>
<th>Potential earthquake style</th>
<th>Associated tsunami?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malino boundary</td>
<td>25-75</td>
<td>130</td>
<td>1.2</td>
<td>130</td>
<td>Y</td>
<td></td>
<td>1.05-1.66</td>
<td>0.22-1.01</td>
<td>Maximal to slow</td>
<td>7.6</td>
<td>Normal</td>
<td>Y</td>
</tr>
<tr>
<td>Gorontalo</td>
<td>30</td>
<td>95</td>
<td>7</td>
<td>35</td>
<td>N</td>
<td></td>
<td>1.83-2.36</td>
<td>0.88-1.69</td>
<td>Slow to minimal</td>
<td>6.9</td>
<td>Strike-slip</td>
<td>Y</td>
</tr>
<tr>
<td>Palu-Koro</td>
<td>10-35</td>
<td>220</td>
<td><1</td>
<td>135</td>
<td>Y</td>
<td>Mw7.7, 1996</td>
<td>1.08-2.30</td>
<td>0.24-0.89</td>
<td>Maximal to slow</td>
<td>7.6</td>
<td>Strike-slip</td>
<td>Y</td>
</tr>
<tr>
<td>Parigi boundary</td>
<td>10-45</td>
<td>95</td>
<td>3</td>
<td>80</td>
<td>Y</td>
<td></td>
<td>1.32-3.25</td>
<td>0.50-1.45</td>
<td>Minimal</td>
<td>7.3</td>
<td>Normal</td>
<td>Y</td>
</tr>
<tr>
<td>Sapu Valley</td>
<td>5-20</td>
<td>75</td>
<td>? <2</td>
<td>75</td>
<td>N</td>
<td></td>
<td>1.08-1.45</td>
<td>0.40</td>
<td>Maximal to moderate</td>
<td>7.3</td>
<td>Strike-slip</td>
<td>N</td>
</tr>
<tr>
<td>Balantak</td>
<td>54</td>
<td>250</td>
<td>10 (offshore)</td>
<td>54</td>
<td>Y</td>
<td></td>
<td>1.04-1.22</td>
<td>0.25-0.47</td>
<td>Maximal to moderate</td>
<td>7.1</td>
<td>Strike-slip</td>
<td>Y</td>
</tr>
<tr>
<td>Matano</td>
<td>10-60</td>
<td>195</td>
<td>6</td>
<td>90</td>
<td>Y</td>
<td>Mw6.1, 2011</td>
<td>1.02-1.9</td>
<td>0.23-0.78</td>
<td>Maximal to slow</td>
<td>7.4</td>
<td>Strike-slip</td>
<td>Y (lake)</td>
</tr>
<tr>
<td>Lawanopo & Kendari</td>
<td>10-45</td>
<td>200</td>
<td>7</td>
<td>70</td>
<td>?</td>
<td></td>
<td>1.21-1.75</td>
<td>0.55-0.83</td>
<td>Moderate to slow</td>
<td>7.2</td>
<td>Strike-slip</td>
<td>N</td>
</tr>
<tr>
<td>Kolaka</td>
<td>5-45</td>
<td>175</td>
<td>10</td>
<td>50</td>
<td>Y</td>
<td></td>
<td>1.05-1.64</td>
<td>0.23-1.68</td>
<td>Maximal to slow</td>
<td>7.0</td>
<td>Strike-slip</td>
<td>Y</td>
</tr>
<tr>
<td>Mangole</td>
<td>20</td>
<td>135</td>
<td>2</td>
<td>135</td>
<td>Y</td>
<td></td>
<td>1.12-1.57</td>
<td>0.49-0.55</td>
<td>Rapid to slow</td>
<td>7.6</td>
<td>Normal/Strike Y</td>
<td></td>
</tr>
<tr>
<td>Sanana</td>
<td>5-20</td>
<td>60</td>
<td>?</td>
<td>60</td>
<td>Y</td>
<td></td>
<td>1.27</td>
<td>0.44</td>
<td>Rapid</td>
<td>7.2</td>
<td>Normal/Strike Y</td>
<td></td>
</tr>
<tr>
<td>Rana</td>
<td>10</td>
<td>65</td>
<td>3-4</td>
<td>>40</td>
<td>N</td>
<td>Sfc. Rupture?</td>
<td>1.01-1.96</td>
<td>0.23-1.53</td>
<td>Maximal to slow</td>
<td>>6.9</td>
<td>Strike-slip</td>
<td>N</td>
</tr>
<tr>
<td>Namlea</td>
<td>10</td>
<td>48</td>
<td><1</td>
<td>48</td>
<td>Y</td>
<td></td>
<td>1.03-2.04</td>
<td>0.41-1.22</td>
<td>Maximal to slow</td>
<td>7.1</td>
<td>Normal</td>
<td>Y (lake)</td>
</tr>
<tr>
<td>Southern Seram</td>
<td>5-15</td>
<td>60</td>
<td>2</td>
<td>60</td>
<td>Y</td>
<td>M7.6, 1950 1.84-2.08</td>
<td>1.36-1.88</td>
<td>Slow</td>
<td></td>
<td>7.2</td>
<td>Normal</td>
<td>Y</td>
</tr>
<tr>
<td>Kawa</td>
<td>15-40</td>
<td>120</td>
<td>2</td>
<td>120</td>
<td>Y</td>
<td></td>
<td>1.10-1.33</td>
<td>0.26-0.28</td>
<td>Rapid to moderate</td>
<td>7.5</td>
<td>Strike-slip</td>
<td>Y</td>
</tr>
<tr>
<td>Bobol</td>
<td>10-15</td>
<td>100</td>
<td>2.5</td>
<td>100</td>
<td>N</td>
<td>1.26-1.99 1.04-2.60</td>
<td>Maximal to minimal</td>
<td>7.4</td>
<td>Strike-slip</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined Kawa-Bobol</td>
<td>10-40</td>
<td>240</td>
<td>2.5</td>
<td>240</td>
<td>Y</td>
<td>M7.8, 1899 1.10-1.99</td>
<td>0.26-2.66</td>
<td>Rapid to minimal</td>
<td>7.8</td>
<td>Strike-slip</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Seram FTB</td>
<td>5-15</td>
<td>135</td>
<td>>2</td>
<td>135</td>
<td>Y</td>
<td></td>
<td>1.10-1.33</td>
<td>0.26-0.28</td>
<td>Rapid to moderate</td>
<td>7.6</td>
<td>Thrust</td>
<td>Y</td>
</tr>
<tr>
<td>Sorong (West Papua)</td>
<td>45-75</td>
<td>420</td>
<td><1</td>
<td>420</td>
<td>Y</td>
<td>M7.4, 1944 1.14-2.85</td>
<td>0.27-8.68</td>
<td>Rapid to minimal</td>
<td>>8.0</td>
<td>Strike-slip</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Koor</td>
<td>15-35</td>
<td>100</td>
<td>6</td>
<td>75</td>
<td>Y</td>
<td></td>
<td>1.06-2.64</td>
<td>Maximal to minimal</td>
<td>7.4</td>
<td>Strike-slip</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Ransiki</td>
<td>20-50</td>
<td>100</td>
<td><1</td>
<td>100</td>
<td>Y</td>
<td>M7.6, 2002</td>
<td>Maximal to minimal</td>
<td>7.4</td>
<td>Strike-slip</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yapan</td>
<td>30-50</td>
<td>420</td>
<td>2-3</td>
<td>420</td>
<td>Y</td>
<td>M7.9, 1979</td>
<td>Maximal to minimal</td>
<td>8.0</td>
<td>Strike-slip</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mamberamo</td>
<td>10-20</td>
<td>180</td>
<td><2</td>
<td>180</td>
<td>?</td>
<td>Numerous</td>
<td>1.05-2.33</td>
<td>Maximal to slow</td>
<td>7.1</td>
<td>Normal</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Wandamen boundary</td>
<td>6-20</td>
<td>55</td>
<td>2</td>
<td>55</td>
<td>Y</td>
<td></td>
<td>1.05-2.33</td>
<td>Maximal to slow</td>
<td>7.4</td>
<td>Strike-slip</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Tarera-Aiduna</td>
<td>30-60</td>
<td>130</td>
<td>7</td>
<td>90</td>
<td>Y</td>
<td></td>
<td>1.08-4.58</td>
<td>Maximal to minimal</td>
<td>7.4</td>
<td>Strike-slip</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>